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ABSTRACT

We review the experimental evidence on risk aversion in controlled
laboratory settings. We review the strengths and weaknesses of alternative
elicitation procedures, the strengths and weaknesses of alternative
estimation procedures, and finally the effect of controlling for risk attitudes
on inferences in experiments.

Attitudes to risk are one of the primitives of economics. Individual
preferences over risky prospects are taken as given and subjective in all
standard economic theory. Turning to the characterization of risk in applied
work, however, one observes many restrictive assumptions being used. In
many cases individuals are simply assumed to be risk neutral;1 or perhaps to
have the same constant absolute or relative aversion to risk.2 Assumptions
buy tractability, of course, but at a cost. How plausible are the restrictive
assumptions about risk attitudes that are popularly used? If they are not
plausible, perhaps there is some way in which one can characterize the
distribution of risk attitudes so that it can be used to analyze the
implications of relaxing these assumptions. If so, such characterizations
will condition inferences about choice behavior under uncertainty, bidding
in auctions, and behavior in games.
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We examine the design of experimental procedures that can be used to
estimate risk attitudes of individuals. We also investigate how the data
generated by these procedures should be analyzed. We focus on procedures
that allow ‘‘direct’’ estimation of risk preferences by eliciting choices in non-
interactive settings, since we want to minimize the role of auxiliary or joint
hypotheses about Nash Equilibrium (NE) behavior in games. It is important
to try to get estimates that are independent of such joint assumptions, in
order that the characterizations that emerge can be used to provide tighter
tests of those joint assumptions.3 Nevertheless, we also include designs that
rely on subjects recognizing a dominant strategy response in a game against
the experimenter, although we will note settings in which the presumption
that subjects actually use these might be suspect.4

In Section 1 we consider the major procedures used to elicit risk attitudes.
In Section 2 we review the alternative ways in which risk attitudes have been
estimated from observed behavior using these procedures. In Section 3 we
examine the manner in which measures of risk attitudes are used to draw
inferences about lab behavior. Section 4 offers some thoughts on several
open and closed issues, and Section 5 draws some grand conclusions.

Our review is intended to complement the review by Cox and Sadiraj
(2008) of theoretical issues in the use of concepts of risk aversion in
experiments, as well as the review by Wilcox (2008a) of econometric issues
involved in identifying risk attitudes when there is allowance for unobserved
heterogeneity and ‘‘mistakes’’ by subjects. We take some positions on these
theoretical and econometric issues, but leave detailed discussion to their
surveys.

We default to thinking of risk attitudes as synonymous with the
properties of the utility function, consistent with traditional expected utility
theory (EUT) representations. When we consider rank-dependent and sign-
dependent specifications, particularly in Sections 2 and 3, the term ‘‘risk
attitudes’’ will be viewed more broadly to take into account the effects of
more than just the curvature of the utility function.

Appendix A descriptively reviews the manner in which the humble
‘‘lottery’’ has been represented in laboratory experiments. Although we do
not focus on the behavioral effects that may arise from the framing of the
lotteries, we need to be aware that the stimulus provided to subjects often
varies significantly from experiment to experiment. In effect, we experi-
menters are assuming that the subject views the lottery the way we view the
lottery; the validity of this assumption of common knowledge between
subject and observer rests, in large part, on the representation chosen by the
experimenter. Some day a systematic comparison of the effects of these
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alternatives on risk attitudes should be undertaken, but here we simply want
to provide a reminder that alternative representations exist and are used.5

We return to this issue much later, since it relates to the manner in which
laboratory experiments might provide artifactual representations of the
uncertainty subjects face in the field.

In Appendices B, C, D, and E we examine in some depth the data and
inferences drawn from four heavily cited studies of risk attitudes. The
objective is to be very clear as to what these studies find, and what they do
not find, since references to the literature are often casual and sometimes
even inaccurate.

Appendices B and C focus on two bona fide classics in the area. Hey and
Orme (1994) (HO) introduced a robust experimental design to test EUT, a
maximum likelihood (ML) estimation procedure that does not impose
parametric functional forms, and a careful discussion of the role of ‘‘errors’’
when making inferences about risk attitudes. Holt and Laury (2002) (HL)
introduced a justifiably popular method for eliciting risk attitudes for an
individual, as well as important innovations in the ML estimation of risk
aversion that go beyond simplistic functional forms.

Appendices D and E focus on two studies that illustrate the problems that
arise when experiments suffer from design issues or draw general inferences
from restrictive models. Kachelmeier and Shehata (1992) (KS) apply an
elicitation procedure that is popular, but which generates so much noise that
reliable inferences cannot be drawn. Gneezy and Potters (1997) (GP)
consider the important issue of ‘‘evaluation periods’’ on risk attitudes, but
confound that valuable objective with extremely restrictive specifications of
risk attitudes, leading them to incorrectly conclude that risk attitudes
change with evaluation periods. In each of these studies there is an
important objective; in the one case, examining risk attitudes among very
poor subjects for whom the stakes are huge, and in the other case,
considering the framing of the choice in a fundamental manner. But the
problems with each study show why one has to pay proper attention to
design and inferential issues before drawing reliable conclusions.

We conclude that there is systematic evidence that subjects in laboratory
experiments behave as if they are risk averse. Some subjects tend towards a
mode of risk neutrality (RN), but very few exhibit risk-loving behavior. The
degree of risk aversion is modest, but does exhibit heterogeneity that is
correlated with observable individual characteristics.

Some risk elicitation methods are expected to provide more reliable
estimates than others, due to the simplicity of the task and the transparency
of the incentives to respond truthfully. Limited evidence exists on the
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stability of risk attitudes across elicitation instruments, but there is some
evidence to indicate that roughly equal measures of risk aversion can be
obtained in the laboratory using a variety of procedures that are a priori
attractive. There are also several methods for eliciting risk that we do not
recommend.

Inferences about risk attitudes can be undertaken using several empirical
approaches. One approach is to infer bounds on parameters for a limited
class of (one-parameter) utility functions, but a preferable approach is to
estimate a latent structural model of choice. Developments in statistical
software now allow experimenters to undertake such structural estimation
using ML methods. In addition, inferences about risk attitudes depend on
whether the data generating process is viewed from the lens of a single model
of choice behavior: there is striking evidence that two or more models may
have support from different subjects or different task domains. Appropriate
statistical tools exist that allow one to model the extent to which one
model or another is favored by the data, and for which subjects and task
domains. We review evidence that subjects exhibit some modest amounts
of probability weighting, and some controversial evidence concerning the
extent of loss aversion. Much of the behavioral folklore on probability
weighting and loss aversion has employed elicitation procedures and/or
statistical methods, which are piecemeal or have ad hoc properties.

Our final topic for discussion is how the characterization of behavior in a
wide range of experimental tasks is affected by the treatment of risk
attitudes, or confounded by the lack of such a treatment. Examples reviewed
here include tests of EUT, estimates of discount rates, and evaluations of
alternative models of bidding behavior in auctions. One open issue, with
the potential to undermine many inferences in experimental economics,
is the extent to which sample selection is driven by risk attitudes. A related
concern is the reliability of measurements of treatment effects when subjects
have some choice as to which treatment to participate in.

In brief, risk attitudes play a central role in experimental economics, and
the nuances of measuring and controlling them demand the attention of
every experimenter.

1. ELICITATION PROCEDURES

Five general elicitation procedures have been used to ascertain risk attitudes
from individuals in the experimental laboratory using non-interactive
settings. The first is the Multiple Price List (MPL), which entails giving
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the subject an ordered array of binary lottery choices to make all at once. The
MPL requires the subject to pick one of the lotteries on offer, and then the
experimenter plays that lottery out for the subject to be rewarded. The second
is a series of Random Lottery Pairs (RLP), in which the subject picks one of
the lotteries in each pair, and faces multiple pairs in sequence. Typically one
of the pairs is randomly selected for payoff, and the subject’s preferred lottery
is then played out as the reward. The third is an Ordered Lottery Selection
(OLS) procedure in which the subject picks one lottery from an ordered set.
The fourth method is a Becker–DeGroot–Marschak (BDM) auction in which
the subject is asked to state a minimum certainty-equivalent (CE) selling price
to give up the lottery he has been endowed with. The fifth method is a hybrid
of the others: the Trade-Off (TO) design, in which the subject is given lotteries
whose prizes (or probabilities) are endogenously defined in real-time by prior
responses of the same subject, and some CE elicited. We also review several
miscellaneous elicitation procedures that have been proposed.

1.1. The Multiple Price List Design

The earliest use of the MPL design in the context of elicitation of risk
attitudes is, we believe, Miller, Meyer, and Lanzetta (1969). Their design
confronted each subject with five alternatives that constitute an MPL,
although the alternatives were presented individually over 100 trials. The
method was later used by Schubert, Brown, Gysler, and Brachinger (1999),
Barr and Packard (2002), and Holt and Laury (2002). Appendix C reviews
the HL experiments in detail.

The HL instrument provides a simple test for risk aversion using an MPL
design. Each subject is presented with a choice between two lotteries, which
we can call A or B. Panel A of Table 1 illustrates the basic payoff matrix
presented to subjects. The first row shows that lottery A offered a 10%
chance of receiving $2 and a 90% chance of receiving $1.60. The expected
value of this lottery, EVA, is shown in the third-last column as $1.64,
although the EV columns were not presented to subjects.6 Similarly, lottery
B in the first row has chances of payoffs of $3.85 and $0.10, for an expected
value of $0.48. Thus, the two lotteries have a relatively large difference in
expected values, in this case $1.17. As one proceeds down the matrix, the
expected value of both lotteries increases, but the expected value of lottery B
becomes greater than the expected value of lottery A.

The subject chooses A or B in each row, and one row is later selected at
random for payout for that subject. The logic behind this test for risk

Risk Aversion in the Laboratory 45



T
a
b
le

1
.

L
o
tt
er
y
C
h
o
ic
es

in
th
e
H
o
lt
/L
a
u
ry

a
n
d
B
in
sw

a
n
g
er

R
is
k
A
v
er
si
o
n
In
st
ru
m
en
ts
.

L
o
tt
er
y
A

L
o
tt
er
y
B

E
V
A

E
V
B

D
if
fe
re
n
ce

p
($
2
)

p
($
1
.6
0
)

p
($
3
.8
5
)

p
($
0
.1
0
)

A
.
H
o
lt
a
n
d
L
a
u
ry

(2
0
0
2
)
in
st
ru
m
en
t
w
it
h
p
a
y
o
ff
s
a
t
th
e
1
�

le
v
el
a

0
.1

$
2

0
.9

$
1
.6
0

0
.1

$
3
.8
5

0
.9

$
0
.1
0

$
1
.6
4

$
0
.4
8

$
1
.1
7

0
.2

$
2

0
.8

$
1
.6
0

0
.2

$
3
.8
5

0
.8

$
0
.1
0

$
1
.6
8

$
0
.8
5

$
0
.8
3

0
.3

$
2

0
.7

$
1
.6
0

0
.3

$
3
.8
5

0
.7

$
0
.1
0

$
1
.7
2

$
1
.2
3

$
0
.4
9

0
.4

$
2

0
.6

$
1
.6
0

0
.4

$
3
.8
5

0
.6

$
0
.1
0

$
1
.7
6

$
1
.6
0

$
0
.1
6

0
.5

$
2

0
.5

$
1
.6
0

0
.5

$
3
.8
5

0
.5

$
0
.1
0

$
1
.8
0

$
1
.9
8

�
$
0
.1
7

0
.6

$
2

0
.4

$
1
.6
0

0
.6

$
3
.8
5

0
.4

$
0
.1
0

$
1
.8
4

$
2
.3
5

�
$
0
.5
1

0
.7

$
2

0
.3

$
1
.6
0

0
.7

$
3
.8
5

0
.3

$
0
.1
0

$
1
.8
8

$
2
.7
3

�
$
0
.8
4

0
.8

$
2

0
.2

$
1
.6
0

0
.8

$
3
.8
5

0
.2

$
0
.1
0

$
1
.9
2

$
3
.1
0

�
$
1
.1
8

0
.9

$
2

0
.1

$
1
.6
0

0
.9

$
3
.8
5

0
.1

$
0
.1
0

$
1
.9
6

$
3
.4
8

�
$
1
.5
2

1
$
2

0
$
1
.6
0

1
$
3
.8
5

0
$
0
.1
0

$
2
.0
0

$
3
.8
5

�
$
1
.8
5

A
lt
er
n
a
ti
v
e

P
ro
b
a
b
il
it
y
o
f

B
a
d
O
u
tc
o
m
e

B
a
d
O
u
tc
o
m
e

(I
n
d
ia
n
R
u
p
ee
s)

P
ro
b
a
b
il
it
y
o
f

G
o
o
d
O
u
tc
o
m
e

G
o
o
d
O
u
tc
o
m
e

(I
n
d
ia
n
R
u
p
ee
s)

E
x
p
ec
te
d

V
a
lu
e

B
.
B
in
sw

a
n
g
er

(1
9
8
0
,
1
9
8
1
)
in
st
ru
m
en
t
w
it
h
p
a
y
o
ff
s
a
t
th
e
ru
p
ee
s
5
0
le
v
el
b

O
1
/2

5
0

1
/2

5
0

5
0

A
1
/2

4
5

1
/2

9
5

7
0

B
1
/2

4
0

1
/2

1
2
0

8
0

B
�

1
/2

3
5

1
/2

1
2
5

8
0

C
1
/2

3
0

1
/2

1
5
0

9
0

C
�

1
/2

2
0

1
/2

1
6
0

9
0

E
1
/2

1
0

1
/2

1
9
0

1
0
0

F
1
/2

0
1
/2

2
0
0

1
0
0

a
E
x
p
er
im

en
ts

w
er
e
a
ls
o
co
n
d
u
ct
ed

a
t
th
e
2
0
�
,
5
0
�
,
a
n
d
9
0
�

le
v
el
.

b
E
x
p
er
im

en
ts
w
er
e
a
ls
o
co
n
d
u
ct
ed

a
t
th
e
ru
p
ee
s
0
.5

le
v
el
(c
o
m
p
a
re
d
to

a
lt
er
n
a
ti
v
e
O
)
a
n
d
a
t
th
e
ru
p
ee
s
5
le
v
el
,
w
it
h
ro
u
g
h
ly

2
w
ee
k
s
in
te
rv
a
l.

GLENN W. HARRISON AND E. ELISABET RUTSTRÖM46



aversion is that only risk loving subjects would take lottery B in the first
row, and only risk-averse subjects would take lottery A in the second last
row. Arguably, the last row is simply a test that the subject understood the
instructions, and has no relevance for risk aversion at all.7 A risk-neutral
subject should switch from choosing A to B when the EV of each is about
the same, so a risk-neutral subject would choose A for the first four rows
and B thereafter.

The HL instrument is typically applied using a random lottery incentive
procedure in which one row is selected to be played out according to the
choices of the subjects, rather than all rows being played out. But that is not
an essential component of the instrument, even if it is popular and widely
used in many experiments to save scarce experimental funds. We discuss the
random lottery incentive procedure in detail in Section 3.8.

The MPL instrument has one apparent weakness as an elicitation
procedure: it might suggest a frame that encourages subjects to select the
middle row, contrary to their unframed risk preferences. The antidote for
this potential problem is to devise various ‘‘skewed’’ frames in which the
middle row implies different risk attitudes, and see if there are differences
across frames. Simple procedures to detect such framing effects, and
correcting them statistically if present, have been developed (e.g., Harrison,
Lau, Rutström, & Sullivan, 2005; Andersen, Harrison, Lau, & Rutström,
2006; Harrison, List, & Towe, 2007). The evidence suggests that there may
be some slight framing effect, but it is not systematic and can be easily
allowed for in the estimation of risk attitudes.

A variant of the MPL instrument was developed in the laboratory by
Schubert et al. (1999).8 Figs. 1 and 2 illustrate the interface provided to
subjects by Barr and Packard (2002), in a sequential field implementation of
this variant used in Chile. Respondents were confronted with a series of
gambles framed first as an investment. The experiment then elicited their CE
for an uncertain lottery. Trained experimenters asked the respondents to
imagine themselves as investors choosing whether to invest in Firm A,
whose profits were determined by its chances of success or failure, or Firm B,
whose profits were fixed regardless of how well it fared. The experimenter
explained the probabilities of Firm A’s success, the payoffs from Firm A in
each state, and the fixed payoff from Firm B. The respondents were then
asked to decide in which firm to invest. After registering their answer,
the experimenter would raise the amount of the secure payoff, and ask the
respondents to choose between the two firms again. As the amount of the
secure payoff grew, investing in Firm A looked less attractive to a risk-
averse respondent. In this way a CE, the point at which respondents would
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no longer risk investing in Firm A, was elicited for each gamble. The
probability of Firm A’s failure was altered three times while keeping the
state-specific payoffs constant, and in the fourth investment gamble
the payoffs were altered. A risk-averse subject would state a value for
Firm B below the expected value of Firm A, and a risk-loving subject would
state a value for Firm A above the expected value of Firm A. The subject
knew that the CE ‘‘price list’’ would span the range shown in Fig. 2 before
the sequence began.

Two variants of the MPL instrument were developed by Harrison et al.
(2005d; Section 3.1), and studied at length by Andersen et al. (2006a). One is
called the Switching MPL method, or sMPL for short, and simply changes
the MPL to ask the subject to pick the switch point from one lottery to the
other. Thus, it enforces monotonicity, but still allows subjects to express
indifference at the ‘‘switch’’ point, akin to a ‘‘fat switch point.’’ The subject
was then paid in the same manner as with MPL, but with the non-switch
choices filled in automatically. The other variant is the Iterative MPL
method, or iMPL for short. The iMPL extends the sMPL to allow the
individual to make choices from refined options within the option last
chosen. That is, if someone decides at some stage to switch from option A
to option B between values of $10 and $20, the next stage of an iMPL would

Investment Decision 1

FIRM A FIRM B

Very successful

Profit=3,000 P with a 1 in 6 chance,

i.e., if

Not very successful

Profit=1,000 P with a 5 in 6 chance.

i.e., if Do you choose Firm A or Firm B?, , , ,

Fig. 1. Primary MPL Instrument of Barr and Packard (2002).
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Profit = 1,000 P

Profit = 1,200 P

Profit = 1,400 P

Profit = 1,600 P

Profit = 1,800 P

Profit = 2,000 P

Profit = 2,200 P

Profit = 2,400 P

Profit = 2,600 P

Profit = 2,800 P

Profit = 3,000 P

Tab for
Investment Decision 1

Fig. 2. Slider in MPL Instrument of Barr and Packard (2002).
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then prompt the subject to make more choices within this interval, to
refine the values elicited.9 The computer implementation of the iMPL
restricts the number of stages to ensure that the intervals exceed some a
priori cognitive threshold (e.g., probability increments of 0.001). The iMPL
uses the same incentive logic as the MPL and sMPL.10

Another feature of the MPL should be noted, although it is not obvious
that it is a weakness or a strength: the fact that subjects see all choices in one
(ordered) table. One alternative is to have the subjects make each binary
lottery choice in a sequence, embedding them into the RLP design of
Section 1.2. It is possible that allowing the subject to see all choices in one
frame might lead some subjects to make more consistent choices than they
would otherwise. Which approach, then, is the correct one to use? The
answer depends on the inferential objective of the design, and the external
context that the implied measure of risk aversion is to be applied to. We
view the MPL and RLP as two different elicitation procedures: their effect
on behavior should be studied systematically, in the manner we illustrate
later in Section 2.5. We do not believe that consistency should always be the
primary criterion for selection across elicitation procedures, particularly
when one allows formally for the stochastic choice process (Section 2.3 and
Wilcox (2008a)) and the possibility that it could interact with the elicitation
procedure in some manner. Evidence for different risk attitudes across
procedures is, by definition, a sign of a procedural artifact. But that evidence
needs to be documented with formal statistical models and, if present,
recognized as a behavioral corollary of using that procedure.

In summary, the set of MPL instruments provides a relatively transparent
procedure to elicit risk attitudes. Subjects rarely get confused about the
incentives to respond truthfully, particularly when the randomizing devices
are physical die that they know that they will toss themselves.11 As we
demonstrate later, it is also possible to infer a risk attitude interval for the
specific subject, at least under some reasonable assumptions.

1.2. The Random Lottery Pair Design

The RLP design has not been used directly to infer risk attitudes, but has
been generally used to test the predictions of EUT. Hey and Orme (1994)
used an extensive RLP design to estimate utility functionals over lotteries
for individuals non-parametrically. The use of the random lottery design,
coupled with treating each pairwise choice as independent, implicitly
means that the estimates they provide rely on the EUT specification.

GLENN W. HARRISON AND E. ELISABET RUTSTRÖM50



Related experimental data, from the earlier ‘‘preference reversal’’ debate,
provide comparable evidence of risk aversion for smaller samples (see
Grether and Plott, 1979 and Reilly, 1982). Additionally, many prominent
experiments testing EUT provide observations based on a rich array of
lotteries that vary in terms of probabilities and monetary prizes; for
example, see Camerer (1989), Battalio, Kagel, and Jiranyakul (1990), Kagel,
MacDonald, and Battalio (1990), Loomes, Starmer, and Sugden (1991),
Harless (1992), and Harless and Camerer (1994). In most cases the published
study only reports patterns of choices, with no information on individual
characteristics, but they can be used to obtain general characterizations
of risk attitudes for that subject pool.

Hey and Orme (1994) asked subjects to make direct preference choices
over 100 pairs of lotteries, in which the probabilities varied for four fixed
monetary prizes of d0, d10, d20, and d30. Subjects could express direct
preference for one lottery over the other, or indifference. One of the pairs
was actually chosen at random at the end of the session for payout for each
subject, and the subject’s preferences over that pair applied. Some days later
the same subjects were asked back to essentially repeat the task, facing the
same lottery combinations in different presentation order.

HO used pie charts to display the probabilities of the lotteries they
presented to subjects. A sample display from their computer display to
subjects is shown in Fig. 3. There is no numerical referent for the
probabilities, which must be judged from the pie chart. As a check, what
fraction would you guess that each slice is on the left-hand lottery? In fact,
this lottery offers d10 with probability 0.625, and d30 with probability
0.385. The right-hand lottery offers the same probabilities, as it happens, but
with prizes of d10 and d20, respectively. Fig. 4 illustrates a modest extension
of this display to include information on the probabilities of each pie slice,
and was used in a replication and extension of the HO experiments by
Harrison and Rutström (2005).

HO used their data to estimate a series of utility functionals over lotteries,
one for each subject since there were 100 observations for each subject in
each task. This is a unique data set since most other studies rely on pooled
data over individuals and the presumption that unobserved heterogeneity
(after conditioning on any collected individual characteristics, such as sex
and race and income) is random.

The EUT functional that HO estimated was non-parametric, in the sense
that they directly estimated the utility of the two intermediate outcomes,
normalizing the lowest and highest to 0 and 1, respectively. This attractive
approach works well when there are a small number of final outcomes
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across many choices, as here, but would not be statistically efficient if there
had been many outcomes. In that case it would be appropriate to use some
parametric functional form for utility, and estimate the parameters of that
function. We illustrate these points later.

The RLP instrument is typically used in conjunction with the random
lottery payment procedure in which one choice is picked to be played out,
but this is again not essential to the logical validity of the instrument.

The great advantage of the RLP instrument is that it is extremely easy to
explain to subjects, and the incentive compatibility of truthful responses
apparent. Contrary to the MPL, it is generally not possible to directly infer a
risk attitude from the pattern of responses, and some form of estimation is
needed. We illustrate such estimations later.

1.3. The Ordered Lottery Selection Design

The OLS design was developed by Binswanger (1980, 1981) in an early
attempt to identify risk attitudes using experimental procedures with real

Fig. 3. Lottery Display Used by Hey and Orme (1994).
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payoffs. Each subject is presented with a choice of eight lotteries, shown in
each row of panel B of Table 1, and asked to pick one. Alternative O is the
safe option, offering a certain amount. All other alternatives increase the
average actuarial payoff but with increasing variance around that payoff.

The lotteries were actually presented to subjects in the form of
photographs of piles of money, to assist illiterate subjects. Each lottery
had a generic label, such as the ones shown in the left column of panel B of
Table 1. Fig. 5 shows the display used by Barr (2003) in a field replication of
the basic Binswanger OLS instrument in Zimbabwe, and essentially matches
the graphical display used in the original experiments (Hans Binswanger;
personal communication). Because the probabilities for each lottery
outcome are 1/2, this instrument can be presented relatively simply to
subjects.12

The OLS instrument was first used in laboratory experiments by
Murnighan, Roth, and Shoumaker (1987, 1988), although they only used
the results to sort subjects into one group that was less risk averse than the
other. Beck (1994) utilized it to identify risk aversion in laboratory subjects,

Fig. 4. Lottery Display for Hey and Orme (1994) Replication.
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Fig. 5. Lottery Display of Binswanger Replication by Barr (2003).

GLENN W. HARRISON AND E. ELISABET RUTSTRÖM54



prior to them making group decisions about the dispersion of everyone
else’s potential income. This allowed an assessment of the extent to which
subjects in the second stage chose more egalitarian outcomes because they
were individually averse to risk or because they cared about the distribution
of income. Eckel and Grossman (2002, 2008) used the OLS instrument to
directly measure risk attitudes, as well as an innovative application in which
subjects guessed the risk attitudes of other subjects. They found that subjects
did appear to use sexual stereotypes in guessing the risk attitudes.

The OLS instrument is easy to present to subjects, but has two problems
when used to make inferences about non-EUT models of choice behavior.
The versions that restrict probabilities to 1/2 make it virtually impossible to
use these responses to make inferences about probability weighting, which
play a major role in rank-dependent alternatives to EUT. Of course, there
is nothing in the instrument itself that restricts the probabilities to 1/2,
although that has been common. The second problem is that the use of the
certain amount may frame the choices that subjects make in a manner that
makes them ‘‘sign-dependent,’’ such that the certain amount provides a
reference point to identify gains and losses. This concern applies more
broadly, of course, but in the OLS instrument there is a natural and striking
reference point for (some) subjects to use. We consider both of these issues
later when we consider inferences from observed choices.

Engle-Warnick, Escobal, and Laszlo (2006) undertake laboratory
experiments with the OLS instrument to test the effect of presenting the
choices in different ways. The baseline mimics the procedures of Binswanger
(1980, 1981) and Barr (2003), shown in Fig. 5, except that five lotteries were
arrayed in a circle in an ordered counter-clockwise fashion, with the certain
amount at 12 o’clock. The first treatment then presents the ordered pairs of
lotteries in a binary choice fashion, so that the subject makes four binary
choices. The second treatment extends these binary choices by including a
lottery that is dominated by one of the original binary pairs. The dominated
lottery is always presented in between the non-dominated lotteries, so it
appears to be physically intermediate. Each subject made 13 decisions,
which were randomized in order and left–right presentation (for the un-
dominated lotteries). The statistical analysis of the results is unfortunately
couched in terms of ordinal measures of the degree of risk aversion, such as
the number of safe choices, and it would be valuable to see the effect of these
treatments on estimated measures of relative risk aversion (RRA) using
more explicit statistical methods (e.g., per Section 2.2, and particularly
Sections 2.5 and 2.6). But there is evidence that the instruments are
positively correlated, although the correlation is significantly less than one.
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In particular, the correlation between the baseline OLS instrument and the
transformed binary choice version for Canadian university students is 0.63,
but it is only 0.31 for Peruvian farmers. Moreover, the introduction of a
dominated lottery appeared to have no significant effect on the correlation
of risk attitudes for the Canadian university students, but considerable
effects on the correlation for Peruvian farmers.

1.4. The Becker–DeGroot–Marschak Design

The original BDM design developed by Becker, DeGroot, and Marschak
(1964) was modified by Harrison (1986, 1990) and Loomes (1988) for use as
a test for risk aversion.13 This design was later used by McKee (1989),
Kachelmeier and Shehata (1992) and James (2007) in similar exercises. The
basic idea is to endow the subject with a series of lotteries, and to ask for the
‘‘selling price’’ of the lottery. The subject is told that a ‘‘buying price’’ will be
picked at random, and if the buying price that is picked exceeds the stated
selling price, the lottery will be sold at that price and the subject will receive
that buying price. If the buying price equals or is lower than the selling price,
the subject keeps the lottery and plays it out.

It is relatively transparent to economists that this auction procedure
provides a formal incentive for the subject to truthfully reveal the CE of the
lottery. However, it is not clear that subjects always understand this logic,
and responses may be sensitive to the exact nature of the instructions given.
For the instrument to elicit truthful responses, the experimenter must ensure
that the subject realizes that the choice of a buying price does not depend on
the stated selling price.14 If there is reason to suspect that subjects do not
understand this independence, the use of physical randomizing devices (e.g.,
die or bingo cages) may mitigate such strategic thinking. Of course, the
BDM procedure is formally identical to a two-person Vickrey sealed-bid
auction, with the same concerns about subjects not understanding dominant
strategies without considerable training (Harstad, 2000; Rutström, 1998).

A major concern when choosing elicitation formats is the strength of the
incentives provided at the margin, that is, the magnitude of the losses
generated by misrepresenting true preferences. While the BDM is known to
have weak incentives around the optimum (Harrison, 1992), the same is also
true for other elicitation formats.15 Comparing the incentive properties
of the BDM to the MPL in a pairwise evaluation of a safer and a riskier
lottery, we find that the expected loss from errors in the latter is a weighted
average of the losses implied for the safe and the risky evaluations
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respectively in the BDM. The incentives in the BDM can be strengthened
through a careful choice of the range of the buying prices and are generally
stronger the higher is the variance of the lottery being valued.16

Plott and Zeiler (2005) express a concern with the way that the BDM
mechanism is popularly implemented. Appendix D reviews in detail an
application of the BDM mechanism for eliciting risk attitudes by
Kachelmeier and Shehata (1992) and illustrates some possible problems.
It may be possible to re-design the BDM mechanism to avoid some of these
problems,17 but more attractive elicitation procedures are available.

1.5. The Trade-Off Design

Wakker and Deneffe (1996) propose a TO method to elicit utility values
which does not make any assumption about whether the subject weighs
probabilities. This is an advantage compared to the methods widely used
in the ‘‘judgement and decision-making literature,’’ such as the CE or
probability-equivalent methods,18 since those methods assume that there is
no probability weighting. The TO method proceeds by asking the subject to
consider two lotteries defined over prizes x0, x1, r, and R and probabilities
p and 1� p: (x1, p; r, 1� p) and (x0, p; R, 1� p). It is assumed that RWr, p is
some fixed probability of receiving the first outcome, and that x0 is some
fixed and small amount such as $0. The subject is asked to tell the
experimenter what x1 would make him indifferent between these two
lotteries. Call this stage 1 of the TO method. Then the subject is asked the
same question about the lotteries (x2, p; r, 1� p) and (x1, p; R, 1� p) and
asked to state the x2 that makes him indifferent between these two. Call this
stage 2 of the TO method.

If the subject responds truthfully to these questions, it is possible to infer
that u(x2)� u(x1) ¼ u(x1)� u(x0) using the logic explained by Wakker and
Deneffe (1996; p. 1134). Setting u(x0) ¼ 0, we can then infer that u(x2) ¼
2� u(x1). A similar argument leads to an elicited x3 such that u(x3) ¼
3� u(x1), and so on. If we wanted to stop at x3, we could then renormalize
u(x1) to 1/3, so that the we have elicited utility over the unit interval.

The obvious problem with the TO method as implemented by Wakker
and Deneffe (1996) is that it is not incentive compatible: subjects have
a transparent incentive to overstate the value of x1, and indeed all other
elicited amounts. Assume that subjects are to be incentivized in the
obvious manner by one of the lotteries in each task being picked by a coin
toss to be played out (or by just one such lottery being picked at random

Risk Aversion in the Laboratory 57



over all three stages). First, by overstating x1 in stage 1 the subject increases
the final outcome received if a lottery in stage 1 is used to pay him because
x1 is one of the outcomes in one of the lotteries in stage 1. Second, by
overstating x1 in stage 1 the subject increases the final outcome received if
a lottery in stage 2 is used to pay him, since x1 is used to define one of the
lotteries in stage 2. Thus, we would expect some subject to ask us, sheepishly
in stage 1, ‘‘how large an x1 am I allowed to state?’’

It is surprising that the issue of incentive compatibility was not even
discussed in Wakker and Deneffe (1996), but since the actual experiments
they report were hypothetical, even an otherwise incentive compatible
mechanism could have problems generating truthful answers. There is a
recognition that the ‘‘chaining’’ of old responses into new lotteries might
lead to error propagation (p. 1148), but that is an entirely separate matter
than strategic misrepresentation.

The TO method was extended by Fennema and van Assen (1999) to
consider losses as well as gains. The experiments were all hypothetical,
primarily to avoid the ethical problems of exposing subjects to real losses.
The TO method was extended by Abdellaoui (2000) to elicit probability
weights after utilities have been elicited. Real rewards were provided for one
randomly selected binary choice in the gain domain from one randomly
selected subject out of the 46 present, but the issue of incentive compatibility
is not discussed. There is an attempt to elicit utility values in a non-
sequential manner, which might make the chaining effect less transparent to
inexperienced subjects, but again this only mitigates the second of the
sources of incentive incompatibility.19 Bleichrodt and Pinto (2000) proposed
a different way of extending the TO method to elicit probability weights, but
only applied their method to hypothetical utility elicitation in the health
domain. They provide a discussion (p. 1495) of ‘‘error propagation’’ that
points to some of the literature on stochastic error specifications considered
in Section 2.3, but in each case assume that the error has mean zero, which
misses the point of the incentive incompatibility of the basic TO method.
Abdellaoui, Bleichrodt, and Paraschiv (2007b) extend the TO method to
elicit measures of loss aversion. Their experiments were for hypothetical
rewards, and they do not discuss incentive compatibility.20

1.6. Miscellaneous Designs

There are several experimental designs that attempt to elicit risk attitudes
that do not easily fit into one of the five major designs considered above.
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We again ignore any designs that do not claim to elicit risk attitudes in any
conceptual sense that an economist would recognize, even if those designs
might elicit some measure which is empirically correlated in some settings
with the measures of interest to economists.

Fehr and Goette (2007) estimate a loss aversion parameter using a Blind
Loss Aversion model of behavior, ‘‘extending’’ the Myopic Loss Aversion
model of Benartzi and Thaler (1995); we review the latter model in detail in
Section 3.5. They ask subjects to consider two lotteries, expressed here in
equivalent dollars instead of Swiss Francs:

Lottery A: Win $4.50 with probability 1/2, lose $2.80 with probability 1/2.
Otherwise get $0.
Lottery B: Play six independent repetitions of lottery A. Otherwise get $0.

Subjects could participate in both lotteries, neither, or either. Fehr and
Goette (2007) assume that subjects have a linear utility function for stakes
that are this small, relying on the theoretical arguments of Rabin (2000)
rather than the data of Holt and Laury (2002) and others. They also assume
that there is no probability weighting: even though Quiggin (1982; Section 4)
viewed 1/2 as a plausible fixed point in probability weighting, most others
have assumed or found otherwise. If one is blind to the effects of curvature
of the utility function and probability weighting then the only thing left to
explain choices over these lotteries is loss aversion. On the other hand, it
becomes ‘‘heroic’’ to then extrapolate those estimates to explain behavior
that one has elsewhere (p. 304) assumed to be characterized by stakes
large enough that strictly concave utility is plausible a priori. Of course, the
preferred model (p. 306) assumes away concavity and only uses the loss
aversion parameter, but without explanation for why behavior over such
stakes should be driven solely by loss aversion instead of risk attitudes more
generally.21

Tanaka, Camerer, and Nguyen (2007) (TCN) propose a method to elicit
risk and time preferences from individuals. They assume a certain
parametric structure in their risk elicitation procedure, assuming Cumula-
tive Prospect Theory (CPT): specifically, power Constant Relative Risk
Aversion (CRRA) utility functions for gains and losses, and the one-
parameter version of the Prelec (1998) probability weighting function. They
further assume that the CRRA coefficient for gains and losses is the same.
We consider these functional forms in detail in Sections 3.1 and 3.2. The
upshot is they seek to elicit one parameter s that controls the concavity or
convexity of the utility function, one parameter a that controls the curvature
of the probability weighting function, and one parameter l that determines
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the degree of loss aversion. Their elicitation procedure for time preferences
is completely separate conceptually from their elicitation procedure for risk
attitudes, and is not used to infer anything about risk preferences.22

To elicit the first two parameters, s and a, TCN ask subjects to consider
three MPL sheets. The first sheet contains 14 options akin to those used in
the Holt and Laury (2002) MPL procedure, shown in panel A of Table 1.
The difference is that the probabilities of the high or low outcomes in each
lottery stay constant from row to row, but the high prize in the ‘‘risky’’
lottery get larger and larger: the risky lottery start off in row 1 as ‘‘relatively
risky’’ but with a relatively low expected value, and changes so that in the
last row it becomes ‘‘extremely risky’’ but with a substantially higher
expected value. The specific, fixed probabilities used are 0.3 for the high
prize in the safe lottery and 0.1 for the high prize in the risky lottery.
Subjects are asked to pick a switch point in this sheet, akin to the sMPL
procedure of Andersen et al. (2006a); of course, this is just a monotonicity-
enforcing variant of the basic MPL procedure of Holt and Laury (2002). So
we can see that behavior in the first sheet elicits an interval for s if we had
ignored probability weighting, just as it elicited an interval for the CRRA
coefficient in Holt and Laury (2002; Table 3, p. 1649). But with probability
weighting allowed, all we can infer from this choice are combinations of
intervals for s and a. TCN indicate (p. 8, fn. 11) that the values of s and a
they report are actually ‘‘rounded mid-points’’ of the intervals. For example,
one interval they infer is 0.65oso0.74 and 0.66oao0.74, and they round
this to the values s ¼ 0.7 and a ¼ 0.7. They note in a footnote to Table A1
(p. 33) that the boundaries of the intervals are approximated to the nearest
0.05 increments. If subjects do not switch they use the approximate values at
the last possible interval; in fact, the implied interval should have a finite
value for a lower bound and N for the upper bound, as noted by Coller and
Williams (1999).23 For their particular parameters there are seven such
combinations of interval pairs.

