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Abstract

Economists generally view environmental enforcement as a tool to secure compliance with regulations. This paper

demonstrates that credible enforcement significantly increases statutory over-compliance with regulations as well. We find

that many plants with discharges typically below legally permitted levels reduce discharges further when regulators issue

fines, even on other plants. Also, non-compliant plants often respond to sanctions by reducing discharges well beyond

reductions required by law. Thus, increased enforcement generates substantial discharge reductions above and beyond

those expected from simply deterring violations.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Regulatory punishment for pollution violations is a mainstay of nearly every industrialized nation’s
environmental policy. Economists generally view such enforcement as a tool to secure compliance. This paper
empirically demonstrates that enforcement can significantly increase the degree of statutory over-compliance
with environmental regulations as well. We show that this effect can be economically rational given discharge
randomness or discharge jointness.

Previous research has demonstrated high levels of statutory compliance with Clean Water Act regulations.
For example, McClelland and Horowitz [22] found that aggregated biochemical oxygen demand (BOD)
discharges from pulp and paper plants were approximately 50% of allowable levels. Shimshack and Ward [28]
reported that roughly 98% of plants were in compliance with total suspended solids (TSS) and BOD
regulations during an average month. Given these significant compliance rates, one might expect small overall
reductions in discharges from increased enforcement efforts. Under conventional economic wisdom, only
e front matter r 2007 Elsevier Inc. All rights reserved.
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violating plants have incentives to respond to an increased probability of fines and then only by reducing
discharges to just the legal threshold.

However, we demonstrate that this conventional wisdom is inaccurate. Even in an industry where
compliance is generally high, an increase in enforcement through fines can cause a significant reduction in
discharges. Enforcement not only induces non-compliant plants to become compliant, it provokes many
typically over-compliant plants to reduce discharges even further below their permitted levels. One implication
of our results is that analyzing only the effect of enforcement on the compliance decision, as in much of the
previous literature, substantially underestimates the impact of enforcement on environmental quality. Another
implication is that at least some degree of over-compliance is driven by traditional economic incentives, rather
than by altruistic corporate social responsibility. While we make no attempt to explain the persistent low
average level of discharges, we do find evidence that significant variation around this central tendency can be
explained by variation in enforcement efforts.

Our analysis begins with a conceptual framework that motivates the subsequent investigations. Plants with
stochastic discharges face an uncertain and potentially changing regulatory environment. Plants learn about
this environment by observing the regulator’s recent enforcement history. When a plant observes a sanction on
itself or on other plants within its state, it updates its beliefs about the regulator’s overall credibility and
stringency. The plant bases its target discharge levels, in part, on these updated beliefs.

Next, the paper investigates the empirical relationship between enforcement and discharges. We use a panel
of plant-level water pollutant discharges and sanction data from the EPA’s Permit Compliance System (PCS).
The sample spanning 1990–2004 is the most modern in the literature. First, we test the overall strength of the
enforcement response using linear regressions. In periods of high regulatory stringency, average discharges fall
significantly. Second, using quantile regressions, we demonstrate that most of this response is by plants that
statistically over-comply, i.e. plants that usually discharge well below legally required levels. In periods of
increased regulatory stringency, the entire statistical distribution of discharges, not just the upper tail, shifts
downwards. In other words, plants with discharges below legally permitted levels reduce discharges further
when regulators issue fines on other facilities.

After demonstrating that enforcement significantly increases over-compliance, we explore two mechanisms
for the link between enforcement and over-compliance: discharge randomness and discharge jointness. Plants
with stochastic discharges or multiple pollutants may have economic incentives to reduce contaminants in
periods of high enforcement, even if they are typically discharging well below legally permitted levels. We find
that increased regulatory stringency induces plants to go further beyond compliance when they face higher
risks from violation due to stochastic discharges. Hence, randomness does play a role in the degree of over-
compliance attributable to enforcement. We also find that a pollutant’s response to enforcement is influenced
by the risks from violation on a different pollutant discharged in the same production process. Hence,
jointness also plays a role in determining the degree or extent of over-compliance.
2. Context

2.1. Literature

2.1.1. Enforcement

The empirical literature on enforcement emphasizes the direct role of coercive enforcement in reducing
violations of standards. Studies by Magat and Viscusi [21] and Laplante and Rilstone [20] investigated the
impact of inspections and the threat of inspections, respectively, on water pollution compliance rates and
discharges. Gray and Deily [15] investigate non-monetary enforcement actions on compliance rates in the steel
industry. Nadeau [23] considered the impact of enforcement activities on the duration of air pollution non-
compliance. Stafford [30] showed that an increase in the maximum possible penalty decreased violations for
hazardous waste polluters. Earnhart [13] investigated the impact of inspections, enforcement actions, and their
threats on the discharges of Kansas wastewater treatment facilities. The above papers represent important
contributions to the empirical enforcement literature. However, none of those papers highlight the effect of
enforcement on the degree of over-compliance.



ARTICLE IN PRESS
J.P. Shimshack, M.B. Ward / Journal of Environmental Economics and Management 55 (2008) 90–10592
2.1.2. Over-compliance

The empirical literature on over-compliance emphasizes mechanisms that indirectly reduce discharges below
statutory levels. Most relevant for this study is the discharge randomness mechanism. For example, plants
may hedge to provide a margin of safety against violations due to stochastic discharges. When stochastic
shocks are particularly large, a plant may reduce its average discharges in an effort to stay compliant.
Brannlund and Lofgren [9] took such impacts into account in estimating the shadow price of pollution, and
rejected a zero marginal value. Bandyopadhyay and Horowitz [5] demonstrated that plants with greater
discharge volatility had lower average discharges, which suggests that discharge levels alone may not fully
capture plant behavior. Therefore, they used the implied probability of violation to measure plant behavior.
They studied the effects of polluter and community characteristics on the probability of violation, but did not
examine enforcement.

