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Rema Nadeem Hanna and Paulina Oliva

Abstract

Each year, the United States conducts approximately 20,000 inspections of manufacturing
plants under the Clean Air Act. This paper compiles a panel dataset on plant-level inspections,
fines, and emissions to understand whether these inspections actually reduce air emissions. We
find plants reduce air emissions by fifteen percent, on average, following an inspection under the
Clean Air Act. Plants that belong to industries that typically have low abatement costs respond
more strongly to an inspection than those who belong to industries with high abatement costs.
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I. INTRODUCTION 

 

Each year, the Environmental Protection Agency (EPA) and state governments 
spend roughly $40 million conducting inspections of manufacturing plants to 
determine their compliance with U.S. environmental regulations.1  The 
effectiveness of these expenditures depends on whether firms reduce emissions in 
response to an actual inspection or to the threat of an inspection.  In this paper, we 
construct a panel dataset of plant-level inspections, fines and emissions to analyze 
the effects of U.S. environmental regulatory activities.  Specifically, we conduct 
an event analysis to determine how plants’ emissions respond to inspections.  

Industrial air emissions have been steadily falling over the last two 
decades.  At the same time, plant-level inspections, which are mandated under the 
Clean Air Act, have risen slowly from 16,000 in 1985 to 23,000 in 2000.  Despite 
the large role of inspections in U.S. and global environmental policy, the question 
of whether or not inspections have contributed to falling emissions remains 
unanswered.  Inspections might improve the environmental performance of 
manufacturing plants through two mechanisms.  First, plants may remain in 
compliance with regulations if both the threat of an inspection and the cost of 
non-compliance is high.  Second, an actual inspection may reduce plant emissions 
if the recommendations that come from an inspection cause the plant to improve 
performance in order to avoid fines and other potential penalties. 

On the other hand, for numerous reasons, we might expect inspections to 
have little long-run impact on environmental performance.  The most obvious 
possible reasons are that the costs of non-compliance with environmental 
regulation could be set too low or that the inspections fail to catch the worst 
violations.2  These scenarios are plausible.  For example, a 1998 audit of regional 
and state air quality enforcement programs warned about the weaknesses in the 
identification and reporting of air standards violators.  According to the report, 
these weaknesses are due to the fact that states either do not want to report 
violators or that the inspections are inadequate to detect them (Mid-Atlantic Audit 
Division Philadelphia, 1998).    Moreover, the effect on overall emissions levels 
could be low if firms increase emissions through other media as a result of 
lowering air emissions.  In particular, manufacturing plants may convert air 

                                                           
1 This approximate cost is estimated from data obtained by the authors from the Environmental 
Protection Agency.  The average cost of an inspection ranges from $2000 to $5000.  To compute a 
conservative estimate of the total cost of the inspections program, we multiplied the minimum cost 
of an inspection ($2000) by the average number of inspections per year (20,000) between 1985 
and 2001. 
2 Of course, even if the inspections have no financial bite, simply monitoring the plants may or 
may not result in lower emissions.  In the context of education, however, Duflo, Hanna, and Ryan 
(2007) show that much of the effect of monitoring and incentives programs is driven by the 
incentive component of these types of programs. 
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pollutants into waste water and solids, which require treatment and disposal either 
on- or off-site.  If the treatment and disposal process is inadequate, emissions may 
simply be shifted to other media as a result of a reduction in air pollution.  As a 
result of this theoretical ambiguity, the impact of U.S. inspections on overall 
levels of emissions through air and non-air media is ultimately an empirical 
question.   

 In this paper, we study the relationship between plant-level inspections 
under the Clear Air Act and plant emissions in the years following an inspection.  
Few studies have empirically analyzed the impact of inspections on the 
environmental performance of polluters, primarily due to the lack of available 
data of plant-level environmental inspections, but also due to the difficulty of 
establishing causality in the relationship between inspections and emissions 
levels.  We improve upon both the data limitations and endogeneity problems that 
have plagued the previous literature by analyzing data from a 17 year panel 
dataset of plant level inspections and emissions for about 17,200 manufacturing 
plants.  Specifically, we exploit the panel nature of these data to estimate the 
causal impact of an actual inspection.  The primary difficulty in establishing a 
causal relationship between inspections and emissions is that a plant with higher 
emissions levels may be more likely to be targeted for an inspection.  Thus, a 
cross-sectional approach comparing plants that were inspected to plants that were 
not inspected might find that inspected plants have high emissions, and therefore 
underestimate the impact of an inspection on emissions.  Instead, we use an event 
study research design.  This design allows us to exploit the variation in the timing 
of inspections to understand whether, after controlling for fixed plant-specific and 
time-varying characteristics, a plant reduces its emissions levels in the period 
immediately after an inspection.  