The second sheet in the procedure of TCN is qualitatively the same as the
first sheet, except that the probabilities of the high prize in each lottery
are now 0.1 and 0.7. The specific prizes are different, but have the same
structure as the first sheet. From the switching point in the second sheet
one can derive another set of interval pairs for the parameters s and a. The
values for these intervals will be different than the intervals derived from the
first sheet, because of differences in the value of the prizes and probabilities.
By crossing the two sets of intervals one can reduce the implied intervals
to the intersections from the two sheets. Since the prizes in these two sheets
involve gains, the loss aversion parameter l plays no role.
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The third sheet in the procedure of TCN involves losses. There are seven
options in which each lottery contains one positive prize and one negative
prize, so these are ‘‘mixed lotteries.’’ Probabilities of the high prize are fixed
at 1/2 for all rows, and variations in three of the prizes occur from row to
row. Conditional on a value of s from responses to the first two sheets, the
response in the third sheet implies an interval for l. For example, if s ¼ 0.2
then somebody switching at, say, row 4 in the third sheet would have
revealed a loss aversion parameter such that 1.88olo2.31, but if s ¼ 1 then
somebody switching at row 4 in the third sheet would have revealed a loss
aversion parameter such that 1.71olo2.42. The parameters for the third
sheet were chosen, for a given observed response, so that the implied intervals
for l did not differ widely as s varied over the expected range. Of course, the
responses in the third sheet provides information on s as well as l. In other
words, if one only observed responses from the third sheet there would be a
number of interval pairs for s and l that could account for the data, just as
there are a number of interval pairs of s and a that could rationalize the
observed response in the first or second sheet. So, the TCN procedure
implicitly imposes a recursive estimation structure, so that s is pinned down
only from the responses in the first two sheets, and then the responses in the
third sheet are used, conditional on some s, to infer bounds for l. This is a
wily and parsimonious assumption, but might lead to different inferences
than if one simply took all responses in these three sheets and simultaneously
estimated s, a, and l, using ML methods discussed in Section 2.2.

The TCN procedure generates no information on standard errors of
estimates, but such information would be provided automatically with the
use of ML methods. Although the parameters they derive are conditional
on the specific functional forms assumed, and in some cases (e.g., the third
sheet) chosen to generate relatively robust inferences assuming those
parameterizations, it should be possible to recover estimates for some
minor variations in functional form (e.g., Constant Absolute Risk Aversion
(CARA) instead of CRRA).

2. ESTIMATION PROCEDURES

Two broad methods of estimating risk attitudes have been used. One
involves the calculation of bounds implied by the observed choices, typically
using utility functions which only have a single-parameter to be inferred.
The other involves the direct estimation by ML of some structural model of
a latent choice process in which the core parameters defining risk attitudes
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can be estimated, in the manner pioneered by Camerer and Ho (1994;
Section 6.1) and Hey and Orme (1994). The latter approach is particularly
attractive for non-EUT specifications, where several core parameters
combine to characterize risk attitudes. For example, one cannot characterize
risk attitudes under Prospect Theory (PT) without making some statement
about loss aversion and probability weighting, along with the curvature of
the utility function. Thus, joint estimation of all parameters is a necessity for
reliable statements about risk attitudes in such cases.

We first review examples of each approach (Sections 2.1 and 2.2), and
then consider the role of stochastic errors (Section 2.3), the possibility of
non-parametric estimation (Section 2.4), and a comparison of risk attitudes
elicited from different procedures (Section 2.5), and treatments (Section 2.6).
The exposition in this section focuses almost exclusively on EUT
characterizations of risk attitudes. Alternative models are considered in
Section 3.

2.1. Inferring Bounds

The HL data may be analyzed using a variety of statistical models. Each
subject made 10 responses in each task, and typically made 30 responses
over three different tasks. The responses in each task can be reduced to a
scalar if one looks at the lowest row in panel A of Table 1 that the subject
‘‘switched’’ over to option B.24 This reduces the response to a scalar for each
subject and task, but a scalar that takes on integer values between 0 and 10.
In fact, over 83% of their data takes on values of 4 through 7, and 94%
takes on values between 3 and 8.

HL evaluate these data using ordinary least squares regression with the
number of safe choices as the dependent variable, estimated on the sample
generated by each task separately, and report univariate tests of
demographic effects.25 They also report semi-parametric tests of the number
of safe choices with experimental condition as the sole control.

To study the effects of experimental conditions, while controlling for
characteristics of the sample and the conduct of the experiment, one could
employ an interval regression model, first proposed by Coller and Williams
(1999) for an MPL experimental task (eliciting discount rates). The
dependent variable in this analysis is the CRRA interval that each subject
implicitly chose when they switched from option A to option B. For each
row of panel A in Table 1, one can calculate the bounds on the CRRA
coefficient that is implied, and these are in fact reported by Holt and Laury
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(2002; Table 3). Thus, for example, a subject that made five safe choices and
then switched to the risky alternatives would have revealed a CRRA interval
between 0.15 and 0.41, and a subject that made seven safe choices would
have revealed a CRRA interval between 0.68 and 0.97, and so on.26 When
we consider samples that pool responses over different tasks for the same
individual, we would use a random effects panel interval regression model to
allow for the correlation of responses from the same subject.

Using this panel interval regression model, we can control for all of the
individual characteristics collected by HL, which includes sex, age, race
(Black, Asian, or Hispanic), marital status, personal income, household
income, household size, whether the individual is the primary household
budget decision-maker, indicator of full-time employment, student status,
faculty status, whether the person is a junior, senior, or graduate student,
and whether the person has ever voted. In addition, dummy variables
indicate specific sessions, and a separate indicator identifies those sessions
conducted at Georgia State University. The treatment variables, of course,
include the scale of payoffs (1, 20, 50, or 90), the order of the task (1, 2, 3,
or 4), and the experimental income earned by the subject in task 3.

Table 2 presents ML estimates of this interval regression model. Since
each subjects contributed several tasks, a random effects specification has
been used to control for unobserved individual heterogeneity. One of the
advantages of the use of inferred bounds for risk attitudes is that one
can estimate detailed models such as in Table 2, since interval regression is
a relatively stable statistical model, and a straightforward extension of
ordinary least squares. It is also easy to correct for multiplicative hetero-
skedasticity using this estimation method, although that can introduce
convergence problems as a practical matter. The main benefit of such an
estimation is the ability to quickly ascertain treatment and demographic
effects for the sample.

Consider first the question of order effects. Tasks 1 and 4 were identical in
terms of the payoff scale, but differed because of their order and the fact
that subjects had some experimental income from the immediately prior
task 3. Controlling for that prior income, as well as other individual
covariates, we find that there is an order effect: the CRRA coefficient
increases by 0.16 in task 4 compared to task 1, and this is significant at the
2% level. Thus, order effects do seem to matter in these experiments, and in
a direction that confound the inferences drawn about scale from the high-
payoff treatments. There is also a significant scale effect, as seen for task 3 in
Table 2, so the only way that one can ascertain the pure effect of order when
there is a confounding change in scale, without such assumptions, would be
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Table 2. Interval Regression Model of Responses in Holt and Laury
Experimentsa.

Variable Description Estimate Standard

Error

p-Value Lower 95%

Confidence

Interval

Upper 95%

Confidence

Interval

scale5090 Payoffs scaled by 50 or 90 0.13 0.15 0.38 � 0.16 0.42

Task3 Third task 0.26 0.04 0.00 0.18 0.34

Task4 Fourth task 0.16 0.07 0.02 0.02 0.30

wealth Wealth coming into the

lottery choice

0.00 0.00 0.10 0.00 0.00

Sess2 Session B � 0.18 0.20 0.37 � 0.58 0.21

Sess3 Session C 0.01 0.16 0.92 � 0.29 0.32

Sess4 Session D � 0.16 0.20 0.43 � 0.54 0.23

Sess5 Session E � 0.27 0.20 0.17 � 0.66 0.12

Sess6 Session F � 0.14 0.15 0.34 � 0.44 0.15

Sess7 Session G � 0.24 0.18 0.18 � 0.60 0.11

Sess8 Session H � 0.45 0.20 0.02 � 0.84 � 0.06

Sess9 Session I � 0.21 0.18 0.23 � 0.55 0.13

Sess10 Session J � 0.31 0.18 0.08 � 0.67 0.04

Sess11 Session K 0.07 0.22 0.75 � 0.36 0.50

Sess13 Session M 0.10 0.21 0.62 � 0.31 0.52

female Female 0.04 0.06 0.46 � 0.07 0.16

black Black 0.05 0.16 0.75 � 0.26 0.36

asian Asian 0.05 0.10 0.63 � 0.14 0.23

hispanic Hispanic � 0.39 0.12 0.00 � 0.62 � 0.16

age Age � 0.01 0.01 0.34 � 0.02 0.01

married Ever married 0.12 0.09 0.18 � 0.06 0.30

Pinc2 Personal income between

$5k and $15k

0.06 0.11 0.56 � 0.15 0.27

Pinc3 Personal income between

$15k and $30k

� 0.14 0.11 0.24 � 0.36 0.09

Pinc4 Personal income above

$30k

� 0.10 0.13 0.41 � 0.35 0.14

Hinc2 Household income

between $5k and $15k

0.24 0.16 0.13 � 0.07 0.54

Hinc3 Household income

between $15k and $30k

0.17 0.15 0.27 � 0.13 0.47

Hinc4 Household income

between $30k and $45k

0.08 0.16 0.63 � 0.23 0.39

Hinc5 Household income

between $45k and

$100k

0.31 0.14 0.03 0.03 0.58

Hinc6 Household income over

$100k

0.14 0.17 0.39 � 0.18 0.47

nhhd Number in household � 0.03 0.03 0.38 � 0.09 0.03
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to modify the HL design and directly test for it. Harrison, Johnson,
McInnes, and Rutström (2005b) provided such a test, and found that there
were statistically significant order effects on risk attitudes; we consider their
data below.

We observe no significant effect in Table 2 from sex: women are estimated
to have a CRRA that is 0.04 higher than men, but the standard error of this
estimate is 0.06. Hispanic subjects do have a statistically significant
difference in risk attitudes: their CRRA is 0.39 lower on average, with a
p-value of less than 0.001. Subjects with an annual household income that
places them in the ‘‘upper middle class’’ (between $45,000 and $100,000)
have a significantly higher CRRA that is 0.31 above the norm, with a
p-value of 0.03. Students have a CRRA that is 0.17 higher on average
( p-value ¼ 0.02); the HL sample included faculty and staff in their

Table 2. (Continued )

Variable Description Estimate Standard

Error

p-Value Lower 95%

Confidence

Interval

Upper 95%

Confidence

Interval

decide Primary household

budget decision-maker

� 0.09 0.08 0.26 � 0.25 0.07

fulltime Full time employment 0.15 0.10 0.16 � 0.06 0.35

student Student 0.17 0.08 0.02 0.02 0.32

business Business major � 0.20 0.10 0.05 � 0.39 0.00

junior Junior � 0.16 0.13 0.23 � 0.41 0.10

senior Senior � 0.03 0.14 0.84 � 0.31 0.25

grad Graduate student 0.18 0.15 0.22 � 0.11 0.46

faculty Faculty � 0.07 0.24 0.77 � 0.55 0.40

voter Ever voted � 0.01 0.07 0.86 � 0.15 0.12

gsu Experiment at Georgia

State University

� 0.40 0.22 0.07 � 0.83 0.03

Constant 0.63 0.27 0.02 0.10 1.15

su Standard deviation of

random individual

effect

0.29 0.03 0.00 0.24 0.34

se Standard deviation of

residual

0.33 0.01 0.00 0.30 0.36

Notes: Log-likelihood value is � 838.24; Wald test for null hypothesis that all coefficients are

zero has a w2 value of 118.44 with 40 degrees of freedom, implying a p-value less than 0.001;

fraction of the total error variance due to random individual effects is estimated to be 0.433,

with a standard error of 0.043.
aRandom-effects interval regression. N ¼ 495, based on 181 subjects from Holt and Laury

(2002).
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experiments. Business majors were less risk averse on average, by about
0.20 ( p-value ¼ 0.05). There are some quantitatively large session effects,
although only two sessions (H and J) have effects that are statistically
significant in terms of the p-value. To preserve anonymity, the locations of
these sessions apart from those at Georgia State University are confidential,
so one can only detect individual session effects.

Fig. 6 shows the distribution of predicted CRRA coefficients from the
interval regression model estimates of Table 2 from task 1 (top left panel)
and task 3 (bottom left panel). The estimates for the high-payoff task 3 are
only from those subjects that faced the payoffs that were scaled by a factor
of 20. The average low-payoff CRRA is estimated to be 0.28, with a
standard deviation of 0.20; the average high-payoff CRRA is estimated
to be 0.54 with a standard deviation of 0.26. As Fig. 6 demonstrates, the
distribution is normally shaped, with relatively few of the estimates
exhibiting significant risk aversion above 0.9.

Harrison et al. (2005b) recruited 178 subjects from the University of
South Carolina to participate in a series of non-computerized experiments
using the MPL procedure of HL. Their design called for subjects to
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participate in either a 1� session, a 10� session, or a 1�10� session, where
the ‘‘�’’ denotes the scalar applied to the basic payoffs used by HL in their
1� design (shown in panel A of Table 1). In the 1� session that is all that the
subjects were asked to do; in the 10� session they did one risk elicitation
task but with payoffs scaled up by 10. In the 1�10� session subjects were
asked to state their choices over 1� lotteries, and then given the opportunity
to give up any earnings from that task and participate in a comparable 10�
task. We examine the responses of the subjects in the 10� session and in the
10� part of the 1�10� session, with controls for whether their 10�
responses were preceded by the 1� task or not. Table 3 reports the statistical
analysis of these data, also using an interval regression model. Since
each subject made only one 10� choice, no panel corrections are needed.
The results show no significant effect from sex, and some effect from age,
citizenship, and task order.

One limitation of this approach is that it assumes that all of the
heterogeneity of the sample is captured by the individual characteristics
measured by the experimenter. Although the socio-demographic questions
typically used are relatively extensive, there is always some concern that
there might be unobserved individual heterogeneity that could affect
preferences towards risk. It is possible to undertake a statistical analysis
of the responses of each individual, which implicitly controls for unobserved
heterogeneity in the pooled analysis. However, the MPL design is not well
suited to such an estimation task, even if it can be undertaken numerically,
due to the small sample size for each individual. It is a simple matter to
extend the HL design to have the subject consider several MPL tables for
different lottery prizes, providing a richer data set with which to characterize
individual risk attitudes (e.g., Harrison, Lau, & Rutström, 2007b). Apart
from providing several interval responses per subject, such designs allow
one to vary the prizes in the MPL design and pin down the latent CRRA
more precisely by having overlapping intervals across tasks, as explained by
Harrison et al. (2005d). Thus, if one task tells us that a given subject has a
CRRA interval between 0.1 and 0.3, and another task tells us that the same
subject has an interval between 0.2 and 0.4, we can infer a CRRA interval
between 0.2 and 0.3 from the two tasks (with obvious assumptions about the
absence of order effects, or some controls for them).

Another limitation of this approach, somewhat more fundamental, is that
it restricts the analyst to utility functions that can characterize risk attitudes
using one parameter. This is because one must infer the bounds that make
the subject indifferent between the switch points, and such inferences
become virtually incoherent statistically when there are two or more
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parameters. Of course, for popular functions such as CRRA or CARA this
is not an issue, but if one wants to move beyond those functions then there
are problems. It is possible to devise one-parameter functional forms with
more flexibility than CRRA or CARA in some dimension, as illustrated
nicely by the one-parameter Expo-Power (EP) function developed by
Abdellaoui, Barrios, & Wakker (2007a; Section 4). But in general we will
need to move to structural modeling with ML to accommodate richer
models, illustrated in Section 2.2.

We conclude that relatively consistent estimates of the CRRA coefficient
of experimental subjects emerge from the HL experiments and the MPL

Table 3. Interval Regression Model of Responses in Harrison, Johnson,
McInnes, and Rutström Experimentsa.

Variable Description Estimate Standard

Error

p-Value Lower 95%

Confidence

Interval

Upper 95%

Confidence

Interval

Female Female 0.088 0.08 0.26 � 0.06 0.24

Black Black 0.084 0.10 0.40 � 0.11 0.28

Age Age in years 0.022 0.01 0.07 0.00 0.05

Business Major is in business � 0.043 0.07 0.56 � 0.19 0.10

Sophomore Sophomore in college � 0.068 0.11 0.54 � 0.29 0.15

Junior Junior in college � 0.035 0.12 0.77 � 0.27 0.20

Senior Senior in college � 0.023 0.13 0.85 � 0.27 0.22

GPAhi High GPA (greater

than 3.75)

0.004 0.09 0.97 � 0.18 0.19

GPAlow Low GPA (below

3.24)

� 0.137 0.09 0.12 � 0.31 0.04

Graduate Graduate student 0.034 0.16 0.83 � 0.27 0.34

EdExpect Expect to complete a

PhD or Professional

Degree

� 0.119 0.09 0.18 � 0.29 0.05

EdFather Father completed

college

0.106 0.09 0.24 � 0.07 0.28

EdMother Mother completed

college

� 0.027 0.08 0.75 � 0.19 0.14

Citizen U.S. citizen 0.234 0.12 0.05 0.00 0.47

Order RA session 10� comes

after 1�

0.166 0.08 0.03 0.01 0.32

Constant � 0.092 0.34 0.78 � 0.75 0.56

Notes: Log-likelihood value is � 290.2; Wald test for null hypothesis that all coefficients are

zero has a w2 value of 18.36 with 15 degrees of freedom, implying a p-value of 0.244.
aAll subjects facing 10� payoffs. N ¼ 178 subjects from Harrison et al. (2005b).
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design used in subsequent studies. There are, however, some apparent
effects from task order, explored further in Harrison et al. (2005b) and Holt
and Laury (2005). And there are significant limitations on the flexibility of
the modeling of risk attitudes, pointing to the need for a complementary
approach that allows structural estimation of latent models of choice under
uncertainty.

2.2. Structural Estimation

Assume for the moment that utility of income is defined by

UðxÞ ¼
xð1�rÞ

ð1� rÞ
(1)

where x is the lottery prize and r 6¼ 1 a parameter to be estimated. For r ¼ 1,
assume U(x) ¼ ln(x) if needed. Thus, r is the coefficient of CRRA: r ¼ 0
corresponds to RN, ro0 to risk loving, and rW0 to risk aversion. Let there
be k possible outcomes in a lottery. Under EUT the probabilities for each
outcome k, pk, are those that are induced by the experimenter, so expected
utility is simply the probability weighted utility of each outcome in each
lottery i:

EUi ¼
X

k¼1;K

ð pk �UkÞ (2)

The EU for each lottery pair is calculated for a candidate estimate of r, and
the index

rEU ¼ EUR � EUL (3)

calculated, where EUL is the ‘‘left’’ lottery and EUR is the ‘‘right’’ lottery.
This latent index, based on latent preferences, is then linked to the observed
choices using a standard cumulative normal distribution function F(rEU).
This ‘‘probit’’ function takes any argument between 7N and transforms it
into a number between 0 and 1 using the function shown in Fig. 7. Thus, we
have the probit link function,

probðchoose lottery RÞ ¼ FðrEUÞ (4)

The logistic function is very similar, as illustrated in Fig. 7, and leads instead
to the ‘‘logit’’ specification.
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Even though Fig. 7 is common in econometrics texts, it is worth noting
explicitly and understanding. It forms the critical statistical link between
observed binary choices, the latent structure generating the index y�, and
the probability of that index y� being observed. In our applications y� refers
to some function, such as Eq. (3), of the EU of two lotteries; or, later, the
Prospective Utility (PU) of two lotteries. The index defined by Eq. (3) is
linked to the observed choices by specifying that the R lottery is chosen
when F(rEU)W1/2, which is implied by Eq. (4).

Thus, the likelihood of the observed responses, conditional on the EUT
and CRRA specifications being true, depends on the estimates of r given
the above statistical specification and the observed choices. The ‘‘statistical
specification’’ here includes assuming some functional form for the
cumulative density function (CDF), such as one of the two shown in Fig. 7.
If we ignore responses that reflect indifference for the moment the
conditional log-likelihood would be

lnLðr; y;XÞ ¼
X

i

ððlnFðrEUÞjyi ¼ 1Þ þ ðlnFð1� rEUÞjyi ¼ �1ÞÞ (5)
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Fig. 7. Normal and Logistic Cumulative Density Functions (Dashed Line is

Normal and Solid line is Logistic).
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where yi ¼ 1(� 1) denotes the choice of the Option R (L) lottery in risk
aversion task i, and X is a vector of individual characteristics reflecting age,
sex, race, and so on.

In most experiments the subjects are told at the outset that any expression
of indifference would mean that if that choice was selected to be played
out the experimenter would toss a fair coin to make the decision for them.
Hence, one can modify the likelihood to take these responses into account
by recognizing that such choices implied a 50:50 mixture of the likelihood of
choosing either lottery:

ln Lðr; y;XÞ ¼
P
i

ððlnFðrEUÞjyi ¼ 1Þ þ ðlnFð1�rEUÞjyi ¼ �1Þ

þðlnð1=2FðrEUÞ þ 1=2Fð1� rEUÞÞjyi ¼ 0ÞÞ
(50)

where yi ¼ 0 denotes the choice of indifference. In our experience very few
subjects choose the indifference option, but this formal statistical extension
accommodates those responses.27

The latent index, Eq. (3), could have been written in a ratio form:

rEU ¼
EUR

ðEUR þ EULÞ
(30)

and then the latent index would already be in the form of a probability
between 0 and 1, so we would not need to take the probit or logit
transformation. We will see that this specification has also been used, with
some modifications we discuss later, in HL.

Appendix F reviews procedures and syntax from the popular statistical
package Stata that can be used to estimate structural models of this kind,
as well as more complex models discussed later. The goal is to illustrate
how experimental economists can write explicit ML routines that are
specific to different structural choice models. It is a simple matter to correct
for stratified survey responses, multiple responses from the same subject
(‘‘clustering’’),28 or heteroskedasticity, as needed, and those procedures are
discussed in Appendix F.

Applying these methods to the data from the Hey and Orme (1994)
experiments, one can obtain ML estimates of the core parameter r. Pooling
all 200 of the responses from each subject over two sessions, and pooling
over all subjects, we estimate r ¼ 0.66 with a standard error of 0.04
assuming a normal CDF as in the dashed line in Fig. 7. These estimates
correct for the clustering of responses by the same subject. If we instead
assume a logistic CDF, as in the solid line in Fig. 7, we instead obtain an
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estimate r ¼ 0.80 with a standard error of 0.04. This is not a significant
economic difference, but it does point to the fact that parametric
assumptions matter for estimation of risk attitudes using these methods.
In particular, the choice of normal or logistic CDF is almost entirely
arbitrary in this setting. One might apply some nested or non-nested
hypothesis test to choose between specifications, but we will see that it is
dangerous to rush into rejecting alternative specifications too quickly.

Extensions of the basic model are easy to implement, and this is the major
attraction of the structural estimation approach. For example, one can
easily extend the functional forms of utility to allow for varying degrees
of RRA. Consider, as one important example, the EP utility function
proposed by Saha (1993). Following Holt and Laury (2002), the EP function
is defined as

UðxÞ ¼
ð1� expð�ax1�rÞÞ

a
(10)

where a and r are parameters to be estimated. RRA is then r+a(1� r)y1� r,
so RRA varies with income if a 6¼ 0. This function nests CRRA (as a-0)
and CARA (as r-0). We illustrate the use of this EP specification later.

It is also simple matter to generalize this ML analysis to allow the core
parameter r to be a linear function of observable characteristics of the
individual or task. In the HO experiments no demographic data were
collected, but we can examine the effect of the subjects coming back for a
second session by introducing a binary dummy variable (Task) for the
second session. In this case, we extend the model to be r ¼ r0+r1�Task,
where r0 and r1 are now the parameters to be estimated. In effect the prior
model was to assume r ¼ r0 and just estimate r0. This extension significantly
enhances the attraction of structural ML estimation, particularly for
responses pooled over different subjects, since one can condition estimates
on observable characteristics of the task or subject. We illustrate the
richness of this extension later. For now, we estimate r0 ¼ 0.60 and
r1 ¼ 0.10, with standard errors of 0.04 and 0.02, respectively, using the
probit specification. So there is some evidence of a session effect, with
slightly greater risk aversion in the second session.

The effect of demographics and task can be examined using data
generated by Harbaugh, Krause, and Vesterlund (2002). They examined
lottery choices by a large number of individuals, varying in age between
5 and 64. Focusing on their lottery choices for dollars with individuals
aged 19 and over, seven choices involved gambles in a gain frame, and
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seven over gambles in a loss frame. The loss frame experiments all involved
subjects having some endowment up front, such that the loss was solely a
framed loss, not a loss relative to the income they had coming into the
session. In all cases the gamble was compared to a certain gain or loss, so
these are relatively simple gambles to evaluate. The only demographic
information included is age and sex, so we include those and interact them.29

We also allow for quadratic effects of age.
Table 4 collects the estimates for models estimated separately on the

choices made in the gain frame and choices made in the loss frame; later we

Table 4. Structural Maximum Likelihood Estimates of Risk Attitudes
in Harbaugh, Krause, and Vesterlund Experimentsa.

Variable Description Estimate Standard

Error

p-Value Lower 95%

Confidence

Interval

Upper 95%

Confidence

Interval

A. Gain Domain

Order2 Task order control 0.009 0.007 0.168 � 0.004 0.023

Order3 Task order control 0.010 0.008 0.197 � 0.005 0.026

Order4 Task order control 0.005 0.007 0.481 � 0.009 0.019

Male Male 0.016 0.029 0.594 � 0.042 0.073

Age Age in years 0.014 0.001 0.000 0.011 0.017

Age2 Age squared 0.000 0.000 0.000 0.000 0.000

Mage Male� age � 0.001 0.002 0.776 � 0.005 0.003

Mage2 Male� age2 0.000 0.000 0.852 0.000 0.000

Constant 0.476 0.021 0.000 0.434 0.517

B. Loss Domain

Order2 Task order control 0.004 0.006 0.575 � 0.009 0.016

Order3 Task order control 0.000 0.007 0.974 � 0.013 0.014

Order4 Task order control � 0.005 0.007 0.494 � 0.018 0.009

Male Male � 0.030 0.024 0.205 � 0.077 0.016

Age Age in years 0.013 0.001 0.000 0.011 0.016

Age2 Age squared 0.000 0.000 0.000 0.000 0.000

Mage Male� age 0.003 0.002 0.053 0.000 0.007

Mage2 Male� age2 0.000 0.000 0.026 0.000 0.000

Constant 0.483 0.016 0.000 0.452 0.514

Notes: Log-likelihood values are � 8,070.56 in the gain domain, and � 9,931.9 in the loss

domain; Wald test for null hypothesis that all coefficients are zero has a w2 value of 339.2 with 8

degrees of freedom, implying a p-value less than 0.001 in the gain domain, and a value of 577.9

with 8 degrees of freedom in the loss domain.
aMaximum likelihood estimation of CRRA utility function using all pooled binary choices of

adults. N ¼ 1092, based on 156 adult subjects from Harbaugh et al. (2002).
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consider the effect of assuming a model of loss aversion, rather than just
viewing these as different frames.30 There is virtually no effect from the loss
frame, and in fact some evidence of a slight increase in risk aversion in that
frame. The average of individual CRRA estimates is 0.476 in the gain frame,
and is virtually identical in the loss frame. We find no evidence of a sex effect
in the gain frame. The direct effect of sex is to change CRRA by 0.016,
but this small effect has a p-value of 0.594 and a 95% confidence interval
that easily spans zero. The joint effect of sex and age is also statistically
insignificant: a test of the joint effect of sex and the sex–age interactions has
a w2 value of 1.17, and with three degrees of freedom has a p-value of 0.761.
Age has a significant effect on CRRA in the gain domain, at first increasing
RRA and then eventually decreasing RRA as the individual gets older. The
order dummies indicate no significant effect of task presentation order.
There does appear to be an effect of sex on CRRA elicited in the loss frame.
This effect is not direct, but is based on the interaction with age. Apart from
the statistical significance of the individual interaction terms, a test that they
are jointly zero has a w2 of 7.08 and a p-value of 0.069 with three degrees of
freedom.

2.3. Stochastic Errors

An important extension of the core model is to allow for subjects to make
some errors. The notion of error is one that has already been encountered in
the form of the statistical assumption that the probability of choosing a
lottery is not one when the EU of that lottery exceeds the EU of the other
lottery. This assumption is clear in the use of a link function between the
latent index rEU and the probability of picking one or other lottery; in the
case of the normal CDF, this link function is F(rEU) and is displayed in
Fig. 7. If there were no errors from the perspective of EUT, this function
would be a step function in Fig. 7: zero for all values of y�o0, anywhere
between 0 and 1 for y� ¼ 0, and 1 for all values of y�W0. By varying the
shape of the link function in Fig. 7, one can informally imagine subjects that
are more sensitive to a given difference in the index rEU and subjects that
are not so sensitive. Of course, such informal intuition is not strictly valid,
since we can choose any scaling of utility for a given subject, but it is
suggestive of the motivation for allowing for structural errors, and why we
might want them to vary across subjects or task domains.

Consider the structural error specification used by HL, originally due to
Luce. The EU for each lottery pair is calculated for candidate estimates of r,
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as explained above, and the ratio

rEU ¼
EU

1=m
R

ðEU
1=m
L þ EU

1=m
R Þ

(300)

calculated, where m is a structural ‘‘noise parameter’’ used to allow
some errors from the perspective of the deterministic EUT model. The
index rEU is in the form of a cumulative probability distribution function
defined over differences in the EU of the two lotteries and the noise
parameter m. Thus, as m-0 this specification collapses to the deterministic
choice EUT model, where the choice is strictly determined by the EU of the
two lotteries; but as m gets larger and larger the choice essentially becomes
random. When m ¼ 1, this specification collapses to Eq. (3u), where the
probability of picking one lottery is given by the ratio of the EU of one
lottery to the sum of the EU of both lotteries. Thus, m can be viewed as a
parameter that flattens out the link functions in Fig. 7 as it gets larger. This
is just one of several different types of error story that could be used, and
Wilcox (2008a, 2008b) provides masterful reviews of the implications of the
alternatives.31

The use of this structural error parameter can be illustrated by a
replication of the estimates provided by Holt and Laury (2002). Using the
EP utility function in Eq. (1u), the Luce specification in Eq. (3v), and
ignoring the fact that each subject made multiple binary choices, we estimate
r ¼ 0.268 and a ¼ 0.028 using the non-hypothetical data from HL. Panel A
of Table 5 lists these estimates, which replicate the results reported by HL
(p. 1653) almost exactly. Their estimates were obtained using optimization
procedures in GAUSS, and did not calculate the likelihood at the level of
the individual observation. Instead their data was aggregated according to
the lottery choices in each row, and scaled up to reflect the correct sample
size of observations. This approach works fine for a completely homogenous
model in which one does not seek to estimate effects of individual
characteristics or correct for unobserved heterogeneity at the level of the
individual. But the approach adopted in our replication does operate at the
level of the individual observation, so it is possible to make these extensions.
In fact, allowing for unobserved individual heterogeneity does not affect
these estimates greatly.

The role of the stochastic error assumption in Eq. (3v) can be evaluated
by using Eq. (3u) instead, which is to assume that m ¼ 1 in Eq. (3v).
The effect, shown in panel B of Table 5, is to estimate more risk-loving
behavior, with ro0. Hence, at low levels of income subjects are now
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estimated to be risk loving. There is still evidence of Increasing Relative Risk
Aversion (IRRA), with aW0. However, the log-likelihood of this specification
is much worse than the original HL specification, and we can comfortably
reject the null that m ¼ 1. The point of this result is to demonstrate that the
stochastic identifying restriction, to use the concept developed by Wilcox
(2008a, 2008b), is not innocuous for inference about risk attitudes.

There is one other important error specification, due originally to Fechner
and popularized by Hey and Orme (1994).32 This error specification posits

Table 5. Structural Maximum Likelihood Estimates of Risk Attitudes
in Holt and Laury Experimentsa.

Variable Description Estimate Standard

Error

p-Value Lower 95%

Confidence

Interval

Upper 95%

Confidence

Interval

A. Luce Error Specification and No Corrections for Clustering

r Utility function

parameter

0.268 0.017 o0.001 0.234 0.302

a Utility function

parameter

0.028 0.002 o0.001 0.024 0.033

m Structural noise

parameter

0.134 0.004 o0.001 0.125 0.143

B. No Luce Error Specification, No Corrections for Clustering

r Utility function

parameter

� 0.161 0.044 o0.001 � 0.247 � 0.074

a Utility function

parameter

0.015 0.003 o0.001 0.010 0.020

C. Probit Link Function, No Fechner Error Specification, Corrections for Clustering

r Utility function

parameter

0.293 0.021 o0.001 0.251 0.334

a Utility function

parameter

0.038 0.003 o0.001 0.032 0.043

D. Probit Link Function, Fechner Error Specification, and Corrections for Clustering

r Utility function

parameter

0.684 0.049 o0.001 0.589 0.780

a Utility function

parameter

0.045 0.059 0.452 � 0.072 0.161

m Structural noise

parameter

0.172 0.016 o0.001 0.140 0.203

aMaximum likelihood estimation of EP utility function using all pooled binary choices.

N ¼ 3990, based on 212 subjects from Holt and Laury (2002).
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the latent index

rEU ¼
ðEUR � EULÞ

m
(3000)

instead of Eq. (3), (3u), or (3v).
Wilcox (2008a) notes that as an analytical matter the evidence of IRRA in

HL would be weaker, or perhaps even absent, if one had used a Fechner
error specification instead of a Luce error specification. This important
claim, that the evidence for IRRA may be an artifact of the (more or less
arbitrary) stochastic identifying restriction assumed, can be tested with the
HL data. The estimates in panels C and D of Table 5 confirm the claim of
Wilcox (2008a). In panel C, we employ the probit link function Eq. (4) and
the latent index function Eq. (3), and assume no Fechner error specifica-
tion.33 We confirm the original estimates of HL, with minor deviations: the
path of estimated RRA in the left side of Fig. 9 mimics the original results
from HL in Fig. 8. But when we add a Fechner error specification, in
panel D of Table 5, we find striking evidence of CRRA over this prize
domain. The path of RRA in this case is shown on the right side of Fig. 9,
and provides a dramatic contrast to Fig. 8.
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Fig. 8. Estimated Relative Risk Aversion Using the Holt–Laury Statistical Model.

Estimated from Experimental Data of Holt & Laury (2002) Assuming Logit

Likehood Function and Luce Noise.
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The log-likelihood of the Fechner specification is worse than the log-
likelihood of the Luce specification. Since neither specification is nested
in the other, a non-nested hypothesis test would seem to be called for.
We reject the Fechner specification using either the Vuong (1989) test or the
variant proposed by Clarke (2003). On the other hand, we prefer to avoid
rejecting one specification out of hand just yet, since an alternative is to posit
a latent data generating process in which two or more specifications have
some validity. We return to consider this approach later.