The bulk of the over-compliance literature focuses on explaining persistent over-compliance. Theoretical
models by Arora and Gangopadhyay [4], Kirchoff [17], and Cavaliere [11] all showed that consumer
preferences for environmental quality can generate over-compliance as a market outcome. Arora and Cason
[1,2] found empirical support for this theory; larger firms with greater public contact were more likely to
participate in the EPA’s 33/50 program. Arora and Cason [3] and Becker [8] used census data to show that
demographic composition affected Toxics Release Inventory self-reported emissions and air pollution
abatement expenditures, respectively. Similarly, Earnhart [14] demonstrated that community characteristics
like unemployment, political factors, community size, and demographics impacted the environmental
performance of Kansas wastewater treatment facilities. Perhaps the most economically intuitive explanation
for voluntary over-compliance would be very low marginal variable costs of abatement, possibly due to
‘‘lumpy’’ abatement investments. For example, in a putty-clay investment scenario, the plant might over-invest
in a fixed technology for fear of future reductions in pollution standards. McClelland and Horowitz [22]
statistically rejected this hypothesis of a negligible shadow value for discharges.

The preceding explanations may well explain part of persistent over-compliance. However, these
mechanisms move too slowly to explain much of the important short-run variation in observed over-
compliance. In contrast, this short-run variation is the focus of our study, and we document that significant
variation in the degree of over-compliance is attributable to variation in enforcement stringency. Further, the
broader literature interprets over-compliance as discharges below permitted levels due to factors beyond
regulation. Our interpretation might be thought of as statistical over-compliance, in the sense that there is
some underlying risk of violation and sanction motivating reductions beyond what is required by law.

2.2. Background

Water pollutants for the US pulp and paper industry are the focus of our analysis. We choose the pulp and
paper industry because it is the largest discharger of conventional pollutants into US waterways, releasing over
16 million cubic meters of wastewater daily. In our sample, water pollution permitting, inspection, and
enforcement activities are conducted by state-level regulatory authorities under the auspices of the National
Pollution Discharge Elimination System (NPDES). Monthly self-monitoring reports are the primary source of
compliance information. On-site regulator inspections are intended to ensure the accuracy of these self-
reports. Inspections also identify maintenance issues, serve as a source of information for future permitting,
and provide an avenue to gather evidence to support enforcement actions. Inspections vary in purpose, but
sampling inspections are the most significant. Sampling inspections consist of equipment examination,
performance auditing, and regulator sampling of discharges.

Enforcement actions range from levying fines to making warning telephone calls. The full deterrent effect of
sanctions may be greater than the nominal monetary cost, which is often significant by itself. Fine events may
be signals of a broad willingness to be tough on non-compliance. Increased regulatory threats may include
enhanced penalties, some of which may be severe. Of course, very few such severe sanctions would be observed
if the threat of them is credible.

We take the standard view of the regulated plant as a rational decision-maker that undertakes abatement
effort to the point where the marginal cost of such effort equals the corresponding marginal benefit. Plants
face an uncertain regulatory environment, so their assessments of the threat of a fine for non-compliance are
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updated based upon experience. Following Sah’s [25] work on social osmosis in crime, we assume that an
important credible source of information about the probability of a fine is the enforcement history of the
regulator. Since there are likely to be shocks to the regulatory system, including changes from local political
and economic conditions, the most informative data about current conditions is from the recent past. Recent
sanctions by a regulator, on any plant, affect the regulator’s overall credibility and thus impact each plant’s
perceived threat of a fine.1 Consequently, recent fines may influence discharges of both sanctioned plants and
other plants in the same state. See Shimshack and Ward [28] for an empirical demonstration of this latter
regulator reputation effect, also known in the law and policy literature as general deterrence.
2.2.1. Treatment

Pulp and paper plants can meet mandated NPDES pollution limitations by modifying production processes
or treating effluents. Historically, most abatement was from external end-of-pipe treatment. More recently,
external treatment options have been coupled with modern production practices that mitigate effluent
production. In the pulp and paper industry, wastewater treatment typically follows three steps: screening,
primary clarification, and secondary biological treatment. Typically, wastewater first passes through bar
screens that remove large solids. Second, gravity sedimentation or dissolved air floatation removes most
suspended solids. Third, wastewater from the primary clarifiers is fed to facilities that use microorganisms to
remove the effluents’ organic molecules. The most common of these secondary treatment technologies is the
activated sludge process.

Pulp and paper treatment often produces discharges that are volatile from the plant’s perspective. Efficiency
for common secondary biological treatment processes, for example, is highly sensitive to the number and
composition of microorganisms, temperature, acidity, light, nutrient concentrations, substrate (organic
matter) concentrations, dissolved oxygen levels, and sludge age [31]. Further, many primary clarifiers and
secondary treatment basins are located outside and are therefore sensitive to weather and climatic conditions.

Environmental control in the industry also involves pollution jointness. For example, secondary biological
treatment inherently removes both oxygen demanding substances and solids. Further, discharge reductions
increasingly occur via process modifications. In pulping, changes for improved environmental performance
include alternative raw materials, modern debarking and chip preparation, mechanical raw material
transport, liquor spill control, and thermo-chemical changes [29]. In papermaking, the major environmental
improvement has been wastewater recycling. These process modifications jointly reduce effluents as a whole.
3. Data

3.1. Our sample

The EPA’s PCS serves as our specific data source. Established in conjunction with the Clean Water Act and
its amendments, the PCS tracks monthly plant-level self-reported discharges, permitted effluent limitations,
inspections, and enforcement actions. Our sample includes the most modern data currently available in the
public version of the PCS. We consider 251 ‘‘major’’ pulp, paper, and paperboard mills in 28 sample states
over 14 years. Specifically, we track plant’s discharges, limits, and enforcement activity for the 168 months
between 1990–1996 and 1998–2004.2 The EPA identifies plants as major if they have a flow of one million
gallons or more per day or pose a significant impact to water quality. We only consider major plants because
these facilities are required to report their own discharges levels for operating pipes each month. We consider
all states with two or more major pulp, paper, or paperboard mills.