The results of the event study may reflect both the direct effect of a past 
inspection as well as the effect of the threat of a future inspection.  For example, a 
plant that is inspected in one year may be reacting to both that inspection and to 
the high probability of inspection in its region that year.  Keohane, Mansur and 
Voynov (2009) have shown that the mere threat of an EPA lawsuit had a 
significant effect on the emissions of electric utilities, and Laplante and Rilstone 
(1996) provide evidence that just the threat of an inspection reduces the emissions 
of plants in the pulp and paper industry.  In order to separate the effect of an 
actual inspection on a plant’s behavior from the effect of the threat of inspection, 
we estimate and control for the predicted probability of inspection.  

In the cross-section, we find that plants with more frequent air emissions 
inspections tend to have higher air emissions rates.  This result is unsurprising, 
since plants with higher emissions levels are likely to be targeted for inspections.  
However, when we control for plant-level heterogeneity, we find that plants 
significantly reduce their air emissions in the four years following an inspection.  
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The magnitude of the effect is quite large:  an actual inspection reduces the air 
emissions of a plant by 15 percent, with little to no resulting increase in emissions 
from other media.  Interestingly, we find no effect of the threat of inspection on 
plant emissions.  Overall, these findings suggest that the estimated return to 
inspections in terms of emissions averted is roughly 1.8 to 4.5 pounds per dollar.  
These results are robust to specifications that include the predicted probability of 
inspection. 

In Section II, we describe the EPA’s regulatory activities regarding air 
inspection, and also provide a short literature review.  We describe our data and 
empirical strategy in Section III.  In Section IV, we present the results, and we 
provide an interpretation of the results in Section V.  We conclude in Section VI. 

 
II. BACKGROUND 

 

United States Regulatory Activities 

 
Under the Clean Air Act of 1963, the EPA and state governments have the 
authority to inspect manufacturing plants in order to monitor their emissions 
levels.  State inspections represent a majority—97 percent—of the total 
inspections, according to the data used in this paper.  Regional EPA offices 
conduct additional inspections as a tool for targeting certain sectors or as a 
response to a major reporting problem.  All inspections are unannounced, 
regardless of who conducts the inspection or the frequency of a plant’s 
inspections.3   

The frequency and priority of inspections for a given plant are based on an 
EPA inspection-targeting model—a computational model that produces a ranking 
of sources to be inspected within the estimated resource available. The model uses 
as inputs source-specific targeting data such as plant emissions, compliance 
information, and air quality factors.  When specific input information is not 
available, the inspection frequency guide (IFG) determines the inspection rate for 
a plant.  According to the IFG, Class A1 sources (facilities that have the potential 
to emit 100 tons of an air contaminant per year) must be subject to a Full 
Compliance Evaluation (FCE) annually, whereas Class A2 sources (potential 
emitters of 100 tons per year, not considering air-cleaning devices) must undergo 
a FCE biannually.  Alternative inspection frequency schemes may be proposed by 
the state as long as their cost is not lower and all Class A2 sources are inspected at 

                                                           
3 Some plants, however, belong to a category of plants that are inspected each and every year (2.6 
percent of our sample).  Despite the fact that these are unannounced, we assume that the plant 
managers recognize this pattern.  Thus, the annual inspection becomes essentially a fixed 
characteristic of that firm, which renders it impossible to estimate the effect of any one inspection.   
We drop plants that fall into this category from the subsequent analysis.   
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least once every five years (Senate Bill No. 866 and EPA Compliance Monitoring 
Strategy, 1989).  An FCE consists of “a review of all required reports and the 
underlying records; an assessment of air pollution control devices and operating 
conditions; observing visible emissions; a review of facility records and operating 
logs; an assessment of process parameters, such as feed rates, raw material 
compositions, and process rates; and a stack test if there is no other way to 
determine compliance with the emission limits” (EPA Compliance Monitoring 
Strategy, 1989). The EPA also performs Partial Compliance Evaluations (PCE), 
which include some form of emissions monitoring, and may include one or more, 
but not all, of the above listed tasks.  In this paper, we consider both full and 
partial evaluations to be inspections. 