2.4. Non-Parametric Estimation

It is possible to estimate the EUT model without assuming a functional
form for utility, following Hey and Orme (1994). This approach works well
for problem domains in which there are relatively few outcomes, since it
involves estimation of one parameter for all but two of the outcomes. So if
the task domain is constrained to just four outcomes, as in HO or HL, there
are only two parameters to be estimated. But if the task domain spans
many outcomes, these methods become inefficient and one must resort to a
function defined by a few parameters, such as CRRA or EP utility functions.
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Fig. 9. Estimated Relative Risk Aversion with Expo-Power Utility and Fechner

Noise. Estimated from Experimental Data of Holt and Laury (2002).
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To illustrate, we use the experimental data of HO, and then the
replication of their experiments by Harrison and Rutström (2005). We also
use the Fechner noise specification introduced above, to replicate the
specification of HO. In HO there were only four monetary prizes of d0, d10,
d20, and d30. We normalize to u(d0) ¼ 0 and u(d30) ¼ 1, and estimate
u(d10), u(d20), and the noise parameter. As explained by HO, one could
normalize the noise parameter to some fixed value and then estimate u(d30)
instead, but this choice of normalization seems the most natural. It is then
possible to predict the values of the two estimated utilities: pooling over
the two sessions and across subjects, we estimate u(d10) ¼ 0.66 with a
standard error of 0.02, and u(d20) ¼ 0.84 with a standard error of 0.01, so
u(d0)ou(d10)ou(d20)ou(d30) as expected. The application of this estima-
tion procedure in HO was at the level of the individual, which obviously
allows variation in estimated utilities over individuals. This illustrative
calculation does not.

The experiments of Harrison and Rutström (2005) were intended, in part,
to replicate those of HO in the gain frame and additionally collect individual
characteristics. In their case the prizes spanned $0, $5, $10, and $15.
Employing the same non-parametric structure for this data as for the HO
data above, the estimates are u($5) ¼ 0.60 and u($10) ¼ 0.80. In these data a
set of demographic characteristics for each subject are known and we can
therefore allow the estimated utilities to vary linearly with these
characteristics. It is then possible to simply predict the estimated utilities,
using the characteristics of each subject and the estimated coefficients on
those characteristics, and plot them. Fig. 10 shows the distribution of
estimated values. No subject had estimates that implied u($10)ou($5).

2.5. Comparing Procedures

Do the various risk elicitation procedures imply essentially the same risk
attitudes? In part this question requires that one agree on a standard way of
representing lotteries, and that we understand the effect of those
representations on elicited risk attitudes. It also requires that we agree on
how to characterize risk attitudes statistically, and there are again many
alternatives available in that direction that should be expected to affect
inferred risk attitudes (Wilcox, 2008a). The older literature on utility
elicitation was careful to undertake controlled comparisons of different
procedures, as reviewed in Hershey, Kunreuther, and Schoemaker (1982)
and illustrated by Hershey and Schoemaker (1985). But none of that
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literature seemed to be concerned with incentive compatibility and the effect
of real rewards.

The striking counter-example, of course, is the preference reversal
literature started for economists by Grether and Plott (1979), since they
used methods for eliciting responses which were incentive compatible and
they used real consequences to choices. And the phenomenon of preference
reversals itself may be viewed as the claim that risk attitudes elicited from
two procedures are not consistent, since the reversal is an ‘‘as if’’ change in
risk attitudes when the elicitation mode changes. Unfortunately, the
preference reversals in question involved a comparison of risk attitudes
elicited with the RLP and BDM procedures, which both rely on strong
assumptions to reliably elicit preferences.

It may therefore be useful to compare the three procedures that we do find
attractive on a priori grounds: the MPL of Holt and Laury (2002), the RLP
of Hey and Orme (1994), and the OLS of Binswanger (1980, 1981). Each
procedure is applied to the same sample drawn from the same population:
students at the University of Central Florida. In one session the MPL
method was first and the OLS method last, in another session these orders
were reversed, and the RLP method was always presented to subjects in
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Fig. 10. Non-Parametric Estimates of Utility. (Assuming EUT and Normalized so

that u($0)=0 and u($15)=1; Kernel Density of Predicted Utility Estimates for

N=120 Subjects; Data from Hey–Orme Replication of Harrison and Rutström

(2005).)

GLENN W. HARRISON AND E. ELISABET RUTSTRÖM80



between. The subjects learned what their payoffs were from each procedure
at the end of the sequence of tasks for that procedure, so there is some
potential in this design for income effects. There were 26 subjects in one
session and 27 subjects in the second session, for a pooled sample of 53.

The parameters for the MPL procedure were scaled up by a factor of 10 to
those used in the baseline experiments of Holt and Laury (2002), shown in
panel A of Table 1. Thus, the prizes were $1.00, $16, $20, and $38.50. The
parameters for the OLS procedure follow the broad pattern proposed by
Binswanger (1980, 1981). The certain option offers $10 whether a coin toss is
heads or tails, and the next options offer $19 or $9, $24 or $8, $25 or $7, $30
or $6, $32 or $4, $38 or $2, and finally $40 or $0.34 The RLP procedure used
lotteries with probabilities and prizes that were each randomly drawn.35

Each prize was randomly drawn from the uniform interval ($0.01, $15.00) in
dollars and cents, and the number of prizes in each lottery pair was either
2, 3, or 4, also selected at random. For any lottery pair the cardinality of the
outcomes was the same, so if one lottery had three prizes the other lottery
would also have three prizes. The probabilities were also drawn at random,
and represented to subjects to two decimal places. Each subject was given
60 pairs of lotteries to choose from, and three picked at random to be played
out and paid. The expected value of each lottery was roughly $7.50, with the
expected value from the RLP procedure as a whole around $22.70. Thus, the
scale of prizes in the MPL and OLS procedures was virtually identical: up to
$38.50 and $40, respectively. The scale of prizes in the RLP procedure was
comparable: up to $45 if all three selected lotteries generated an outcome of
$15 each.

In each case we estimate a CRRA model using Eq. (1). For the MPL and
RLP procedures we use the probit link function, that is Eq. (4), defined over
the difference in EU of the two lotteries for a candidate estimate of r and m,
and the Fechner error specification Eq. (3vu). For the OLS procedure we use
the standard logit specification originally due to Luce (1959); McFadden
(2001) reviews the starred history of this specification beautifully, and Train
(2003) reviews modern developments. The EU for each lottery pair in this
latter specification is calculated for a candidate estimate of r and m, the
exponential of the EU is taken as

eui ¼ expðEU
1=m
i Þ (6)

and the index

rEUi ¼
eui

ðeu1 þ eu2 þ eu3 þ eu4 þ eu5 þ eu6Þ
(7)
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calculated for each lottery i. This latent index, based on latent preferences, is
in the form of a probability, and can therefore be directly linked to the
observed choices; it is a multiple-lottery analogue of the Luce error
specification Eq. (3v) for binary lottery choice.36

The results indicate consistency in the elicitation of risk attitudes, at least
at the level of the inferred sample distribution. The point estimate (and 95%
confidence intervals) for the MPL, RLP, and OLS procedures, respectively,
are 0.75 (0.62, 0.88), 0.51 (0.42, 0.60), and 0.66 (0.44, 0.89). There is no
significant order effect on the estimates from the OLS procedure: the
estimates when it was first are 0.68 (0.43, 0.94), and when it was last they are
0.65 (0.25, 1.05). The 95% confidence intervals are wider in these estimates
of the sub-samples, due to smaller samples. There is, however, a small but
statistically significant order effect on the estimates from the MPL
procedure: when it was first the CRRA estimate is 0.61 (0.46, 0.76) and
when it was last the estimate is 0.86 (0.67, 1.05).

These results are suggestive that the procedures elicit roughly the same
risk attitudes, apart from the sensitivity of the MPL procedure to order.
Thus, one would tentatively conclude, based on the above analysis, that the
procedures should be expected to generate roughly the same estimates of
risk attitudes for a target population, and when used as the sole measuring
instrument when used at the beginning of a session.37

A closely related issue is the temporal stability of risk preferences, even
when one uses the same elicitation procedure. It is possible to define
temporal stability of preferences in several different ways, reflecting
alternative conceptual definitions and operational measures. Each definition
has some validity for different inferential purposes.

Temporal stability of risk preferences can mean that subjects exhibit the
same risk attitudes over time, or that their risk attitudes are a stable function
of states of nature and opportunities that change over time. It is quite
possible for risk preferences to be stable in both, either, or neither of these
senses, depending on the view one adopts regarding the role preference
stability takes in the theory. The temporal stability of risk preferences is one
component of a broader set of issues that relate to the state-dependent
approach to utility analysis.38 This is a perfectly general approach, where
the state of nature could be something as mundane as the weather or as
fundamental as the individual’s mortality risk. The states could also include
the opportunities facing the individual, such as market prices and employ-
ment opportunities. Crucial to the approach, however, is the fact that all
state realizations must be exogenous, or the model will not be identified and
inferences about stability will be vacuous.
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Problems arise, however, when one has to apply this approach
empirically. Where does one draw the line in terms of the abstract ‘‘states
of nature’’? Many alleged violations of EUT amount to claims that a person
behaved as if they had one risk preference for one lottery pair and another
risk preference for a different lottery pair. Implicit in the claim that these are
violations of EUT is the presumption that the differences in the two lottery
pairs was not some state of nature over which preferences could be
different.39 Similarly, should we deem the preferences elicited with an open-
ended auction procedure to be different from those elicited with a binary
choice procedure, such as in the famous preference reversals of Grether and
Plott (1979), because of some violation of EUT or just some change in the
state of nature? Of course, it is a slippery inferential slope that allows
‘‘free parameters’’ to explain any empirical puzzle by shifting preferences.
Such efforts have to be guided by direct evidence from external sources, lest
they become open-ended specification searches.40

Several studies have begun to examine the temporal stability question.
Limited exercises in laboratory settings are reported by Horowitz (1992) and
Harrison, Johnson, McInnes, and Rutström (2005a), who demonstrate the
temporal stability of risk attitudes in lab experiments over a period of up
to 4 months. Horowitz (1992; p. 177) collects information on financial
characteristics of the individual to control for changes in state of nature,
but does not report if it changed the statistical inference about temporal
stability. Harrison et al. (2005a) consider the temporal stability of risk
attitudes in college students over a 4-week period, and do not control for
changes in state of nature.

Andersen, Harrison, Lau, and Rutström (2008b) extend these simple
designs in several ways. They use a much longer time span, control for
changes in state of nature, use a stratified sample of a broader population,
and report the results of a large-scale panel experiment undertaken in the
field designed to examine this issue. Over a 17-month period they elicited
risk preferences from subjects chosen to be representative of the adult
Danish population. During this period many of the subjects were re-visited,
and the same MPL risk aversion elicitation task repeated. In each visit
information was also elicited on the individual characteristics of the subject,
as well as their expectations about the state of their own economic situation
and macroeconomic variables. The statistical analysis includes controls
for changes in the subject’s perceived states of nature, as well as the possible
effects of endogenous sample selection into the re-test. There is evidence
of some variation in risk attitudes over time, but there is no general
tendency for risk attitudes to increase or decrease over a 17-month span.
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Additionally, the small variation of risk attitudes over time is less prominent
than variations across tasks and across individuals. The results also suggest
that risk preferences are state contingent with respect to personal finances.

Of course, we could easily imagine target populations, such as the poor,
that might be far less stable over time than the average adult Dane. There
is some evidence from Dave, Eckel, Johnson, and Rojas (2007; Table 7)
that the MPL instrument might exhibit some drift over time in such a
population: estimated RRA increases by 0.12 compared to a baseline of
0.71, but the p-value of this change is 0.14, so it is not statistically significant.
The real contribution of these studies is a systematic methodology for
examining the issue of temporal stability with longitudinal experiments.

2.6. Comparing Treatments

The use of structural estimation of latent choice models also allows one to
compare experimental treatments in terms of their effect on core parameters.
Thus, we can answer questions such as ‘‘does treatment X affect risk
attitudes’’ by directly estimating the effect on parameters determining risk
attitudes, rather than relying on less direct measures of that effect. The value
of inferences of this kind become more important when we allow for various
parameters and processes to affect choice under uncertainty, such as when
we consider rank-dependent preferences and/or sign-dependent preferences
in Section 3.

To illustrate, consider the effect of providing information to subjects
about the EV of lotteries they are to choose from. For simple, binary-
outcome lotteries one often observes some subjects actually trying to do
this arithmetic themselves on scrap paper, whether or not they then use that
to decide which lottery to accept without adding or subtracting a risk
premium. But when the cardinality of outcomes exceeds two, virtually all
subjects tend to give up on those efforts to calculate EV. This raises the
hypothesis that elicited risk attitudes might reflect underlying preferences or
the interaction of those preferences and cognitive constraints on applying
them to a particular lottery (if one assumes, for now, that subjects apply
them the way economists theorize about them).

A direct measure of the effect of providing EV can be obtained by running
these treatments and then estimating a model in which the treatment acts as
a binary dummy on a core parameter of the latent structural model.
For data we use the replication of the RLP procedures of Hey and Orme
(1994) reported in Appendix B. These tasks were only over the gain frame;
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63 subjects received no information over 60 binary choices, and 25 different
subjects received information. For the structural model, we assume a
CRRA power utility function, a Fechner error specification, and a probit
linking function. If we introduce the binary dummy variable Info to capture
those choices made under the treatment condition, we can estimate
r ¼ r0+r1� Info and directly assess the effect on risk attitudes by the
sign and statistical significance of the coefficient r1. It is also possible to
allow for heteroskedasticity in the Fechner noise term, by estimating
m ¼ m0+m1� Info and examining the estimate of m1. Thus, we allow for the
possibility that providing information on EV might not change risk
attitudes, but might change the precision with which the subject makes
choices given a latent preference for one lottery over the other.

The estimation results show that there is indeed a statistically significant
effect on elicited risk attitudes from providing the EV of each lottery. The
power function coefficient r increases by 0.15 from 0.47, which indicates a
reduction in risk aversion towards RN. The p-value on the hypothesis test
that this effect is zero is only 0.016, and the 95% confidence interval on the
effect is between 0.03 and 0.28. So we conclude that there does appear to be
a significant influence on elicited risk attitudes from providing information
on EV. Whether this reflects better estimates of true preferences due to
removing the confound of the cognitive burden of calculating EV, or reflects
a simple anchoring response, cannot be determined. The point is that we can
report the effect of the treatment in terms of its effect on the metric of
interest, the core risk aversion parameter. In this specification there is no
statistically significant effect on the Fechner noise parameter. Nor is there
an effect on these conclusions from also controlling for the heterogeneity in
preferences attributable to observed individual demographic effects.

3. EXTENSIONS AND FURTHER APPLICATIONS

We elicit risk attitudes to make inferences about different things. Obviously
there is interest in the characterization of risk attitudes in general, and the
previous section reviewed the estimation issues that arise under EUT. It is
also important to consider the characterization of risk attitudes under
alternatives to EUT. We consider the class of rank-dependent models due to
Quiggin (1982) (Section 3.1), and then the class of sign-dependent models
due to Kahneman and Tversky (1979) (Section 3.2). The implications for
allowing several latent data generating processes to characterize risk attitudes
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are then considered (Section 3.3), concluding with a plea to avoid the
assumption that there is one true model.

Risk attitudes also constitute a fundamental confound to inferences about
behavior in stochastic settings, and it is here that we believe that the major
payoff to better experimental controls for risk attitudes will be seen. We
consider three major areas of investigation in which controls for risk should
play a more significant role: identification of discount rates (Section 3.4),
tests of EUT against competing models (Section 3.5), and tests of bidding
behavior in auctions (Section 3.6). We also consider tests of a model of
choice behavior that has radical implications for how one might think about
risk aversion, Myopic Loss Aversion (Section 3.7). Finally, we consider the
implications of the random lottery incentive procedure for risk elicitation
(Section 3.8), and present some summary estimates using comparable
modeling assumptions and designs that we believe to be the most reliable
(Section 3.9).

3.1. Characterizing Risk Attitudes with Probability Weighting
and Rank-Dependent Utility

One route of departure from EUT has been to allow preferences to depend
on the rank of the final outcome through probability weighting. The idea
that one could use non-linear transformations of the probabilities as a
lottery when weighting outcomes, instead of non-linear transformations
of the outcome into utility, was most sharply presented by Yaari (1987).
To illustrate the point clearly, he assumed a linear utility function, in effect
ruling out any risk aversion or risk seeking from the shape of the utility
function per se. Instead, concave (convex) probability weighting functions
would imply risk seeking (risk aversion).41 It was possible for a given
decision-maker to have a probability weighting function with both concave
and convex components, and the conventional wisdom held that it was
concave for smaller probabilities and convex for larger probabilities.

The idea of rank-dependent preferences had two important precursors.42

In economics, Quiggin (1982, 1993) had formally presented the general
case in which one allowed for subjective probability weighting in a rank-
dependent manner and allowed non-linear utility functions. This branch
of the family tree of choice models has become known as Rank-Dependent
Utility (RDU). The Yaari (1987) model can be seen as a pedagogically
important special case, and can be called Rank-Dependent Expected Value
(RDEV). The other precursor, in psychology, is Lopes (1984). Her concern
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was motivated by clear preferences that experimental subjects exhibited for
lotteries with the same expected value but alternative shapes of probabilities,
as well as the verbal protocols those subjects provided as a possible indicator
of their latent decision processes.

Formally, to calculate decision weights under RDU one replaces expected
utility

EUi ¼
X

k¼1;K

ð pk �UkÞ (2)

with RDU

RDUi ¼
X

k¼1;K

ðwk �UkÞ (20)

where

wi ¼ oð pi þ . . .þ pnÞ � oð piþ1 þ . . .þ pnÞ (8a)

for i ¼ 1, y, n� 1, and

wi ¼ oð piÞ (8b)

for i ¼ n, the subscript indicates outcomes ranked from worst to best, and
where o( p) is some probability weighting function.

In the RDU model we have to define risk aversion in terms of the
properties of the utility function and the probability weighting function,
since both can affect risk attitudes. However, one can define conditional
orderings, following Chew, Karni, and Safra (1987) and others, by
considering the effects of more or less concave utility functions given a
probability weighting function, and vice versa. Similarly, when we consider
sign-dependent preferences in Section 3.2 the notion of risk aversion must
include the effects of the sign of outcomes (e.g., possible loss aversion).

Picking the right probability weighting function is obviously important
for RDU specifications. A weighting function proposed by Tversky and
Kahneman (1992) has been widely used. It is assumed to have well-behaved
endpoints such that o(0) ¼ 0 and o(1) ¼ 1 and to imply weights

oð pÞ ¼
pg

ð pg þ ð1� pÞgÞ1=g
(9)

for 0opo1. The normal assumption, backed by a substantial amount of
evidence reviewed by Gonzalez and Wu (1999), is that 0ogo1. This gives
the weighting function an ‘‘inverse S-shape,’’ characterized by a concave
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section signifying the overweighting of small probabilities up to a crossover-
point where o(p) ¼ p, beyond which there is then a convex section
signifying underweighting. Under the RDU assumption about how these
probability weights get converted into decision weights, go1 implies
overweighting of extreme outcomes. Thus, the probability associated with
an outcome does not directly inform one about the decision weight of that
outcome. If gW1 the function takes the less conventional ‘‘S-shape,’’ with
convexity for smaller probabilities and concavity for larger probabilities.43

Under RDU gW1 implies underweighting of extreme outcomes.
We illustrate the effects of allowing for probability weighting using the

experimental data from Holt and Laury (2005). We assume the EP
functional form

UðxÞ ¼
ð1� expð�ax1�rÞÞ

a
(100)

for utility. The remainder of the econometric specification is the same as for
the EUT model with Luce error m, generating

rRDU ¼
RDU

1=m
R

ðRDU
1=m
L þRDU

1=m
R Þ

(30000)

instead of Eq. (3vu). The conditional log-likelihood, ignoring indifference,
becomes

lnLRDUðr; g;m; y;XÞ ¼
X

i

lRDU
i ¼

X

i

ððlnFðrRDUÞjyi ¼ 1Þ

þ ðlnð1� FðrRDUÞÞjyi ¼ 0ÞÞ

(500)

and requires the estimation of r, g, and m.
For RDEV one replaces Eq. (2u) with a specification that weights the

prizes themselves, rather than the utility of the prizes:

RDEVi ¼
X

k¼1;K

ðok �mkÞ (200)

where mk is the kth monetary prize. In effect, the RDEV specification is a
special case of RDU.

The experimental data from Holt and Laury (2005) consists of 96 subjects
facing their 1� condition or their 20� condition on a between-subjects
basis.44 The final monetary prizes ranged from a low of $0.10 up to $77.
We only consider data in which subjects faced real rewards. Replicating their
EUT statistical model, and allowing for clustering of responses, we estimate
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r ¼ 0.40 with a standard error of 0.07, and a ¼ 0.076 with a standard error
of 0.02, closely tracking the estimates from Holt and Laury (2002). In
particular, there is evidence of increasing RRA over this income domain.

When we estimate the RDU model using these data and specification, we
find clear evidence of probability weighting. The estimate of g is 0.37 with a
standard error of 0.16, so we can easily reject the hypothesis that g ¼ 1 and
that there is no probability weighting. Thus, we observe the conventional
qualitative shape of the probability weighting function, an inverse S-shape.
The effect of allowing for probability weighting is to lower the estimates of
the curvature of the utility function – but we should be careful here not
to associate curvature of the utility function with risk aversion. The risk
aversion parameter r is estimated to be 0.26 and the a parameter to be 0.02,
with standard errors of 0.05 and 0.012, respectively. Thus, there is some
evidence for increasing curvature of the utility function as income increases
(aW0), but it is not statistically significant ( p-value of 0.16 that a ¼ 0).
Fig. 11 displays the ‘‘relative risk aversion’’ associated with the curvature of
the utility function, and the shape of the probability weighting function.
Of course, RRA should actually be defined here in terms of both the
curvature of the utility function and the effect of probability weighting, so
the coefficients are not directly comparable to the EUT model. Nevertheless,
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we can clearly say that inferences about increasing RRA depends on the
assumptions one makes about probability weighting.

3.2. Characterizing Risk Attitudes with Loss Aversion
and Sign-Dependent Utility

3.2.1. Original Prospect Theory
Kahneman and Tversky (1979) introduced the notion of sign-dependent
preferences, stressing the role of the reference point when evaluating
lotteries. In various forms, as we will see, PT has become the most popular
alternative to EUT. Original Prospect Theory (OPT) departs from EUT in
three major ways: (a) allowance for subjective probability weighting;
(b) allowance for a reference point defined over outcomes, and the use of
different utility functions for gains or losses; and (c) allowance for loss
aversion, the notion that the disutility of losses weighs more heavily than the
utility of comparable gains.

The first step is probability weighting, of the form o( p) defined in
Eq. (10), for example. One of the central assumptions of OPT, differentiat-
ing it from later variants of PT, is that w( p) ¼ o( p), so that the transformed
probabilities given by o( p) are directly used to evaluate PU:

PUi ¼
X

k¼1;K

ðok � ukÞ (2000)

The second step in OPT is to define a reference point so that one can identify
outcomes as gains or losses. Let the reference point be given by w for a given
subject in a given choice. Consistent with the functional forms widely used
in PT, we again use the CRRA functional form

uðmÞ ¼
m1�a

ð1� aÞ
(1000)

when mZw, and

uðmÞ ¼ �l
ð�mÞ1�a

ð1� aÞ
(10000)

when mow, and where l is the loss aversion parameter. We use the same
exponent a for the utility functions defined over gains and losses, even
though the original statements of PT keep them theoretically distinct.
Köbberling and Wakker (2005; Section 7) point out that this constraint is
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needed to identify the degree of loss aversion if one uses CRRA functional
forms and does not want to make other strong assumptions (e.g., that utility
is measurable only on a ratio scale).45 Although l is free in principle to be
less than 1 or greater than 1, most PT analysts presume that lZ1.

The specification of the reference point is critical to PT, and is discussed
in Section 3.2.3. One issue is that it influences the nature of subjective
probability weighting assumed, since different weights are allowed for gains
and losses. Thus, we can again specify

oðpÞ ¼
pg

ð pg þ ð1� pÞgÞ1=g
(9)

for gains, but

oðpÞ ¼
pf

ð pf þ ð1� pÞfÞ1=f
(90)

for losses. It is common in empirical applications to assume g ¼ f.
The remainder of the econometric specification would be the same as for

EUT and RDU models. The latent index can be defined in the same manner,
and the conditional log-likelihood defined comparably. Estimation of the
core parameters a, l, g, f, and m is required.

The primary logical problem with OPT was that it implied violations of
stochastic dominance. Whenever g 6¼ 1 or f 6¼ 1, it is possible to find non-
degenerate lotteries such that one lottery would stochastically dominate the
other, but would be assigned a lower PU. Examples arise quickly when
one recognizes that g( p1+p2) 6¼ g( p1)+g( p2) for some p1 and p2. Kahneman
and Tversky (1979) dealt with this problem by assuming that evaluation
using OPT only occurred after dominated lotteries were eliminated.
For specifications such as the one discussed here there is no modeling of
an editing phase, but the stochastic error term m could be interpreted as
a reduced-form proxy for that editing process.46 We do not provide any
illustrative estimations of this model but move straight to the extensions
provided by CPT.

3.2.2. Cumulative Prospect Theory
The notion of rank-dependent decision weights was incorporated into OPT
by Starmer and Sugden (1989), Luce and Fishburn (1991), and Tversky and
Kahneman (1992). Instead of implicitly assuming that w( p) ¼ o( p), it
allowed w( p) to be defined as in the RDU specification given by Eqs. (8a)
and (8b). The sign-dependence of subjective probability weighting in OPT,
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leading to the estimation of different probability weighting functions,
Eqs. (9) and (9u), for gains and losses, is maintained in CPT. Thus, there is a
separate decumulative function used for gains and losses, but otherwise the
logic is the same as for RDU.47

The estimation of a structural CPT model can be illustrated with data
from the Harrison and Rutström (2005) replication and extension of
the Hey and Orme (1994) RLP procedure. As explained in Appendix B,
they had some subjects face lotteries defined over a gain frame, some face
lotteries defined over a loss frame, and some face lotteries defined over a
mixed gain–loss frame. In the mixed frame some prizes in a lottery were
gains, and some were losses. In each case the subjects were endowed with
cash to ensure that final outcomes were either exactly or approximately the
same across frames.

Table 6 displays the ML estimates of the core parameters, and Fig. 12
displays the distributions over individuals of predicted values for each
parameter. In each case the utility function is the CRRA power
specification, a Fechner error story is included with a probit link function,
and m is a linear function of the same observable characteristics as every
other parameter (Table 6 does not show the estimate for m). The distribution
of estimates of a are consistent with concave utility functions over gains and
convex utility functions over losses, as expected. The estimates of g are also
consistent with expectations of an inverse S-shaped probability weighting
function, implying greater decision weights on extreme prizes within each
lottery. However, the estimates of l are not at all consistent with loss
aversion, and in fact suggest a clear tendency towards loss seeking. We
reconsider the sensitivity of estimates of l to the assumed reference point in
more detail below.

Table 6 shows that there are some systematic effects of observable
demographics on the EUT and CPT parameter estimates. Under EUT there
is a slight effect from sex, with women being more risk averse, but it is
not statistically significant. Similarly, ethnic characteristics show a large
effect on risk attitudes, but they are not statistically significant. The only
characteristic that has a statistically significant effect on risk attitudes under
EUT is age, which is here shown in deviations from age 20. So every extra
year leads to reduction in risk aversion. For completeness, we also estimate
RDU on these data, not shown in Table 6, and find the curvature of the
utility function similar to that of EUT, contrary to the estimates discussed
above for the data of Holt and Laury (2005). For the RDU model the data
here indicate a significant sex effect, with women being more risk averse
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(� 0.09, p-value ¼ 0.02), as well as Hispanics (� 0.17, p-value ¼ 0.009). In
addition, age has the same effect as under EUT. Although the extent of
probability weighting is slight, and overall curvature of the utility function
matches EUT, there are therefore some significant changes in the
composition of the curvature of utility across the sample.

Table 6. Maximum Likelihood Estimates for EUT and CPT Models.

Parameter Variable Point

Estimate

Standard

Error

p-Value Lower 95%

Confidence

Interval

Upper 95%

Confidence

Interval

A. EUT Model (log-likelihood ¼ � 7,665.0)

r Constant 0.952 0.149 0.00 0.66 1.24

Female � 0.133 0.094 0.16 � 0.32 0.05

Black � 0.138 0.133 0.30 � 0.40 0.12

Hispanic � 0.195 0.127 0.13 � 0.44 0.05

Age (compared to 20) 0.039 0.009 0.00 0.02 0.06

Major is in business � 0.107 0.135 0.43 � 0.37 0.16

Low GPA (below 3.24) 0.061 0.121 0.61 � 0.18 0.30

B. CPT Model (log-likelihood ¼ � 7,425.5)

a Constant 0.761 0.079 0.00 0.61 0.91

Female � 0.160 0.109 0.14 � 0.37 0.05

Black � 0.132 0.277 0.63 � 0.67 0.41

Hispanic � 0.358 0.192 0.06 � 0.73 0.02

Age (compared to 20) 0.017 0.009 0.07 0.00 0.04

Major is in business � 0.037 0.097 0.70 � 0.23 0.15

Low GPA (below 3.24) 0.036 0.093 0.69 � 0.14 0.22

g Constant 1.017 0.061 0.00 0.89 1.14

Female � 0.050 0.074 0.49 � 0.20 0.09

Black � 0.300 0.133 0.02 � 0.56 � 0.04

Hispanic � 0.092 0.142 0.51 � 0.37 0.18

Age (compared to 20) � 0.001 0.004 0.75 � 0.01 0.01

Major is in business � 0.021 0.075 0.78 � 0.17 0.13

Low GPA (below 3.24) � 0.066 0.070 0.35 � 0.20 0.07

l Constant 0.447 0.207 0.03 0.04 0.85

Female 0.432 0.416 0.30 � 0.38 1.25

Black 0.233 1.062 0.83 � 1.85 2.31

Hispanic � 0.386 0.386 0.32 � 1.14 0.37

Age (compared to 20) 0.033 0.018 0.08 0.00 0.07

Major is in business 0.028 0.240 0.91 � 0.44 0.49

Low GPA (below 3.24) 0.057 0.238 0.81 � 0.41 0.52
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The CPT estimates in Table 6 also show some demographic effects on the
composition of the curvature of utility across the sample. There is now a
large and statistically significant effect from being Hispanic, in addition to
a comparable age effect. The only characteristic that significantly affects the
extent of probability weighting is whether the subject is Black, and it is a
large effect. The effects on loss aversion appear to be poorly estimated,
which of course may just be a reflection that this is not a stable parameter in
terms of its effect, at least as currently modeled. Although these were static
tasks, in the sense that there was no accumulation of earnings, subjects may
have been adjusting their reference point during the 60 binary choices in
some unspecified manner.

Finally, Fig. 13 collates estimates of the curvature of the utility function
for these data using the three major alternative models of choice. In the top
panel we include an EUT specification assuming the CRRA power utility
function with parameter r. In the bottom left panel we estimate an RDU
model with utility function parameter r, and that allows for rank-dependent
probability weighting. The EUT and RDU models are estimated on the
choices made in the loss frame, but with the actual net gain amount included
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in the utility function.48 In the bottom-right panel, we reproduce the
estimate of a from Fig. 12, scaled to the EUT estimate above it for com-
parability. We see evidence that the RDU specification does not change the
inferences we make about the curvature of the utility function significantly
in comparison to EUT, so risk aversion here is not reflected in a transforma-
tion of probabilities. The CPT specification, which adds sign-dependence to
utility, does result in a shift towards greater concavity of the utility function
for gains, and more distinct modes reflecting a greater heterogeneity in
preferences. Of course, curvature of the utility function under RDU and
CPT is not the same as aversion to risk, but it is nonetheless useful to
compare the implied shapes of the utility function.

3.2.3. The Reference Point and Loss Aversion
It is essential to take a structural perspective when estimating CPT models.
Estimates of the loss aversion parameter depend intimately on the assumed
reference point, as one would expect since the latter determines what are to
be viewed as losses. So if we have assumed the wrong reference point, we will
not reliably estimate the degree of loss aversion. However, if we do not get
loss aversion leaping out at us when we make a natural assumption about
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the reference point, should we infer that there is no loss aversion or that
there is loss aversion and we just used the wrong reference point? This
question points to a key operational weakness of CPT: the need to specify
what the reference point is. Loss aversion may be present for some reference
point, but if it is not present for the one we used, and none others are
‘‘obviously’’ better, then should one keep searching for some reference point
that generates loss aversion? Without a convincing argument about the
correct reference point, and evidence for loss aversion conditional on that
reference point, one simply cannot claim that loss aversion is always present.
This specification ambiguity is arguably less severe in the lab, where one can
frame tasks to try to induce a loss frame, but is a particularly serious issue in
the field.

Similarly, estimates of the nature of probability weighting vary with
changes in reference points, loss aversion parameters, and the concavity of
the utility function, and vice versa. All of this is to be expected from the CPT
model, but necessitates joint econometric estimation of these parameters if
one is to be able to make consistent statements about behavior.

In many laboratory experiments it is simply assumed that the manner in
which the task is framed to the subject defines the reference point that the
subject uses. Thus, if one tells the subject that they have an endowment of
$15 and that one lottery outcome is to have $8 taken from them, then the
frame might be appropriately assumed to be $15 and this outcome coded as
a loss of $8. But if the subject had been told, or expected, to earn only $5
from the experimental task, would this be coded instead as a gain of $2?
The subjectivity and contextual nature of the reference point has been
emphasized throughout by Kahneman and Tversky (1979), even though
one often collapses it to the experimenter-induced frame in evaluating
laboratory experiments. This imprecision in the reference point is not a
criticism of PT, just a challenge to be careful assuming that it is always fixed
and deterministic (see Schmidt, Starmer, & Sugden, 2005; Ko+szegi & Rabin,
2006, 2007; Andersen, Harrison, & Rutström, 2006b).49

A corollary is that it might be a mistake to view loss aversion as a fixed
parameter l that does not vary with the context of the decision, ceteris
paribus the reference point. See Novemsky and Kahneman (2005a) and
Camerer (2005; pp. 132, 133) for discussion of this concern, which arises
most clearly in dynamic decision-making settings with path-dependent
earnings. This issue is particularly serious when one evaluates risk attitudes
in some of the high-stakes game shows: see Andersen, Harrison, Lau, and
Rutström (2008c) for a review of these studies and the modeling issues
that arise.
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To gauge the extent of the problem, we re-visit the estimation of a
structural CPT model using our laboratory data (the replication of the Hey
and Orme (1994) reported in Harrison and Rutström (2005)), but this time
consider the effect of assuming different reference points than the one
induced by the task frame. Assume that the reference point is w, as in
Eqs. (1uuu) and (1uuuu) above, but instead of setting w ¼ $0, allow it to vary
between $0 and $10 in increments of $0.10. The results are displayed in
Fig. 14. The top left panel shows a trace of the log-likelihood value as the
reference point is increased, and reaches a maximum at $4.60. To properly
interpret this value, note that these estimates are made at the level of the
individual choice in this task, and the subject was to be paid for three
of those choices. So the reference point for the overall task of 60 choices
would be $13.80 ( ¼ 3� $4.60). This is roughly consistent with the range of
estimates of expected session earnings elicited by Andersen et al. (2006b) for
a sample drawn from the same population.50

The other interesting part of Fig. 14 is that the estimate of loss aversion
increases steadily as one increases the assumed reference point. At the ML
reference point of $4.60, l is estimated to be 2.51, with a standard error of
0.37 and a 95% confidence interval between 1.79 and 3.24. These estimates
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raise an important methodological question: was it the data that led to the
conclusion that loss aversion was significant, or the priors favoring significant
loss aversion that led to the empirical specification of reference points? Our
results may appear to be a confirmation of the argument made by some PT
analysts that lE2, but it is important to recognize that the estimates presented
here may not extend to other data sets or to other error specifications in the
likelihood function. Further, in experimental subject pools with different
reference points we would find something else entirely. At the very least, it is
premature to proclaim ‘‘three cheers’’ for loss aversion (Camerer, 2005).

3.3. Characterizing Risk Attitudes with Several Latent Data
Generating Processes

Since different models of choice behavior under uncertainty imply somewhat
different characterizations of risk attitudes, it is important that we make some
determination about which of these models is to be adopted. One of the
enduring contributions of behavioral economics is that we now have a rich set
of competing models of behavior in many settings, with EUT and PT as the
two front-runners for choices under uncertainty. Debates over the validity of
these models have often been framed as a horse race, with the winning theory
being declared on the basis of some statistical test in which the theory is
represented as a latent process explaining the data. In other words, we seem to
pick the best theory by ‘‘majority rule.’’ If one theory explains more of the
data than another theory, we declare it the better theory and discard the other
one. In effect, after the race is over we view the horse that ‘‘wins by a nose’’ as
if it was the only horse in the race. The problem with this approach is that it
does not recognize the possibility that several behavioral latent processes may
co-exist in a population. Recognizing that possibility has direct implications
for the characterization of risk attitudes in the population.

Ignoring this possibility can lead to erroneous conclusions about the
domain of applicability of each theory, and is likely an important reason for
why the horse races pick different winners in different domains. For purely
statistical reasons, if we have a belief that there are two or more latent
population processes generating the observed sample, one can make more
appropriate inferences if the data are not forced to fit a specification that
assumes one latent population process.