The dataset contains the relevant information for the conventional water pollutants BOD and TSS. We
choose these contaminants because nearly all pulp and paper mills produce wastewater with significant
1One could formally model this learning process in a Bayesian framework. However, for our purposes, the practical value of such a

model is low, since the basic lesson that plants update their beliefs in response to new information is quite straightforward. We refer the

interested reader to Sah [25] for a formal treatment.
2Our comprehensive sample is constructed from a pre-existing 1990–1996 dataset and a newly obtained 1998–2004 dataset. When the

more recent subsample was obtained, information for 1997 was no longer present in the publicly available version of the PCS.
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Table 1

Summary statistics

Discharges

Pollutant Mean discharge ratio 25% Quantile 50% Quantile 75% Quantile 90% Quantile Violations Violators

BOD .384 .168 .334 .545 .751 439 101

TSS .307 .130 .248 .428 .621 226 75

Fines

Total fines States levying fines Median fine Std. dev. of fines

39 13 $9,000 $97,061
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amounts of these discharges. While there are several measures of effluent discharges and limits, we examine
average monthly quantities. All 251 plants report TSS quantities and a subset of 242 plants also report BOD
quanitities. For the purposes of analysis, we scale discharges to obtain ratios of actual to permitted discharges,
which can be thought of as discharges as a percent of the standard. Since some plants may have multiple
outfalls, our final plant-level unit of observation is the maximum discharge ratio for each pollutant across all
outfalls.3

In addition to discharges, the dataset contains information on administrative fines and inspections. Fines
are monetary charges imposed by the state agency, rather than a court, for a violation. We consider fines
coded as effluent violations in the PCS. This excludes sanctions for other types of violations such as
paperwork errors, reporting errors, or poor equipment maintenance. To isolate fines at least partially
attributable to BOD and TSS, we choose those effluent sanctions preceded by one or more BOD or TSS
violations in the previous year. We consider all inspections in which the regulator conducts effluent sampling.

All discharge and violation data in the PCS, and thus in the empirical analysis, is self-reported. Intentional
misreporting is punishable by large criminal sanctions, including jail time. These criminal penalties are borne
directly by employees, unlike the effluent sanctions we study. Consequently, there are strong incentives for
truthful reporting. Further, a USEPA Center for Environmental Information and Statistics [32] independent
analysis has confirmed the accuracy of PCS data. Laplante and Rilstone [20] suggested a test for the accuracy
of self-reported data based on the difference in reported discharges when an inspector is present or absent. In a
regression of discharges on inspections and plant-level fixed effects, we fail to reject the null hypothesis of
accurate self-reporting for both BOD and TSS.

3.2. Summary statistics

Table 1 displays descriptive statistics about actual discharges and fines. Notably, Table 1 indicates very
substantial levels of over-compliance. On average, aggregate BOD discharges are less than 40% of permitted
levels. TSS discharges are about 30% of permitted levels. Histograms displaying discharge ratios for a typical
month are presented in Figs. 1 and 2. In an average month, approximately 1% of plants are in violation.
Several plants violated more than once. In total, 123 plants violated in 1 or more months for at least one
pollutant during our sample period. Of these, 53 plants recorded violations for both BOD and TSS. Over the
entire sample, there were 439 BOD plant/month violations and 226 TSS plant/month violations. Overall, 62%
of plant/month violations were BOD alone, 26% were TSS alone, and 12% were both BOD and TSS.
Violations declined over time, although non-monotonically. The maximum number of violations for both
BOD and TSS occurred in 1990 and the minimum number of violations occurred in 2004. Violations were also
not distributed evenly across space, as both the total number of violations and violations per plant were
considerably higher for a subset of states.
3In any given month, the vast majority of plants emit a measured pollutant from a single outfall. Further, the composition of discharges

across outfalls remains relatively constant over time. Thus, it is unlikely that this convenient aggregation biases our results.
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Fig. 1. Substantial over-compliance with permitted standards for BOD. The ratio of actual to permitted discharges nearly always lies in

the compliance region (less than 1), and the majority of plants emit less than 50% of allowable levels. While the histograms represent

discharge ratios for a single month of the sample, other sample months demonstrate similar over-compliance.
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Fig. 2. Substantial over-compliance with permitted standards for TSS. The ratio of actual to permitted discharges nearly always lies in the

compliance region (less than 1), and the majority of plants emit less than 50% of allowable levels. While the histograms represent discharge

ratios for a single month of the sample, other sample months demonstrate similar over-compliance.
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The bottom portion of Table 1 presents descriptive statistics for administrative fines. There were 39 fines
associated with BOD or TSS quantity violations, and these fines averaged about $32,700. Note that these
fines should be interpreted relative to the gain in plant-level profits obtained by exceeding a given
pollution standard in a given month, not relative to the overall operating revenue of a plant. Fines
modestly declined over time. The maximum number of fines in a given sample year was 6, in both 1992
and 1993. The minimum number of fines in a given sample year was 0, in both 1998 and 2004. As noted in
Table 1, 13 states levied fines during our sample period. These 13 states had mean violations per plant
between two and four times higher (TSS and BOD respectively) than the 15 states that did not levy fines.
While we do not know precisely what violation triggered a fine, it seems that fines tended to over-represent
violations for both pollutants simultaneously. Eight of our 39 fines were preceded solely by one or more BOD
violations in the previous year and 10 of 39 fines were preceded solely by one or more TSS violations in the
previous year.

Note that fines primarily enter our empirical specification though a regulator reputation variable that
indicates the presence of a fine on another plant within the same state. Because one fine affects all other plants
in the state, a significant fraction (8.8%) of observations have positive reputation effect fine variables.
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The data also display significant volatility. The standard deviations of discharge ratios are 0.30
and 0.28 for BOD and TSS. Plants with typically low discharges account for a large fraction of
violations. About one-half of total BOD violations are by plants with median BOD discharge ratios below
50% and about sixth-tenths of total TSS violations are by plants with median TSS discharge ratios
below 50%.
4. Demonstrating enforcement-induced changes in discharges

In this section, we use panel-data techniques to analyze plants’ discharge responses to changes in regulatory
enforcement. Following our conceptual framework, a key determinant in this exploration is the regulator’s
recent enforcement history, a proxy for the likelihood, at any given time, of the regulator issuing a fine for a
violation. First, we explore the impact of this regulator reputation effect on mean levels of discharges. Second,
we explore the impact of the reputation effect across all ranges of the discharge distribution, from those plants
that typically violate to those that greatly over-comply.
4.1. Variables

The dependent variable in each of our analyses is the ratio of actual discharges to the legally permitted level
(discharges as a percent of the standard). The key explanatory variable, following [28], is a 0–1 dummy
variable that indicates the existence of a fine on another plant j in plant i’s state in any of the 12 months prior
to t.4 This measure proxies for plant beliefs, and thus we refer to the variable as the regulator reputation effect.
The ideal measure of regulator reputation would be plants’ perceptions of regulatory stringency. However,
perceptions are unobserved and unobservable.5 Fines are generally quite rare, so the very existence of a recent
fine may lead a plant to conclude rationally that the threat of fines is higher than average, given a non-static
regulatory environment. We later show that using the dummy approach in estimation is consistent with a two-
state model of threat.6

We also consider the impact of regulator actions on the sanctioned plant. Thus, we include a 0–1 dummy
variable indicating whether that particular plant was fined in the previous year. This idiosyncratic deterrence
effect might reflect increasing sanctions for plants with an offense history. Additionally, inspections may affect
discharges at the plant-level. So, we include the number of sampling inspections in the previous year as an
explanatory variable.