The duration of an inspection varies widely among facilities.  For small 
plants, the inspection is usually completed in a single day.  For some plants, 
particularly refineries, it is not however uncommon for an inspector to be 
stationed on-site for the whole year. Not surprisingly, given this variation in the 
duration of inspections, the cost for a typical inspection also varies, from about 
$2,000 to $5,000.4 
 Anecdotal evidence suggests that some plants try to comply with EPA 
recommendations following an inspection, especially when the inspection results 
in a fine.  For example, Shenango Incorporated, a coke and chemicals company, 
failed nine out of fifteen inspections for leaking oven doors and faced more than 
$100,000 in fines in 2001.   As a result, the plant agreed to install equipment 
designed to remove sulfur from emissions and convert the sulfur for use in other 
processes.5  In other cases, however, actions may take awhile to be implemented 
because complete information on the plant emissions may require comprehensive 
investigations that last several years.  For example, Columbus Steel Castings in 
Ohio was shown in 2005 to be a likely source of air pollution according to the 
Ohio EPA, but the order to eliminate air pollution problems still had not been 
issued as of 2007 because the report was not yet complete.6   

 
Literature Review and Contributions 

 
A few key studies have expanded our understanding of the impact of 
environmental monitoring on plant emissions. Many of these studies have focused 
on the paper industry and have predominantly found that inspections and 
increased enforcement result in higher compliance (Magat and Viscusi, 1990; 
Laplante and Rilestone, 1996; Nadeau, 1997; Gray and Shadbegian, 2005; Gray 
and Shadbegian, 2004; and Shimshack and Ward, 2008). Outside the paper 

                                                           
4 Author estimates from data on the cost components of an inspection provided by the EPA.  
5 The Associated Press State and Local Wire, Pittsburgh, May 19, 2001. 
6 The Columbus Dispatch, Ohio, February 11, 2007. 
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industry, Eckert (2004) finds that inspections deter violations for petroleum 
storage sites, but that this effect is small in magnitude.  
 Our paper builds on the existing literature by studying the impact of 
inspections on plant behavior.  We make two key contributions.  First, while the 
samples of plants in previous studies have tended to be both small in size and 
constrained to a given industry, we have carefully constructed a complete 
database of the inspections history and emissions behavior for nearly 17,200 
plants over 17 years in multiple industries.  The size and scope of our dataset 
gives our results greater external validity, and the completeness of the data allows 
us to investigate both how industry characteristics affect the probability of 
inspection and how the effect of inspections varies across industry characteristics.  

Second, the panel dataset can be used to exploit both the cross-sectional 
and time-series variation in inspections and emissions in order to estimate the 
causal effect of an inspection event.  The event study methodology is an 
improvement over previous studies, which have relied on instrumental variables.   
These instruments have included lagged emissions, plant size, or changes in the 
productive capability of a plant, which only meet the exclusion restriction under 
very restrictive assumptions.  For example, while we expect changes in the 
productive capability of a firm to affect the probability of inspection, we also 
believe that it can affect plant level emissions directly as well.  In contrast, the 
event study research design allows us to control non-parametrically for plant-
specific and time-varying unobserved determinants of inspections.  Hence, the 
causal effect is identified under the plausible assumption that no other plant-
specific events coincide with the timing of the inspection and are also correlated 
with plant’s emissions.  

 
III. DATA AND EMPIRICAL STRATEGY 

 
This paper brings together a variety of data sources to understand the relationship 
between the Clean Air Act inspections and plant-level emissions.  This section 
describes the sources and structure of the data, as well as our empirical strategy.  
 
Data and Descriptive Statistics 

 
We have constructed a panel dataset of plant-level emissions, inspections and 
fines from two key sources.  Panel data on air, land and water emissions come 
from the Toxic Releases Industries (TRI).7  Information on Clean Air Act (CAA) 
inspections and fines comes from the Integrated Data for Enforcement Analysis 

                                                           
7 Most air pollutants in the TRI can be classified as part of the CAA pollutants (Greenstone, 2003).  
Therefore, the TRI provides a reasonable outcome measure in which to study the effect of the 
inspections program. 
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(IDEA).  Both the TRI and the IDEA data include a Facility Registry System 
(FRS) identification number of individual plants, which allows us to merge the 
emissions and inspections data.   

The TRI data include emissions for all facilities that are required to report 
under the Emergency Planning and Community Right-to-Know Act of 1986 
(EPCRA) and Pollution Prevention Act of 1990.  Specifically, plants are required 
to report their emissions for 21 to 30 chemical categories (275 to 523 substances) 
if they manufacture or process more than 25,000 pounds of a regulated substance 
per year or if they use more than 10,000 pounds of one of the regulated substances 
per year in the production process. 