Heterogeneity in responses is well recognized as causing statistical pro-
blems in experimental and non-experimental data. Nevertheless, allowing
for heterogeneity in responses through standard methods, such as fixed or
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random effects, is not helpful when we want to identify which people behave
according to what theory, and when. Heterogeneity can be partially
recognized by collecting information on observable characteristics
and controlling for them in the statistical analysis. For example, a given
theory might allow some individuals to be more risk averse than others
as a reflection of personal preference. But this approach only recognizes
heterogeneity within a given theory. This may be important for valid
inferences about the ability of the theory to explain the data, but it does not
allow for heterogeneous theories to co-exist in the same sample.

One approach to heterogeneity and the possibility of co-existing theories
adopted by Harrison and Rutström (2005) is to propose a ‘‘wedding’’ of the
theories. They specify and estimate a grand likelihood function that allows
each theory to co-exist and have different weights, a so-called mixture
model. The data can then identify what support each theory has. The
wedding is consummated by the ML estimates converging on probabilities
that apportion non-trivial weights to each theory.

Their results are striking: EUT and PT share the stage, in the sense that
each accounts for roughly 50% of the observed choices. Thus, to the extent
that EUT and PT imply different things about how one measures risk
aversion, and the role of the utility function as against other constructs,
assuming that the data is generated by one or the other model can lead to
erroneous conclusions. The fact that the mixture probability is estimated
with some precision, and that one can reject the null hypothesis that it is
either 0 or 1, also indicates that one cannot claim that the equal weight to
these models is due to chance.

The main methodological lesson from this exercise is that one should not
rush to declare one or other model as a winner in all settings.51 One would
expect that the weight attached to EUT would vary across task domains,
just as it can be shown to vary across observable socio-economics
characteristics of individual decision makers.

Another approach to heterogeneity involves the use of ‘‘random
parameters’’ in models, illustrated well by Wilcox (2008a, 2008b). Consider
the simple EUT specification with no stochastic noise assumption, given by
Eqs. (1)–(5). There is one parameter doing all the empirical work: the
coefficient of RRA r. In the traditional statistical specification r is treated
as the same across all individuals in the sample, or as a linear function of
observable characteristics. An alternative approach is to view r as varying
over the sample according to some distribution, commonly assumed to be
Normal. In that specific case there are really two parameters to be estimated,
the mean of r and the standard deviation of r.
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If the heterogeneity of process takes a nested form, in the sense
that one process is a restricted form of the other, then one can think of
the correct statistical specification as either a finite mixture model or a
random coefficients specification. In the latter case one would want to
allow more flexible functional forms than Normal, to allow for multiple
modes, but this is easy to generate as the sum of several uni-modal
distributions. If the heterogeneity of process takes a non-nested form, such
that the parameter sets are distinct for each process, then the mixture
specification is more appropriate, or one should use a combination of
mixture and random parameter specifications (Conte, Hey, & Moffatt,
2007).

3.4. Joint Elicitation of Risk Attitudes and Other Preferences

In many settings in experimental economics we want to elicit some
preference from a set of choices that also depend on risk attitudes. Often
these involve strategic games, where the uncertain ways in which behavior of
others deviate from standard predictions engenders a lottery for each player.
Such uncertain deviations could be due to, for example, unobservable social
preferences such as fairness or reciprocity. One example is offers made in
Ultimatum bargaining when the other player cannot be assumed to always
accept a minuscule amount of money, and acceptable thresholds may be
uncertain. Other examples include Public goods contribution games where
one does not know the extent of free riding of other players, and Trust
games in which one does not know the likelihood that the other player will
return some of the pie transferred to him. Another source of uncertainty is
the possibility that subjects make decisions with error, as predicted in
Quantal Response Equilibria. Later we consider one example of this use of
controls for risk attitudes in bidding in first-price auctions.

In some cases, however, we simply want to elicit a preference from choices
that do not depend on the choices made by others in a strategic sense, but
which still depend on risk attitudes. An example due to Andersen, Harrison,
Lau, and Rutström (2008a) is the elicitation of individual discount rates.
In this case, it is the concavity of the utility function that is important, and
under EUT that is synonymous with risk attitudes. The implication is that
we should combine a risk elicitation task with a time preference elicitation
task, and use them jointly to infer discount rates over utility.

Assume EUT holds for choices over risky alternatives and that
discounting is exponential. A subject is indifferent between two income
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options Mt and Mt+t if and only if

UðoþMtÞ þ
1

ð1þ dÞt

� �
UðoÞ ¼ UðoÞ þ

1

ð1þ dÞt

� �
UðoþMtþtÞ (10)

where U(o+Mt) is the utility of monetary outcome Mt for delivery at time t
plus some measure of background consumption o, d the discount rate, t the
horizon for delivery of the later monetary outcome at time t+t, and the utility
function U is separable and stationary over time. The left-hand side of
Eq. (10) is the sum of the discounted utilities of receiving the monetary
outcome Mt at time t (in addition to background consumption) and receiving
nothing extra at time t+t, and the right-hand side is the sum of the
discounted utilities of receiving nothing over background consumption at time
t and the outcome Mt+t (plus background consumption) at time t+t. Thus,
Eq. (10) is an indifference condition and d is the discount rate that equalizes
the present value of the utility of the two monetary outcomes Mt and Mt+t,
after integration with an appropriate level of background consumption o.

Most analyses of discounting models implicitly assume that the individual
is risk neutral,52 so that Eq. (10) is instead written in the more familiar form

Mt ¼
1

ð1þ dÞt

� �
Mtþt (11)

where d is the discount rate that makes the present value of the two
monetary outcomes Mt and Mt+t equal.

To state the obvious, Eqs. (10) and (11) are not the same. As one relaxes
the assumption that the decision-maker is risk neutral, it is apparent from
Jensen’s Inequality that the implied discount rate decreases if U(M) is
concave in M. Thus, one cannot infer the level of the individual discount
rate without knowing or assuming something about their risk attitudes. This
identification problem implies that risk attitudes and discount rates cannot
be estimated based on discount rate experiments alone, but separate tasks to
identify the influence of risk preferences must also be implemented.

Andersen et al. (2008a) do this, and infer discount rates for the adult
Danish population that are well below those estimated in the previous
literature that assumed RN, such as Harrison, Lau, and Williams (2002),
who estimated annualized rates of 28.1% for the same target population.
Allowing for concave utility, they obtain a point estimate of the discount
rate of 10.1%, which is significantly lower than the estimate of 25.2% for the
same sample assuming linear utility. This does more than simply verify that
discount rates and risk aversion coefficients are mathematical substitutes in
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the sense that either of them have the effect of lowering the influence from
future payoffs on present utility. It tells us that, for risk aversion coefficients
that are reasonable from the standpoint of explaining choices in the lottery
choice task, the estimated discount rate takes on a value that is much more
in line with what one would expect from market interest rates. To evaluate
the statistical significance of adjusting for a concave utility function one can
test the hypothesis that the estimated discount rate assuming risk aversion is
the same as the discount rate estimated assuming RN. This null hypothesis
is easily rejected. Thus, allowing for risk aversion makes a significant
difference to the elicited discount rates.

3.5. Testing Expected Utility Theory

Much of the data collected with the direct intent of testing EUT involved
choice pairs selected deliberately to provide a way of testing EUT without
having to know the risk attitudes of subjects. Unfortunately they provide
extremely weak tests, since one can only count a choice as a success or
failure of the theory, and no transparent metric suggests itself to weight
some violations rather than others as more serious.53 This is why we
generally use ML to estimate parameters in such binary choice settings, and
not the ‘‘hit ratio,’’ since some hits are closer than others and we want to
take that into account by calculating the probability of the observed choice
conditional on the parameters being evaluated.54

The problem is even more serious than devising a metric to test the
seriousness of violations. In two respects, EUT is a hard theory to reject in
these settings First, how does one know if the subjects are actually
indifferent to the choice pairs on offer? Allowing subjects to express
indifference does not suffice, since there is no way to know if they have
randomized internally before picking out one lottery. Moreover, waiting for
the data to exhibit 50–50 splits for indifference presumes that no artifactual
presentation biases exist.55 Second, how does one know if the subjects are
not extremely risk averse? High levels of risk aversion mean that the CE of
the utility values of the prizes are all close to ‘‘very small numbers.’’ Hence,
for sufficiently high levels of risk aversion, the CEs of the two lotteries are
virtually identical and the subject should be rationally indifferent.
Unfortunately, this free parameter gives EUT the formal leeway to escape
from virtually any test one can think of. These problems lead one to
question how operationally meaningful these tests are without some
independent characterization of risk attitudes.
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To provide one striking example of this issue, consider the Preference
Reversal tests of EUT presented to economists by Grether and Plott (1979).
In these experiments, the subject was asked to make a direct binary choice
between lotteries A and B, and then to state a valuation on each of A and B.
From the latter two valuations the experimenter can infer a binary
preference. The reversal is said to occur when the inferred binary preference
differs from the direct binary choice. One design feature of these tasks is that
A and B had virtually identical expected value. Given this information,
anthropomorphize and sympathize with a poor ML estimation routine
trying to explain any sample of choices in which there are significant
numbers of reversals. It could try assuming subjects were risk neutral, and
then it could ‘‘explain’’ any observed choice since the subject would be
indifferent between either option.

The best way to address these concerns is to characterize the risk attitudes
of the subjects independently of the choice tasks, allowing the experimenter
to identify those subjects that make for better tests of EUT. This
identification can proceed independently of the choice data one is seeking
to confront with EUT.

To illustrate, consider the Common Ratio tests of EUT from Cubitt,
Starmer, and Sugden (1988a) (CSS). The CSS tests used 451 subjects, who
were randomly given one of five problems.56 The first and last problems in
CSS were a choice between simple prospects. Problem 1 was a choice
between option A, which was an 80% chance of d16, and option B, which
was d10 for certain.

Problem 5 was a simple ‘‘common ratio’’ transformation which multiplied
each option by 1/4, so that option A� was a 20% chance of d16 and option B�

was a 25% chance of d10. Problems 2 through 4 were procedural variants on
Problem 2, which are identical to Problem 5 from the perspective of EUT. We
refer to these as problems AB and A�B� for present purposes, in new
experiments discussed below. Thus, CSS Problems 2–5 correspond to problem
A�B� in our design, and their Problem 1 corresponds to our problem AB.

Cubitt, Starmer, and Sugden (1988a; Table 2, p. 1375) report that 50% of
their sample chose option A� in their Problems 2 through 5, which are
qualitatively identical to problem A�B� in our design. Only 38% of their
subjects chose option A in their Problem 1, which is qualitatively the same
as problem AB in our design. Using the same w2 contingency table test
employed by CSS, we can only reject the EUT hypothesis at a significance
level of 11.2%; Fisher’s exact test for the same two-sided comparison has a
significance level of 15.3%. So there is weak evidence that EUT is violated,
even if it does not strictly fail at conventional levels of significance.57
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For a specific example of the Common Ratio test, in which we have
independent information on risk attitudes, suppose Lottery A consists of
prizes $0 and $30 with probabilities 0.2 and 0.8, and that Lottery B consists
of prizes $0 and $20 with probabilities 0 and 1. Then one may construct
two additional compound lotteries, A� and B�, by adding a front-end
probability q ¼ 0.25 of winning zero to lotteries A and B. That is, A� offers
a (1� q) chance to play lottery A and a q chance of winning zero. Subjects
choosing A over B and B� over A�, or choosing B over A and A� over B�,
are said to violate EUT.

To show precisely how risk aversion does matter, assume that risk
attitudes can be characterized by the popular CRRA function, Eq. (1). The
CE of the lottery pairs AB and A�B� as a function of r are shown in the left
and right upper panels, respectively, of Fig. 15. The CRRA coefficient
ranges from � 0.5 (moderately risk loving) up to 1.25 (very risk averse),
with a risk-neutral subject at r ¼ 0. The CE of lottery B, which offers $20 for
sure, is the horizontal line in the left panel of Fig. 15. The CE of A, A�, and
B� all decline as risk aversion increases. The lower panels of Fig. 15 show
the CE differences between the A and B (A� and B�) lotteries. Note that for
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GLENN W. HARRISON AND E. ELISABET RUTSTRÖM104



the AB (A�B�) lotteries, the preferred outcome switches to lottery B (B�)
for a CRRA coefficient about 0.45.

Most evaluations of EUT acknowledge that one cannot expect any
theory to predict perfectly, since any violation would lead one to reject the
theory no matter how many correct predictions it makes. One way to
evaluate mistakes is to calculate their costs under the theory being tested and
to ‘‘forgive’’ those mistakes that are not very costly, while holding to
account those that are. For each subject in our data and each lottery choice
pair, we can calculate the CE difference given the individual’s estimated
CRRA coefficient, allowing us to identify those choice pairs that are most
salient. A natural metric for defining ‘‘trivial EUT violations’’ can then be
defined in terms of choices that involve a difference in CE below some given
threshold.

Suppose for the moment that an expected utility maximizing individual
will flip a coin to make a choice whenever the difference in CE falls below
some cognitive threshold. If r ¼ 0.8, the CE difference in favor of B is large
in the first lottery pair and B will be chosen. In the second lottery pair, the
difference between the payoffs for choosing A� and B� is trivial (less than a
cent, in fact) and a coin is flipped to make a choice. Thus, with probability
0.5 the experimenter will observe the individual choosing B and A�, a choice
pattern inconsistent with EUT. In a sample with these risk attitudes, half the
choices observed would then be expected to be inconsistent with EUT. With
such a large difference between the choice frequencies, standard statistical
tests would easily reject the hypothesis that they are the same. Thus, we
would reject EUT in this case even though EUT is essentially58 true.

Fig. 16 collates estimates of risk attitudes elicited by Harrison, Johnson,
McInnes, and Rutström (2005b) from 152 subjects, described in Section 1.2
and Table 3. The idea is to simply align the CE differences for each of the
CR lotteries (AB in the left panel, and A�B� in the right panel) with the
distribution of risk attitudes expected from this sample (the bottom boxes).
Clearly the subjects tend to have risk attitudes at precisely the point at which
these tests have least power to reject EUT. This is particularly striking for the
A�B� lottery choice, but even for the AB lottery choice it is only the few
subjects ‘‘in the tails’’ of the risk distribution for which EUT has a strong
prediction. Further, these risk attitude distributions refer to point estimates,
and do not reflect the uncertainty of those estimates: it is quite possible that
some subject that has a point estimate of his CRRA coefficient that makes
the AB test powerful also has a large enough standard error on that point
estimate that the AB test is not powerful. This issue of precision is addressed
directly by Harrison, Johnson, McInnes, and Rutström (2007a).
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For some violations it may be easy to write out specific parametric models
of the latent EUT decision-making process that can account for the data. The
problem is that the model that can easily account for one set of violations
need not account for others. As already noted, the preference reversals of
Grether and Plott (1979) can be explained by assuming risk-neutral subjects
with an arbitrarily small error process, since the paired lotteries are designed
to have the same expected value. Hence, each subject is indifferent, and the
error process can account for the data.59 But then such subjects should not
violate EUT in other settings, such as common ratio tests.

However, rarely does one encounter tests that confront subjects with a
wide range of tasks and evaluates behavior simultaneously over that wider
domain. There are three striking counter-examples to this trend. First, Hey,
and Orme (1994) deliberately use lotteries that span a wide range of prizes
and probabilities, avoiding ‘‘trip wire’’ pairs, and they conclude that EUT
does an excellent job of explaining behavior compared to a wide range of
alternatives. Second, Harless and Camerer (1994) consider a wide range of
aggregate data across many studies, and find that EUT does a good job
of explaining behavior if one places sufficient value on parsimony. On the
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Fig. 16. Observed Risk Attitudes and Common-Ratio Tests of EUT.
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other hand, all of the data used by Harless and Camerer (1994) come from
experimental designs that were intended to be tough on EUT compared to
some alternative model; so their data is not as generic as Hey and Orme
(1994). Third, Loomes and Sugden (1998) deliberately choose lotteries ‘‘y to
provide good coverage of the space within each (implied Marschak–Machina
probability) triangle, and also to span a range of gradients sufficiently wide
to accommodate most subjects’ risk attitudes.’’ (p. 589). Their coverage is not
as wide as Hey and Orme (1994) in terms of the range of CRRA values for
which subjects would be indifferent under EUT, but the intent is clearly to
provide some variability, and for the right reasons.

Maximal statistical power calls for what might be termed a ‘‘comple-
mentary slack experimental design’’: choose one set of tasks such that if
subjects are risk averse (risk neutral) then the choice model is tested,
recognizing that if they are risk neutral (risk averse) then the other set of
tasks tests the choice model. Thus, the subjects that clearly provide little
information about EUT in common ratio tests in Fig. 16 should provide
significant information about EUT in preference reversal tests (Harrison
et al., 2007a).60 On the other hand, we know relatively little about what is
the most ‘‘ecologically relevant’’ lottery pairs to use if we are trying to model
task domains in a representative manner. Our only point is that this
consideration deserves more attention by economists interested in making
claims about the general validity of EUT or any other model, echoing
similar calls from others (Smith, 2003).

3.6. Testing Auction Theory

To illustrate the potential importance of controlling for the risk attitude
confound in a strategic setting, consider an important case in which there
has been considerable debate over the ability of received theory to account
for behavior: bidding in a first-price sealed-bid auction characterized by
private and independent values.61 Auction theory is very rich, and has been
developed specifically for the parametric cases considered in experiments
(e.g., Cox, Roberson, & Smith, 1982; Cox, Smith, & Walker, 1988). In a new
series of laboratory experiments data are collected on observed valuations
and bids, using standard procedures. However, information is also elicited
that identifies the risk attitudes of the same subject, since that is a critical
characteristic of the predicted bid under the standard model (e.g., Harrison,
1990). It is then straightforward to specify a joint likelihood function for
the observed risk aversion responses and bids, estimate the risk aversion
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characteristic, and test if the implied NE bid systematically differs from the
observed bid. The results are striking. In the simplest possible case, when
there are only two bidders (N ¼ 2), received theory does a wonderful job
of characterizing behavior when one controls for the risk attitudes of the
individual bidder.62

3.6.1. Theoretical Predictions
Cox et al. (1982) develop a model of bidding behavior in first-price sealed-
bid auctions that assumes that each agent has a CRRA power utility function
U(y) ¼ yr, where U is the utility of experimental income y and (1� ri) is the
Arrow–Pratt measure of risk aversion (RA). Each agent has their own ri, so
each agent is allowed to have distinct risk attitudes. However, ri is restricted
to lie on the closed interval (0,1), where ri ¼ 1 corresponds to RN. Hence,
this model allows (weak) risk aversion, but does not admit risk-loving
behavior.63 Each agent in the model knows their own risk attitude, their own
valuation vi, that everyone’s risk attitudes are drawn from the closed interval
(0,1), and that everyone’s valuation is drawn from a uniform distribution
over the interval (v0, v

1). It can then be shown that the symmetric Bayesian
NE implies the following bid function:

bi ¼ v0 þ
ðN � 1Þ

ðN � 1þ riÞ

� �
ðvi � v0Þ (12)

where there are N active bidders. In the RN case in which v0 ¼ 0, v1 ¼ 1, and
ri ¼ 1, this model is the one derived by Vickrey (1961), and calls for bidders
to choose their optimal bid using a simple rule: take the valuation received
and shade it down by (N� 1)/N. When N ¼ 2, the RN NE bidding rule is
therefore particularly simple: bid one-half of the valuation. Thus, one might
expect the N ¼ 2 case to provide a particularly compelling test of the general
RA NE bidding rule, since the optimal RN NE bid is also an arithmetically
simple heuristic.64

3.6.2. Experimental Design and Procedures
Each subject in our experiment participated in a single session consisting of
two tasks. The first task involved a sequence of choices designed to reveal
each subject’s risk preferences. In the second task, subjects participated in a
series of 10 first-price auctions against random opponents, followed by
a small survey designed to collect individual characteristics. A total of 58
subjects from the student population of the University of Central Florida
participated over three sessions. The smallest number of subjects in one
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session was 16, so there was little chance that the subjects would rationally
believe that they could establish reputations over the 10 rounds of bidding
against a random opponent.65

Each subject was told that they would be privately assigned induced
values between $0 and $8, using a uniform distribution. Cox et al. (1982)
show that for RN subjects the expected earning of each subject in a first-
price auction is (v1� v0)/N(N+1), where v1 and v0 are the upper and lower
bound for the support of the induced values. Thus, expected RN earnings
were $1.33 per subject in each period. Subjects in each session were also
informed of the number of other bidders in the auction; that the other
bidders’ induced values were, like their own, drawn from a uniform support
with bounds given above; and that their earnings in the auction would
equal their induced value minus their bid if they have the highest bid, or zero
otherwise.

We used the Holt and Laury (2002) design to elicit risk attitudes from the
same subjects. In these experiments, we scaled these baseline prizes of their
design, shown in panel A of Table 1, up by a factor of 2, so that the largest
prize was $7.70 and the smallest prize was $0.20. The prizes in these lotteries
effectively span the range of possible incomes in the auction, which range
from $8.00 to zero.

3.6.3. Results
Panel B of Fig. 17 displays observed bidding behavior. The induced value is
displayed on the bottom axis, a 451 line is shown and corresponds to the
subject just bidding their value, and then the RN bid prediction is shown
under that 451 line. The standard behavior from a long series of such
experiments is observed: subjects tend to bid higher than the RN prediction,
to varying degrees.

The statistical model consists of a likelihood of observing the risk
aversion responses and the observed bidding responses.

The likelihood of the risk aversion responses is modeled with a probit
choice rule defined over the 10 binary choices that each subject made,
exactly as illustrated in Section 1.2 but for the power utility function. To
allow for subject heterogeneity with respect to risk attitudes, the parameter r
is modeled as a linear function of observed individual characteristics of the
subject. For example, assume that we only had information on the age and
sex of the subject, denoted Age (in years) and Female (0 for males, and 1
for females). Then we would estimate the coefficients a, b, and g in
r ¼ a+b�Age+g�Female. Therefore, each subject would have a different
estimated r, r̂, for a given set of estimates of a, b, and g to the extent that the
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subject had distinct individual characteristics. So if there were two subjects
with the same sex and age, to use the above example, they would literally
have the same r̂, but if they differed in sex and/or age they would generally
have distinct r̂. In fact, we use 12 individual characteristics in our model.
Apart from age and sex, these include binary indicators for race (Non-
White), a Business major, rich (parental or own income over $80,000 in
2003), high GPA (above 3.75), low GPA (below 3.25), college education for
the father of the subject, college education for the mother of the subject,
whether the subject works, whether the subject is a Catholic, and whether
the subject is some other Christian denomination. Panel A of Fig. 17
displays the predicted risk attitudes from this estimation exercise, using only
the risk aversion task.

The likelihood of the bidding responses is then modeled as a multi-
plicative function of the predicted bid conditional on the estimated risk
attitude for the subject. Thus, we estimate a coefficient b which scales up or
down the predicted NE bid: if b ¼ 1 then the observed bid exactly tracks the
predicted bid for that subject. The predicted NE bid for each subject i
depends, of course, on the r̂i for that subject, as well as the parameters N,
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v0, v
1, and vi. Thus, if we observe two subjects with the same vi but different

bids, it is perfectly possible for this to be consistent with the predicted NE
bid if they have distinct individual characteristics and hence distinct r̂i.
The coefficient b is also modeled as a linear function of the same set of
individual characteristics as the coefficient r.66

The full specification of the likelihood function for bidding allows for
heteroskedasticity with respect to individual characteristics. Thus, the
specification is (b� bNE)+e, where the variance of e is again a linear
function of the individual characteristics. Thus we obtain information from
the coefficients of b on which types of subjects deviate systematically from
the NE prediction, and we obtain information from the coefficients on e on
which types of subjects exhibit more noise in their bidding.

The overall likelihood consists of the likelihood of the risk aversion
responses plus the likelihood of the bidding responses, conditional on
estimates of r, b, and the variance of e. In turn, these three parameters are
linear functions of a constant and the individual characteristics of the
subject. Since each subject provides 10 binary choices in the risk aversion
task, and 10 bids in the auction task, we use clustering to allow for the
responses of the same subject to be correlated due to unobserved individual
effects.

Table 7 displays the ML estimates. The intercept for r is estimated to
be 0.612, consistent with evidence from comparable experiments of risk
aversion discussed earlier. The intercept for b is 1.02, consistent with bids
being centered on the RA NE bid conditional on the estimated risk aversion
for each subject. The top panel of Fig. 18 shows the distribution of predicted
values of b for each of the 58 subjects. Some subjects have estimates of b as
low as 0.8, or as high as 1.35, but the clear majority seem to be tracked well
by the RA NE bidding prediction. The bottom panel of Fig. 18 displays a
distribution of comparable estimates when we use the RN NE bidding
prediction instead of the RA NE bidding prediction, and re-estimate the
model. Observed bids are about 25% higher than predicted if one assumes,
counter-factually, that subjects are all RN.

3.7. Testing Myopic Loss Aversion

Prospect Theory has forced economists to worry about the task domain
over which decisions are evaluated, where a sequence of many tasks over
time may be treated very differently from a single choice task. PT obviously
focuses on the implications for loss aversion from this differential treatment.
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Table 7. Maximum Likelihood Estimates for Model of Bidding
Behavior.

Parameter Variable Point

Estimate

Standard

Error

p-Value Lower 95%

Confidence

Interval

Upper 95%

Confidence

Interval

r Constant 0.612 0.320 0.06 � 0.02 1.24

Age 0.003 0.015 0.82 � 0.03 0.03

Female � 0.052 0.079 0.51 � 0.21 0.10

Non-white 0.011 0.081 0.89 � 0.15 0.17

Major is in business 0.058 0.086 0.50 � 0.11 0.23

Father completed college � 0.004 0.083 0.96 � 0.17 0.16

Mother completed college 0.003 0.093 0.97 � 0.18 0.19

Income over $80k in 2003 0.036 0.073 0.62 � 0.11 0.18

Low GPA (below 3.24) � 0.024 0.098 0.81 � 0.22 0.17

High GPA (greater than

3.75)

0.190 0.113 0.09 � 0.03 0.41

Work full-time or part-

time

� 0.022 0.074 0.77 � 0.17 0.12

Catholic religious beliefs � 0.046 0.130 0.72 � 0.30 0.21

Other Christian religious

beliefs

0.040 0.080 0.62 � 0.12 0.20

b Constant 1.021 0.721 0.16 � 0.39 2.43

Age � 0.007 0.030 0.81 � 0.07 0.05

Female 0.019 0.084 0.82 � 0.14 0.18

Non-white � 0.059 0.079 0.45 � 0.21 0.09

Major is in business 0.023 0.083 0.78 � 0.14 0.19

Father completed college 0.054 0.068 0.43 � 0.08 0.19

Mother completed college � 0.023 0.085 0.79 � 0.19 0.14

Income over $80k in 2003 0.078 0.074 0.29 � 0.07 0.22

Low GPA (below 3.24) 0.001 0.079 0.99 � 0.15 0.16

High GPA (greater than

3.75)

0.210 0.124 0.09 � 0.03 0.45

Work full-time or part-

time

� 0.019 0.068 0.78 � 0.15 0.11

Catholic religious beliefs 0.035 0.095 0.72 � 0.15 0.22

Other Christian religious

beliefs

0.157 0.080 0.05 0.00 0.31

e Constant 0.096 1.093 0.93 � 2.05 2.24

Age � 0.011 0.046 0.81 � 0.10 0.08

Female 0.008 0.156 0.96 � 0.30 0.32

Non-white � 0.077 0.162 0.63 � 0.39 0.24

Major is in business 0.123 0.133 0.36 � 0.14 0.38

Father completed college � 0.330 0.139 0.02 � 0.60 � 0.06

Mother completed college 0.078 0.199 0.69 � 0.31 0.47
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Unfortunately, the insight from PT that the evaluation period might differ
from setting to setting, or from subject to subject, has not been integrated
into EUT. In fact, this insight is often presented as one of the essential
points of departure from EUT, and as one of the differentiating characteri-
stics of PT. We argue that behavioral issues of the evaluation period is a

Table 7. (Continued )

Parameter Variable Point

Estimate

Standard

Error

p-Value Lower 95%

Confidence

Interval

Upper 95%

Confidence

Interval

Income over $80k in 2003 0.044 0.119 0.71 � 0.19 0.28

Low GPA (below 3.24) 0.116 0.111 0.29 � 0.10 0.33

High GPA (greater than

3.75)

0.044 0.191 0.82 � 0.33 0.42

Work full-time or part-

time

� 0.144 0.148 0.33 � 0.43 0.15

Catholic religious beliefs � 0.341 0.157 0.03 � 0.65 � 0.03

Other Christian religious

beliefs

� 0.077 0.149 0.61 � 0.37 0.21
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Fig. 18. Relative Support for Alternative Nash Equilibrium Bidding Models.
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more general and fundamental concern than concerns about loss aversion
in PT. By considering recent experimental tests of aversion of this insight
known as Myopic Loss Aversion (MLA), it is possible to see that the insight
is just as relevant for EUT, and that a full characterization of risk attitudes
must account for the evaluation period.

Camerer (2005; p. 130) explains why one naturally thinks of loss aversion
and the evaluation period together:

A crucial ingredient in empirical applications of loss aversion is decision isolation, or

focusing illusion, in which single decisions loom large even though they are included in

a stream of similar decisions. If many small decisions are integrated into a portfolio of

choices, or a broad temporal view – the way a gambler might view next year’s likely total

wins and losses – the loss on any one gamble is likely to be offset by others, so aversion

to losses is muted. Therefore, for loss aversion to be a powerful empirical force requires

not only aversion to loss but also a narrow focus such that local losses are not blended

with global gains. This theme emerges in the ten field studies that Camerer (2000)

discusses, which show the power of loss aversion (and other prospect theory features) to

explain substantial behaviors outside the lab.

However, there is very little direct experimental evidence, with real
stakes, to support MLA. Furthermore, we argue that what evidence
there is also happens to be consistent with EUT. By carefully considering
those experimental tests from the perspective of EUT and the implica-
tions for the characterization of risk attitudes, it is easy to see that the
behavioral issue of the evaluation period is a more general and fundamental
concern.

Several recent studies propose experimental tests that purport to directly
test EUT against the alternative hypothesis of MLA. Gneezy and Potters
(1997) and Haigh and List (2005) use simple experiments in which many
potential confounds are removed.67 Unfortunately, those experiments only
test a very special case of EUT against the alternative hypothesis. This
special case is CRRA, and it fails rather dramatically. But it is easy to come
up with other utility functions that are consistent with EUT and that can
explain the observed data without relying on MLA. For example, any utility
function with decreasing RRA and that exhibits risk aversion for low levels
of income will suffice at a qualitative level. The empirical outcomes observed
at the individual level can then be explained by simply fitting specific
parameters to this utility function. Appendix E demonstrates this intuitively,
as well as more formally.

Our new analysis of the GP data presented in Appendix E also identifies
some unsettling implications of these experiments for MLA: that the key
‘‘loss aversion’’ parameters of the standard MLA model vary dramatically
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according to the exogenously imposed evaluation period and that the risk
attitudes are the opposite of those generally assumed in PT, viz., risk loving
in gains and risk averse in losses. Thus, the behaviorist explanation is
hoisted on the same petard it alleged applied to the EUT explanation, the
presence of anomalous behavior.

However, although it is useful and trivial to come up with a standard
EUT story that accounts for the data, and even fun to find an anomaly for
the behaviorists to ponder, these experiments force one to examine a much
deeper question than ‘‘can EUT explain the data?’’ That question is whether
utility is best defined over each individual decision that the subject faces or
over the full sequence of decisions that the subject is asked to make in an
experimental session, or perhaps even including extra-lab decisions.
Depending on how the subjects interpret the experimental task, these frames
could differ in this experimental task. This perspective suggests the
hypothesis that behavior might be better characterized as a mixture of two
latent data generating processes, as suggested by Harrison and Rutström
(2005) and Section 3.3, with some subjects using one frame and other
subjects using another frame.

A related issue underlying the assessment of behavior from these
experiments is asset integration within the laboratory session. What incomes
are arguments of the utility functions of the subjects? The common assump-
tion in experimental economics is that it is simply the prizes over which
they were making choices whenever they got to make a choice.68 But what
about asset integration of income earned during the sequence of rounds?
Gneezy and Potters (1997; p. 636) note that this could affect risk attitudes
in a more general specification, but assert that the effect is likely to be
small given the small stakes. This may be true, but is just an assertion and
deserves more complete study using the general framework proposed by
Cox and Sadiraj (2006). The Gneezy and Potters (1997) data provide an
opportunity to study this question, since subjects received information
on their intra-session income flows at different rates. Hence one could, in
principle, test what function of accumulated wealth was relevant for their
choices.

We believe that the fundamental insight of Benartzi and Thaler (1995) of
the importance of the evaluation horizon of decision makers is worthy of
more attention, even though we find that the present tests of MLA have
been somewhat misleading. The real contribution of the MLA literature and
the experimental design of Gneezy and Potters (1997) is to force mainstream
economists to pay attention to an issue they have neglected within their own
framework.
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3.8. The Random Lottery Incentive Procedure

The random lottery incentive procedure originated from the desire to avoid
‘‘wealth or portfolio effects’’ of subjects making multiple choices at once
to determine their final experimental income.69 It also has the advantage of
saving scarce experimental subject payments, but that arose originally as a
happy by-product. The procedure bothers theorists and non-experimenters,
particularly when one is using the experimental responses to estimate risk
attitudes. The reason is that there is some ambiguity as to whether the
subject is evaluating the utility of the lottery in each choice, or the compound
lottery that includes the random selection of one lottery for payment.

The procedure also imposes a motivational constraint on the level of
incentives one can have in certain elicitation tasks. To generate better
econometric estimates we would like to gather more choices from each
subject: witness the glee that Wilcox (2008a) expresses over the sample size
of the design in Hey (2001). Each subject in that design generated 500 binary
choices, over five sessions at separate times, and was paid for one selected at
random. But 1-in-500 is a small number, even if the prizes were as high as
d125 and EV maximization would yield a payoff of just over d79. So there is
a tension here, in which we want to gather more choices per subject, but
run the risk that the probability of any one choice being realized drops as we
do so. The experiments of Hey (2001) are remarkable because they appear to
have motivated subjects well – aggregate error rates from repeated tasks are
very low compared to those found in comparable designs with fewer tasks
(Nathaniel Wilcox; personal communication). What we would like to do is
run an experiment with as many choices as we believe that subjects can
perform without getting bored, but ensure that they do not see each choice
as having a vanishing chance of being salient. In our experience, 60 binary
choices are about the maximum we can expect our subjects to undertake
without visible signs of boredom setting in. But even 1-in-60 sounds small,
and may be viewed that way by subjects, effectively generating hypothetical
responses and the biases that typically come with them (see Section 4.1).
Of course, this is a behavioral issue: do subjects focus on the task as if it
were definitely the one to be paid, or do they mostly focus on the likelihood
of the task determining their earnings?

Several direct tests of this procedure lead some critics of EUT to the
conclusion that the procedure appears, as an empirical matter, to induce
no cross-task contamination effects when choices are over simple lottery
prospects; see Cubitt, Starmer, & Sugden (1988b; p. 129), for example.
Related tests include Starmer and Sugden (1991) and Beattie and Loomes
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(1997). So the empirical evidence suggests that it does not matter
behaviorally.

On the other hand, doubts remain. Certain theories of decision-making
under risk differ in terms of the predicted effect these procedures have on
behavior. To take an important example, consider the use of the random
lottery incentive procedure in the context of an MPL task. The theoretical
validity of this procedure presumes EUT, and if EUT is invalid then it is
possible that this procedure might be generating invalid inferences. Under
EUT it does not matter if the subjects evaluate their choices in each task
separately, make one big decision over the whole set of tasks, or anything
in between, since the random incentive is just a ‘‘common ratio probability’’
applied to each task. However, under RDU or PT this common ratio
probability could lead to very different choices, depending on the extent of
probability weighting.

Hey and Lee (2005a, 2005b) provide evidence that subjects do not appear
to consider all possible tasks, but their evidence is provided in the context of
RLP designs discussed in Section 1.2. In that case the subject does not know
the exact lotteries to be presented in the future, after the choice before him
is made, so one can readily imagine the cognitive burden involved in
anticipating what the future lotteries will be.70 But for the MPL instrument
the subject does know the exact lotteries to be presented in the whole task,
and the set of responses can be plausibly reduced in number to just picking
one switch point, rather than picking from the 210 ¼ 1024 possible binary
choices in 10 rows. Thus, the MPL instrument may be more susceptible to
concerns with the validity of the random lottery incentive procedure than
other instruments.71

On the other hand, it is not obvious theoretically that one wants to avoid
‘‘portfolio effects’’ when eliciting risk attitudes. These effects arise as soon
as subjects are paid for more than one out of K choices. Again, consider the
same type of binary choice experiments considered above. The standard
implementation of the random lottery incentive mechanism in experiments
such as these would have one choice selected at random. For the case of
investigating ‘‘preference reversals’’ the reason for only using one choice is
well explained by Cox and Epstein (1989; p. 409):

Economic theories of decision making under risk explain how variations in wealth can

affect choices. Thus an agent with wealth w may prefer lottery A to lottery B but that

same agent with wealth ŵaw may prefer lottery B to A. Therefore, the results of

preference reversal experiments that allow a subject’s wealth to change between choices

cannot provide a convincing challenge to economic theory unless it can be shown that

wealth effects cannot account for the results.
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Economic theories of decision making under risk provide explanations of optimal

portfolio choice. Such theories explain why an agent might prefer lottery A to lottery B

but prefer the portfolio (A, B) to the portfolio (A, A). If the portfolio is accumulated by

sequential choice of A over B and then B over A, an apparent preference reversal could

consist of choices that construct an agent’s optimal portfolio.