Plant production varies seasonally, thus we include quarterly dummy variables. Technological change may
be an issue given our long data series. Thus we include annual dummies to account for broad trends in
abatement technology. Further, for all linear regressions, we include plant-specific linear time trends to
account for possible variation in adoption of technology across plants.

Finally, we exploit the panel structure of the data by including fixed effects. For all linear regressions, we use
plant-level fixed effects. Thus, we obtain identification only from within-group variation. Plant-level fixed
effects allow us to capture systematic differences due to factors such as different SIC codes, production
capacity, and geographic conditions. Further, a natural concern in plant-level analyses is that regulators may
target some plants for stricter enforcement based on their overall environmental performance. Without fixed
effects, this targeting might produce a positive correlation between enforcement and discharges simply from
cross-plant differences in overall enforcement.
4We define this variable over 1 year because the literature indicates that this reputation signaling effect declines quite rapidly after 12

months.
5One can view our measure as a proxy for true perceptions. If this is imperfect, it will bias coefficients towards zero. So, use of a proxy

should not spuriously cause affirmative results.
6One potential weakness is that the dummy variable approach does not account for the number of violations. An alternative measure

that does so, in principle, would be the ratio of fines to violations over the past year. However, as compliance is generally quite high in our

dataset, this ratio most often takes the same 0–1 values as the dummy and has a sample mean within 15% of the dummy. Moreover,

constructing a ratio requires dropping data in the case of no recent violations. We use fine existence for the results and explore alternatives

in the sensitivity section.
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4.2. Linear regressions

Does enforcement activity reduce the overall discharge ratio on average? Our goal here is to establish the
basic relationship between the perceived probability of sanction and pollution discharges. Thus, we run fixed-
effects linear regressions of discharge ratios on regulator reputation enforcement variables for BOD and TSS.7

In addition, we included all the exogenous variables discussed above as controls. Results are presented in
Table 2. Computed standard errors are heteroskedastic-consistent. t-statistics appear in parentheses.

Results in Table 2 indicate that the estimated impact of a fine on another plant in the same state on the
discharge ratios is negative and strongly significant for both BOD and TSS.8 The average discharge ratio
declines 0.024 in the year following a fine. Given the overall mean discharge ratios, this translates (on average)
into an approximately 6% reduction in aggregate discharges for BOD and an approximately 8% aggregate
reduction for TSS.

Idiosyncratic, individual fine deterrence effects are also statistically significant, but less economically
significant than the reputation effects which simultaneously impact many plants. Seasonality appears to play a
strong role in discharges, as all estimation-related coefficients are large and significant. We also find that
average discharges for both BOD and TSS trend downward over time.

4.3. Conditional quantile regressions

Do fines reduce discharges by plants statistically over-complying? Our goal here is to establish that the
predicted fine-induced discharge response applies to over-compliers. The linear regression above demonstrated
that average discharges respond to the increased regulatory threat associated with enforcement actions.
However, this aggregate result might be driven solely by significant violators responding to the threat of
sanctions. We therefore use Koenker and Bassett’s [18] conditional quantile regressions to examine the
discharge response at various levels of compliance. Standard errors are estimated following [19,24].

In our context, the role of the quantile regression is to decompose the mean response revealed by the linear
regression into changes across the state-wide probability distribution of discharge levels. Conditional quantile
regressions allow us to estimate different fine slope coefficients for different discharge quantiles. For example,
a regression on the 50th percentile estimates the effect of the fine reputation effect on the sample median. Since
the sample median of discharges is well into the over-compliance region, a significant predicted fine response
for the 50th percentile would indicate that even plants in that statistically over-comply typically reduce
discharges after a fine. In addition to the median regression, we also ran the 25th, 75th, and 90th percentile
regressions. Here, higher quantiles correspond to higher discharges. We do not examine more extreme
quantiles such as the 95th percentile because quantile regressions are generally unstable at the extreme tails of
distributions, due to reductions in sampling variation [10].

In the quantile regression analyses, we include state-level fixed effects and state-level linear time trends to
identify what happens to the overall discharge distribution within a state. We do not include plant-level fixed
effects because such plant-level fixed effects in quantile regressions would yield coefficients that indicate a
typical plant’s fine responses across the distribution of departures from the individual’s usual discharge level.
So, a 90th percentile coefficient would be the fine response when plants are emitting a particularly large
amount relative to their idiosyncratic typical levels. Our purpose, however, is to investigate if the pollution
distribution shifts for plants operating below their discharge standard. In a linear regression context, the
overall mean discharge response does not depend on which specific plants adjust. In contrast, the overall
change in the shape of the state-level discharge distribution reflected in the quantile regression approach does.

Quantile regression results for BOD and TSS are presented in Tables 3 and 4, respectively. We find strong
evidence that plants reduce discharges after an increase in the predicted probability of a sanction for violation
7We also ran specifications with logged-dependent variables. Logs have the advantage of preventing negative predicted discharges.