For the purposes of this paper, we reorganized the TRI data in several 
ways.  First, we restricted our attention to the manufacturing sector (SIC digits 20 
– 40), which comprises 93 percent of the records in the TRI.  We impose this 
restriction because the inspections process may be very different for non-
manufacturing plants.  Second, the list of substances on which facilities need to 
report has changed over time for a variety of reasons, including concerns about 
new chemicals.  Thus, to ensure consistency in our measure of air emissions, we 
analyzed only the 243 substances that were reported in all years between 1987 
and 2001.  Third, the TRI only includes a plant-year observation if the plant used 
regulated substances above the threshold in that particular year.  An analysis 
using only these data would fail to capture, for example, a firm that experienced 
an inspection and reduced its emissions to zero, and would therefore generate an 
upwardly-biased estimate of the effect of regulation. To remove this potential 
bias, we completed the panel:  if the plant was captured in the TRI in previous and 
subsequent years, we assigned the plant “zero” emissions for the missing middle 
years.  

The CAA inspections data come from the Integrated Data for Enforcement 
Analysis (IDEA).  These data are copied by the EPA from many different 
compliance and enforcement databases, so that we can query a combination of 
databases using a variety of criteria to obtain integrated results.  We obtained the 
data from the Environmental Protection Agency under a Freedom of Information 
Act Request in 2002.  We collected data on all inspections conducted from 1985 
to 2001, including all FCE and PCE conducted by either the state or the regional 
EPA.  It is important to note that many states drop the inspections records for 
plants that no longer exist, which creates a complication for our estimation 
strategy.  For example, suppose we believe that the dirtiest plants are more likely 
to be inspected and are also more likely to shut down as a result of environmental 
regulations.  Our analysis would then fail to capture the effect of an inspection on 
a plant that has recently shut down, but had reduced its emissions before shutting 
down.  To address the resulting bias, we focus on a balanced sample of plants, i.e. 
plants that appear at both the beginning and at the end of our period of study. 
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 In Table 1, we provide basic descriptive statistics for the final, balanced 
sample.  About 78 percent of plants were inspected at least once during the 
sample period, and about a third of all plant-year observations have a recorded 
inspection (Panel A).  On average, a single plant emits 56,269 pounds of 
pollutants into the air each year, the equivalent of 344 passenger cars.8   In Panel 
B, we provide information on the fines imposed under the Clean Air Act.  While 
the probability of paying a fine is relatively low (17 percent), the size of the fine, 
conditional on paying a fine, is about $89,151.  This is smaller than the $148,198 
that plants spend, on average, in air pollution abatement costs (Becker, 2005).    
 

Table 1:  Summary Statistics 

    

Panel A: Inspections and Emissions 

Fraction of plants with at least one inspection  0.78 
  
Fraction of plant-year combinations with an inspection 0.34 
  
Average air emissions per plant (in pounds) 56,269 

  
Panel B: Fines 

Fraction of plants with at least one fine  0.17 
  

Average fine per inspection rate ($) 4,567 
  
Average fine conditional on having one ($) 89,151 

  
Panel C: Characteristics 

Fraction of plants defined as clean 0.47 
  
Fraction of plants with low abatement costs 0.30 
  
Fraction of plants that belong to an industry that has a low 
probability of inspection in 1985 to 1988 0.54 

Notes:    
1.  This table provides sample statistics for the 17,208 plants in the balanced sample 
for the years 1987 to 2001.   

2.  Inspection and fine data are drawn from the IDEA database.  Emissions data are 
drawn from the Toxic Release Inventory. 

                                                           
8 An average passenger car produces in average 108 pounds of hydrocarbons and 55.8 pounds of 
nitrogen oxides per year.  
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 Finally, in Panel C, we provide information on the characteristics of the 
plants.  Forty-seven percent of the plants in our sample belong to an industry that 
is defined as clean (“low polluting”).  Note that we define the dirtiest industries as 
the 10 industries with the highest emissions per plant for 1988 at the 2 digit-SIC 
level.    Thirty percent of the plants in our sample belong to industries with low 
pollution abatement costs.9  Finally, 54 percent of the plants in our sample belong 
to industries that were infrequently inspected between 1985 and 1988.10 
 
What Determines Inspections? 

 
In the analysis of the impact of an inspection on plant emissions, one of the key 
empirical challenges is to address the possibility of selection bias.   Plants with 
higher emissions or plants in high-polluting industries may be targeted for 
inspections, which would confound the estimation of the impact of inspections on 
emissions.  In order to address this concern, it is important to understand which 
characteristics of a plant, industry, or region are correlated with the inspection 
event.  We start by providing a descriptive picture that includes some sample 
statistics on the inspection rate across industries and areas.  We then use 
regression analysis to pinpoint which factors are correlated with a plant-level 
inspection. 