When the interest is in the inferred risk coefficient, however, the possibility
of subjects choosing portfolios to match their preferences have different
implications. To avoid risk-pooling incentives, the outcomes of the lotteries
must be uncorrelated, which is normally the case in such experiments.
Nevertheless, even then it is possible for a subject to prefer the portfolio
(A, B) to (A, A) even if he would prefer A to B when being paid only for one
of his choices. To see this, recall that the lottery options presented to
subjects are always discrete. In the MPL, for example, a switch from lottery
A to lottery B on row 6 would lead us to infer a risk aversion coefficient
that is in a numeric interval, (0.14, 0.41) in the Holt and Laury (2002)
experiments. An individual with a risk aversion coefficient close to the
boundaries of this interval would always pick (B, B) or (A, A), but an
individual with a risk aversion coefficient in the middle of the interval would
have a preference for a mixed portfolio of (A, B). Paying for more than
one lottery therefore elicits more information and allows a more precise
expression of the risk preference of each subject. The point is that we then
have to evaluate risk attitudes assuming that subjects compare portfolios,
rather than comparing one individual lottery with another individual
lottery. If we do that, then there is no theoretical reason for avoiding
portfolio effects for this inferential purpose. There may be a practical and
behavioral reason for avoiding that assumption in the design considered
by Hey and Lee (2005a, 2005b), given the cognitive burden (to subject and
analyst) of constructing all possible expected portfolios.

The behavioral significance of the portfolio effect can be directly tested by
varying the number of lottery choices to be paid. In our replication of Hey
and Orme (1994) we defaulted to having 60 binary lottery choices. Over 60
binary choices we used three choices for payment, to ensure comparability
of rewards with other experiments in which subjects made choices over 40 or
20 lotteries, and where 2 lotteries or 1 lottery was respectively selected at
random to be played out. Thus, the 1-in-20 treatment corresponds exactly to
the random lottery incentive procedure that avoids portfolio effects, and the
other two treatments raise the possibility of these effects. All of these tasks
were in the gain frame, and all involved subjects being provided information
on the EV of each lottery. The samples consisted of 11, 21, and 25 subjects in
the 20, 40, and 60 lottery treatments, respectively, for a pooled sample of

GLENN W. HARRISON AND E. ELISABET RUTSTRÖM118



57 subjects. All the lottery outcomes were uncorrelated by executing
independent draws.

We find no evidence of portfolio effects, measured by the effect on the
mean elicited risk attitudes. Assume an EUT model initially, and use the
CRRA function given by Eq. (1), with a Fechner error specification. Pooling
data over tasks in which the subject faced 20, 40, or 60 lotteries, on a
between-subjects basis, and including a binary dummy for those sessions
with 20 or 40 lotteries, there is no statistically significant effect on elicited
risk attitudes. Quite apart from statistical insignificance, the estimated effect
is small: around 70.04 or less in terms of the risk aversion coefficient.
The same conclusion holds with a comparable RDU model, whether one
looks at the concavity of the utility function, Eq. (1), the curvature of the
probability weighting function, Eq. (9), or both.

This valuable result is worth replicating with larger samples and in different
elicitation procedures. We want to have more binary choices from the same
subject to get more precise estimates of latent structural models, but on the
other hand we worry that paying 1-in-K choices for K ‘‘large’’ might seriously
dilute incentives for thoughtful behavior over consequential outcomes. If one
can modestly increase the salience of each choice, as implemented here, and
not worry about portfolio effects, then it is possible to use values of K that
allow much more precise estimates of risk attitudes. Of course, the absence of
the portfolio effect must be checked behaviorally, as illustrated here.

3.9. Summary Estimates

We finally collate some ‘‘preferred’’ estimates of simple specifications of risk
attitudes from the various designs and statistical specifications in the
literature. We do not mechanically list every estimate from every design and
specification, in the spirit of some meta-analyses, ignoring the weaknesses
we have discussed in each. Instead, we use a priori judgements to focus on
two of the designs that we believe to be most attractive, the statistical
specifications we believe to be the best available, and the studies we have
the most reliable data. One design is the classic data set of Hey and Orme
(1994), and the other is the classic design of Holt and Laury (2002, 2005).
We favor the Holt and Laury (2005) study over Holt and Laury (2002),
because of the contaminant of order effects in the earlier design, identified
by Harrison, Johnson, McInnes, and Rutström (2005b). Similarly, we favor
the Fechner error specification of Hey and Orme (1994) over the Luce
specification of Holt and Laury (2002), for reasons detailed by Wilcox
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(2008a).72 We also augment the British data from Hey and Orme (1994) with
results from our replications with U.S. college students.

We consider CRRA and EP variants for EUT, and also consider some
simple RDU specifications. The CRRA utility function is specification
Eq. (1) from Section 2.2, the EP utility function is specification Eq. (1u)
from Section 2.2, and the probability weighting function is the popular
specification Eq. (9) from Section 3.1. We do not consider CPT, due to
ambiguity over the interpretation of reference points in the laboratory. So
this is a selective summary, guided by our views on these issues.

We assume a homogenous preferences specification, with no allowances
for heterogeneity across subjects. In part, this is to anticipate their use by
theorists interested in using point estimates for ‘‘calibration finger
arithmetic’’ (Cox & Sadiraj, 2008). We stress that these point estimates
have standard errors, and structural noise parameters, and that out-of-
sample predictions of utility will have ever-expanding confidence intervals
for well-known statistical reasons. We encourage theorists not to forget this
simple statistical point when taking estimates such as these to make
predictions over domains that they were not estimated over. Of course, the
corollary is that we should always qualify estimates such as these by
referencing the domain over which the responses were made. Indeed, Cox
and Sadiraj (2008) show that these point estimates can produce implausible
thought experiments far enough out of sample. Cox and Harrison (2008)
provide further discussion of this point, using estimates from Table 8, and
we return to it below.

Table 8 collects the estimates.73 In each case the preferred model is the RDU
specification with the EP utility function. Some interesting patterns emerge.
First, there appears to be very little substantive probability weighting in the
Hey and Orme (1994) data, even if the coefficient g is statistically significantly
different from 1: indeed, the log-likelihood of the EUT and RDU specifications
with EP are close. Second, the estimates from the two implementations of the
Hey and Orme (1994) design generate estimates that are remarkably similar.
Third, the extent and nature of probability weighting varies significantly in the
Holt and Laury (2005) data depending on the assumed utility function.
Fourth, there is evidence of decreasing RRA in the Hey and Orme (1994) data
and our replication, with ao0, but evidence of very slightly increasing RRA in
the Holt and Laury (2005) data. Finally, the estimates of the concavity of the
utility function do not seem to depend so much on the EUT or RDU
specification, as on the choice of utility function.

To return to the point about how estimates such as these should be
‘‘read’’ by theorists, and qualified by those presenting them, consider the
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Table 8. Summary Estimates.

Specification Parameter Estimate Standard

Error

p-

Valuea
Lower 95%

Confidence

Interval

Upper 95%

Confidence

Interval

Log

Likelihood

Hey and Orme (1994): N ¼ 80 subjects, pooled over both tasks; 15,567 responses, excluding

indifference

EUT with

CRRA

r 0.61 0.03 0.56 0.66 � 8865.01

m 0.78 0.06 0.67 0.90

EUT with

Expo-

Power

r 0.82 0.02 0.80 0.84 � 8848.03

a � 1.06 0.04 � 1.13 � 0.99

m 0.47 0.04 0.39 0.55

RDU with

CRRA

r 0.61 0.03 0.56 0.66 � 8861.18

g 0.99 o0.01 0.98 1.00

m 0.78 0.05 0.67 0.89

RDU with

Expo-

Power

r 0.82 0.01 0.80 0.84 � 8844.11

a � 1.06 0.04 � 1.13 � 0.99

g 0.99 o0.01 0.98 1.00

m 0.46 0.04 0.38 0.54

Our replication of Hey and Orme (1994): N ¼ 63 subjects in gain domain; 3,736 responses, excluding

indifference

EUT with

CRRA

r 0.53 0.05 0.44 0.62 � 2418.62

m 0.79 0.06 0.67 0.91

EUT with

Expo-

Power

r 0.78 0.02 0.74 0.82 � 2412.26

a � 1.10 0.05 � 1.19 � 1.00

m 0.58 0.05 0.48 0.69

RDU with

CRRA

r 0.53 0.04 0.45 0.62 � 2414.46

g 0.97 0.01 0.95 0.99

m 0.78 0.05 0.66 0.90

RDU with

Expo-

Power

r 0.78 0.02 0.74 0.82 � 2408.25

a � 1.10 0.05 � 1.19 � 1.01

g 0.97 0.01 0.95 0.99

m 0.57 0.05 0.47 0.67

Holt and Laury (2005): N ¼ 96 subjects, pooled over 1� and 20� tasks, with no order effects; 960

non-hypothetical responses

EUT with

CRRA

r 0.76 0.04 0.68 0.84 � 330.93

m 0.94 0.15 0.64 1.24

EUT with

Expo-

Power

r 0.40 0.07 0.25 0.54 � 303.94

a 0.07 0.02 0.04 0.11

m 0.12 0.02 0.07 0.16

RDU with

CRRA

r 0.85 0.08 0.69 1.00 � 325.50

g 1.46 0.35 0.19b 0.77 2.15

m 0.89 0.14 0.61 1.17

RDU with

Expo-

Power

r 0.26 0.05 0.16 0.36 � 288.09

a 0.02 0.01 0.16 � 0.01 0.04

g 0.37 0.15 0.07 0.67

m 0.06 0.02 0.02 0.11

aEmpty cells are p-values that are less than 0.005.
bThe null hypothesis here is that g ¼ 1.
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predicted utility values in Fig. 19. These predictions are from our
replications of the Hey and Orme (1994) design, and the estimates for the
EUT CRRA specification in Table 8. Fig. 19 displays predicted in-sample
utility values and their 95% confidence interval using these estimates.
Obviously the cardinal values on the vertical axis are arbitrary, but the main
point is to see how relatively tight the confidence intervals are in relation
to the changes in the utility numbers over the lottery prizes. Note the slight
‘‘flare’’ in the confidence interval in panel A of Fig. 19, as we start to
modestly predict utility values beyond the top $15 prize used in estimation.
Panel B extrapolates to provide predictions of out-of-sample utility values,
up to $250, and their 95% confidence intervals. The widening confidence
intervals are exactly what one expects from elementary econometrics.
And these intervals would be even wider if we accounted for our uncertainty
that this is the correct functional form, and our uncertainty that we had
used the correct stochastic identifying assumptions. Moreover, the
(Fechner) error specification used here allows for an extra element of
imprecision when predicting what a subject would actually choose
after evaluating the expected utility of the out-of-sample lotteries, and
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Fig. 19. Estimated In-Sample and Out-of-Sample Utility. (Estimated from

Responses of 63 Subjects over 60 Binary Choices. Assuming EUT CRRA

Specification with Fechner Error. Data from Our Replication of Hey and Orme

(1994): Choices Over Prizes of $0, $5, $10, and $15. Point Prediction of Utility and

95% Confidence Intervals.) (A) In-sample. (B) Out-of Sample.
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this does not show up in Fig. 19 since we only use the point estimate
of m.

The lesson here is that we have to be cautious when we make theoretical
and empirical claims about risk attitudes. If the estimates displayed in panel
A of Fig. 19 are to be used in the out-of-sample domain of panel B of
Fig. 19, the extra uncertainty of prediction in that domain should be
acknowledged. Cox and Sadiraj (2008) shows why we want to make such
predictions, for both EUT and non-EUT specifications; we review the
methods that can be used to generate these data, and econometric methods
to estimate utility functions; and Wilcox (2008a) shows how alternative
stochastic assumptions can have strikingly different substantive implications
for the estimation of out-of-sample risk attitudes.

4. OPEN AND CLOSED QUESTIONS

We briefly review some issues which are, in our view, wide open for research
or long closed.

4.1. Hypothetical Bias

Top of the ‘‘closed’’ list for us is the issue of hypothetical bias. This was a
prime focus of Holt and Laury (2002, 2005), and again in Laury and Holt
(2008), and has been reviewed in detail by Harrison (2007).

For some reason, however, many proponents of behavioral economics
insist on using task responses that involve hypothetical choices. One simple
explanation is that many of the earliest examples in behavioral economics
came from psychologists, who did not use salient rewards to motivate
subjects, and this tradition just persisted. Another explanation is that an
influential survey by Camerer and Hogarth (1999) is widely mis-quoted as
concluding that there is no evidence of hypothetical bias in such lottery
choices.

What Camerer and Hogarth (1999) actually conclude, quite clearly, is that
the use of hypothetical rewards makes a difference to the choices observed,
but that it does not generally change the inference that they draw about
the validity of EUT.74 Since the latter typically involve paired comparisons
of response rates in two lottery pairs (e.g., in common ratio tests), it is
logically possible for there to be (i) differences in choice probabilities in
a given lottery depending on whether one use hypothetical or real responses,
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and (ii) no difference between the effect of the EUT treatment on lottery pair
responses rates depending on whether one uses hypothetical or real
responses.

Furthermore, Camerer and Hogarth (1999) explicitly exclude from their
analysis the mountain of data from experiments on valuation that show
hypothetical bias.75 Their rationale for this exclusion was that economic
theory did not provide any guidance as to which set of responses was valid.
This is an odd rationale, since there is a well-articulated methodology in
experimental economics that is quite precise about the motivational role of
salient financial incentives (Smith, 1982). And the experimental literature
has generally been careful to consider elicitation mechanisms that provide
dominant strategy incentives for honest revelation of valuations, and indeed
in most instances explain this to subjects since it is not being tested. Thus,
economic theory clearly points to the real responses as having a stronger
claim to represent true valuations. In any event, the mere fact that
hypothetical and real valuations differ so much tells us that at least one of
them is wrong! Thus, one does not actually need to identify one as reflecting
true preferences, even if that is an easy task a priori, in order to recognize
that there are systematic and large differences in behavior between
hypothetical and real responses.

4.2. Sample Selection

This is a wide-open issue that experimental economists will have to confront
systematically before other researchers from labor economics do so for
them. It is likely to be a significant factor in many experiments, since
randomization to treatment is fundamental to statistical control in the
design of experiments. But randomization implies some uncertainty about
treatment condition, and individuals differ in their preferences towards
taking on risk. Since human subjects volunteer for experiments, it is possible
that the sample observed in an experiment might be biased because of the
risk inherent in randomization. In the extreme case, subjects in experiments
might be those that are least averse to being exposed to risk. For many
experiments of biological response this might not be expected to have any
influence on measurement of treatment efficacy, but other laboratory, field
and social experiments measure treatment efficacy in ways that could be
directly affected by randomization bias.76

On the other hand, the practice in experimental economics is to offer
subjects a fixed participation fee to encourage attendance. These
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non-stochastic participation fees could offset the effects of randomization,
by encouraging more risk-averse subjects to participate than might
otherwise be the case. Thus, the term ‘‘randomization bias,’’ in the context
of economics experiments, should be taken to mean the net effects from
these two latent sample selection effects.77

There is indirect evidence for these sample selection effects within the
laboratory. One can recruit subjects to an experiment, conduct a test of risk
attitudes, and then allow subjects to sort themselves into a given task
rewarded by fixed or performance-variable payments. Cadsby, Song, and
Tapon (2007) and Dohmen and Falk (2006) did just this, and show that
more risk-averse subjects select into tasks with fixed rewards rather than
rewards that vary with uncertain performance, and suffer in terms of
expected pay. Of course, they were happy to forego some expected income in
return for reduced variance. But these results strongly suggest that there
would be an effect from risk attitudes if one moved the sample selection
process one step earlier to include the choice to participate in the
experimental session itself.78

Harrison, Lau, and Rutström (2005c) undertake a field experiment and a
laboratory experiment to directly test the hypothesis that risk attitudes play
a role in sample selection.79 In both cases they followed standard procedures
in the social sciences to recruit subjects. In their experiments the primary
source of randomness had to do with the stochastic determination of final
earnings, as explained below. They also employed random assignment
to treatment in some experiments, but the general point applies whether the
randomness is due to assignment to treatment or random determination
of earnings, since the effect is the same on potential subjects. Nevertheless,
it is reasonable to suspect that members of most populations from
which experimenters recruit participants hold beliefs that the benefits
from participating are uncertain. All that is required for sample selection to
introduce a bias in the risk attitude of the participants is an expectation
of uncertainty, not an actual presence of uncertainty in the experimental
task.

In the field experiment it was possible to exploit the fact that the
experimenter already knew certain characteristics of the population
sampled, adults in Denmark in 2003, allowing a correction for sample
selection bias using well-known methods from econometrics. The classic
problem of sample selection refers to possible recruitment biases, such that
the observed sample is generated by a process that depends on the nature
of the experiment.80 In principle, there are two offsetting forces at work in
this sample selection process, as mentioned above. The use of randomization
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could attract subjects to experiments that are less risk averse than the
population, if the subjects rationally anticipate the use of randomization.81

Conversely, the use of guaranteed financial remuneration, common in
experiments in economics for participation, could encourage those that are
more risk averse to participate.

These field experiments therefore allowed an evaluation of the net effect of
these opposing forces, which are intrinsic to any experiment in which
subjects are voluntarily recruited with financial rewards. The results indicate
that measured risk aversion is smaller after corrections for sample selection
bias, consistent with the hypothesis that the use of a substantial, guaranteed
show-up fees more than offset any bias against attending an experiment that
involved randomization. This effect is statistically significant. The results also
suggest that there is no evidence that any sample selection that occurred
influenced inferences about the effects of observed individual demographic
characteristics on risk aversion.

Harrison et al. (2005c) then conducted a laboratory experiment to
complement the insights from their field experiment, and explore the
conclusion that a larger gross sample selection effect might have been
experienced due to randomization, but that the muted net sample selection
effect actually observed was due to ‘‘lucky’’ choices of participation fees.
The field design used the same fixed recruitment fee for all subjects, to
ensure comparability of subjects in terms of the behavioral task. In the
laboratory experiments this fixed recruitment fee was exogenously varied.
If the level of the fixed fee affects the risk attitudes of the sample that choose
to participate in the experiment, at least over the amounts they consider,
one should then be able to directly see different risk attitudes in the sample.
As expected a priori, they observed samples that were more risk averse
when a higher fixed participation fee was used. In another treatment in the
laboratory experiments they vary only the range of the prizes possible in the
task, keeping the fixed participation fee constant, but announcing these
ranges at the time of recruitment. In this case, they observed samples that
were more risk averse when the range of prizes was widened, compared to the
control. Hence, the level of the fixed recruitment fee and information on the
range of prizes in the experiment had a direct influence on the composition
of the sample in terms of individual risk attitudes.

The implication is that experimental economists should pay much more
attention to the process that leads subjects to participate in the experiment
if they are to draw reliable inferences in any setting in which risk attitudes
play a role. This is true whether one conducts experiments in the laboratory
or the field.82
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A closely related issue is what role risk attitudes may play in affecting
subjects’ participation choices over different institutions or cohorts when
such choices are allowed.83 It is common in the experimental literature to
study behavior in two or more institutions imposed exogenously on subjects,
or to put subjects together exogenously. But in the naturally occurring
world that our experiments are modeling, people choose institutions to
some degree, and choose who to interact with to some degree. The effect of
treatments may be completely different when people have some ability to
select into them, or some ability to choose the cohorts to participate with,
compared to the standard experimental paradigm. In effect, the experiment
just has to be widened to include these processes of selection, if appropriate
for the behavior under study. The broader experimental literature now
identifies many possible mechanisms for this process, such as migration
from one region to another in which local public policies exhibit dif-
ferences (Ehrhart and Keser (1999), Page, Putterman and Unel (2005),
Gürerk, Irlenbusch, and Rockenbach (2006)), voting in an explicit social
choice setting (Botelho, Harrison, Pinto, & Rutström, 2005a; Ertan, Page, &
Putterman, 2005; Sutter, Haigner, & Kocher, 2006), lobbying for policies
(Bullock & Rutström, 2007), and even the evolution of social norms of
conduct (Falk, Fehr, & Fischbacher, 2005). Each of these processes will
interact with the risk attitudes of subjects.

4.3. Extending Lab Procedures to the Field

One of the main attractions of experimental methods is the control that it
provides over factors that could influence behavior. The ability to control
the environment allows the researcher to study the effects of treatments
in isolation, and hence makes it easier to draw inferences as to what is
influencing behavior. In most cases we are interested in making inferences
about field behavior. We hypothesize that there is a danger that the
imposition of an exogenous laboratory control might make it harder, in
some settings, to make reliable inferences about field behavior. The reason is
that the experimenter might not understand something about the factor
being controlled, and might impose it in a way that is inconsistent with the
way it arises naturally in the field, and that affects behavior.

Harrison et al. (2007c) take as a case study the elicitation of measures of
risk aversion in the field. In the traditional paradigm, risk aversion is viewed
in terms of diminishing marginal utility of the final prize in some abstract
lottery. The concept of a lottery here is just a metaphor for a real lottery,
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although in practice the metaphor has been used as the primary vehicle
for laboratory elicitation of risk attitudes. In general there is some
commodity x and various levels i of x, xi, that depend on some state of
nature which occurs with a probability pi that is known to the individual
whose preferences are being elicited. Thus, the lottery is defined by {xi; pi}.
Traditional measures of risk aversion under EUT are then defined in terms
of the curvature of the utility function with respect to x.

Now consider the evaluation of risk attitudes in the field. This generally
entails more than just ‘‘leaving the classroom’’ and recruiting outside of a
university setting, as emphasized by Harrison and List (2004). In terms of
sample composition, it means finding subjects who deal with that type of
uncertainty to varying degrees, and trying to measure the extent of their field
experience with uncertainty. Moreover, it means developing stimuli that
more closely match those that the subjects have previously experienced, so
that they can use whatever heuristics they have developed for that
commodity when making their choices. Finally, it means developing ways
of communicating probabilities that correspond with language that the
subjects are familiar with. Thus, field experimentation in this case, and in
general, involves several simultaneous changes from the lab setting with
respect to subject recruitment and the development of stimuli that match the
field setting.

Apart from sample and task selection issues a second theme that is
important to the relevance of lab findings to field inferences is the influence
of ‘‘background risk’’ on the attitudes towards a specific ‘‘foreground risk’’
that is the focus of the elicitation task. In many field settings it is not
possible to artificially identify attitudes towards one risk source without
worrying about how the subjects view that risk as being correlated with
other risks. For example, mortality risks from alternative occupations tend
to be highly correlated with morbidity risks. It is implausible to ask subjects
their attitude toward one risk without some coherent explanation as to why
a higher or lower level of that risk would not be associated with a higher or
lower risk of the other.

Apart from situations where risks may be correlated, ‘‘background risk’’
can have an influence on elicited risk attitudes also when it is independent of
the ‘‘foreground risk.’’ The theoretical literature has also yielded a set of
preferences that guarantee that the addition of an unfair background risk
to wealth reduces the CE of any other independent risk. That is, the addition
of background risk of this type makes risk-averse individuals behave in a
more risk averse way with respect to any other independent risk. Gollier and
Pratt (1996) refer to this type of behavior as ‘‘risk vulnerability,’’ and show
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that all weakly Decreasing Absolute Risk Averse utility functions are
risk vulnerable. This class includes many popular characterizations of risk
attitudes, such as CARA and CRRA. Eeckhoudt, Gollier, and Schlesinger
(1996) extend these results by providing the necessary and sufficient
conditions on the characterization of risk aversion to ensure that any
increase in background risk induces more risk aversion.

The field experiment in Harrison et al. (2007c) is designed to analyze such
situations of independent multiple risk. The compare using monetary prizes
to using prizes whose values involve some risk and conclude that the risk
attitudes elicited are not the same in the two circumstances. These prizes are
collector coins and the subjects are numismatists. They find that the subjects
are generally more risk averse over the prizes when the latter involve
additional, and independent, risk.84 These results are consistent with the
available theory from conventional EUT for the effects of background risk
on attitudes to risk. Thus, applying risk preferences that have been elicited
in the lab to field settings with background risks may underestimate the
extent to which decisions will reflect risk aversion. In addition, eliciting risk
attitudes in a natural field setting with natural tasks and non-monetary
prizes requires one to consider the nature and degree of background risk,
since it is inappropriate to ignore.85

A further virtue of extending lab procedures to the field, therefore, is to
encourage richer lab designs by forcing the analyst to account for realistic
features of the natural environment that have been placed aside. In virtually
any market with asymmetric information, whether it is a coins market, an
open-air market, or a stock exchange, a central issue is the quality of the
object being traded. This issue, and attendant uncertainty, arises naturally.
In many markets, the grade of the object, or professional certification of
the seller, is one of the critical variables determining price. Thus, one could
scarcely design a test of foreground risk in these markets without attending
to the background risk. Harrison et al. (2007c) exploit the fact that such
risks can be exogenously controlled in these settings, and in a manner
consistent with the predictions of theory.86

In a complementary manner, Fiore, Harrison, Hughes, and Rutström
(2007) consider how one can use simulation tools to represent ‘‘naturally
occurring probabilities.’’ As one moves away from the artifactual controls
of the laboratory, distributions of outcomes are not always discrete, and
probabilities are not given from outside. They are instead estimated as
the result of some process that the subject perceives. One approach to
modeling such naturally occurring probabilities in experiments is to write
out a numerical simulation model that represents the physical process
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that stochastically generates the outcome as a function of certain inputs,
render that process to subjects in a natural manner using tools of Virtual
Reality, and study how behavior changes as one changes the inputs.
For example, the probability that a wildfire will burn down a property
‘‘owned’’ by the subject might depend on the location of the property, the
vegetation surrounding it, the location of the start of the wildfire, weather
conditions, and interventions that the subject can choose to pay for to reduce
the spread of a wildfire (e.g., prescribed burning). This probability can be
simulated using a model, such as FARSITE developed by the U.S. Forest
Service (Finney, 1998) to predict precisely these events. Thus, the subject sees
a realistic rendering of the process generating a distribution over the binary
outcome, ‘‘my property burns down or not.’’ By studying how subjects react
to this process, one can better approximate the manner in which risk
attitudes affect decisions in naturally occurring environments.

5. CONCLUSION

At a substantive level, the most important conclusion is that the average
subject is moderately risk averse, but there is evidence of considerable
individual heterogeneity in risk attitudes in the laboratory. This hetero-
geneity is in evidence within given elicitation formats, so it cannot be
ascribed to differences in elicitation formats. The range of risk attitudes is
modest, however, and there is relatively little evidence of risk-loving
behavior. The temptation to talk about a ‘‘central tendency’’ of ‘‘slight risk
aversion’’ does not fit well with the bi-modal nature of the responses
observed in several studies: a large fraction of subjects is well characterized
as being close to risk neutral, or very slightly risk averse, and another large
fraction as being quite risk averse.

At a methodological level, the evidence suggests some caution in
expecting different elicitation formats to generate comparable data on risk
attitudes. Both the framing of the questions and the implied incentives differ
across instruments and may affect responses. One would expect the MPL
and RLP procedures to generate comparable results, since they are so
similar from a behavioral perspective, and they do. The OLS instrument is
very portable in the field, has transparent incentives for truthful responses,
and is easy to administer in all environments, so more work comparing its
performance to the MPL and RLP instruments would be valuable. It suffers
from not being able to provide a rich characterization of behavior when
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allowances are made for probability weighting, but that may be mitigated
with extensions to consider probabilities other than 1/2.

In the Epilogue to a book-length review of the economics of risk and time,
Gollier (2001; p.424ff.) writes that

It is quite surprising and disappointing to me that almost 40 years after the establishment

of the concept of risk aversion by Pratt and Arrow, our profession has not yet been able

to attain a consensus about the measurement of risk aversion. Without such a consensus,

there is no hope to quantify optimal portfolios, efficient public risk prevention policies,

optimal insurance deductibles, and so on. It is vital that we put more effort on research

aimed at refining our knowledge about risk aversion. For unclear reasons, this line of

research is not in fashion these days, and it is a shame.

The most important conclusion we draw from our survey is that reliable
laboratory methods exist to determine the individual aversion to risk of a
subject, or to characterize the distribution of risk attitudes of a specific
sample. These methods can now be systematically employed to ensure greater
control over tests and applications of theory that depend on risk attitudes.

NOTES

1. For example, in virtually all experimental studies of non-cooperative
bargaining behavior. A particularly striking example is provided by Ochs and Roth
(1989), since Roth and Malouf (1979) pioneered the use of experimental procedures
to induce risk neutral behavior in cooperative bargaining settings.
2. For example, in virtually all experimental studies of bidding behavior in first-

price auctions, whether in private values settings (Cox et al., 1982) or common values
settings (Kagel & Levin, 2002).
3. For example, the experimental literature on bidding behavior in first-price

sealed bid auctions relies on predictions that are conditioned on the subjects
following some Nash Equilibrium strategy as well as being characterized by risk in
some way. Overbidding in comparison to the risk-neutral prediction could be due to
failure of either the assumption of Nash bidding or the failure of the assumption of
risk neutrality (Section 3.6). Harrison (1990) and Cox, Smith, and Walker (1985)
attempt to tease these two possibilities apart using different designs.
4. We do not consider experimental designs that attempt to control for risk, or

induce specific risk attitudes. Our general focus is on direct estimation of risk
attitudes where rewards are real and there is some presumption that the procedure is
incentive compatible. There is a huge, older literature on the elicitation of utility, but
virtually none of it is concerned with incentive compatibility of elicitation, which we
take as central. Great reviews include Fishburn (1967) and Farquhar (1984). Many
components of the procedures we consider can be viewed as building on methods
developed in this older literature. Biases in utility elicitation procedures are reviewed
by Hershey et al. (1982), although again there is no discussion at all of incentive
compatibility or hypothetical rewards bias.
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5. Birnbaum (2004) illustrates the type of systematic comparison of representa-
tions that ought to be built in for broader research programs. He considers various
representations of probability in terms of text, pie charts, natural frequencies,
and alignments of equally likely consequences, as well as minor variants within
each type of representation. One reason for this focus is his concern with violations
of stochastic dominance, which is an elemental behavioral property of decisions,
and presumed to be directly affected by task representation. In brief, he finds
little effect on the extent of stochastic dominance of these alternative representa-
tions. That conclusion is limited to the hypotheses he considers, of course; there
could still be an effect on structural estimates of underlying models, and other
hypotheses derived from those estimates. Unfortunately, the procedures he uses,
still common in the psychology and decision-making literature, employ hypothetical
or near-hypothetical rewards for subjects to make salient decisions. Wakker,
Erev, and Weber (1994) considered four types of representations, shown in Appendix
A, in salient choices, but provide no evaluation of the effects of the alternatives.
6. There is an interesting question as to whether they should be provided.

Arguably some subjects are trying to calculate them anyway, so providing them
avoids a test of the joint hypothesis that ‘‘the subjects can calculate EV in their heads
and will not accept a fair actuarial bet.’’ On the other hand, providing them may cue
the subjects to adopt risk-neutral choices. The effect of providing EV information
deserves empirical study.
7. The last row does have the advantage of helping subjects see that they should

obviously switch to option B by the last row, and hence seeing the ordered nature of
the overall instrument. Arguably it would be useful to add a row 0 in which the lower
prize for options A and B were obtained with certainty, to help the subject see that
they should always choose A at the top and B at the bottom, and the only issue is
where they should switch.
8. Schubert et al. (1999) present their method as the elicitation of a certainty-

equivalent, but do not say clearly how they elicited the certainty-equivalent. In fact
(Renate Schubert; personal communication) their procedures represent an early
application of the MPL idea. Each subject was asked to choose between two
lotteries, where one lottery was the risky one and the other degenerate lottery was a
non-stochastic one. They asked subjects 98 binary choice questions, spanning 8 risky
lotteries. These were arrayed in an ordered fashion on 98 separate sheets. The
responses could then be ordered in increasing values for the non-stochastic lottery,
and a ‘‘switch point’’ determined to identify the certainty-equivalent.
9. If the subject always chooses A, or indicates indifference for any of the decision

rows, there are no additional decisions required and the task is completed.
10. Let the first stage of the iMPL be called Level 1, the second stage Level 2, and

so on. After making all responses, the subject has one row from the first table of
responses in Level 1 selected at random by the experimenter. In the MPL and sMPL
procedures, that is all there is since there is only a Level 1 table. In the iMPL, that is
all there is if the row selected at random by the experimenter is not the one at which
the subject switched in Level 1. If it is the row at which the subject switched, another
random draw is made to pick a row in the Level 2 table. For some tasks this
procedure is repeated to Level 3.
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11. In our experience subjects are suspicious of randomization generated by
computers. Given the propensity of many experimenters in other disciplines to
engage in deception, we avoid computer randomization whenever feasible.
12. Dave et al. (2007) draw similar conclusions, and include an explicit

comparison in the field with the Holt and Laury (2002) MPL instrument. They
also collect information on the cognitive abilities of subjects, to better identify the
sources of any differences in behavior.
13. Millner, Pratt, and Reilly (1988) offered some important, critical observations

on the design and analysis proposed by Harrison (1986). There is possible
contamination from intra-session experimental earnings if the subject is paid for
each selling price elicited, but this issue is common to all of the methods. One could
either assume these wealth effects away (Harrison, 1986; Kachelmeier & Shehata,
1992), test for them (McKee, 1989), or pay subjects for just one of the stages. The last
of these options is now the standard method when applying BDM, but raises the
same issues with the validity of the random lottery incentive mechanism that have
been discussed for other procedures (see Section 3.8).
14. One must also ensure that the buyout range exceeds the highest price that the

subject would reasonably state, but this is not a major problem.
15. The same ‘‘payoff dominance problem’’ applies to first-price auctions, as

noted by Harrison (1989). Hence, both of the institutions used by Isaac and James
(2000) to infer risk attitudes are blighted with this problem. The same problem
applies to two of the three institutions studied by Berg, Dickhaut, and McCabe
(2005). Their third institution, the English auction, is known to have more reliable
behavioral incentives for truthful responses (Harstad, 2000; Rutström, 1998).
16. Assume a risk neutral subject facing a MPL with prizes $20 and $16 for the

safe lottery and $38.50 and $1 for the risky one. Such a subject should choose the
risky lottery for rows 1 through 4 and then switch to the risky one. Not doing so
would result in an expected earnings loss. For example, if he erroneously responds as
if he is slightly risk loving by choosing the risky lottery already on row 4 he is
forgoing $1.60, and if he erroneously responds as if he is slightly risk averse by still
choosing the safe lottery on row 5, he is foregoing $1.75. Since the chances are 1 in 10
that the row with his erroneous choice is picked, his expected foregone earnings are
about 16 to 17.5 cents. If he instead were asked to state his minimum WTA for each
of the lotteries in a BDM, his true WTA when the probabilities correspond to those
given in row 5 of the MPL (i.e., 50/50) would be $18 for the safe and $19.75 for the
risky lottery. We can then calculate the expected loss from different misrepresenta-
tions of his preferences in ways that are comparable to those calculated for the MPL.
To find the expected loss from representing his preferences as if they were defined
over the safe MPL lottery given on row 4 we simply calculate the maximumWTA for
the safe lottery on row 4 as $17.60. If this is his stated WTA he will experience a loss
if the BDM selling price is between this report and his true WTA ($18).The
likelihood for this is obviously quite small. On the other hand, the expected loss of a
similarly erroneous report for the risky lottery would involve a report of $16 for a
true maximum WTA of $19.75, a much stronger incentive. Again, the likelihood of
this loss is the likelihood of the BDM selling price falling in between the stated and
the true WTA. This likelihood is a function of the range of the buying prices used in
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the particular implementation of the BDM. The narrower the range the higher is this
likelihood. It is clear from this numeric example that the incentive properties of the
BDM are much worse than those for the MPL for the safe lottery, but quite a bit
better for the risky lottery. One problem with the BDM is that for a risk-loving
subject who would state a high WTA for the lottery the probability of the BDM
drawing a number higher than or equal to his WTA is low. Thus, the incentives for
precision are low for such a subject.
17. Millner et al. (1988; p. 318) suggest that one should develop methods for

identifying inconsistent responses, although they would agree that the original checks
built in by BDM have some flaws, since the lotteries offered to subjects at later stages
depend on earlier elicited selling prices. This sounds attractive in the abstract, but we
caution against the use of mechanical rules for classifying subjects as inconsistent.
For example, erratic responses could just be a reflection that the subject rationally
perceives the absence of a strong incentive to respond truthfully. Classifying such
subjects as inconsistent is inappropriate.
18. The former asks the subject to state a certain amount that makes them

indifferent to the lottery, similar to what is done in the BDM, and the latter asks the
subject to state some probability in the lottery that makes them indifferent to some
fixed and certain amount, similar to what is done in the OLS. The latter method
presumes that there are only two outcomes, and hence one probability.
19. Abdellaoui (2000) did introduce the use of a bisection method for establishing

indifference in each stage that might mitigate some strategic concerns. The idea is to
only allow subjects to pick one of two given lotteries, and not to state the indifference
lottery directly. By starting this process at some a priori extreme pair, one can iterate
down to the point of indifference using a conventional bisection search algorithm.
In this instance the chaining strategy is limited to always picking the lottery with
the highest possible prize. This method was also used by Kuilen, Wakker, and
Zou (2007), and has the advantage of limiting the financial exposure of the
experimenter to known bounds. Of course, subjects might not adopt the chaining
strategy in the logically extreme form, perhaps to avoid being dismissed from the
experiment or not being invited back again, but still be generating strategically
biased responses.
20. The TO method has also been extended by Attema, Bleichrodt, Rohde, and

Wakker (2006) to elicit discount rates. The same incentive compatibility problems
apply, only hypothetical experiments are conducted, and there is no discussion of the
problems of incentivizing responses.
21. We use the term ‘‘risk attitudes’’ here in the broader sense of including

possible effects from non-linear utility functions, probability weighting and loss
aversion.
22. Andersen et al. (2008a) and Section 3.4 discuss the elicitation of risk preference

and time preferences, and the need for joint estimation of all parameters. The basic
idea is that the discount rate involves the present value of utility streams, and not
money streams, so one needs to know the concavity of the utility function to infer
discount rates. In effect, the TCN procedure assumes risk neutrality when inferring
discount rates, which will lead to overestimates of discount rates between utility flows.
23. We consider the use of such interval bounds for estimation in Section 2.1.