However, as a practical matter, the current specifications predict very few negative discharges. The logged specifications yielded

statistically similar results, but the key coefficient magnitudes were larger in absolute value. We ultimately chose the current specification

to be conservative and because many detrended and seasonally corrected plant discharge distributions do not appear log-linear.
8We construct the reputation effect variable using fines for either BOD or TSS or both, since plants would extract signals about overall

regulator stringency from sanctions on both. Thus, we have a single proxy for an increased probability of sanctions on both pollutants.
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Table 3

BOD quantile regression resultsa,b

Variable description 25% Quantilec 50% Quantilec 75% Quantilec 90% Quantilec

Fine 1–12 months ago on another plant �0.0263* �0.0234* �0.0386* �0.0411*

(�5.60) (�3.49) (�4.67) (�4.02)

Fine 1–12 months ago on self 0.0466* 0.0782* 0.0612* 0.0290

(4.24) (4.93) (3.14) (1.23)

Inspections 1–12 months ago (in state) 0.0021* 0.0017* 0.0015 �0.0001

(3.62) (2.09) (1.54) (�0.10)

Season2 dummy �0.0311* �0.0401* �0.0561* �0.0469*

(�6.00) (�5.41) (�6.24) (�4.31)

Season3 dummy �0.0420* �0.0430* �0.0604* �0.0265

(�4.76) (�3.41) (�3.92) (�1.40)

Season4 dummy �0.0272* �0.0224 �0.0387 0.0022

(�2.13) (�1.23) (�1.74) (0.08)

Year dummies 13 Year dummies 13 Year dummies 13 Year dummies 13 Year dummies

Fixed effects 27 State FE’s 27 State FE’s 27 State FE’s 27 State FE’s

Linear time trends 27 State-specific

time trends

27 State-specific

time trends

27 State-specific

time trends

27 State-specific

time trends

aThe dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the listed pollutant.
bA superscript * indicates statistical significance at the 5% level.
cThe BOD plant-level analysis consists of 30,895 observations from 242 plants in 28 states over the 168 sample months.

Table 2

Plant-level linear regression resultsa,b

Variable description BOD regression coefficientsc TSS regression coefficientsd

Fine 1–12 months ago on another plant �0.0235* �0.0240*

(�4.72) (�5.98)

Fine 1–12 months ago on self �0.0573* �0.0905*

(�2.14) (�2.41)

Inspections 1–12 months ago 0.0011 0.0025

(0.39) (0.82)

Season2 dummy �0.0447* �0.0442*

(�8.08) (�9.14)

Season3 dummy �0.0585* �0.0631*

(�6.51) (�7.66)

Season4 dummy �0.0441* �0.0469*

(�3.40) (�3.85)

Year dummies 13 Year dummies 13 Year dummies

Fixed effects 241 Plant-level FE’s 250 Plant-level FE’s

Linear time trends 241 Plant-specific TT’s 250 Plant-specific TT’s

aThe dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the listed pollutant.
bA superscript * indicates statistical significance at the 5% level.
cThe BOD plant-level analysis consists of 30,895 observations from 242 plants over the 168 sample months.
dThe TSS plant-level analysis consists of 32,995 observations from 251 plants over the 168 sample months.

J.P. Shimshack, M.B. Ward / Journal of Environmental Economics and Management 55 (2008) 90–10598
across the entire range of the discharges distribution. For both pollutants, enforcement significantly
reduces discharges reductions at every estimated quantile.9 Recall that even the 90th percentile is in the
9It may initially seem puzzling that the ‘fine 1–12 months on self’ and inspections coefficients are frequently positive in the quantile

regressions. However, these results are consistent with the absence of plant-level fixed effects. Without plant-level fixed effects, if regulators

target plants for stricter enforcement based on their overall environmental performance, these control variable coefficients may be positive.

Helland [16] finds evidence for such plant-specific targeting.

Nonetheless, as a robustness check, we ran regressions that omitted the own fine variable and regressions that included the fined plant in

the reputation effect. In all regression analyses, results are economically similar to those presented in the tables.
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Table 4

TSS quantile regression resultsa,b

Variable description 25% Quantilec 50% Quantilec 75% Quantilec 90% Quantilec

Fine 1–12 months ago on another

plant

�0.0218* �0.0353* �0.0533* �0.0574*

(�5.54) (�6.86) (�7.83) (�4.96)

Fine 1–12 months ago on self 0.1162* 0.1815* 0.2245* 0.1519*

(12.7) (15.1) (14.3) (5.77)

Inspections 1–12 months ago (in

state)

0.0005 0.0014* 0.0026* 0.0031*

(1.03) (2.24) (3.17) (2.21)

Season2 dummy �0.0181* �0.0339* �0.0531* �0.0636*

(�4.19) (�5.95) (�7.06) (�4.95)

Season3 dummy �0.0202* �0.0478* �0.0756* �0.0944*

(�2.75) (�4.94) (�5.94) (�4.35)

Season4 dummy �0.0086 �0.0362* �0.0575* �0.0675*

(�0.81) (�2.59) (�3.14) (�2.17)

Year dummies 13 Year dummies 13 Year dummies 13 Year dummies 13 Year dummies

Fixed effects 27 State FE’s 27 State FE’s 27 State FE’s 27 State FE’s

Linear time trends 27 State-specific time

trends

27 State-specific time

trends

27 State-specific time

trends

27 State-specific time

trends

aThe dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the listed pollutant.
bA superscript * indicates statistical significance at the 5% level.
cThe TSS plant-level analysis consists of 32,995 observations from 251 plants in 28 states over the 168 sample months.

J.P. Shimshack, M.B. Ward / Journal of Environmental Economics and Management 55 (2008) 90–105 99
over-compliance region, as this percentile represents a discharge ratio of about 0.75 for BOD and 0.62 for
TSS. The important lesson from these quantile regressions is that the entire discharge distribution significantly
shifts in response to the reputation effect.

Moreover, we find that the response at the highest quantiles tends to be larger than at the lowest. For both
BOD and TSS, fines responses at the 25th and 90th percentiles are economically different from one
another. For example, the TSS results in Table 4 indicate that the fine response at the 90th discharge percentile
is more than 2.5 times greater than the fine response at the 25th discharge percentile. BOD results in Table 3
indicate that the fine response at the 90th percentile is approximately 6/10 greater than the fine response at the
25th percentile. Some, but not all, differences are statistically significant as well (e.g. TSS 25th vs. 90th, TSS
50th vs. 90th). These results are intuitive; plants closer to violating their standard may respond to a greater
extent.

The results establish that a fine induces a significant over-compliance response across all quantiles of the
discharge distribution, including the lowest. Given this broad-based response, two questions naturally arise:
Why would plants which statistically over-comply reduce discharges in response to an increased threat of
sanction for a violation? Why would plants that sometimes violate reduce discharges in all periods, rather than
simply reducing violations to the standard threshold? Section 5 explores these issues in more depth; we test the
extent to which discharge randomness and jointness in pollution production can resolve these puzzles.
However, we first explore the sensitivity of our key empirical regularity.