Table 2 presents the yearly inspection rate per plant by 2-digit SIC 
industry for all manufacturing plants that report to the TRI.  The paper industry 
(SIC 26) and tobacco industry (SIC 21) have the highest inspection rates at 65 
percent per plant per year, closely followed by the petroleum industry (SIC 29) at 
61 percent and the stone, clay and glass industry (SIC 32) at 60 percent.  These 
industries tend to contain the most heavily polluting plants, and therefore we 
would expect that the government targets its limited resources to monitoring these 
industries.11  On the other end of the spectrum, industries that are relatively clean 
– including fabricated metals (SIC 34), machinery (SIC 35), electronics (SIC 36), 
and instruments (SIC 38) – are among the least frequently inspected, with 24 
percent of plants inspected in a given year. 

                                                           
9 Pollution abatement cost data come from the 1999 Pollution Abatement Cost and Expenditures 
Survey.  These costs relate to all emissions including air, water and solid waste.  The high 
abatement cost industries are defined as Machinery (SIC 35), Rubber (SIC 30), Instruments (SIC 
38), Transportation (SIC 37), Food (SIC 20), Stone, clay, glass (SIC 32), Chemicals (SIC 28), 
Paper (SIC 26), Primary Metals (SIC 33), and Petroleum (SIC 29).  All remaining industries are 
defined as low abatement cost. 
10  Industries that are infrequently inspected between 1985 and 1988 include: Food, Apparel, 
Rubber, Fabricated Metal, Machinery, Electronics, Transportation, Instruments and 
Miscellaneous. 
11 We compiled a ranking of the most heavily polluted industries from the 1988 TRI. 
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 Table 2:  Inspection Rate Per Industry 

Paper (26) 0.65 
Tobacco (21) 0.65 
Petroleum (29) 0.61 
Stone, Clay and Glass (32) 0.60 
Furniture (25) 0.58 
Printing (27) 0.52 
Textiles (22) 0.49 
Primary Metal (33) 0.42 
Lumber (24) 0.42 
Apparel (23) 0.42 
Chemicals (28) 0.38 
Transportation (37) 0.37 
Food (20) 0.35 
Leather (31) 0.33 
Miscellaneous (39) 0.29 
Rubber (30) 0.28 
Fabricated Metal (34) 0.24 
Machinery (35) 0.24 
Electronics (36) 0.24 
Instruments (38) 0.24 

Notes:  
1.  This tables provides the average yearly 
inspection rate per plant in each 2-digit SIC 
industry, using data drawn from the IDEA 
database. 

 
 Regional differences in the inspection rate are even starker than 
differences across industries.  Figure 1 graphs the inspection rate per region (bar 
graph) and the yearly air emissions per plant (line graph) by ten EPA regions.  
Inspection rates are generally higher in regions with higher pollution per plant, 
with some important exceptions.  Region 8 (MT ND SD WY UT CO), for 
example, has the highest pollution per plant, but also has an inspection rate that is 
close to the average rate.  On the other hand, Region 3 (PA WV VA DE MD DC) 
has the highest inspection rate, while its pollution per plant is below average.  

In order to determine which factors are statistically related to the 
probability of inspection for a given plant each year, we focus on four main 
categories that may affect the probability that a plant will be inspected:  past 
inspection rates, changes in anti-pollution policies, past emissions rates, and  
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7:  NE IA KS MO

8:  MT ND SD WY UT CO

9:  CA NV AZ

10:  WA OR ID

Figure 1:  Inspection Rate and Air Emissions By Region

Notes: 

1. The bar graph shows the inspection rate per region in the period 1987-2001 from the IDEAS database. The line plots average air 

emissions per plant per year in pounds and is calculated from the Toxic Release Inventory.

Region

1:  NH ME VT MA RI CT

2:  NY NJ

3: PA WV VA DE MD DC

4:  KY NC TN SC MS AL GA FL

5:  MN WI MI IL IN OH
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socio-demographic characteristics of the region in which the plant is located.12  
Table 3 presents the results of a linear probability model in which the dependent 
variable is 100 if the plant was inspected in the current year, and zero otherwise.13  

                                                           
12 These variables were chosen based on the theoretical and empirical findings of previous studies; 
for example, please see Gray and Shadbegian (2004) and Nadeau (1997) for a discussion of the 
determinants of inspections. 
13 With plant fixed effects, the probit model suffers from the incidental parameter problem.  Thus, 
we use a linear probability model.  We have estimated a specification without the plant fixed 
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The linear probability specification allows the estimated coefficients to be 
interpreted as percentages.  The independent variables are listed in the first 
column of the table.  All specifications include industry-year, industry-region and 
region-year fixed effects, which addresses the problem of strong correlations 
between industry classification and inspection frequency, and between region and 
inspection frequency.  In Column 2 of Table 3, plant fixed effects are included in 
the linear probability model.  Standard errors are clustered at the plant level in 
both specifications.   