Having some bounds that span a finite number and N does not pose problems for
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the ‘‘interval regression’’ methods widely available, although it does correctly lead to
larger standard errors than collapsing this interval to just the lower bound.
24. Some subjects switched several times, but the minimum switch point is always

well defined. It turns out not to make much difference how one handles these
‘‘multiple switch’’ subjects, but our analysis and the analysis of HL considers the
effect of allowing for them in different ways explained below.
25. HL find that there is a significant sex effect in the low-payoff conditions, with

women being more risk averse, and no effect in the high payoff conditions. We
replicate this conclusion using their procedures and data. Unfortunately, the low-
payoff sex effect does not hold if one controls for the other characteristics of the
subject and uses a negative binomial regression model to handle the discrete nature
of the dependant variable. HL also report that there is a significant Hispanic effect,
with Hispanic subjects making fewer risk-averse choices in high payoff conditions.
We confirm this conclusion, using their procedures as well as when one uses all
covariates in a negative binomial regression.
26. A subject that switched from option A to option B after five safe choices, then

switched back for one more option A before choosing all B’s in the remaining rows,
would therefore have revealed a CRRA interval between 0.15 and 0.97. Such subjects
simply provide less precise information than subjects that switch once.
27. Our treatment of indifferent responses uses the specification developed by

Papke and Wooldridge (1996; Eq. 5, p. 621) for fractional dependant variables.
Alternatively, one could follow Hey and Orme (1994; p. 1302) and introduce a new
parameter t to capture the idea that certain subjects state indifference when the latent
index showing how much they prefer one lottery over another falls below some
threshold t in absolute value. This is a natural assumption to make, particularly
for the experiments they ran in which the subjects were told that expressions of
indifference would be resolved by the experimenter, but not told how the
experimenter would do that (p. 1295, footnote 4). It adds one more parameter to
estimate, but for good cause.
28. Clustering commonly arises in national field surveys from the fact that

physically proximate households are often sampled to save time and money, but it
can also arise from more homely sampling procedures. For example, Williams (2000;
p. 645) notes that it could arise from dental studies that ‘‘collect data on each tooth
surface for each of several teeth from a set of patients’’ or ‘‘repeated measurements
or recurrent events observed on the same person.’’ The procedures for allowing
for clustering allow heteroskedasticity between and within clusters, as well as
autocorrelation within clusters. They are closely related to the ‘‘generalized
estimating equations’’ approach to panel estimation in epidemiology (see Liang &
Zeger, 1986), and generalize the ‘‘robust standard errors’’ approach popular in
econometrics (see Rogers, 1993). Wooldridge (2003) reviews some issues in the use of
clustering for panel effects, noting that significant inferential problems may arise
with small numbers of panels.
29. Age was imputed as 20 for all subjects in the undergraduate class experiments

conducted at the University of New Mexico, based on personal knowledge of the
experimenters of the age distribution in those classes (Kate Krause, personal
communication). Given the variation in age for non-student adults, this imputation
is less likely to be a major factor compared to studies that only use student subjects.
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30. That is, we treat the prizes here as gains measured as the net gain after
deducting losses from the endowment. This analysis still allows for a framing effect,
of course.
31. See Harless and Camerer (1994), Hey and Orme (1994) and Loomes and

Sugden (1995) for the first wave of empirical studies including some formal stochastic
specification in the version of EUT tested. There are several species of ‘‘errors’’ in
use, reviewed by Hey (1995, 2002), Loomes and Sugden (1995), Ballinger and Wilcox
(1997), Loomes, Moffatt, and Sugden (2002) and Wilcox (2008a). Some place the
error at the final choice between one lottery or the other after the subject has decided
deterministically which one has the higher expected utility; some place the error
earlier, on the comparison of preferences leading to the choice; and some place the
error even earlier, on the determination of the expected utility of each lottery.
32. This ends up being simple to formalize, but involves some extra steps in the

economics. Let EUR and EUL denote the expected utility of lotteries R and L,
respectively. If we ignore indifference, and the subject does not make mistakes,
then R is chosen if EUR�EULW0, and otherwise L is chosen. If the subject makes
measurement errors, denoted by e, then the decision is made on the basis of the value
of EUR�EUL+e. That is, R is chosen if EUR�EUL+eW0, and otherwise L is
chosen. If e is random then the probability that R is chosen ¼ P(EUR�EUL+eW0)
¼ P(eW� (EUR�EUL)). Now suppose that e is normally distributed with mean 0
and standard deviation s, then it follows that Z ¼ e/s is normally distributed with
mean 0 and standard deviation 1: in other words, Z has a unit normal distribution.
Hence, the probability that R is chosen is P(eW� (EUR�EUL)) ¼ P(e/sW
� (EUR�EUL)/s). If F( � ) denotes the cumulative normal standard distribution,
it follows that the probability that R is chosen is 1�F(� (EUR�EUL)/s) ¼
F((EUR�EUL)/s), since the distribution is symmetrical about 0. Hence, the
probability that B is chosen is given by: F(� (EUR�EUL)/s) ¼ 1�F((EUR�EUL)/
s). If we denote by y the decision of the subject with y ¼ 1 indicating that R was
chosen and y ¼ � 1 indicating that L was chosen, then the likelihood is
F((EUR�EUL)/s) if y ¼ 1 and 1�F((EUR�EUL)/s) if y ¼ � 1.
33. We also correct for clustering, since it is the right thing to do statistically, but

this again makes no essential difference to the estimates.
34. The instructions were brief: ‘‘Your decision sheet shows 8 options listed on the

left. You should choose one of these options, which will then be played out for you.
If the coin toss is a Heads you will receive the amount listed in the second column.
If the coin toss is a Tail you will receive the amount listed in the third column.’’
The transparency of the OLS procedure is apparent, and derives from only using
probabilities of 1/2.
35. The secondary purpose of this design is to allow statistical examination of

the hypothesis that subjects use ‘‘similarity relations’’ and ‘‘editing processes’’ to
evaluate lotteries when prizes and probabilities are not pre-rounded, as in Hey and
Orme (1994).
36. The use of the noise parameter m in Eq. (8) is also familiar from the numerical

literature on the smoothing of accept–reject simulators in discrete choice statistical
modeling: see Train (2003; p. 125ff.), for example. This connection also reminds us
that the use of specific linking functions such as logit or probit have a certain
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arbitrariness to them, but embody implicit behavioral assumptions about respon-
siveness to latent indices.
37. A more complete statistical analysis would consider two factors: the effect of

information about earnings in the prior procedure, and a more elaborate likelihood
function that recognized that these are in-sample responses. Our estimates ignore
both factors. It would also be useful to examine the experimental data from Engle-
Warnick et al. (2006) using inferential methods such as ours, since their design
used exactly the same lotteries in the RLP and OLS instruments. Dave et al. (2007)
provide careful tests of the MPL and OLS instruments, concluding that the OLS
instrument provides a more reliable measuring rod for risk attitudes in samples
drawn from populations expected to have limited cognitive abilities.
38. Hirshleifer and Riley (1992) and Chambers and Quiggin (2000) demonstrate

the elegant and powerful representations of decision-making under uncertainty that
derive from adopting a state-contingent approach instead of popular alternatives.
39. Many of these claims involve evidence from between-sample designs, and rely

on the assumption that sample sizes are large enough for randomization to ensure
that between-sample differences in preferences (even if they are not state-contingent)
are irrelevant. For two careful examples, see Conlisk (1989) and Cubitt et al. (1998a).
There is also a rich literature on the contextual role of extreme lotteries, such that
one often observes different behavior for ‘‘interior lotteries’’ that assign positive
probability to all prizes as compared to ‘‘corner-solution lotteries’’ that assign zero
weight to some prizes.
40. Stigler and Becker (1977; p. 76) note the nature of the impasse: ‘‘an explana-

tion of economic phenomena that reaches a difference in tastes between people or
times is the terminus of the argument: the problem is abandoned at this point to
whoever studies and explains tastes (psychologists? anthropologists? phrenologists?
socio-biologists?).’’
41. Camerer (2005; p. 130) provides a useful reminder that ‘‘Any economics

teacher who uses the St. Petersburg paradox as a ‘‘proof’’ that utility is concave
(and gives students a low grade for not agreeing) is confusing the sufficiency of an
explanation for its necessity.’’
42. Of course, many others recognized the basic point that the distribution of

outcomes mattered for choice in some holistic sense. Allais (1979; p. 54) was quite
clear about this, in a translation of his original 1952 article in French. Similarly,
in psychology it is easy to find citations to kindred work in the 1960s and 1970s by
Lichtenstein, Coombs and Payne, inter alia.
43. There are some well-known limitations of the probability weighting function

Eq. (9). It does not allow independent specification of location and curvature; it has a
crossover-point at p ¼ 1/e ¼ 0.37 for go1 and at p ¼ 1� 0.37 ¼ 0.63 for gW1; and it
is not increasing in p for small values of g. Prelec (1998) and Rieger and Wang (2006)
offer two-parameter probability weighting functions that exhibits more flexibility
than Eq. (9), but for our expository purposes the standard probability weighting
function is adequate.
44. In this case, because each lottery only consists of two outcomes, the ‘‘rank

dependence’’ of the RDU model does not play a distinctive role, but it will in later
applications.
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45. The estimates of the coefficient obtained by Tversky and Kahneman
(1992) fortuitously happened to be the same for losses and gains, and many
applications of PT assume that for convenience. The empirical methods of Tversky
and Kahneman (1992) are difficult to defend, however: they report median
values of the estimates obtained after fitting their model for each subject. The
estimation for each subject is attractive if data permits, as magnificently demo-
nstrated by Hey and Orme (1994), but the median estimate has nothing to commend
it statistically.
46. In other words, evaluating the PU of two lotteries, without having edited out

dominated lotteries, might lead to a dominated lottery having a higher PU. But if
subjects always reject dominated lotteries, the choice would appear to be an error to
the likelihood function. Apart from searching for better parameters to explain this
error, as the ML algorithm does as it tries to find parameter estimates that reduce
any other prediction error, our specification allows m to increase. We stress that this
argument is not intended to rationalize the use of separable probability weights in
OPT, just to explain how a structural model with stochastic errors might account for
the effects of stochastic dominance. Wakker (1989) contains a careful account of the
notion of transforming probabilities in a ‘‘natural way’’ but without violating
stochastic dominance.
47. One of the little secrets of CPT is that one must always have a probability

weight for the residual outcome associated with the reference point, and that the
reference outcome receive a utility of 0 for both gains and losses. This ensures that
decision weights always add up to 1.
48. An alternative specification would be to take the negative of the utility

function defined over the gross losses, in effect assuming l ¼ 1 from the CPT
specification.
49. A corollary is that it might be a mistake to view loss aversion as a fixed

parameter l that does not vary with the context of the decision, ceteris paribus the
reference point.
50. The mean estimate from their sample was $31, but there were clear nodes at

$15 and $30. Our experimental sessions typically consist of several tasks, so expected
earnings from the lottery task would have been some fraction of these expectations
over session earnings. No subject stated an expected earning below $7.
51. A concrete implication, considered at length in Harrison and Rutström (2005;

Section 5), is that the rush to use non-nested hypothesis tests is misplaced. If one
reads the earlier literature on those tests it is immediately clear that they were viewed
as poor, second-best alternatives to writing out a finite mixture model and estimating
the weights that the data place on each latent process. The computational constraints
that made them second-best decades ago no longer apply.
52. See Keller and Strazzera (2002; p. 148) and Frederick, Loewenstein, and

O’Donoghue (2002; p. 381ff.) for an explicit statement of this assumption, which is
often implicit in applied work. We refer to risk aversion and concavity of the utility
function interchangeably, but it is concavity that is central (the two can differ for
non-EUT specifications).
53. Harless and Camerer (1994) do consider different ways that one can compare

different theories that have different numbers of ‘‘free parameters.’’ They also
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consider simple metrics for violations, but even these are still defined in terms of
the number of failures of the theory in a given triple (e.g., one failure out of three
predictions is considered better from the perspective of the theory than two failures
out of three).
54. Some semi-parametric estimators, such as the Maximum Score estimator of

Manski, do rely on ‘‘hit rates’’ as a metric.
55. Some experiments attempt to design checks for some of the more obvious

biases, such as which lottery is presented on the left or right, or whether the lotteries
are ordered best to worst or vice versa (e.g., see Harless, 1992; Hey & Orme, 1994).
56. Problem 2 in CSS involves losing three subjects at random for every one

subject that was actually asked to make a choice, whereas the other problems
involved all recruited subjects making a choice. Hence 200 subjects were recruited to
Problem 2, and the eventual sample of choices was roughly 50 subjects for each
problem, by design.
57. Comparing only Problems 1 and 5 in CSS, which involve choices only over

simple lotteries, the evidence against EUT is even weaker.
58. The word ‘‘essentially’’ reminds us that this is EUT with some explicit

stochastic error story. There are many alternative error stories, of course. Wilcox
(2008a, 2008b) explores the deeper modeling issues of writing out a theory without
specifying any stochastic process connecting it to data.
59. Some might object that even if the behavior can be formally explained by

some small error, there are systematic behavioral tendencies that are not consistent
with a white-noise error process. Of course, one can allow asymmetric errors or
heteroskedastic errors.
60. Wakker et al. (1994) in effect adopted such a design. Their primary tasks

deliberately had comparable expected values in the paired lotteries subjects were to
choose over, but their ‘‘filler’’ tasks were then deliberately set up to have different
expected values.
61. See Kagel (1995) and Harrison (1989, 1990) for a flavor of the debates.
62. Harrison, List, and Tra (2005e) show, however, that when auctions consist of

more and more bidders, received theory does increasingly poorly in terms of
characterizing ‘‘one shot’’ behavior. Their evidence suggests that received theory is
relevant for ‘‘small auctions’’ but not for ‘‘large auctions.’’ Thus, if one were testing
received theory it would matter on what domain the data were generated. Cox et al.
(1982) reported different results, with the smallest of their auctions (N ¼ 3)
generating the data that seemed to most obviously contradict the risk-averse Nash
Equilibrium bidding model. However, this could have been due to collusion. In all of
their experiments the same N bidders participated in multiple rounds, facilitating
coordination of collusive under-bidding strategies that wreak havoc with the one-
shot predictions of the theory.
63. Cox et al. (1988) offer a generalization that admits of some degrees of risk-

loving behavior. Since we do not observe much risk loving in the population used in
these experiments, college students in the United States, this extension is not needed
for present purposes.
64. That is, 1/2 is arguably more focal than 2/3 or 3/4, and so on for NW2. It is

certainly easier to implement arithmetically, absent calculating aids.
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65. Unfortunately, there is evidence that subjects may not see it this way. In a
generic public goods voluntary contribution game Botelho, Harrison, Pinto, and
Rutström (2005b) show that Random Strangers designs do not generate the same
behavior as Perfect Strangers designs in which the subject is guaranteed not to meet
the same opponent twice.
66. One might be concerned that the full model fits the RA NE bidding model

simply because it has a ‘‘free parameter ri’’ to fit the bidding data to. In some sense
this is true, since the joint likelihood of the data includes the effect of different r̂i’s on
bids, and the estimates seek r̂i values that explain the bidding data best. But it is not
true entirely, since the joint likelihood must also explain the risk attitude choice data
as well. One can formally compare the distribution of predicted risk attitudes if one
only uses the risk aversion tasks and the distribution that is generated if one uses
all data simultaneously. The two distributions are virtually identical. Kendall’s t
statistic can be used to test for rank correlation; it has a value of 0.82, and leads one
to reject the null hypothesis that the two sets of estimates of risk attitudes are
independent at p-values below 0.0001.
67. Additional experimental tests include Thaler, Tversky, Kahneman, and

Schwartz (1997) and Gneezy, Kapteyn, and Potters (2003). These provide results
that are qualitatively identical, but harder to evaluate. Thaler et al. (1997) did not
provide subjects with precise knowledge of the probabilities involved in the lotteries,
but allowed them to infer that over time; hence behavior could have been driven by
mistakes in the subjective inference of probabilities rather than MLA. Gneezy et al.
(2003) embed the task in an asset market, which may have influenced individual
behavior in other ways than predicted by EUT or MLA. These influences are of
interest, since markets are the institution in which most stocks and bonds are traded,
but from the perspective of wanting the cleanest possible test of competing theories
those extra influences are just a confound. Camerer (2005) and Novemsky and
Kahneman (2005a, 2005b) provide an overview of the history and current status of
the loss aversion hypothesis.
68. It is also possible to augment the estimation procedure to include a parameter

that can be interpreted as ‘‘baseline consumption,’’ to which prizes are added before
being evaluated using the utility function. This approach has been employed by
Harrison et al. (2007c) and Heinemann (2008). Andersen et al. (2008a) consider the
theoretical and empirical implications of this approach in detail.
69. The term ‘‘portfolio effects’’ is unfortunate, since it suggests a concern with

correlated risks and risk pooling, which is not the issue here. Unfortunately, we cannot
come up with a better expression, and this one has some currency in the literature.
70. For K binary choices it is 2K, assuming that indifference is not an option. For

K ¼ 10 this is only 1,024, but for K ¼ 15 it is 32,768, and one can guess the rest for
larger K. The use of random lottery incentives in the context of the Random Lottery
Pair elicitation procedure raises some deep modeling issues of sequential choice,
since it introduces the interaction of risk aversion and ambiguity aversion with
respect to future lotteries (Klibanoff, Marinacci, & Mukerji, 2005; Nau, 2006), as
well as concerns with possible preferences over the temporal resolution of
uncertainty (Kreps & Porteus, 1978). In effect, this is a setting in which the ‘‘small
world’’ assumption of Savage (1972; Section 5.5), under which one focuses on
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isolated decisions and ignores the broader context, may be particularly appropriate
to apply. It may not be appropriate to apply for other tasks, as we discuss below.
71. Harrison et al. (2007; fn.16) report a direct test of the random lottery

procedure with the MPL instrument, and note that it did not change elicited risk
attitudes assuming EUT to infer risk attitudes.
72. In fact, Wilcox (2008a) recommends a third alternative specification, the

Contextual Utility model developed in Wilcox (2008b), over both the Luce and
Fechner specifications. If the choice is between Luce and Fechner, however, his
discussion clearly favors Fechner. The estimates from Holt and Laury (2005)
presented in Section 3.1 used the Luce specification, and hence differ from those
presented here.
73. These do not exactly replicate all estimates presented earlier since there are

slight differences in specifications.
74. With one exception, we do not believe that this inference is supported by the

existing data and experimental designs. That exception is Beattie and Loomes (1997),
an excellent example of the type of controlled study of incentives that is needed to
address these issues.
75. The term ‘‘valuation’’ subsumes open-ended elicitation procedures as well as

dichotomous choice, binary referenda, and stated choice tasks. See Harrison (2006a,
2006b) and Harrison and Rutström (2008) for reviews.
76. Heckman and Smith (1995; pp. 99–101) provide many examples, and coin the

expression ‘‘randomization bias’’ for this possible effect. Harrison and List (2004)
review the differences between laboratory, field, social, and natural experiments in
economics, and all could be potentially affected by randomization bias. Palfrey and
Pevnitskaya (2008) use thought experiments and laboratory experiments to illustrate
how risk attitudes can theoretically affect the mix of bidders in sealed-bid auctions
with endogenous entry, and thereby change behavior in the sample of bidders
observed in the auction.
77. We hesitate to endorse practices in other fields, in which recruitment fees are

not paid to subjects, since they open themselves up to abuse. We have considerable
experience of faculty recruiting subjects for ‘‘extra credit,’’ but where the task and
behavior bears no relationship at all to the learning objectives of the class, and no
pedagogic feedback is provided to students even if it does bear some tangential
relationship to the topic of the class. We have serious ethical problems with such
practices, quite apart from the problems of motivation that they raise.
78. There is also evidence of differences in the demographics and behavior

of volunteers and ‘‘pseudo-volunteers,’’ which are subjects formally recruited in a
classroom to participate in an experiment during class time (Rutström, 1998; Eckel &
Grossman, 2000). The disadvantage with pseudo-volunteers is that the subjects might
simply not be interested in participating in the experiment, even with the use of salient
rewards. The advantage, of course, is that the selection process that leads them to be
in the classroom is unrelated to the characteristics of the experimental task, although
even here one might just be replacing one ill-studied sample selection process with
another. After all, even if we model the factors that cause subjects from a university
population to select into an experiment, we have not modeled the factors that cause
individuals to choose to become university students (Casari, Ham, & Kagel, 2007).
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79. Endogenous subject attrition from the experiment can also be informative
about subject preferences, since the subject’s exit from the experiment indicates that
the subject had made a negative evaluation of it. See Diggle and Kenward (1994) and
Philipson and Hedges (1998) for discussion of this statistical issue.
80. More precisely, the statistical problem is that there may be some unobserved

individual effects that cause subjects to be in the observed sample or not, and these
effects could be correlated with responses once in the observed sample. For example,
Camerer and Lovallo (1999) find that excess entry into competitive games occurs
more often when subjects volunteered to participate knowing that payoffs would
depend on skill in a sports or current events trivia. This treatment could encourage
less risk-averse subjects to participate in the experiment and may explain the
observed reference bias effect, or part of it.
81. It is well known in the field of clinical drug trials that persuading patients to

participate in randomized studies is much harder than persuading them to participate
in non-randomized studies (e.g., Kramer and Shapiro (1984; p. 2742ff.)). The same
problem applies to social experiments, as evidenced by the difficulties that can be
encountered when recruiting decentralized bureaucracies to administer the random
treatment (e.g., Hotz, 1992). For example, Heckman and Robb (1985) note that the
refusal rate in one randomized job training program was over 90%.
82. Here we consider the role of preferences over risk, but the same concerns

apply to the elicitation of other types of preferences, such as social preferences or
time preferences (Eckel & Grossman, 2000; Lazear, Malmendier, & Weber, 2006;
Dohmen & Falk, 2006). These concerns arise when subjects have some reason to
believe that the task will lead them to evaluate those preferences, such as in
longitudinal designs allowing attrition, or social experiments requiring disclosure of
the nature of the task prior to participation. They might also arise if the sample is
selected by some endogenous process in which selection might be correlated with
those preferences, such as group membership or location choices.
83. In addition, we often just assign subjects to some role in an experiment, whether

or not they would have selected for this role in any naturally occurring environment.
This issue lies at the heart of the interest in field experiments initiated by Bohm (2002).
84. Lusk and Coble (2005) also report evidence consistent with this conclusion,

comparing risk preferences elicited for an artificial monetary instrument and
comparable preferences for an instrument defined over genetically-modified food.
Lusk and Coble (2008) find that adding abstract background risk to an elicitation
procedure using artificial monetary outcomes also generates more risk aversion,
although they do not find the effect to be large quantitatively.
85. To make this point more succinctly, consider the elicitation of the value that

a person places on safety, a critical input in the cost-benefit assessment of
environmental policy such as the Clean Air Act (United States Environmental
Protection Agency, 1997). Conventional procedures to measure such preferences
focus on monetary values to avoid mortality risk, by asking subjects to value scenarios
in which they face different risks of death. The traditional interpretation of responses
to such questions ignores the fact that it is hard to imagine a physical risk that could
kill you with some probability but that would leave you alive and have no effect
whatsoever on your health. Of course, such risks exist, but most of the environmental
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risks of concern for policy do not fall into such a category. In general, then, responses
to the foreground risk question should allow for the fact that the subject likely
perceived some background risk. This example represents an important policy issue
and highlights the import of the theoretical literature on background risk.
86. However, since we do not know the subject probability distribution of

background risk in the field, we cannot know if background risk is statistically
independent with the foreground risk. We can think of no reason why the two might
be correlated, but this illustrates again the type of trade-off one experiences with field
experiments. It also points to the complementary nature of field and lab experiments:
Lusk and Coble (2008) show that independent background risk in a lab setting is
associated with an increase in foreground risk aversion.
87. The typical application of the random lottery incentive mechanism in

experiments such as these would have one choice selected at random. We used
three to ensure comparability of rewards with other experiments in which subjects
made choices over 40 or 20 lotteries, and where 2 lotteries or 1 lottery was,
respectively, selected at random to be played out.
88. The computer laboratory used for these experiments has 28 subject stations.

Each screen is ‘‘sunken’’ into the desk, and subjects were typically separated by
several empty stations due to staggered recruitment procedures. No subject could see
what the other subjects were doing, let alone mimic what they were doing since each
subject was started individually at different times.
89. These final outcomes differ by $1 from the two highest outcomes for the gain

frame and mixed frame, because we did not want to offer prizes in fractions of dollars.
90. To ensure that probabilities summed to one, we also used probabilities

of 0.26 instead of 0.25, 0.38 instead of 0.37, 0.49 instead of 0.50, or 0.74 instead of 0.75.
91. The control data in these three panels, for the 1� problem, are pooled across

all task #1 responses. That is, the task #1 responses in the bottom left panel of Fig. 27
are not just the task #1 responses of the individuals facing the 90� problem. Nothing
essential hinges on this at this stage of exposition. The statistical analysis in Section
2.1 does take this into account, using appropriate panel estimation procedures.
92. The experience was not with the same prize level, as noted earlier.
93. See Ortona (1994) and Kachelmeier and Shehata (1994).
94. These conclusions come from a panel regression model that controls for all of

the factors discussed, and that allows for individual-level heteroskedasticity and
individual-level first-order autocorrelation. All conclusions refer to effects that are
statistically significant at the 1% level.
95. References to increases in risk aversion should also be understood, in this

context, to refer to decreases in risk loving.
96. Although purely anecdotal, our own experience is that many subjects faced

with the BDM task believe that the buying price depends in some way on their selling
price. To mitigate such possible perceptions we have tended to use physical
randomizing devices that are less prone to being questioned.
97. The stakes in the experiments of Gneezy and Potters (1997) were actually 2

Dutch guilders, which converted at the time of the experiment to roughly $1.20.
Haigh and List (2005) used a stake of $1.00 for their students, to be comparable to
the earlier stake. They quadrupled the stakes to $4.00 for the traders, on the grounds
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that it would be more salient for them. Of course, this change in monetary stake size
adds a potential confound to the comparability of results across students and traders,
but one that has no obvious resolution without an elaborate investigation into the
purchasing power of a dollar to students and traders.
98. Gneezy and Potters generously provided their individual data, and we used the

same statistical model as Haigh and List (2005; Table II, specification 2, p. 530) on
their data. Haigh and List also generously provided their individual data, and we
replicated their statistical conclusions.
99. In fact, subjects tended to pick in round percentages. In the Low frequency

treatment 76% of the choices were for 0, 25, 50, or 100% bets, and in the High
frequency treatment 81% of the choices were for the 25, 50, or 100% bets.
100. For example, Kahneman and Lovallo (1993, p. 20), Benartzi and Thaler

(1995, p. 79), Gneezy and Potters (1997, p. 632), Thaler et al. (1997. p. 650), Gneezy
et al. (2003, p. 822), and Haigh and List (2005, p. 525).
101. In other words, there are settings in which a CRRA or even RN utility

function might be appropriate for some theoretical, econometric, or policy exercise.
But this experiment is not obviously one of those settings.
102. Yet another approach would be to modify the experimental design and allow

subjects to leverage their bets beyond 100% of their stake. There are some logistical
problems running such experiments in a laboratory setting, although of course stock
exchanges and futures markets allow such trades.
103. The a parameter may be viewed as a counterpart in this specification of the

noise parameter used by Holt and Laury (2002).
104. Benartzi and Thaler (1995, p. 80) are clear that this evaluation horizon is not

the same thing as a planning horizon: ‘‘A young investor, for example, might be
saving for retirement 30 years off in the future, but nevertheless experience the utility
associated with the gains and losses of his investment every quarter when he opens a
letter from his mutual fund. In this case, his (planning) horizon is 30 years but his
evaluation period (evaluation horizon) is 3 months.’’
105. They prefer the expression ‘‘prospective utility,’’ but there is no confusion as

long we are clear about which utility functions and probabilities are being used to
calculate expected utility.
106. Mankiw and Zeldes (1991) make the important observation that only 12% of

Americans hold stocks worth more than $10,000, using a 1984 survey, so one really
has to explain their indifference between holding bonds and stocks. Presumably, the
remaining ‘‘corner-solution’’ individuals face some transactions costs to undertaking
such investments. It would be an easy and important extension of the approach of
BT to allow for such heterogeneity in the composition of stockholders and others.
107. The constant term in this linear function is suppressed, since it would be

perfectly correlated with the sum of these two binary variables. To be explicit, denote
these dummy variables for the treatments as L and H, respectively. Then we actually
estimate aL, aL, bL, bH, lL, and lH, where a ¼ aL�L+aH�H, b ¼ bL�L+bH�H,
and l ¼ lL�L+lH�H. Thus, the logic of the likelihood function is as follows:
candidate values of these six parameters are proposed, the linear function evaluated so
that we know candidate value of a, b, and l for each of the Low and High frequency
treatments, the expected utility of the actual choice is evaluated using the Tversky and
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Kahneman (1992) specification, and then the log-likelihood function specified above is
evaluated.
108. The Arrow–Pratt coefficient of RRA is 1� a, so a ¼ 1 implies risk neutrality,

ao1 implies risk aversion, and aW1 implies risk-loving behavior. These benchmarks
are worth noting, to avoid confusion, given the popularity of specifications from
Holt and Laury (2002) that estimate 1� a directly (the risk-neutral value is 0 in that
case, positive estimates indicate risk aversion, and negative estimates indicate risk
loving).
109. The exposition is deliberately transparent to economists. Most of the

exposition in Section F1 would be redundant for those familiar with Gould,
Pitblado, and Sribney (2006) or even Rabe-Hesketh and Everitt (2004; ch.13). It is
easy to find expositions of ML in Stata that are more general and elegant for their
purpose, but for those trying to learn the basic tools for the first time that elegance
can just appear to be needlessly cryptic coding, and actually act as an impediment to
comprehension. There are good reasons that one wants to build more flexible and
computationally efficient models, but ease of comprehension is rarely one of them.
StataCorp (2007) documents the latest version 10 of Stata, but the exposition of the
ML syntax is minimal in that otherwise extensive documentation.
110. Paarsch and Hong (2006; Appendix A.8) provide a comparable introduction to

the use of MATLAB for estimation of structural models of auctions. Unfortunately
their documentation contains no ‘‘real data’’ to evaluate the programs on.
111. Note that this is ‘euL’ and not ‘euL’: beginning Stata users make this

mistake a lot.
112. Since the ML_eut0 program is called many, many times to evaluate

Jacobians and the like, these warning messages can clutter the screen display
needlessly. During debugging, however, one normally likes to have things displayed,
so the command ‘‘quietly’’ would be changed to ‘‘noisily’’ for debugging. Actually,
we use the ‘‘ml check’’ option for debugging, as explained later, and never change
this to ‘‘noisily.’’ Or we can display one line by using the ‘‘noisily’’ option, to debug
specific calculations.
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Harrison, G. W., & List, J. A. (2004). Field experiments. Journal of Economic Literature, 42(4),

1013–1059.

Harrison, G. W., List, J. A., & Towe, C. (2007c). Naturally occurring preferences and

exogenous laboratory experiments: A case study of risk aversion. Econometrica, 75(2),

433–458.

Harrison, G. W., List, J. A., & Tra, C. (2005e). Statistical characterization of heterogeneity in

experiments. Working Paper 05-10. Department of Economics, College of Business

Administration, University of Central Florida.

Harrison, G. W., & Rutström, E. E. (2005). Expected utility theory and prospect theory: One

wedding and a decent funeral. Working Paper 05-18. Department of Economics, College

of Business Administration, University of Central Florida; Experimental Economics,

forthcoming.

Harrison, G. W., & Rutström, E. E. (2008). Experimental evidence on the existence of

hypothetical bias in value elicitation methods. In: C. R. Plott, V. L. Smith (Eds),

Handbook of experimental economics results. North-Holland: Amsterdam, forthcoming.

Harstad, R. M. (2000). Dominant strategy adoption and bidders’ experience with pricing rules.

Experimental Economics, 3(3), 261–280.

Heckman, J. J., Robb, R., Heckman, J., & Singer, B. (Eds). (1985). Longitudinal analysis of

labor market data. New York: Cambridge University Press.

Heckman, J. J., & Smith, J. A. (1995). Assessing the case for social experiments. Journal of

Economic Perspectives, 9(2), 85–110.

Heinemann, F. (2008). Measuring risk aversion and the wealth effect. In: J. Cox &

G. W. Harrison (Eds), Risk aversion in experiments (Vol. 12). Greenwich, CT: JAI

Press, Research in Experimental Economics.

Hershey, J. C., Kunreuther, H. C., & Schoemaker, P. J. H. (1982). Sources of bias in assessment

procedures for utility functions. Management Science, 28(8), 936–954.

Hershey, J. C., & Schoemaker, P. J. H. (1985). Probability versus certainty equivalence methods

in utility measurement: Are they equivalent? Management Science, 31(10), 1213–1231.

Hey, J. D. (1995). Experimental investigations of errors in decision making under risk. European

Economic Review, 39, 633–640.

Hey, J. D. (2001). Does repetition improve consistency?. Experimental Economics, 4, 5–54.

Hey, J. D. (2002). Experimental economics and the theory of decision making under

uncertainty. Geneva Papers on Risk and Insurance Theory, 27(1), 5–21.

Hey, J. D., & Lee, J. (2005a). Do subjects remember the past?. Applied Economics, 37, 9–18.

Hey, J. D., & Lee, J. (2005b). Do subjects separate (or are they sophisticated)?. Experimental

Economics, 8, 233–265.

Hey, J. D., & Orme, C. (1994). Investigating generalizations of expected utility theory using

experimental data. Econometrica, 62(6), 1291–1326.

Hirshleifer, J., & Riley, J. G. (1992). The analytics of uncertainty and information. New York,

NY: Cambridge University Press.

Holt, C. A., & Laury, S. K. (2002). Risk aversion and incentive effects. American Economic

Review, 92(5), 1644–1655.

Holt, C. A., & Laury, S. K. (2005). Risk aversion and incentive effects: New data without order

effects. American Economic Review, 95(3), 902–912.

Horowitz, J. K. (1992). A test of intertemporal consistency. Journal of Economic Behavior and

Organization, 17, 171–182.

Risk Aversion in the Laboratory 151



Hotz, V. J. (1992). Designing an evaluation of JTPA. In: C. Manski & I. Garfinkel (Eds),

Evaluating welfare and training programs. Cambridge: Harvard University Press.

Isaac, R. M., & James, D. (2000). Just who are you calling risk averse? Journal of Risk and

Uncertainty, 20(2), 177–187.

James, D. (2007). Stability of risk preference parameter estimates within the Becker–DeGroot–

Marschak procedure. Experimental Economics, 10, 123–141.

Kachelmeier, S. J., & Shehata, M. (1992). Examining risk preferences under high monetary

incentives: Experimental evidence from the People’s Republic of China. American

Economic Review, 82(5), 1120–1141.

Kachelmeier, S. J., & Shehata, M. (1994). Examining risk preferences under high monetary

incentives: Reply. American Economic Review, 84(4), 1104.

Kagel, J. H. (1995). Auctions: A survey of experimental research. In: J. H. Kagel & A. E. Roth

(Eds), The handbook of experimental economics. Princeton: Princeton University Press.

Kagel, J. H., & Levin, D. (2002). Common value auctions and the winner’s curse. Princeton:

Princeton University Press.