4.4. Sensitivity analysis

4.4.1. Statistical plausibility

Are the statistical findings reasonable? An alternative and non-parametric analysis is a simple comparison
of means event study. Here, we compare state-wide discharges in the year before and the year after a fine in
that state, omitting the fined plant itself to ensure a fair comparison. We find that BOD discharges drop 5.2%
and TSS discharges drop 9.6%. These results are comfortably close to those of the regression analysis, which is
the preferred method because it accounts for covariates.

Perhaps one might still be concerned that the results are a consequence of some spurious correlation
between the timing of fines and some general economic or political condition, not accounted for in our
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regression models. If that were the case, we might expect discharges in other states to react at the same time to
the true cause. Thus, we perform a counterfactual experiment which randomly shuffled the fine reputation
variable at time t across the pool of all plants. We found negligibly small average linear regression coefficients
and t-statistics.10
4.4.2. Sensitivity to assumptions

Our results are robust to alternative specifications for our key fine reputation effect. One natural alternative
to our fine dummy approach is a fines per violation measure, where ‘‘violation’’ indicates the presence of a
plant/month violation for BOD, TSS, or both. Results are economically and statistically similar to presented
results. We also considered the possibility that unfined violations contribute to the regulator reputation effect
by including the number of unfined violations per plant as an explanatory variable. Results for the original
fine variables are extremely similar. Finally, we tried a linearly diminishing function for the fine variable,
rather than a dummy. Results are again economically similar to those presented, and a specification test favors
the dummy approach.

Our results are also robust to an alternative approach to plant-specific technological change. Our analysis
used plant-specific linear time trends, as well as overall year dummies. An alternative approach of including an
auto-regressive term lagged 1 year, used by Magat and Viscusi [21], yields very similar results.
5. Mechanisms for enforcement-induced changes in over-compliance

Can the empirical results documented in the explorations of Section 4 be explained by economic
mechanisms? In a simple deterministic one-pollutant model of the firm, over-complying plants would have no
reason to react further to enforcement, since they face no threat of sanction. However, plants with stochastic
discharges may face some possibility of a fine from accidental discharges over the legal standard [6,7,27].
Many factors such as equipment failures, human error, or poor maintenance may cause realized discharges to
differ from target, or intended, discharges during any particular time.11 Moreover, a plant compliant in one
pollutant may face some possibility of a fine for violations of a different, but jointly produced, pollutant.
Either of these mechanisms, or both, could in principle explain the reaction of statistically over-compliant
plants to changes in enforcement.

Basic economic logic implies that the marginal expected fine should help explain discharges, since plants
balance the marginal benefits of discharging with the marginal costs of the expected sanction from violating.
There are potentially two uncertain elements to sanctions and thus the marginal expected fine. First, as
discussed above, discharges are volatile and may be partially random, even from the plant’s perspective. Thus,
even if the plant’s target discharges z for a given pollutant are below the legal limit, there may be a positive
expected penalty F(z), which accounts for volatility in actual discharges around z. Another uncertain element
of sanctions is whether a given violation will be fined. Empirically, many violations are not sanctioned, so a
fine occurs with some probability P. In our conceptual framework, a key assumption is that the plant’s
assessment of P depends on recent enforcement actions. Taking these two components together, the marginal
expected fine is P�F 0(z). Changes in the perceived probability of sanction influence discharges of a risk-
neutral plant through this term. So, one reasonable and intuitive way to account for regulator reputation is to
10While the spurious correlation test presents evidence that omitted national shocks are not driving the results, an additional concern

may be omitted state-level shocks. Fines occur when discharges are particularly high, and suppose particularly high discharges for one

plant reflect omitted state-level common shocks (like weather) that induce particularly high discharges for all plants within the state.

Therefore, one might naturally expect discharges to be less high in the next period anyway; this is the standard ‘‘regression towards the

mean’’ effect [12]. However, this comparison is not what our fixed effects analysis investigates. Our analysis reveals a fine-induced decrease

in discharges relative to the plant’s conditional average discharges, not relative to the fined period’s discharges. Consequently, an omitted

state-level common shock could only produce our results if the common shock was accompanied by strong and persistent negative serial

correlation. We find no systematic evidence of negative serial correlation in either the short- or the long-term.
11If the plant is uncertain about future operating and market conditions, it will also be uncertain about what discharge levels will be

desirable in the near future. Since abatement steps such as preventive maintenance or operator training may require lead-time, both

accidental discharge variation and uncertain near-future operating conditions are important sources of randomness from the plant’s

perspective.
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include the marginal expected fine for each jointly produced pollutant in the linear discharges regression rather
than a dummy for the presence of a fine.12

We also assume a simple two-state threat perception model, with the default setting of low threat because
fines are so uncommon. Suppose P can take only take two values: Plo and Phi. The plant believes the threat is
high in periods after a fine in the state, which we code with the regulator reputation dummy variable R. Note
that the marginal expected penalty terms can then be written in the form PloF 0 þ ðPhi � PloÞRF 0. In our
regression, we exploit this simple technique by including both F 0 and RF 0 as regression explanatory variables.
Then Plo and Phi need not be pre-specified, as they will be implicitly absorbed into the regression coefficients to
be estimated. The baseline marginal expected penalty is thus accounted for by including F 0 in the discharge
regression. The interaction with the reputation dummy RF 0 allows for increased importance of the expected
fine when the threat of such a fine is higher. This interaction term is the key explanatory variable of interest.

5.1. Randomness

To the extent that randomness explains the over-compliance response, we would expect plants facing a
higher risk from random violation to respond more strongly to an increased probability of sanctions. In
particular, this impact should be transmitted through the marginal expected fine. In this section, we explore to
what extent randomness can empirically rationalize the post-fine discharge responses documented in Section 4.
As discussed above, we do so by interacting the reputation dummy R with the marginal expected fine. In sum,
we replace R in each discharge regression with F 0 and RF 0 for that same pollutant. We then test whether the
over-compliance response is better explained through this randomness mechanism than under the original
exploratory regressions.

To construct the marginal expected sanction measures, we must first have an empirical measure of the
stochastic shocks to discharges. These shocks are the difference between intended discharges and actual
discharges. Of course, determining the marginal expected penalty requires integration over an estimate of the
statistical distribution of discharges, since any fine would depend on the realized level of random discharges.
Our premise is that a reasonable estimate of random shocks is the empirical density of regression residuals.