Panel A of Table 3 reports the coefficient estimates of the lagged mean 
EPA-inspection rate, the lagged mean state-conducted inspection rate, and the 
lagged mean fine at the country-industry-year level.  These variables were 
constructed from the IDEA database.  In the base specification, both the lagged 
EPA and state inspection rate appear to be a good predictor of current inspections 
(Column 1).  However, when controlling for plant fixed effects, the lagged effect 
of EPA-inspections becomes indistinguishable from zero, and the magnitude of 
the effect of lagged state-inspection rate falls by more than half (Column 2). 

Panel B of Table 3 provides evidence on how the nonattainment polices of 
the Clean Air Act Amendment affect the inspection rate.  Specifically, Panel B 
reports the coefficient estimates of the effect of belonging to a highly polluting 
industry for one of the three major regulated categories of pollutants (VOC, PM, 
Pb) and residing in a county that is nonattainment for the corresponding pollutant 
(see Greenstone (2002) for a description of the nonattainment policies).  Dummy 
variables for being located in a nonattainment county are also included in all of 
the regressions, but these coefficients are omitted from the table for conciseness 
(industry fixed effects absorb the effect of belonging to a dirty industry).  
Surprisingly, belonging to a top-five dirty industry for a specific pollutant and 
being located in a county that is in nonattainment for that pollutant has little to no 
effect on the probability of inspections.14  Several factors could potentially 
explain this lack of correlation.  First, states may not necessarily choose 
inspections as the policy tool to reduce emissions in nonattainment counties.  At 
the extreme, it is possible that activities that substitute for inspections may drain 
funding away from inspections activities.  Second, plants that shut down are not 
included in our inspections data; if inspections cause the dirtiest plants to shut 
down and the dirtiest plants are in the nonattainment counties, we will 
underestimate the effect of nonattainment on the inspections rate.15   
                                                                                                                                                               
effects using both the probit and the linear probability model, and the results are very similar.  The 
results of this analysis are available from the authors on request. 
14 We also looked at specifications for the nonattainment effect that did not include the additional 
control variables listed in Panel A, C, and D of Table 3.  The results do not significantly change, 
and are available upon request. 
15 Some evidence suggests that environmental policies do not speed the closure of the existing 
dirty plants.  For example, List, Millimet and McHone (2004) find that the New Source Review 
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 Panel C reports the coefficient estimates on two county level variables: the 
total number of plants in the plant’s county and the lagged air emissions in a 
given plant’s county.  We include these county level explanatory variables to 
provide information on whether the government focuses inspections in industrial 
areas and whether they target plants that are located in counties that contain the 
dirtiest plants.  We find that, as the number of plants in the county increases by 
100, a plant’s probability of inspection increases by about 0.07 of a percentage 
point (Column 2).  This is suggestive evidence implying that inspections may be 
clustered in industrial areas.  In terms of both magnitude and significance, lagged 
emissions in the county have little effect on the inspections rate.  
 Finally, the coefficients reported in Panel D provide evidence on how the 
socioeconomic and political characteristics of a county or a state affect the 
probability of inspection.16  Specifically, Panel D reports coefficients for per 
capita income, county population, and political power (when including plant fixed 
effects in column 2, per capita income and county population are dropped from 
the regression, as they are collinear with the plant fixed effects).  These results 
suggest that plants located in richer counties are less likely to be inspected 
(Column 1) and that having a Democratic or Independent Governor increases the 
rate of inspection relative to having a Republican Governor (Columns 1 and 2).   
 Overall, the analysis confirms that inspections are not independent of the 
specific characteristics of the plant.  All of the specifications in our empirical 
strategy, which is detailed in the next section, include controls for industry-
specific, county-specific, and plant-specific characteristics in addition to the 
predicted probability of inspection.  
 
Methodology 

 
The fact that plants with higher overall levels of emissions may be more likely to 
be targeted for an inspection poses a significant challenge to estimating the impact 
of an actual inspection on plant emissions.  Because of the targeting of 
inspections, a cross-sectional approach that compares plants that have been 
inspected with those that have not been inspected might underestimate the impact 
of an inspection on emissions.  In order to address the bias in the cross-sectional 
approach, we exploit variation in the timing of an inspection within a given plant 
by using an event study design. 
 