Kagel, J. H., MacDonald, D. N., & Battalio, R. C. (1990). Tests of ‘Fanning Out’ of

indifference curves: Results from animal and human experiments. American Economic

Review, 80(4), 912–921.

Kahneman, D., & Lovallo, D. (1993). Timid choices and bold forecasts: A cognitive perspective

on risk taking. Management Science, 39(1), 17–31.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk.

Econometrica, 47, 263–291.

Keller, L. R., & Strazzera, E. (2002). Examining predictive accuracy among discounting models.

Journal of Risk and Uncertainty, 24(2), 143–160.

Kent, S. (1964). Words of estimated probability. Studies in Intelligence, 8, 49–65.

Klibanoff, P., Marinacci, M., & Mukerji, S. (2005). A smooth model of decision making under

ambiguity. Econometrica, 73(6), 1849–1892.
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APPENDIX A. REPRESENTATION AND

PERCEPTION OF PROBABILITIES

There are two representational issues with probabilities. The first is that
subjects may base their decisions on concepts of subjective probabilities
such that we should expect them to deviate in some ways from objective
probabilities. The second is that perceptions of probabilities may not
correspond to the actual probabilities. Only with a theory that explains both
the perception of probabilities and the relationship between subjective and
objective probabilities we would be able to identify both of these deviations.
Nevertheless, careful experimental design can be helpful in generating some
robustness in subjective and perceived probabilities, and a convergence in
both of these on the underlying objective ones when that is normatively
desirable. The review in this appendix complements the discussion in
Section 1 of the paper by showing some alternative ways to represent the
lotteries to subjects.

Camerer (1989) used a stacked box display to represent his lotteries to
subjects. The length of the box provided information on the probabilities of
each prize, and the width of the box provided information on the relative
size of the prizes. The example in Fig. 20 was used in his written instructions
to subjects, to explain how to read the lottery. Those instructions were as
follows:

The outcomes of the lotteries will be determined by a random number between 01 and

100. Each number between (and including) 01 and 100 is equally likely to occur. In the

example above, the left lottery, labeled ‘‘A’’, pays nothing (0) if the random number is

between 01 and 40. Lottery A pays five dollars ($5) if the random number is between

41 and 100. Notice that the picture is drawn so that the height of the line between 01 and

40 is 40% of the distance from 01 to 100. The rectangle around ‘‘$5’’ is 60% of the

distance from 01 to 100.

In the example above the lottery on the right, labeled ‘‘B’’, pays nothing (0) if the

random number is between 01 and 50, five dollars ($5) if the random number is between

51 and 90, and ten dollars ($10) if the random number is between 91 and 100. As with

lottery A, the heights of the lines in lottery B represent the fraction of the possible

numbers which yield each payoff. For example, the height of the $10 rectangle is 10% of

the way from 01 to 100.

The widths of the rectangles are proportional to the size of their payoffs. In lottery B, for

example, the $10 rectangle is twice as wide as the $5 rectangle.

This display is ingenious in the sense that it compactly displays the
‘‘numbers’’ as well as visual referents for the probabilities and relative
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prizes. The subject has to judge the probabilities for each prize from the
visual referent, and is not directly provided that information numerically.
There is a valuable literature on the ability of subjects to accurately assess
quantitative magnitudes from visual referents of this kind, and it points to
the need for individual-specific calibration in experts and non-experts
(Cleveland, Harris, & McGill, 1982, 1983; Cleveland & McGill, 1984).

Battalio et al. (1990) and Kagel et al. (1990) employed purely numerical
displays of their lotteries. For example, one such lottery was presented to
subjects as follows:

A: Winning $11 if 1–20 (20%)
Winning $5 if 21–200 (80%)

B: Winning $25 if 1–6 (6%)
Winning $5 if 7–100 (94%)

Answer: (1) I prefer A. (2) I prefer B. (3) Indifferent.

Fig. 20. Lottery Display Used by Camerer (1989).
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This display presents all values numerically, with no visual referents. The
numerical display shows the probability for each prize, rather than require
the subject to infer that from the cumulative probabilities.

Beattie and Loomes (1997) used displays that were similar to those
employed by Camerer (1989), although the probabilities were individually
comparable since they were vertically aligned with a common base. Fig. 21
illustrates how they presented the lotteries to subjects. In addition, they
provided text explaining how to read the display.

Wakker, Erev, and Weber (1994) considered four types of representa-
tions, shown in Fig. 22. One, on the far right, was a copy of the display
employed by Camerer (1989), and the three on the left varied the extent to
which information on outcomes was collapsed (top two panels on the left)
and whether numerical information was provided in addition to the verbal
information about probabilities (bottom panel on the left). The alternative
representations were applied on a between-subjects basis, but no informa-
tion is provided about the effect on behavior.

An example of the representation of probability using a verbal analogical
scale is provided by Calman and Royston (1997; Table 4), using a distance
analogue. For risks of 1 in 1, 1 in 10, 1 in 100, 1 in 1000, for example, the
distance containing one ‘‘risk stick’’ 1 foot in length is 1 foot, 10 feet, 100 feet,
and 1,000 feet, respectively. An older tradition seeks to ‘‘calibrate’’ words
that are found in the natural English language with precise probability
ranges. This idea stems from a concern that Kent (1964) had with the
ambiguity in the use of colloquial expressions of uncertainty by intelligence
operatives. He proposed that certain words be assigned specific numerical
probability ranges. A study reported by von Winterfeldt and Edwards (1986,
p. 98ff.) used these expressions and asked a number of NATO officials to
state the probabilities that they would attach to the use of those words in
sentences. The dots in Fig. 23 show the elicited probability judgements, and
the shaded bars show the ranges suggested by Kent (1964). The fact that there

Fig. 21. Lottery Display Used by Beattie and Loomes (1997).
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is a poor correspondence with untrained elicitors does not mean, however,
that one could not undertake such a ‘‘semantic coordination game’’ using
salient rewards, and try to encourage common usage of critical words.

The visual dots method is employed by Krupnick et al. (2002, p. 167), and
provides a graphic image to complement the direct fractional, numerical
representation of probability. An example of their visualization method is
shown in Fig. 24.

Visual ladders have been used in previous research on mortality risk by
Gerking, de Haan, and Schulze (1988) and Gegax, Gerking, and Schulze
(1991). One such ladder, from their survey instrument, is shown in Fig. 25.
An alternative ladder visualization is offered by Calman and Royston (1997;
Fig. 1), and is shown in Fig. 26.

One hypothesis to emerge from this review of the representation of
lotteries in laboratory and survey settings is that there is no single task
representation for lotteries that is perfect for all subjects. It follows that

Fig. 22. Lottery Displays Used by Wakker et al. (1994).
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Fig. 23. Representing Risk on a Verbal Analogical Scale.
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Fig. 24. Representing Risk with Dots.

Fig. 25. Representing Risk with a 2D Ladder.
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Fig. 26. Representing Risk with a 3D Ladder.
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some of the evidence for framing effects in the representation of risk may be
due to the implicit assumption that one form of representation works best
for everyone: the ‘‘magic bullet’’ assumption. Rather, we should perhaps
expect different people to perform better with different representations. To
date no systematic comparison of these different methods have been
performed and there is no consensus as to what constitutes a state of the art
representation.

APPENDIX B. THE EXPERIMENTS OF HEY AND

ORME (1994)

B1. The Original Experiments

The experiments of Hey and Orme (1994) are important in many respects.
First, they use lottery tasks that are not designed as ‘‘trip wire’’ tests of one
theory or another, but instead as representative lottery tasks. This design
objective has strengths and weaknesses. The strength is that one can
evaluate many different theories without the task domain being biased in
favor of any one theory. Thus, tests of a theory will be based on tasks that
are not just built to trick it into error. The weakness is that it might be
inefficient as a domain for choosing between different theories. The second
reason that these experiments are important, of course, is that they were
evaluated using formal ML methods at the level of the individual, including
explicit discussion of structural error models due to Fechner.

The basic experiments of HO are reviewed in Section 1.2, and the display
subjects saw is presented in Fig. 3. Subjects were recruited from the
University of York and participated in two sessions, each consisting of 100
binary lottery choices. The sample consisted of 80 students, who were
allowed to proceed at their own pace. The lottery tasks took roughly 35min
to complete, and subjects earned an average of d17.50 per hour for this task
and one other task.

B2. Replication

There are two limitations of the original HO experimental data, which make
it useful to undertake a replication and extension. One is that there is no
data on individual characteristics, so that it is impossible to pool data across
subjects and condition estimation on those characteristics. Of course,
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this was not the objective of HO, who estimated choice functionals for
each individual separately. But it does limit the use of these data for other
purposes. Second, all of the lotteries were in the gain domain, and many
theories require lotteries that are framed as losses or as mixtures of gains
and losses. Hence, we review here the replications and extensions of
Harrison and Rutström (2005), which address these two limitations.

Subjects were presented with 60 lottery pairs, each represented as a ‘‘pie’’
showing the probability of each prize. Fig. 4 illustrates one such representa-
tion. The subject could choose the lottery on the left or the right,
or explicitly express indifference (in which case the experimenter would
flip a coin on the subject’s behalf). After all 60 lottery pairs were evaluated,
and three were selected at random for payment.87 The lotteries were
presented to the subjects in color on a private computer screen,88 and all
choices recorded by the computer program. This program also recorded
the time taken to make each choice. In addition to the choice tasks, the
subjects provided information on demographic and other personal
characteristics.

In the gain frame experiments the prizes in each lottery were $0, $5, $10,
and $15, and the probabilities of each prize varied from choice to choice,
and from lottery to lottery. In the loss frame experiments subjects were given
an initial endowment of $15, and the corresponding prizes from the gain
frame lotteries were transformed to be � $15, � $10, � $5, and $0. Hence,
the final outcomes, inclusive of the endowment, were the same in the gain
frame and loss frame. In the mixed frame experiments subjects were given an
initial endowment of $8, and the prizes were transformed to be � $8, � $3,
$3, and $8, generating final outcomes inclusive of the endowment of $0, $5,
$11, and $16.89

In addition to the fixed endowment, each subject received a random
endowment between $1 and $10. This endowment was generated using a
uniform distribution defined over whole dollar amounts, operationalized by
a 10-sided die. The purpose of this random endowment is to test for
endowment effects on the choices.

The probabilities used in each lottery ranged roughly evenly over the unit
interval. Values of 0, 0.13, 0.25, 0.37, 0.5, 0.62, 0.75, and 0.87 were used.90

The presentation of a given lottery on the left or the right was determined at
random, so that the ‘‘left’’ or ‘‘right’’ lotteries did not systematically reflect
greater risk or greater prize range than the other.

Subjects were recruited at the University of Central Florida, primarily
from the College of Business Administration, using the online recruiting
application at ExLab (http://exlab.bus.ucf.edu). Each subject received a $5
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fee for showing up to the experiments, and completed an informed consent
form. Subjects were deliberately recruited for ‘‘staggered’’ starting times, so
that the subject would not pace their responses by any other subject. Each
subject was presented with the instructions individually, and taken through
the practice sessions at an individual pace. Since the rolls of die were
important to the implementation of the objects of choice, the experimenters
took some time to give each subject ‘‘hands-on’’ experience with the
(10-sided, 20-sided, and 100-sided) die being used. Subjects were free to
make their choices as quickly or as slowly as they wanted.

Our data consists of responses from 158 subjects making 9,311 choices
that do not involve indifference. Only 1.7% of the choices involved explicit
choice of indifference, and to simplify we drop those in estimation unless
otherwise noted. Of these 158 subjects, 63 participated in gain frame tasks,
37 participated in mixed frame tasks, and 58 participated in loss frame tasks.

APPENDIX C. THE EXPERIMENTS OF HOLT AND

LAURY (2002)

C1. Explaining the Data

Holt and Laury (2002) examine two main treatments with 212 subjects. The
first is the effect of incentives. They vary the scale of the payoffs in the
matrix shown in panel A of Table 1, which we take to be the scale of
1�. Every subject was presented with the first matrix of choices shown in
panel A of Table 1, and with the exact same matrix at the end of the
experiment. These two choices were always given to all subjects, and we will
refer to them as task #1 and task #4. All subjects additionally had one or two
intermediate choices, referred to here as task #2 and task #3. The question in
task #2, if asked, was a higher-scale, hypothetical version of the initial matrix
of payoffs. The question in task #3, if asked, was the same higher-scale
version of payoffs but with real payoffs. Some subjects were asked one of
these intermediate task questions; most subjects were asked both of them
(hence for some subjects task #4 was actually their third and last task). Thus,
we obtain the tabulation of individual responses shown in Table 9.

We see from Table 9 how each subject experienced different scales of
payoffs in task #2 and/or task #3. This provides in-sample tests of the
hypothesis that risk aversion does not vary with wealth, an important issue
for those that assume specific functional forms such as CRRA or CARA.
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A rejection of the ‘‘constancy’’ assumption in CRRA or CARA is not a
rejection of EUT in general, of course, but just these particular (popular)
parameterizations. In Section 3.7 and Appendix E, we see that some studies
unfortunately equate ‘‘rejection of EUT’’ with ‘‘rejection of CRRA.’’

The second treatment in the HL design is the effect of hypothetical
payoffs, which is why the questions in task #2 are included. Economic
theory has no prediction when the task is not salient, and we have no control
over subject behavior as an experimenter. The effect of using hypothetical
responses is examined in depth in Harrison (2007) using these and other
data, since the use of such data has been so prevalent in the empirical
literature on the validity of EUT, but we do not consider them any further
here. There is considerable evidence, bolstered by Holt and Laury (2005),
that risk attitudes elicited with hypothetical responses are significantly
different to risk attitudes elicited with real economic consequences, so this is
a debate simply not worth pursuing.

Although having in-sample responses is valuable, it comes at a price in
terms of control since there may be wealth effects from the subjects having
earned some profit in the previous choice. To handle this HL use a nice
trick: when the subjects proceed from task #1 to task #3, they are first asked
if they are willing to give up their earnings in task #1 in order to play task
#3. Since the stakes are so much higher in task #3, all subjects chose to do
so. This means that the subjects face tasks #1 and #3 with no prior earnings
from these experiments, although they do have experience with the type of
task when facing task #3. No such trick can be applied for task #4, since the
subjects would be unlikely to give up their earnings in task #3 in this
instance. Thus, the responses to task #4 have no controls for wealth built in
to the design. However, we do know the actual earnings of the subjects from
the experimental data.

Table 9. Sample Size and Design of the Holt and Laury (2002)
Experiments.

Scale of Payoffs Task Total

1 2 3 4

1 212 212 424

20 118 150 268

50 19 19 38

90 18 18 36

All 212 155 187 212 766
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HL also ask each subject to fill out a detailed question of individual
demographic information, so their data include a rich set of controls for
differences in risk preferences due to these characteristics.

Fig. 27 shows the main responses in the HL experiments. Consider the top
left panel, which shows the average number of choices of the ‘‘safe’’ option
A in each problem. In Problem 1, which is row 1 in panel A of Table 1,
virtually everyone chooses option A (the safe choice). By the time the
subjects get to Problem 10, which is the last row in panel A of Table 1,
virtually everyone has switched over to problem B, the ‘‘risky’’ option. The
dashed line marked RN shows the prediction if each and every subject were
risk neutral: in this case everyone would choose option A up to Problem 4,
then everyone would choose option B thereafter. The solid line marked with
a circle shows the observed behavior in task #1, the low-payoff case. The
solid line marked with a diamond shows the observed behavior in task #3,
the high-payoff case. In the top left panel, the high payoff refers to payoff
matrices that scale up the values in panel A of Table 1 by 20. The top right
panel in Fig. 27 shows comparable data for the 50� problems, and the
bottom left panel shows comparable data for the 90� problems.91
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Fig. 27. Observed Choices in Holt and Laury (2002) Experiments.

Risk Aversion in the Laboratory 167



We examine the bottom-right panel later.
HL proceed with their analysis by looking at the first three pictures in

Fig. 27 and drawing two conclusions. First, that one has to introduce some
‘‘noise’’ into any model of the data-generation process, since the observed
choices are ‘‘smoother’’ than the risk-neutral prediction. A more general
way of saying this is to allow subjects to have a specific degree of risk
aversion, but to critically assume that they all have exactly the same degree
of risk aversion. Thus, if subjects were a little risk averse the line marked RN
would shift to the right and drop down a bit to the right, perhaps at Problem
6 or 7 instead of Problem 5. Of course, it would no longer represent risk-
neutral responses, but it would still drop sharply, and that is the point being
made by HL when arguing for a noise parameter. Second, and related to the
previous explanation, the best-fitting line that assumes homogenous risk
preferences would have to be a bit to the right of the risk-neutral line
marked RN. So some degree of risk aversion, they argue, is needed to
account for the location of the observed averages, quite apart from the need
for a noise parameter to account for the smoothness of the observed
averages.

Both conclusions depend critically on the assumption that every subject in
the experiment has the same preferences over risk. The smoothness of the
observed averages is easily explained if one allows heterogenous risk
attitudes and no noise at all at the individual level: some people drop down
at Problem 4, some more at Problem 5, some more at Problem 6, and so on.
The smoothness that the eyeball sees in the aggregate data is just a
counterpart of averaging this heterogenous process. The fact that some
degree of risk aversion is needed for some subjects is undeniable, from the
positive area above the RN line and below the circle or diamond lines from
Problems 5 through 10. But it simply does not follow without further
statistical analysis that all subjects, or even the typical subject, exhibit
significant amounts of risk aversion. Nor does it follow that a noise
parameter is needed to model these data.

These conclusions follow from inspection of each of the first three panels
of Fig. 27, and just the RN and circle lines in each for that matter. Now turn
to the comparison of the circle and diamond lines within each of the first
three panels. The eyeball suggests that the diamond lines are to the right of
the circle lines, which implies that risk aversion increases as the scale of
payoffs increases. But this conclusion requires some measures of the
uncertainty of these averages. Not surprisingly, the standard deviation in
responses is the largest around Problems 5 through 7, suggesting that the
confidence intervals around these diamond and circle lines could easily
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overlap. Again, this is a matter for an appropriate statistical analysis, not
eyeball inspection of the averages.

Finally, compare the differences between the diamond and circle lines as
one scans across the first three panels in Fig. 27. As the payoff scale gets
larger, from 20� to 50� and then to 90�, it appears that the gap widens.
That is, if one ignores the issue of standard errors around these averages, it
appears that the degree of risk aversion increases. This leads HL to reject
CRRA and CARA, and to consider generalized functional forms for utility
functions that admit of increasing risk aversion. However, as Table 9 shows,
the sample sizes for the 50� and 90� treatments were significantly smaller
than those for the 20� treatment: 38 and 36 subjects, respectively, compared
to 268 subjects for the 20� treatments. So one would expect that the
standard errors around the 50� and 90� high-payoff lines would be much
larger than those around the 20� high-payoff lines. This could make it
difficult to statistically draw the eyeball conclusion that scale increases
risk aversion.

Finally, one needs to account for the fact that all of the high-payoff data in
the HL experiments was obtained in a task that followed the low-payoff task.
Income effects were controlled for, in an elegant manner described above. But
there could still be simple order effects due to experience with the qualitative
task. HL recognize the possibility of order effects when discussing why they
had the high hypothetical task before the high real task: ‘‘Doing the high
hypothetical choice task before high real allows us to hold wealth constant
and to evaluate the effect of using real incentives. For our purposes, it would
not have made sense to do the high real treatment first, since the careful
thinking would bias the high hypothetical decisions.’’ The same (correct) logic
applies to comparisons of the second real task with the first real task.

The bottom, right panel examines the data collected by HL in task #1 and
task #4, which have the same scale but differ only in terms of the order effect
and the accumulated wealth from task #3. These lines appear to be identical,
suggesting no order effect, but a closer statistical analysis that conditions on
the two differences shows that there is in fact an order effect at work.

C2. Modeling Behavior

One of the major contributions of HL is to present ML estimates of a
relatively flexible utility function using their data. Recognizing the apparent
changes in RRA with the scale treatments, they note that CRRA would not

Risk Aversion in the Laboratory 169



be appropriate, and use a parameterization of the EP function introduced
by Saha (1993).

APPENDIX D. THE EXPERIMENTS OF

KACHELMEIER AND SHEHATA (1992)

To illustrate the use of the BDM procedure, and to point to some potential
problems, consider the ‘‘high payoff’’ experiments from China reported by
Kachelmeier and Shehata (1992). These involved subjects facing lotteries
with prizes equal to 0.5 yuan, 1 yuan, 5 yuan, or 10 yuan. Although 10 yuan
only converted to about $2.50 at the time of the experiments, this
represented a considerable amount of purchasing power in that region of
China, as discussed by KS (p.1123). There were four treatments. One
treatment used 25 lotteries with 5 yuan, one used 25 lotteries with 10 yuan,
one used 25 lotteries with 0.5 yuan followed by 25 lotteries with 5 yuan, and
one used 25 lotteries with 1 yuan followed by 25 lotteries with 10 yuan. In all
cases, the first of the battery of 25 lotteries was a hypothetical trainer, and is
ignored in the analysis shown below.

Figs. 28 and 29 show the data from the experiments of KS in China. The
vertical axis shows the ratio of the elicited CE to the expected value of the
lottery, and the horizontal axis shows the probability of winning each
lottery. Each panel in Fig. 28 shows a scatter of data from each prize
treatment. In Fig. 28 we only show data from the first series of lottery
choices, for comparability in terms of experience. In Fig. 29 we show the
results for the high-prize treatments, with the first series on top and
the second series on the bottom, to show the effect of experience with the
general task.92 To orient the analysis, a simple cubic-spline is drawn through
the median-bands; these lines are consistent with the formal statistical
analysis reported below, but help explain certain features of the data.

Four properties of these responses are evident from the pictures. First,
the general tendency towards risk-loving behavior at the lower three prize
levels, as evidenced by the CEs being greater than the expected value in
Fig. 28. Second, the dramatic reduction in the dispersion of selling prices as
the probability of winning increases to 1, as evidenced by the pattern of
the scatter within each panel. Indeed, these pictures discard data for
probabilities less than 0.15, and for ratios greater than 2.5, to allow
reasonable scaling. The discarded data exhibit even more dramatic
dispersion than is already evident at probability levels of 0.25. Third, the
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responses for the highest prize treatment in Fig. 28 are much closer to being
risk neutral or risk averse, at least for winning probabilities greater than
around 0.2. Finally, the data in Fig. 29 suggests that subjects are less risk
loving when they have experience with the task, and/or that there is an
increase in risk aversion due to the accumulation of experimental income
from the first series of tasks.

Since the BDM method generates a CE for each lottery, it is possible to
estimate the CRRA coefficient directly for each response that a subject
makes using the BDM method.93 If p is the winning probability for prize y,
and s is the CE elicited as a selling price from the subject, then the coefficient
is equal to 1� {ln(p)/(ln(s)� ln(y))}. In this form, a value of zero indicates risk
neutrality, and negative (positive) values risk-loving (risk averse) behavior.

The behavior of the CRRA coefficient elicited using the BDM method is
extremely sensitive to experimental conditions, even if one restricts attention to
the high-stakes lotteries and win probabilities within 15% of the boundaries.94

First, the coefficients for low win probabilities imply extreme risk loving. This
is perfectly plausible given the paltry stakes involved in such lotteries. Second,
the coefficient depends on accumulated earnings, as hypothesized by McKee
(1989). Increases in the average accumulated income earned in the task increase
risk aversion, and increases in the three-round moving average of income
decrease risk aversion.95 Third, ‘‘bad joss,’’ as measured by the fraction of
random buying prices below the expected buying price of 50% of the prize, is
associated with a large increase in risk-loving behavior.96 Fourth, as Fig. 29
would suggest, experience with the general task increases risk aversion.
Fifth, increasing the prize from 5 yuan to 10 yuan increases risk aversion
significantly. Of course, this last result is consistent with non-constant RRA,
and should not be necessarily viewed as a problem unless one insisted on
applying the same CRRA coefficient over these two reward domains.

Fig. 30 summarizes the distribution of CRRA coefficients for the high-
task decisions in KS. The dispersion of estimates is high, even though there is
a marked tendency towards RN with the 10 yuan task and with experienced
subjects. One of the key results here, as stressed by Kachelmeier and Shehata
(1994), is that there is considerable variation in CRRA coefficients within
each subject’s sample of responses, as well as between subjects. The within-
subjects’ standard deviation in CRRA coefficients is 1.10, and the between-
subjects’ standard deviation is 1.13, around a mean of negative 1.36.

To deal with some of these problems we recommend paying subjects for just
one stage to avoid intra-session income effects, the use of physical randomizing
device to encourage subjects to see the random buyout price as independent of
their selling price, the use of winning probabilities between 1/4 and 3/4 to avoid
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the more extreme effects of the end-point probabilities, and the provision of
experience in the task in a completely prior session. We would also utilize
extended instructions along the lines developed by Plott and Zeiler (2005).

APPENDIX E. THE EXPERIMENTS OF GNEEZY AND

POTTERS (1997)

The experimental task of Gneezy and Potters (1997) was very simple, and
was followed exactly by Haigh and List (2005). Each subject in the baseline
treatment made nine decisions over a fixed stake. In GP this stake was 2
Dutch Guilders, which we will call $2.00 for pedagogic ease. In each round
they could choose a fraction of the stake to bet. If they chose to bet nothing
then they received $2.00 in that round for certain. If they bet $x then they
faced a 2/3 chance of losing $x and a 1/3 chance of winning $2.5x. These
earnings were on top of the initial stake of $2.00. Thus, the subject literally
ended up with ($2.00� $x) with probability 2/3 and ($2.00+$2.5x) with
probability 1/3. Since $x could not exceed $2.00, by design, the subject
actually faced no losses for the round as a whole. Of course, if one ignores the
$2.00 stake the subject did face a loss. In the baseline condition the subject
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chose a bet in each round, the random outcome was realized, their earnings in
that round tabulated, and then the next round decision was made.

In the alternative treatment the subject made three decisions instead of
nine. The first decision was a single amount to bet in each of rounds 1
through 3, the second decision was a single amount to bet in each of rounds
4 through 6, and the third decision was a single amount to bet in each of
rounds 7 through 9. Thus, the subject made one decision or choice for each of
the outcomes in rounds 1, 2, and 3. To state it equivalently, since this is
critical to follow, one decision was simply applied three times: it is not the
case that the subject made three separate decisions at round 1 that were
applied in rounds 1, 2, and 3, respectively. The subject could not say ‘‘bet x,
y, and z% in rounds 1, 2, and 3,’’ but could only instead say ‘‘bet x%,’’
meaning that x% would be bet for the subject in each of round 1, 2, and 3.
In all other respects the experimental task was the same: the only thing that
varied was the horizon over which the choices were made. This is referred to
as the Low frequency treatment (L), and the baseline is referred to as the
High frequency treatment (H).

The raw data in the two sets of experiments are presented in Figs. 31 and
32, which show the distribution of percentage bets. The general qualitative
outcome is for subjects to bet more in the L treatment than in the H
treatment. Gneezy and Potters (1997; Table I, p. 639) report that 50.5% was
bet in their treatment H and 67.4% in their treatment L over all 9 rounds.
They conducted their experiments with 83 Dutch students, split roughly
evenly across the two treatments in a between-subjects design. Haigh and
List (2005) (HLI) report virtually the same outcomes: for their sample of 64
American college students, the fractions were 50.9% and 62.5%, respectively,
and for their sample of 54 current and former traders from the Chicago
Board of Trade the fractions were 45% and 75%, respectively.97 Using
unconditional non-parametric tests or panel Tobit models, these differences
are statistically significant at standard levels.98 Thus, it appears that samples
of subjects drawn from the same population behave as if more risk averse in
treatment H compared to treatment L, and that the average subject is risk
averse. The latter inference follows from the fact that a risk-neutral subject,
according to EUT, would bet 100% of the stake.

Figs. 31 and 32 also alert us to one stochastic feature of these data that
will play a role later: that there is a substantial spike at the 100% bet level.
From an EUT perspective, this corresponds to subjects that are risk neutral
or risk loving.

If we just consider ‘‘interior bets’’ then the same qualitative results obtain.
In GP, the Low frequency treatment generates an average 42.1% bet
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compared to an average 33.9% bet in the High frequency treatment. In HLI,
the students (traders) bet an average of 37.7% (25.3%) and 51.4% (59.3%)
in each treatment.

E1. Explaining the Data

When interpreting the experiments of GP and HLI it is important to view
subjects as having a utility function that is defined over prize income that
reflects the stakes that choices are being made over. The high frequency
subjects can be viewed as making a series of nine choices over stakes defined,
for each choice, by a vector y which takes on a range of integer values
between $0 and $7. The subject could get $0 if they bet 100% of the stake
and lost it; or they could get as much as $7 if they bet 100% of the stake and
won 2.5� $2.00.

The low frequency subjects, on the other hand, made three choices over
stakes defined by the possible combinations of gains and losses over three
random draws. Thus, they could end up with three losses, 2 losses and 1 gain,
1 loss and 2 gains, or 3 gains. The probabilities for each outcome, irrespective
of order, are 0.30, 0.44, 0.22, and 0.04, respectively. The monetary outcome in
each case depends on the fraction of the stake that the subject chose to bet.

Table 10 spells out the arithmetic for different bets. For simplicity we
evaluate the possible choices in increments of 10 cents, but of course the
choices could be in pennies.99 The second column shows the bet as a percent
of the stake of $2.00. Columns 3 though 7 show the components of the
lottery facing the subject in the High frequency treatment for each possible
bet, and columns 8 through 16 show the same components for the subject in
Low frequency treatment. Consider, for example, a bet of 10 cents, which
is 5% of the stake. If the subject is in the High treatment and loses, they
earn 190 ( ¼ 200� 10) cents in that period; this occurs with probability 2/3.
If the subject is in the High treatment and wins, they earn 225( ¼ 200+
10� 2.5 ¼ 200+25) cents; this occurs with probability 1/3. In the cor-
responding entry for the subject in the Low treatment, the value of prizes
is calculated similarly, but for three random draws. Thus, in the LLL
outcome, the subject earns 570( ¼ 200� 10+200� 10+200� 10) cents.

From Table 10 we see instantly that a risk-neutral subject that obeyed
EUT would bet 100% of the pie in both treatments and thereby maximize
expected value. It can also be inferred that a moderately risk-averse subject
would bet some fraction of the pie in each treatment, less than 100%, and
that a risk-loving subject would always bet 100% of the pie.
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The outcomes of the lotteries being evaluated by subjects in the High and
Low treatments differ significantly. Consider the 50% bet, in the middle of
Table 10. For subjects in the High treatment the two final outcomes from
each choice are 100 and 450, occurring with the probabilities shown there.
For subjects in the Low treatment there are four final outcomes from each
choice: 300, 650, 1,000, and 1,350. Thus, the monetary rewards from the same
percentage choice differ significantly. So, to explain why subjects in the High
treatment are more risk averse than subjects in the Low treatment, it suffices
at a qualitative level to find some utility function that has moderate amounts
of risk aversion for ‘‘low’’ income levels and smaller amounts of risk
aversion for ‘‘higher’’ income levels.

Although less obvious than the RN prediction, any subject exhibiting
CRRA would choose the same bet fraction in each row. The more risk averse
they were, the smaller would be the bet, but it would be the same bet in each
of the High and Low treatments. This result is important since every
statement of ‘‘the EUT null hypothesis’’ in the MLA literature that we can
find uses RN or CRRA specifications for the utility function.100 Thus, it is
easy to see why evidence of a difference between the bet fractions in the
High and Low treatments is viewed as a rejection of EUT.

Of course, this does not test EUT at all. It only tests a very special case of
EUT, where the specific functional form seems to have been chosen to perform
poorly.101 It is easy to propose more flexible utility functions than CRRA.
There are many such functions, but one of the most popular in recent work
that is fully consistent with EUT has been the EP utility function proposed by
Saha (1993). Following Holt and Laury (2002), the EP function is defined as

UðxÞ ¼ ð1� expð�ax1�rÞÞ
a

where a and r are parameters to be assumed or estimated. RRA is then
r+a(1� r)y1� r, so RRA varies with income if a 6¼ 0. This function nests
CRRA (as a-0) and CARA (as r-0). At a qualitative level, if rW0 and ao0
one can immediately rationalize the qualitative data in these experiments:
RRA ¼ r+a(1� r)y1� r-r as y-0, and then one has declining RRA with
higher prize incomes since ao0.

E2. Modeling Behavior

The qualitative insight that one can explain these data with a simple EUT
specification can be formalized by estimating the parameters of a model that
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account for the data. Such an exercise also helps explain some differences
between the traders and students in Haigh and List (2005).

As noted earlier, Figs. 31 and 32 alert us to the fact that the behavioral
process generating data at the 100% bet level may be different than the
process generating data at the ‘‘interior’’ solutions. From a statistical
perspective, this is just a recognition that a model that tries to explain the
interior modes of these data, and why they vary between the High and Low
treatments, might have a difficult time also accounting for the spike at
100%. One approach is just to ignore that spike, and see what estimates
obtain. Another approach is to construct a model and likelihood function
that accounts for these two processes.102 We apply both approaches,
although favoring the latter a priori.

The dependent variable is naturally characterized as the fraction of the stake
bet, denoted p. Therefore, the likelihood function is constructed using the
specification developed by Papke and Wooldridge (1996) for fractional
dependent variables. Specifically, the log-likelihood of observation i is defined
as li(x) ¼ pi� log(G(xi, x))+(1� pi)� log(1�G(xi, x)) for parameter vector
x, a vector of explanatory variables x, and some convenient cumulative
distribution function G( � ). We use the cumulative Gamma distribution
function G(z) ¼ G(a,z), where a is a parameter that can be estimated.103 The
index zi is the expected utility of the bet chosen, conditional on some
parameter estimates of x and some characteristics xi for observation i.

The index z is constructed using information on the lottery for the actual
bet, reflecting a more detailed version of the arithmetic underlying Table 10.
Thus, for a particular fractional bet, the parameters of the task imply
that the subject was facing a particular lottery. So, one element of the x
vector is whether or not the subject was in the High or Low treatment.
Another element is the stake. Another element is the set of parameters of the
experimental task defining the lottery outcomes (e.g., the probabilities of a
loss or a gain, and the numbers defining how the bet is scaled to define the
loss or the gain). Using this information, and candidate estimates of r and a
for the EP utility function, the likelihood constructs the expected utility of
the observed choice, and the ML estimates find the parameters of the EP
utility function that best explain the observed choices.

This approach can be applied directly to the data in Figs. 31 and 32,
recognizing that one model must explain the multiple modes of these
distributions. Alternatively, one can posit a natural two-step decision
process, where the subject first decides if they are going to bet everything or
not, and then if they decide not to, decides how much to bet (including 0%).
This might correspond to one way that a risk-averse or risk-loving subject
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might process such tasks: first figure out what a RN decision-maker would
do, since that is computationally easier, and then shade one’s choice in the
direction dictated by risk preferences. Since the matrix in Table 10 was not
presented to subjects in such an explicit form, this would be one sensible
heuristic to use.

Irrespective of the interpretation, this proposed decision process implies
a statistical ‘‘hurdle’’ model. First the subject makes a binary choice to
contribute 100% or less. Then the subject decides what fraction to contri-
bute, conditional on contributing less than 100%. The first stage can be
modeled using a standard probit specification, although it is the second
stage that is really of greatest interest.

A key feature of these estimates is that they pool the data from High and
Low treatments. The objective is to ascertain if one EUT-consistent
model can explain the shift in the distributions between these treatments in
Figs. 31 and 32. Since each subject provided multiple observations there are
clustering corrections for the possible correlation of errors associated with a
given subject.

Table 11 reports the results of ML estimation of these models. Panel A
provides estimates for the individual responses from Gneezy and
Potters (1997). These estimates show some initial risk aversion at zero
income levels (r ¼ 0.21) and then some slight evidence of declining RRA
as income rises (a ¼ � 10.019). However, the evidence of declining RRA
is not statistically significant, although the 95% confidence interval is
skewed towards negative values. Much more telling evidence comes from
comparable estimates for the interior bets, in panel B. Here we find
striking evidence of the qualitative explanation presented earlier: initial risk
aversion at zero income levels (r ¼ 1.12) and sharply declining RRA as
income rises (a ¼ � 0.57). The point estimate of r exceeds 1 in this case,
which violates the assumption of non-satiation. But the standard error on this
estimate is 0.25, with a 95% confidence interval between 0.61 and 1.63. So we
cannot reject the hypothesis that rr1; in fact, the p-value that the coefficient
equals 1 is 0.68, so we cannot reject that specific hypothesis.

Panels C through E report estimates for the treatments of Haigh and List
(2005), estimated separately for traders and students since that was their
main treatment. With the exception of the estimates in panel E, for all bets
by University of Maryland (UMD) students, these results again confirm the
qualitative explanation proposed above. Therefore, one must simply reject
the conclusion of Haigh and List (2005, p. 531) that their ‘‘findings suggest
that expected utility theory may not model professional traders’ behavior
well, and this finding lends credence to behavioral economics and finance
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models, which are beginning to relax inherent assumptions used in standard
financial economics.’’ Whether MLA models the behavior of traders better
than EUT is a separate matter, but EUT easily explains the data. In fact,
these data are more consistent with the priors that motivated the Haigh and
List (2005) study, illustrated by List (2003), that students would be more
likely to exhibit anomalies than field traders.