One might simply assume a fixed distribution for the random shocks about their expected value, using
observed residuals to identify parameters of the assumed distribution. For example, one might assume a
Gaussian distribution of random shocks and set the variance parameter equal to the mean squared regression
residuals. However, this approach would be problematic in our context. The shape and scale of regression
residuals differ considerably from plant to plant. Visual inspections of histograms generated from the residuals
of regressions similar to those reported in Table 2 indicate some residual densities are highly skewed to the
right and some are symmetric. Fitting a simple parametric density to such diverse densities is particularly
unsatisfactory because the upper tail of these distributions is critical for correctly assessing the probability of
violation due to randomness.

We therefore turn to non-parametric density estimation to estimate plant-specific distributions of random
shocks. This approach better captures the variability in the distribution of random shocks across plants. One
standard density estimation technique is kernel estimation, which, intuitively speaking, smoothes out a
histogram. We apply an adaptive-bandwidth kernel density estimator, which allows the degree of smoothing
to vary somewhat across the distribution; see [26] for a more complete discussion. We adopt the adaptive
kernel, as opposed to a kernel estimator with a fixed bandwidth, because we are particularly interested in the
upper tail of the distribution where data can be sparse. In our analysis, the optimal bandwidth is fit locally by a
cross-validation criterion; estimates are generated using the implementation by Van Kerm [33].

Given density estimates, we can construct our empirical measure of the marginal economic risk from
random violation, F 0.13 To operationalize this measure, we must specify the fine as a function of the extent of
12A formal demonstration that this intuitive specification can be rationalized if profits are quadratic in discharges is available through

JEEM’s online archive supplementary material, which can be accessed at http://www.aere.org/journal/index.html.
13Some care must be paid in the construction of the distributions underlying our measure of empirical risk from random violation. We

do not want a function of the residual for plant i’s observation in period t to be included as an explanatory variable in a subsequent

regression for that residual. Therefore, the constructed density of random shocks for each observation is based upon plant i’s regression

residuals for all of that plant’s periods not equal to t.

http://www.aere.org/journal/index.html
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Table 5

Randomness exploration regressionsa,b

Variable description BOD regressionsc TSS regressionsd

Flat fine penalty Linear penalty function Flat fine penalty Linear penalty function

Fine–marginal expected penalty (RF0) �6.912* �1.899* �2.727 �0.9136

(�3.08) (�5.27) (�1.01) (�1.81)

Marginal expected penalty (F0) �10.321* �.9743* �14.571* 0.2303

(�4.30) (�7.94) (�2.46) (0.75)

Fine 1–12 months ago on self �0.0662* �0.0745* �0.1123* �0.0823*

(�2.52) (�2.77) (�3.02) (�2.16)

Inspections 1–12 months ago 0.0020 0.0026 0.0039 0.0030

(0.74) (0.97) (1.22) (1.02)

Season2 dummy �0.0512* �0.0496* �0.0496* �0.0435*

(�9.37) (-9.05) (-9.31) (�8.62)

Season3 dummy �0.0669* �0.0648* �0.0710* �0.0621*

(�7.26) (�7.19) (�8.80) (�7.01)

Season4 dummy �0.0504* �0.0489* �0.0534* �0.0461*

(�3.86) (�3.77) (�4.64) (�3.62)

Year dummies 13 Year dummies 13 Year dummies

Plant-level fixed effects 241 Plant-level fixed effects 250 Plant-level fixed effects

Plant-specific linear time trends 241 Plant-specific time trends 250 Plant-specific time trends

aThe dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the listed pollutant.
bA superscript * indicates statistical significance at the 5% level.
cThe BOD plant-level analysis consists of 30,895 observations from 242 plants over the 168 sample months.
dThe TSS plant-level analysis consists of 32,995 observations from 251 plants over the 168 sample months.
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violation. Since this function is unknown, we present results for two specifications. The first is a flat fine for
any violation, independent of the extent. The second is a penalty linear in the extent of violation. Applying
these specifications to our conditional density estimate for discharges, we numerically calculate the derivative
of the expected fine, F 0. The marginal expected penalty for a fixed fine is trivially proportional to the density of
discharges at the standard. If fines are linear in the extent of violation, with discharges measured on a ratio
scale, the marginal expected penalty is proportional to the probability of a violation. Different error or fine
structures would lead to different calculations.

Table 5 presents the results of our randomness exploration regressions. We find strong evidence that BOD
randomness plays an important role in enforcement-induced changes in over-compliance for that pollutant.
Coefficients on the interaction between the fine reputation effect and the marginal expected sanction (RF 0) are
statistically significant for both penalty specifications. This indicates that, in periods when regulators are
perceived as more willing to impose fines, the BOD over-compliance response is greater when plants have
higher marginal expected sanctions due to BOD randomness.14

Can BOD randomness alone rationalize the enforcement-induced over-compliance response for this
pollutant? One check is a specification test of the randomness model (Table 5) against the previous
uninteracted model (Table 2) that used only a non-interacted reputation term (R). Performing non-nested
P-tests, for both BOD fine specifications, we can reject the uninteracted model against the randomness model.
For BOD, randomness does appear sufficient to explain the enforcement-induced over-compliance response.

In contrast to BOD, we find no systematic evidence that TSS randomness plays an important role in
enforcement-induced changes in over-compliance for that pollutant. Coefficients on the interaction between
the fine reputation effect and the marginal expected sanction (RF 0) are not statistically significant for
both penalty specifications. In periods when regulators are perceived as more willing to impose fines, the TSS
14It is possible that econometric volatility overstates volatility from the plants’ perspective. Thus, we experimented with adjusting the

density of the econometric residuals by scale factors of 3
4
and 1

2
. This reduces our estimate of the risk of random violation. In both cases, the

impact of randomness captured by the interaction RF 0 remains significant for both the flat and linear BOD fine specifications.
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over-compliance response is not enhanced when plants have higher marginal expected sanctions due to TSS
randomness.