                                                                                                                                                               
requirements—a key component of the Clean Air Act and its subsequent amendments—did not 
hasten the closure of existing dirty plants.  However, we are unable to test this using the data in 
this paper.  
16 These administrative variables were compiled from The Book of States and State Elective 
Officials and the Legislatures, published by the Council of State Governments. 
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(1) (2)

Panel A:  Lagged inspection rates at the county-industry-year level

Lagged mean EPA inspection rate 10.9363 -0.2811

(1.3025)*** (1.2325)

Lagged mean state inspection rate 52.2228 19.5093

(0.4546)*** (0.5257)***

Lagged mean fine rate 13.878 6.7542

(1.1766)*** (1.1869)***

Panel B:  Nonattainment county status and top polluting industry indicators

Five top VOC × VOC Nonattainment -0.0278 -1.7325

(0.8183) (1.0392)*

Five top PM × PM Nonattainment -1.4971 -2.7027

(1.0504) (1.6506)

Five top Pb × Pb Nonattainment 2.6325 6.2942

(3.4177) (3.5117)*

Panel C:  Number of plants and emissions per county

Number of plants in county 0.0089 0.0673

(0.0039)** (0.0119)***

Lagged VOC air emits in county 0.3258 0.3493

(0.0504)*** (0.0579)***

Lagged PM air emits in county 0.0455 -0.1522

(0.2863) (0.3101)

Lagged Pb air emits in county 23.2691 -2.3151

(10.6466)* (8.7033)

Panel D:  County sociodemographic and political characteristics

Per capita income at county in 1990 -0.231

(0.0510)***

1990 County Population -0.0015

(0.0005)***

Democratic governor 1.0205 1.2891

(0.3536)*** (0.3434)***

Other non-Republican governor 4.5015 4.9649

(1.0147)*** (0.9824)***

Year-Industry Fixed Effects X X

Year-Region Fixed Effects X X

Industry-Region Fixed Effects X X

Plant Fixed Effects X

N 239407 239407

Notes:

5. The inspections data are drawn from the IDEA database. Emissions data come from

the TRI. The administrative variables were compiled from the Book of States and State

Elective Officials and Legislatures, published by the Council of State Governments.

Table 3: Exploring determinants of Inspections

1. Each column presents the coefficients of a separate linear model for the probability of

being inspected. The dependent variable is dummy variable for whether an individual

plant received an inspection on a given year multiplied by 100. Coefficients, thus,

should be interpreted as percentages.

3. Population in 1990 and income per capita are scaled by a thousand. Emissions per

county is measured in millions of tons.

2.  Controls include year-industry, industry-region and year-region fixed effects.

4. Standard errors in parentheses. * means significant at 10%; ** means significant at

5%; *** means significant at 1%.
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An event analysis usually exploits the combination of a panel structure of 
the data with a treatment (i.e. “event”) that occurs at different points in time for 
different individuals or firms (e.g. Jacobson et al. (1993)).  In our case, the event 
is an unannounced EPA inspection, which occurs at different times for different 
plants.  A key benefit of this design is that we are able to include time fixed 
effects, which absorb the effect on emissions of all variables—such as changes in 
economic activity, changes in public expenditures, and so forth—that may have a 
simultaneous effect on the inspections and the emissions of all plants within a 
county or an industry.  Note that the time fixed effects cannot be included in 
situations where the treatment starts at the same time for all plants in the treatment 
group, because in this case they would be collinear with the treatment variable.   

A second advantage of an event analysis is that it offers a simple but 
compelling check on the exclusion restriction.  As pointed out by Ashenfelter and 
Card (1985), difference-in-difference methodologies may be subject to mean 
reversion bias when the treatment is not random and may be triggered by a lagged 
high (or low) value of the dependent variable.  The possibility of mean reversion 
is high in our setting, as inspections may be triggered by high emissions in the 
previous year.  The coefficients on the dummy variables for several lags and leads 
of the treatment provide evidence on whether inspections follow particularly high-
emission years.  In addition, these coefficients provide evidence on whether the 
post inspection emissions are in fact smaller when compared to mean emissions or 
whether they are just reverting to the mean after a particularly high emitting year.  
Again, we are able to include these dummy variables because inspections occur at 
different times for different plants.  