E3. Coals To Newcastle: An Anomaly for the Behaviorists

The reason that MLA is interesting is that Benartzi and Thaler (1995) use it
to provide an intuitive explanation for the equity premium puzzle. Their

Table 11. Maximum Likelihood Estimates of Expo-Power Utility
Function.

Coefficient Estimate Standard

Error

p-Value Lower 95%

Confidence Interval

Upper 95%

Confidence Interval

A. Gneezy and Potters (1997) – Estimates for All Bets by Dutch Students

r 0.21 0.08 0.009 0.06 0.37

a � 0.02 0.03 0.463 � 0.07 0.03

a 2.32 0.22 0.000 1.87 2.76

B. Gneezy and Potters (1997) – Estimates for Interior Bets by Dutch Students

ra 1.12 0.25 0.000 0.61 1.63

a � 0.57 0.09 0.000 � 0.74 � 0.40

a 1.88 0.29 0.000 1.30 2.46

C. Haigh and List (2005) – Estimates for All Bets by CBOT Traders

r 0.36 0.05 0.000 0.26 0.46

a � 0.13 0.02 0.000 � 0.16 � 0.10

a 3.67 0.42 0.000 2.82 4.53

D. Haigh and List (2005) – Estimates for Interior Bets by CBOT Traders

r 0.67 0.04 0.000 0.60 0.74

a � 0.44 0.01 0.000 � 0.46 � 0.42

a 3.69 0.34 0.000 3.01 4.37

E. Haigh and List (2005) – Estimates for All Bets by UMD Studentsb

r � 0.99 0.27 0.001 � 1.54 � 0.44

a 0.22 0.05 0.000 0.13 0.32

a 1.71 0.21 0.000 1.28 2.13

aSee text for discussion of the point estimate for r exceeding 1, since that violates the non-

satiation assumption for this specification.
bThere are no estimates for the sub-sample of interior bets, since the estimate of r exceeds 1, and

is statistically significantly greater than 1.
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empirical approach is to assume a particular numerical specification of
MLA, and then solve for the ‘‘evaluation horizon’’104 of returns to stocks
and equities that makes their expected utility105 equivalent. They find that
this horizon is roughly 12 months, which strikes one as a priori plausible
if one had to pick a single representative evaluation horizon for all
investors.106 Thus, they assume a particular empirical version of MLA and
further assume that these coefficients do not change as they counter-
factually calculate the effects of alternative evaluation horizons:

According to our theory, the equity premium is produced by a combination of loss

aversion and frequent evaluation. Loss aversion plays the role of risk aversion in

standard models, and can be considered a fact of life (or, perhaps, a fact of preferences).

In contrast, the frequency of evaluations is a policy choice that presumably could be

altered, at least in principle. Furthermore, as the charts (y) show, stocks become more

attractive as the evaluation period increases.

So the parameters of the MLA specification are assumed invariant to
evaluation horizon, as an essential premiss of the empirical methodology.

Thus the motivation for the experiments of GP and HL. As GP note,
Benartzi and Thaler (1995) ‘‘y do not present direct (experimental)
evidence for the presence of MLA. The evidence presented in (BT) is only
circumstantial. (y) We have experimental subjects making a sequence of
risky choices. To analyze the presence of MLA, we do not try to estimate the
period over which subjects evaluate financial outcomes, but rather we try to
manipulate this evaluation period.’’ Hence the data from GP can be used to
recover the MLA preferences that are consistent with the observed behavior,
and the empirical premiss of Benartzi and Thaler (1995) evaluated.

Since behavioral economists are so enamored of anomalies, it may be useful
to point out one or two in the MLA literature being considered here. The first
anomaly is that the data from the experiments of GP demonstrate that the
MLA parameters themselves depend on the evaluation horizon, which of course
was varied by experimental design in their data. Hence, one cannot assume
that those parameters stay fixed as one calibrates the equity premium by
varying the evaluation horizon. The second anomaly is that these data also
imply risk attitudes defined over the utility function that are qualitatively the
opposite of those customarily assumed.

The MLA parameterization adopted by Benartzi and Thaler (1995, p. 79)
is taken directly from Tversky and Kahneman (1992), both in terms of
the functional forms and parameter values. They assume a power utility
function defined separately over gains and losses: U(x) ¼ xa if xZ0, and
U(x) ¼ � l(� x)b for xo0. So a and b are the risk aversion parameters, and
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l is the coefficient of loss aversion. Tversky and Kahneman (1992, p. 59)
provide estimates that have been universally employed in applied work by
behaviorists: a ¼ b ¼ 0.88 and l ¼ 2.25.

Using the data from GP we estimate the parameters of this MLA model.
For simplicity we assume no probability weighting, although that could be
included. Benartzi and Thaler (1995, p. 83) and GP stress that it is the loss
aversion parameter l that drives the main prediction of MLA, rather than
probability weighting or even risk aversion in the utility function. The
likelihood function is again constructed using the specification developed by
Papke and Wooldridge (1996) for fractional dependent variables. Since
there are no data on personal characteristics in the GP data, the x vector
refers solely to whether or not the decision was made in the Low frequency
setting or the High frequency setting. Thus, x ¼ (a, b, l), and each of those
fundamental parameters is estimated as a linear function of binary dummies
for the Low and High frequencies.107

Table 12 reports the ML estimates obtained. The ‘‘good news’’ for MLA is
that they provide strong evidence that the loss aversion parameter is greater
than 1. The ‘‘bad news’’ for MLA is that they provide equally striking evidence
that all of the parameters of the MLA specification vary with the evaluation
horizon. The ‘‘awkward news’’ for MLA is that they provide inconsistent
evidence about risk attitudes in relation to the received empirical wisdom.

The estimates for a indicate risk-loving behavior over gains.108 There does
not appear to be much difference in risk attitudes over gains, and indeed one
cannot reject the null hypothesis that they are equal with a Wald test
( p-value ¼ 0.391). The estimates for b indicate a severe case of risk aversion
over losses. Moreover, subjects appear to be more risk averse in the Low
frequency setting than in the High frequency setting: a Wald test of the null

Table 12. Maximum Likelihood Estimates of Myopic Loss Aversion
Utility Functiona.

Coefficient Variable Estimate Standard

Error

p-

Value

Lower 95%

Confidence

Interval

Upper 95%

Confidence

Interval

a Low frequency 1.48 0.04 0.000 1.40 1.55

High frequency 1.38 0.10 0.000 1.18 1.59

b Low frequency 0.03 0.07 0.689 � 0.11 0.17

High frequency 0.55 0.28 0.052 0.00 1.10

l Low frequency 1.90 0.08 0.000 1.74 2.07

High frequency 4.28 0.64 0.000 2.99 5.56

aEstimates from responses in Gneezy and Potters (1997) experiments.
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hypothesis of equality has a p-value of 0.074. Finally, the estimates for
l are consistent with loss aversion, since they are both each significantly
greater than 1 ( p-valueso0.0001). However, these subjects appear to be
significantly more loss averse in the High frequency setting than in the Low
frequency setting ( p-value ¼ 0.0005).

This new analysis of the GP data therefore imply that the MLA
parameters depend on the evaluation horizon and that subjects are risk
loving in gains and risk averse in losses, thus pointing to anomalies
compared to the standard view of PT.

APPENDIX F. ESTIMATION USING MAXIMUM

LIKELIHOOD

Economists in a wide range of fields are now developing customized
likelihood functions to correspond to specific models of decision-making
processes. These demands derive partly from the need to consider a variety
of parametric functional forms, but also because these models often specify
non-standard decision rules that have to be ‘‘written out by hand.’’ Thus, it
is becoming common to see user-written ML estimates, and less use of pre-
packaged model specifications.

These pedagogic notes document the manner in which one can estimate ML
models of utility functions within Stata.109 However, we can quickly go beyond
‘‘utility functions’’ and consider a wide range of decision-making processes, to
parallel the discussion in the text. We start with a standard CRRA utility
function and binary choice data over two lotteries, assuming EUT. This step
illustrates the basic economic and statistical logic, and introduces the core
Stata syntax. We then quickly consider an extension to consider loss aversion
and probability weighting from PT, the inclusion of ‘‘stochastic errors,’’ and
the estimation of utility numbers themselves to avoid any parametric
assumption about the utility function. We then illustrate a replication of the
ML estimates of HL. Once the basic syntax is defined from the first example, it
is possible to quickly jump to other likelihood functions using different data
and specifications. Of course, this is just a reflection of the ‘‘extensible power’’
of a package such as Stata, once one understands the basic syntax.110

F1. Estimating a CRRA Utility Function

Consider the simple CRRA specification in Section 2.2. This is an EUT
model, with a CRRA utility function, and no stochastic error specification.
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The following Stata program defines the model, in this case using the lottery
choices of Harrison and Rutström (2005), which are a replication of the
experimental tasks of Hey and Orme (1994):

* define Original Recipe EUT with CRRA and no errors
program define ML_eut0

    args lnf r
    tempvar prob0l prob1l prob2l prob3l prob0r prob1r prob2r prob3r y0 y1 y2 y3
    tempvar euL euR euDiff euRatio tmp lnf_eut lnf_pt p1 p2 f1 f2

    quietly {

        * construct likelihood for EUT
        generate double `prob0l' = $ML_y2
        generate double `prob1l' = $ML_y3
        generate double `prob2l' = $ML_y4
        generate double `prob3l' = $ML_y5

        generate double `prob0r' = $ML_y6
        generate double `prob1r' = $ML_y7
        generate double `prob2r' = $ML_y8
        generate double `prob3r' = $ML_y9

        generate double `y0' = ($ML_y14+$ML_y10)^`r'
        generate double `y1' = ($ML_y14+$ML_y11)^`r'
        generate double `y2' = ($ML_y14+$ML_y12)^`r'
        generate double `y3' = ($ML_y14+$ML_y13)^`r'

        gen double `euL' = (`prob0l'*`y0')+(`prob1l'*`y1')+(`prob2l'*`y2')+(`prob3l'*`y3')
        gen double `euR' = (`prob0r'*`y0')+(`prob1r'*`y1')+(`prob2r'*`y2')+(`prob3r'*`y3')

        generate double `euDiff' = `euR' - `euL'

        replace `lnf' = ln(normal( `euDiff')) if $ML_y1==1
        replace `lnf' = ln(normal(-`euDiff')) if $ML_y1==0

    }
end

This program makes more sense when one sees the command line
invoking it, and supplying it with values for all variables. The simplest case
is where there are no explanatory variables for the CRRA coefficient
(we cover those below):

ml model lf ML_eut0 (r: Choices P0left P1left P2left P3left P0right P1right P2right

P3right prize0 prize1 prize2 prize3 stake = ) if Choices~=., cluster(id)

technique(nr) maximize

The ‘‘ml model’’ part invokes the Stata ML model specification routine,
which essentially reads in the ML_eut0 program defined above and makes
sure that it does not violate any syntax rules. The ‘‘lf’’ part of ‘‘lf ML_eut0’’
tells this routine that this is a particular type of likelihood specification
(specifically, that the routine ML_eut0 does not calculate analytical
derivatives, so those must be calculated numerically). The part in brackets
defines the equation for the CRRA coefficient r. The ‘‘r:’’ part just labels this
equation, for output display purposes and to help reference initial values if
they are specified for recalcitrant models. There is no need for the ‘‘r:’’ here
to match the ‘‘r’’ inside the ML_eut0 program; we could have referred to
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‘‘rEUT:’’ in the ‘‘ml model’’ command. We use the same ‘‘r’’ to help see the
connection, but it is not essential.

The ‘‘Choices P0left P1left P2left P3left P0right P1right P2right P3right
prize0 prize1 prize2 prize3 stake’’ part tells the program what observed
values and data to use. This allows one to pass parameter values as
well as data to the likelihood evaluator defined in ML_eut0. Each item in
this list translates into a $ML_y� variable referenced in the ML_eut0
program, where � denotes the order in which it appears in this list. Thus,
the data in variable Choices, which consists of 0’s and 1’s for choices (and a
dot, to signify ‘‘missing’’), is passed to the ML_eut0 program as variable
$ML_y1. Variable p0left, which holds the probabilities of the first prize of
the lottery presented to subjects on the left of their screen, is passed as
$ML_y2, and so on. Finally, variable stake, holding the values of the
initial endowments provided to subjects, gets passed as variable $ML_y14.
It is good programming practice to then define these in some less cryptic
manner, as we do just after the ‘‘quietly’’ line in ML_eut0. This does not
significantly slow down execution, and helps avoid cryptic code. There is no
error if some variable that is passed to ML_eut0 is not referenced in
ML_eut0.

Once the data is passed to ML_eut0 the likelihood function can be
evaluated. By default, it assumes a constant term, so when we have ‘‘ ¼ )’’ in
the above command line, this is saying that there are no other explanatory
variables. We add some below, but for now this model is just assuming
that one CRRA coefficient characterizes all choices by all subjects. That is,
it assumes that everyone has the same risk preference.

We restrict the data that is passed to only include strict preferences, hence
the ‘‘if ChoicesB ¼ .’’ part at the end of the command line. The response of
indifference was allowed in this experiment, and we code it as a ‘‘missing’’
value. Thus, the estimation only applies to the sub-sample of strict
preferences. One could modify the likelihood function to handle indifference.

Returning to the ML_eut0 program, the ‘‘args’’ line defines some
arguments for this program. When it is called, by the default Newton–
Raphson optimization routine within Stata, it accepts arguments in the ‘‘r’’
array and returns a value for the log-likelihood in the ‘‘lnf’’ scalar. In this
case, ‘‘r’’ is the vector of coefficient values being evaluated.

The ‘‘tempvar’’ lines create temporary variables for use in the program.
These are temporary in the sense that they are only local to this program,
and hence can be the same as variables in the main calling program. Once
defined they are referred to with the ML_eut0 program by adding the funny
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left single-quote mark ‘ and the regular right single-quote mark ’. Thus
temporary variable euL, to hold the expected utility of the left lottery, is
referred to as ‘euL’ in the program.111

The ‘‘quietly’’ line defines a block of code that is to be processed without
the display of messages. This avoids needless display of warning messages,
such as when some evaluation returns a missing value. Errors are not
skipped, just display messages.112

The remaining lines should make sense to any economist from the
comment statements. The program simply builds up the expected utility of
each lottery, using the CRRA specification for the utility of the prizes. Then
it uses the probit index function to define the likelihood values. The actual
responses, stored in variable Choices (which is internal variable $ML_y1),
are used at the very end to define which side of the probit index function
this choice happens to be. The logit index specification is just as easy to
code up: you replace ‘‘normal’’ with ‘‘invlogit’’ and you are done! The most
important feature of this specification is that one can ‘‘build up’’ the latent
index with as many programming lines as needed. Thus, as illustrated below,
it is an easy matter to write out more detailed models, such as required for
estimation of PT specifications or mixture models.

The ‘‘cluster(id)’’ command at the end tells Stata to treat the
residuals from the same person as potentially correlated. It then
corrects for this fact when calculating standard errors of estimates.
Invoking the above command line, with the ‘‘maximize’’ option at the
end to tell Stata to actually proceed with the optimization, generates this
output:

initial:       log pseudolikelihood = -8155.5697
alternative:   log pseudolikelihood = -7980.4161
rescale:       log pseudolikelihood = -7980.4161
Iteration 0:   log pseudolikelihood = -7980.4161  (not concave)
Iteration 1:   log pseudolikelihood = -7692.4056  
Iteration 2:   log pseudolikelihood = -7689.4848  
Iteration 3:   log pseudolikelihood = -7689.4544  
Iteration 4:   log pseudolikelihood = -7689.4544  

. ml display
                                                  Number of obs   =      11766
                                                  Wald chi2(0)    =          .
Log pseudolikelihood = -7689.4544                 Prob > chi2     =          .

                                   (Std. Err. adjusted for 215 clusters in id)
------------------------------------------------------------------------------
             |               Robust
             |      Coef.   Std. Err.      z    P>|z|     (95% Conf. Interval)
-------------+----------------------------------------------------------------
       _cons |   .7531553   .0204812    36.77   0.000     .7130128    .7932977
------------------------------------------------------------------------------
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So we see that the optimization routine converged nicely, with no error
messages or warnings about numerical irregularities at the end. The interim
warning message is nothing to worry about: only worry if there is an error
message of any kind at the end of the iterations. (Of course, lots of error
message, particularly about derivatives being hard to calculate, usually flag
convergence problems.) The ‘‘ml display’’ command allows us to view the
standard output, and is given after the ‘‘ml model’’ command. For our
purposes the critical thing is the ‘‘_cons’’ line, which displays the ML
estimate and its standard error. Thus, we have estimated that r̂ ¼ 0:753. This
is the ML CRRA coefficient in this case. This indicates that these subjects
are risk averse.

Before your program runs nicely it may have some syntax errors. The
easiest way to check these is to issue the command

ml model lf ML_eut0 (r: Choices P0left P1left P2left P3left P0right P1right P2right

P3right prize0 prize1 prize2 prize3 stake = )

which is the same as before except that it drops off the material after the
comma, which tells Stata to maximize the likelihood and how to handle the
errors. This command simply tells Stata to read in the model and be ready
to process it, but not to begin processing it. You would then issue the
command

ml check

and Stata will provide some diagnostics. These are extremely informative if
you use them, particularly for syntax errors.

The power of this approach becomes evident when we allow the CRRA
coefficient to be determined by individual or treatment characteristics.
To illustrate, consider the effect of allowing the CRRA coefficient to differ
depending on the individual demographic characteristics of the subject, as
explained in the text. Here is a list and sample statistics:

    Variable |    Obs        Mean    Std. Dev.       Min       Max
-------------+-----------------------------------------------------
      Female |    215    .4790698    .5007276         0          1
       Black |    215    .1069767     .309805         0          1
    Hispanic |    215    .1348837    .3423965         0          1
         Age |    215    19.95814    3.495406        17         47
    Business |    215    .4511628    .4987705         0          1
      GPAlow |    215    .4604651    .4995978         0          1
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The earlier command line is changed slightly at the ‘‘ ¼ )’’ part to read
‘‘ ¼ Female Black Hispanic Age Business GPAlow)’’, and no changes are
made to ML_eut0. The results are as follows:

ml model lf ML_eut0 (r: Choices P0left P1left P2left P3left P0right P1right P2right
P3right prize0 prize1 prize2 prize3 stake = Female Black Hispanic Age Business
GPAlow), cluster(id) maximize

. ml display
                                                  Number of obs   =      11766
                                                  Wald chi2(6)    =      27.48
Log pseudolikelihood = -7557.2809                 Prob > chi2     =     0.0001

                                   (Std. Err. adjusted for 215 clusters in id)
------------------------------------------------------------------------------
             |               Robust
             |      Coef.   Std. Err.      z    P>|z|     (95% Conf. Interval)
-------------+----------------------------------------------------------------
      Female |  -.0904283   .0425979    -2.12   0.034    -.1739187   -.0069379
       Black |  -.1283174   .0765071    -1.68   0.094    -.2782686    .0216339
    Hispanic |  -.2549614   .1149935    -2.22   0.027    -.4803446   -.0295783
         Age |   .0218001   .0052261     4.17   0.000     .0115571    .0320432
    Business |  -.0071756   .0401536    -0.18   0.858    -.0858753     .071524
      GPAlow |   .0131213   .0394622     0.33   0.740    -.0642233    .0904659
       _cons |    .393472   .1114147     3.53   0.000     .1751032    .6118408
------------------------------------------------------------------------------

So we see that the CRRA coefficient changes from r ¼ 0.753 to r ¼ 0.393–
0.090�Female 0.128�Black y and so on. We can quickly find out what
the average value of r is when we evaluate this model using the actual
characteristics of each subject and the estimated coefficients:

. predictnl r=xb(r)

. summ r if task==1
    Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
           r |       215    .7399284    .1275521   .4333093   1.320475

So the average value is 0.739, extremely close to the earlier estimate of
0.753. Thus, all we have done is provided a richer characterization of risk
attitudes around roughly the same mean.

F2. Loss Aversion and Probability Weighting

It is a simple matter to specify different economic models. Two of the
major structural features of PT are probability weighting and loss aversion.
The code below implements each of these specifications, using the
parametric forms of Tversky and Kahneman (1992). For simplicity we
assume that the decision weights are the probability weights, and do not
implement the rank-dependent transformation of probability weights into
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decision weights. Thus, the model is strictly an implementation of OPT
from Kahneman and Tversky (1979). The extension to rank-dependent
decision weights is messy from a programming perspective, and nothing
is gained pedagogically here by showing it; Harrison (2006c) shows the
mess in full. Note how much of this code is similar to ML_eut0, and the
differences:

* define OPT specification with no errors
program define MLkt0

    args lnf alpha beta lambda gamma

    tempvar prob0l prob1l prob2l prob3l prob0r prob1r prob2r prob3r y0 y1 y2 y3
    tempvar euL euR euDiff euRatio tmp

    quietly {

        gen double `tmp' = (($ML_y2^`gamma')+($ML_y3^`gamma')+($ML_y4^`gamma')+($ML_y5^`gamma'))
        replace `tmp’ = `tmp’^(1/`gamma')
        generate double `prob0l' = ($ML_y2^`gamma')/`tmp'
        generate double `prob1l' = ($ML_y3^`gamma')/`tmp'
        generate double `prob2l' = ($ML_y4^`gamma')/`tmp'
        generate double `prob3l' = ($ML_y5^`gamma')/`tmp'

        replace `tmp' = (($ML_y6^`gamma')+($ML_y7^`gamma')+($ML_y8^`gamma')+($ML_y9^`gamma'))
        replace `tmp' = `tmp’^(1/`gamma')
        generate double `prob0r' = ($ML_y6^`gamma')/`tmp'
        generate double `prob1r' = ($ML_y7^`gamma')/`tmp'
        generate double `prob2r' = ($ML_y8^`gamma')/`tmp'
        generate double `prob3r' = ($ML_y9^`gamma')/`tmp'

        generate double `y0' = .
        replace `y0' =           ( $ML_y10)^(`alpha') if $ML_y10>=0
        replace `y0' = -`lambda'*(-$ML_y10)^(`beta')  if $ML_y10<0

        generate double `y1' = .
        replace `y1' =           ( $ML_y11)^(`alpha') if $ML_y11>=0
        replace `y1' = -`lambda'*(-$ML_y11)^(`beta')  if $ML_y11<0

        generate double `y2' = .
        replace `y2' =           ( $ML_y12)^(`alpha') if $ML_y12>=0
        replace `y2' = -`lambda'*(-$ML_y12)^(`beta')  if $ML_y12<0

        generate double `y3' = .
        replace `y3' =           ( $ML_y13)^(`alpha') if $ML_y13>=0
        replace `y3' = -`lambda'*(-$ML_y13)^(`beta')  if $ML_y13<0

        gen double `euL'=(`prob0l'*`y0')+(`prob1l'*`y1')+(`prob2l'*`y2')+(`prob3l'*`y3')
        gen double `euR'=(`prob0r'*`y0')+(`prob1r'*`y1')+(`prob2r'*`y2')+(`prob3r'*`y3')

        generate double `euDiff' = `euR' - `euL'

        replace `lnf' = ln(normal( `euDiff')) if $ML_y1==1
        replace `lnf' = ln(normal(-`euDiff')) if $ML_y1==0

    }
end

The first thing to notice is that the initial line ‘‘args lnf alpha beta
lambda gamma’’ has more parameters than with ML_eut0. The ‘‘lnf ’’
parameter is the same, since it is the one used to return the value of the
likelihood function for trial values of the other parameters. But we now have
four parameters instead of just one.
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When we estimate this model we get this output:

. ml model lf MLkt0 (alpha: Choices P0left P1left P2left P3left P0right P1right
P2right P3right prize0 prize1 prize2 prize3 = ) (beta: ) (lambda: ) (gamma: ),
cluster(id ) maximize

ml display
                                                  Number of obs   =      11766
                                                  Wald chi2(0)    =          .
Log pseudolikelihood = -7455.1001                 Prob > chi2     =          .

                                   (Std. Err. adjusted for 215 clusters in id)
------------------------------------------------------------------------------
             |               Robust
             |      Coef.   Std. Err.      z    P>|z|     (95% Conf. Interval)
-------------+----------------------------------------------------------------
alpha        |
       _cons |   .6551177   .0275903    23.74   0.000     .6010417    .7091938
-------------+----------------------------------------------------------------
beta         |
       _cons |   .8276235   .0541717    15.28   0.000      .721449     .933798
-------------+----------------------------------------------------------------
lambda       |
       _cons |   .7322427   .1163792     6.29   0.000     .5041436    .9603417
-------------+----------------------------------------------------------------
gamma        |
       _cons |    .938848   .0339912    27.62   0.000     .8722265     1.00547
------------------------------------------------------------------------------

So we get estimates for all four parameters. Stata used the variable
‘‘_cons’’ for the constant, and since there are no characteristics here, that is
the only variable to be estimated. We could also add demographic or other
characteristics to any or all of these four parameters. We see that the utility
curvature coefficients a and b are similar, and indicate concavity in the gain
domain and convexity in the loss domain. The loss aversion parameter l is
less than 1, which is a blow for PT since ‘‘loss aversion’’ calls for lW1. And g
is very close to 1, which is the value that implies that w( p) ¼ p for all p, the
EUT case. We can readily test some of these hypotheses:

. test [alpha]_cons=[beta]_cons

 ( 1) [alpha]_cons - [beta]_cons = 0

           chi2(  1) =    8.59
         Prob > chi2 =    0.0034

. test [lambda]_cons=1

 ( 1) [lambda]_cons = 1

           chi2(  1) =    5.29
         Prob > chi2 =    0.0214

. test [gamma]_cons=1

 ( 1) [gamma]_cons = 1

           chi2(  1) =    3.24
         Prob > chi2 =    0.0720
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So we see that PT is not doing so well here in relation to the a priori beliefs
it comes packaged with, and that the deviation in l is indeed statistically
significant. But g is less than 1, so things are not so bad in that respect.

F3. Adding Stochastic Errors

In the text the Luce and Fechner ‘‘stochastic error stories’’ were explained.
To add the Luce specification, popularized by HL, we return to base camp,
the ML_eut0 program, and simply make two changes. We augment the
arguments by one parameter, m, to be estimated:

args lnf r mu

and then we revise the line defining the EU difference from

generate double `euDiff' = `euR' - `euL'

to

generate double ̀ euDiff' = (`euR'^(1/`mu'))/((`euR'^(1/`mu'))
           +(`euL'^(1/`mu')))

So this changes the latent preference index from being the difference to the
ratio. But it also adds the 1/m exponent to each expected utility. Apart from
this change in the program, there is nothing extra that is needed. You just
add one more parameter in the ‘‘ml model’’ stage, as we did for the PT
extensions. In fact, HL cleverly exploit the fact that the latent preference
index defined above is already in the form of a cumulative probability
density function, since it ranges from 0 to 1, and is equal to 1/2 when the
subject is indifferent between the two lotteries. Thus, instead of defining the
likelihood contribution by

        replace `lnf' = ln(normal( `euDiff')) if $ML_y1==1
        replace `lnf' = ln(normal(-`euDiff')) if $ML y1==0

we can use

        replace `lnf' = ln(`euDiff') if $ML_y1==1
        replace `lnf' = ln(1-`euDiff') if $ML y1==0

instead.
The Fechner specification popularized by Hey and Orme (1994) implies a

simple change to ML_eut0. Again we add an error term ‘‘noise’’ to the
arguments of the program, as above, and now we have the latent index

generate double `euDiff' = (`euR' - `euL')/`noise'

instead of the original

generate double `euDiff' = `euR' - `euL'
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Here are the results:

. ml model lf ML_eut (r: Choices P0left P1left P2left P3left P0right P1right P2right
P3right prize0 prize1 prize2 prize3 stake = ) (noise: ), cluster(id) maximize

. ml display
                                                  Number of obs   =      11766
                                                  Wald chi2(0)    =          .
Log pseudolikelihood = -7679.9527                 Prob > chi2     =          .

                                   (Std. Err. adjusted for 215 clusters in id)
------------------------------------------------------------------------------
             |               Robust
             |      Coef.   Std. Err.      z    P>|z|     (95% Conf. Interval)
-------------+----------------------------------------------------------------
r            |
       _cons |   .7119379   .0303941    23.42   0.000     .6523666    .7715092
-------------+----------------------------------------------------------------
noise        |
       _cons |   .7628203    .080064     9.53   0.000     .6058977    .9197429
------------------------------------------------------------------------------

So the CRRA coefficient declines very slight, and the noise term is
estimated as a normal probability with standard deviation of 0.763.

F4. Non-Parametric Estimation of the EUT Model

It is possible to estimate the EUT model without assuming a functional form
for utility, following Hey and Orme (1994). The likelihood function is
evaluated as follows:

* define Original Recipe EUT with Fechner errors: non-parametric
program define ML_eut0_np

    args lnf u5 u10 noise

    tempvar prob0l prob1l prob2l prob3l prob0r prob1r prob2r prob3r y0 y1 y2 y3
    tempvar euL euR euDiff euRatio tmp lnf_eut lnf_pt p1 p2 f1 f2 u0 u15

    quietly {

        * construct likelihood for EUT
        generate double `prob0l' = $ML_y2
        generate double `prob1l' = $ML_y3
        generate double `prob2l' = $ML_y4
        generate double `prob3l' = $ML_y5

        generate double `prob0r' = $ML_y6
        generate double `prob1r' = $ML_y7
        generate double `prob2r' = $ML_y8
        generate double `prob3r' = $ML_y9

        generate double `u0'  = 0
        generate double `u15' = 1

        generate double `y0' = `u0'
        generate double `y1' = `u5'
        generate double `y2' = `u10'
        generate double `y3' = `u15'

        gen double `euL'=(`prob0l'*`y0')+(`prob1l'*`y1')+(`prob2l'*`y2')+(`prob3l'*`y3')
        gen double `euR'=(`prob0r'*`y0')+(`prob1r'*`y1')+(`prob2r'*`y2')+(`prob3r'*`y3')

        generate double `euDiff' = (`euR' - `euL')/`noise'

        replace `lnf' = ln(normal( `euDiff')) if $ML_y1==1
        replace `lnf' = ln(normal(-`euDiff')) if $ML_y1==0

    }
end
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and estimates can be obtained in the usual manner. We include demo-
graphics for each parameter, and introduce the notion of a ‘‘global’’ macro
function in Stata. Instead of typing out the list of demographic variables,
one gives the command

global demog “Female Black Hispanic Age Business GPAlow”

and then simply refer to $global. Every time Stata sees ‘‘$demog’’
it simply substitutes the string ‘‘Female Black Hispanic Age
Business GPAlow’’ without the quotes. Hence, we have the following
results:

. ml model lf ML_eut0_np (u5: Choices P0left P1left P2left P3left P0right P1right
P2right P3right prize0 prize1 prize2 prize3 stake = $demog ) (u10: $demog ) (noise: )
if expid=="ucf0", cluster(id) technique(dfp) maximize difficult

. ml display
                                                  Number of obs   =       3736
                                                  Wald chi2(6)    =      18.19
Log pseudolikelihood = -2321.8966                 Prob > chi2     =     0.0058

                                    (Std. Err. adjusted for 63 clusters in id)
------------------------------------------------------------------------------
             |               Robust
             |      Coef.   Std. Err.      z    P>|z|     (95% Conf. Interval)
-------------+----------------------------------------------------------------
u5           |
      Female |    .096698   .0453102     2.13   0.033     .0078916    .1855044
       Black |   .0209427   .0808325     0.26   0.796    -.1374861    .1793715
    Hispanic |   .0655292   .0784451     0.84   0.404    -.0882203    .2192787
         Age |  -.0270362   .0093295    -2.90   0.004    -.0453217   -.0087508
    Business |   .0234831   .0493705     0.48   0.634    -.0732813    .1202475
      GPAlow |  -.0101648   .0480595    -0.21   0.832    -.1043597    .0840301
       _cons |   1.065798   .1853812     5.75   0.000     .7024573    1.429138
-------------+----------------------------------------------------------------
u10          |
      Female |   .0336875   .0287811     1.17   0.242    -.0227224    .0900973
       Black |   .0204992   .0557963     0.37   0.713    -.0888596    .1298579
    Hispanic |   .0627681   .0413216     1.52   0.129    -.0182209     .143757
         Age |  -.0185383   .0072704    -2.55   0.011     -.032788   -.0042886
    Business |   .0172999   .0308531     0.56   0.575    -.0431711    .0777708
      GPAlow |  -.0110738   .0304819    -0.36   0.716    -.0708171    .0486696
       _cons |   1.131618   .1400619     8.08   0.000     .8571015    1.406134
-------------+----------------------------------------------------------------
noise        |
       _cons |   .0952326   .0079348    12.00   0.000     .0796807    .1107844
------------------------------------------------------------------------------

It is then possible to predict the values of the two estimated
utilities, which will vary with the characteristics of each subject, and
plot them. Fig. 10 in the text shows the distributions of estimated utility
values.
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F5. Replication of Holt and Laury (2002)

Finally, it may be useful to show an implementation in Stata of the ML
problem solved by HL:

program define HLep1

args lnf r alpha mu

tempvar theta lnfj prob1 prob2 scale euSAFE euRISKY euRatio
               mA1 mA2 mB1 mB2 yA1 yA2 yB1 yB2 wp1 wp2

quietly {

        /* initializations */
        generate double `prob1' = $ML_y2/10
        generate double `prob2' = 1 - `prob1'
        generate double `scale' = $ML_y7

        /* add the endowments to the prizes */
        generate double `mA1' = $ML_y8 + $ML_y3
        generate double `mA2' = $ML_y8 + $ML_y4
        generate double `mB1' = $ML_y8 + $ML_y5
        generate double `mB2' = $ML_y8 + $ML_y6

 /* utility of prize m */
        generate double `yA1' = (1-exp(-`alpha'*((`scale'*`mA1')^(1-`r'))))/`alpha'
        generate double `yA2' = (1-exp(-`alpha'*((`scale'*`mA2')^(1-`r'))))/`alpha'
        generate double `yB1' = (1-exp(-`alpha'*((`scale'*`mB1')^(1-`r'))))/`alpha'
        generate double `yB2' = (1-exp(-`alpha'*((`scale'*`mB2')^(1-`r'))))/`alpha'

 /* classic EUT probability weighting function */
        generate double `wp1' = `prob1'                                           
          generate double `wp2' = `prob2'

 /* expected utility */
        generate double `euSAFE' = (`wp1'*`yA1')+(`wp2'*`yB1')                  
          generate double `euRISKY' = (`wp1'*`yA2')+(`wp2'*`yB2')

 /* EU ratio */
        generate double `euRatio' = (`euSAFE'^(1/`mu'))/
                                   ((`euSAFE'^(1/`mu'))+(`euRISKY'^(1/`mu')))

 /* contribution to likelihood */
        replace `lnf' = ln(`euRatio')   if $ML_y1==0
        replace `lnf' = ln(1-`euRatio') if $ML_y1==1

    }
end

The general structure of this routine should be easy to see. The routine is
called with this command ml model lf HLep1 (r: Choices problem m1a m2a

m1b m2b scale wealth = ) (alpha: ) (mu: )where variable ‘‘Choices’’ is a
binary variable defining the subject’s choices of the safe or risky lottery;
variable ‘‘problem’’ is a counter from 1 to 10 in the usual implementation of
the design; the next four variables define the fixed prizes; variable ‘‘scale’’
indicates the multiples of the basic payoffs used (e.g., 1, 10, 20, 50, or 90),
and variable ‘‘wealth’’ measures initial endowments prior to the risk
aversion task (typically $0). Three parameters are estimated, as defined in
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the EP specification discussed in the text. The only new steps are the
definition of the utility of the prize, using the EP specification instead of the
CRRA specification, and the definition of the index of the likelihood.

Use of this procedure with the original HL data replicates the estimates in
Holt and Laury (2002, p. 1653) exactly. The advantage of this formulation is
that one can readily extend it to include covariates for any of the
parameters. One can also correct for clustering of observations by the same
subject. And extensions to consider probability weighting are trivial to add.

F6. Extensions

There are many possible extensions of the basic programming elements
considered here. Harrison (2006c) illustrates the following:

� modeling rank-dependent decision weights for the RDU and RDEV
structural model;
� modeling rank-dependent decision weights and sign-dependent utility for
the CPT structural model;
� the imposition of constraints on parameters to ensure non-negativity (e.g.,
lW1 or mW0), or finite bounds (e.g., 0oro1);
� the specification of finite mixture models;
� the coding of non-nested hypothesis tests; and
� maximum simulated likelihood, in which one or more parameters are
treated as random coefficients to reflect unobserved individual hetero-
geneity (e.g., Train (2003)).

In each case template code is provided along with data and illustrative
estimates.
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