Further, the specification tests for the TSS randomness model yield ambiguous results. For the linear
penalty specification, a P-test fails to reject the uninteracted model (Table 2) against the randomness model
(Table 5). For the flat fine penalty specification, a P-test does reject the uninteracted model against the
alternative randomness model. For TSS, randomness does not appear to systematically explain the
enforcement-induced over-compliance response. Thus, it seems that enforcement is affecting TSS discharges
through some mechanism beyond randomness alone.
5.2. Jointness

Another possible explanation for enhanced over-compliance is jointness in pollution production and
abatement. As discussed in the background section, BOD and TSS discharges are (at least partially) jointly
determined. Wastewater treatment technologies treat both BOD and TSS simultaneously, and modern
production practices to improve environmental performance reduce many pollutants at once. To the extent
that a high penalty risk for one pollutant induces a plant to undertake environmental improvements, those
actions may reduce the other, jointly determined, pollutant.

We extend the regressions of the previous section to account for jointness, as well as randomness, by
including cross-pollutant risk, as derived in the appendix. To do so, we augment the analysis presented in
Table 5 to include the other pollutant’s marginal expected penalty F 0 and the interaction of the reputation
effect with the other pollutant’s marginal expected penalty RF 0. Thus, for example, BOD regressions include
the BOD marginal expected penalty F 0B, the BOD interaction F 0B R, the TSS marginal expected penalty F 0T,
and the TSS interaction F 0T R. TSS regressions are symmetric. Simultaneous estimation of the BOD and TSS
equations through a SUR regression would yield no efficiency gain, since the covariates in each equation are
identical.

Results of the simultaneous jointness/randomness exploration are presented in Table 6. Note especially
rows 1 and 2. Here, we find strong evidence that BOD randomness plays an important role in enforcement-
induced changes in over-compliance for both BOD and TSS discharges. Coefficients on the interaction of the
Table 6

Jointness and randomness exploration regressionsa,b

Variable description BOD regressionsc TSS Regressionsc

Flat fine penalty Linear penalty function Flat fine penalty Linear penalty function

BOD fine–marginal expected penalty (RF0) �6.940* �2.038* �4.921* �0.9700*

(�3.02) (�5.29) (�5.14) (�4.92)

TSS fine–marginal expected penalty (RF0) �0.4371 0.6554 �2.294 �0.1860

(�0.24) (1.54) (�0.80) (�0.29)

BOD marginal expected penalty (F0) �9.793* �0.9834* �5.130* �0.1535

(�4.25) (�4.95) (�2.27) (�1.60)

TSS marginal expected penalty (F0) �3.545* 0.1858* �14.438 0.4543

(�2.83) (2.06) (�2.36) (1.17)

Fine 1–12 months ago on self �0.0714* �0.0672* �0.1201* �0.0836*

(�2.70) (�2.50) (�3.00) (�2.02)

Inspections 1–12 months ago 0.0026 0.0031 0.0039 0.0032

(0.94) (1.11) (1.18) (1.01)

Seasonality dummies 3 Season dummies 3 Season dummies

Year dummies 13 Year dummies 13 Year dummies

Plant-level fixed effects 241 Plant-level fixed effects 250 Plant-level fixed effects

Plant-specific linear time trends 241 Plant-specific trends 250 Plant-specific trends

aThe dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the listed pollutant.
bA superscript * indicates statistical significance at the 5% level.
cAll plant-level analyses consist of the 30,600 observations with both BOD and TSS.
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fine reputation effect and the BOD marginal expected sanction (RF 0B) (Table 6, row 1) are statistically
significant for both specifications for both pollutants. This indicates that, in periods when regulators are
perceived as more willing to impose fines, both BOD and TSS statistical over-compliance responses are greater
when plants have higher marginal expected sanctions due to BOD randomness. In contrast, we find no
statistically significant evidence that TSS randomness plays an important role in enforcement-induced changes
in over-compliance for either BOD or TSS discharges. Coefficients on the interaction of the fine reputation
effect and the TSS marginal expected sanction (RF 0T) (Table 6, row 2) are not statistically significant for both
specifications for both pollutants.

Results suggest that enhanced over-compliance in TSS after a fine may be at least partially a side-effect of
efforts to avoid violations in BOD discharges, which are jointly determined with TSS. This implication is
plausible for four reasons. First, as discussed, empirically observed jointness is consistent with the economic
logic for jointly produced multiple pollutants. Second, the randomness regressions and P-tests previously
discussed suggested that something beyond randomness alone was driving TSS enforcement-induced changes
in over-compliance. Third, BOD violations occur about twice as frequently as TSS violations, and so represent
the predominant concern for violations. Fourth, the volatility of BOD discharges is generally much higher
than TSS, so that randomness is may be a more fundamental concern in the case of BOD.

Can randomness and jointness rationalize the enforcement-induced over-compliance responses for both
pollutants observed in Section 4? To check, we run specification tests of the randomness and jointness model
(Table 6) against the previous model (Table 2) that used only a non-interacted reputation term (R). P-tests for
both fine specifications for both BOD and TSS reject the uninteracted model against the randomness and
jointness model. For both discharge types, randomness and jointness do appear sufficient to explain the
observed enforcement-induced over-compliance response.

6. Discussion and conclusions

The main contribution of this paper is explicitly linking the enforcement and over-compliance literatures.
We empirically demonstrate that many statistically over-complying plants reduce discharges when regulators
issue fines, even fines on other plants. Aggregate BOD and TSS discharges within a state fall approximately
7% in the year following a sanction within that state. Most of this reduction is due to enhanced over-
compliance, rather than simply a reduction in violations.

These empirical results can be rationalized by economic theory. We find economically and statistically
significant evidence that discharge randomness and jointness in pollution production play important roles in
the degree of over-compliance. In particular, a simultaneous analysis of these factors indicates that the risk of
accidental violation due to BOD randomness is the predominant mechanism of the enforcement-induced
changes in over-compliance for both BOD and the jointly determined pollutant TSS.

Significant policy implications follow from our analysis. First, variation in the degree of over-compliance is
driven by traditional economic incentives, rather than altruistic corporate social responsibility. Second,
randomness and jointness results indicate that BOD reductions have important implications for other
pollutant levels. These implications should perhaps be considered in permitting and enforcement. Third, and
most notably, enforcement generates substantial discharge reductions above and beyond those expected from
simply deterring violations. Ignoring the impact of sanctions on over-compliance considerably understates
fines’ effect on environmental discharges. If standards are not overly tight, enforcement-induced changes in
over-compliance may also translate into larger welfare gains than anticipated. Consequently, a substantial
improvement in environmental quality might be achieved from a relatively small additional investment in
traditional adversarial enforcement. Given this result, it is perhaps an interesting institutional research
question why fines are not imposed more regularly.
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