For the purposes of this study, an observation in the data is a plant 
(indexed by i) in a given year (indexed by t).  The empirical specification is as 
follows: 

ircntircntrnrtnti

k

ircntktkircn zjsuwDae εγβ +++++++= ∑
−=

−
ˆ

4

4

,  [1] 

where eircnt is the air emissions of a plant i in EPA region r, county c, industry n 
and year t. The variables of interest in the above equation are denoted Dt-k, ircnt for 

k  ∈ {-4,-3,…,0,…4}, where Dt-k,ircnt takes the value of one if plant i was 

inspected at time t-k.  Hence, the coefficients β−4 to β−1 measure the emissions 

associated with having an inspection in the future, β0 measures the emissions 

associated with having an inspection in the current year, and β1 to β4  measure the 
emissions associated with inspections in the past years. In contrast with a classic 
cross sectional specification, where a single coefficient on the inspection indicator 
denotes the differential in emissions for inspected plants with respect to non 

inspected plants, in Specification [1] each of the βk coefficients denotes the 
differential in emissions of plants inspected in year t-k relative to firms not 
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inspected in year t-k.  Hence, the estimated plant’s emission response to an 
unannounced inspection is given by the post-inspection emission differentials, 

coefficients β0 to β4, relative to the pre-inspection emission differentials, 

coefficients β−4 to β−1. We included coefficient β0 in the post-inspection 
differentials group because the inspection may occur before emissions are 
reported within the year of inspection. 

The panel structure of the data allows for the inclusion of plant fixed 
effects, which absorb the unobserved heterogeneity in the determinants of air 
emissions that are common to a particular plant.  The inclusion of plant fixed 
effects (wi) is important if we believe that a plant’s exposure to regulation is 
potentially correlated with factors inherent to a plant (such as technology or size).  
We also include industry-by-year (unt), region-by-year (srt), and region-by-
industry (jrn) fixed effects.  The inclusion of industry-by-year fixed effects 
removes shocks to air emissions that are common to all plants within an industry 
in a particular year.  Including industry-by-year fixed effects is especially 
important if certain industries decreased emissions in that particular year for 
reasons unrelated to environmental regulation (e.g. new technologies that improve 
manufacturing in an industry and also reduce emissions).  Similarly, the inclusion 
of region-by-year fixed effects removes the mean emissions across all plants in a 
region in a particular year—thereby controlling for unobserved factors that affect 
the emissions of all plants within a single region equally (e.g. a regional recession 
or a regional change in EPA’s level of enforcement).  Region-by-industry fixed 
effects remove the mean emissions by region and industry, which is particularly 
important if we believe that some industries are targeted differently across 
different regional EPA offices.   

Lastly, we include a measure of the “inspection threat” ( ˆ z ircnt ) that a plant 

faces.  The inspection threat is defined as the predicted probability of inspection 
from the specification in Table 3, Column 1.17  By controlling for the inspection 
threat, we are able to address the concern that plants that have faced a higher 
probability of inspection over time are already more likely to have made 
adjustments in their emissions in order to avoid fines from a possible inspection, 
which would make them less likely to respond to an actual inspection.  

One factor that complicates the analysis is that plants may have different 
frequencies of inspections. The existence of multiple inspections for a given plant 
may confound the effects of any single inspection.  First, plants that are inspected 
may have been more likely to be inspected in previous years and therefore may 
have already changed their emissions levels as a result of previous inspections.  In 
this case, an analysis that looks at only a single inspection may lead to an 

                                                           
17 We use the specification without plant fixed effects for the predicted probability of inspection, 
as the permanent differences in inspection rates are absorbed by the plant fixed effects in Equation 
1. 
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underestimation of the inspection effect. We address this concern by controlling 
for all other previous inspections. To see this, notice that in equation [1] multiple 
indicator variables (Dt-k  for multiple k’s) can simultaneously take the value of one 

for a single plant, so Dt−k,ircnt

k=−4

4

∑ may be larger than one for a single plant-year 

observation.  Second, having had an inspection in a given year may change the 
probability of a future inspection.  In particular, a plant that is inspected in the 
current year may assume that it has a higher probability of inspection in future 
years.  In order to understand how this could affect our analysis, we report the 
share of plants that receive an additional inspection one year after receiving an 
inspection, two years after receiving an inspection, and so on.  

Table 4 reports the probability of inspection for the years before and after 
the current year for plants that have had an inspection in the current year (Column 
1) and for plants that have not had an inspection in the current year (Column 2).  
The difference in these probabilities is listed in Column 3.  The difference in 
probabilities for the current year is, by construction, 100 percent.  In all years 
immediately before and after the current year, the difference in the probability of 
inspection for those that were inspected in the current year and those that were not 
ranges from about 38 to 52 percent.  These probabilities are consistent over the 
time period prior to and subsequent to the inspection.  They suggest that having 
had an inspection in the current year does not have a differential impact on the 
probability of inspection in subsequent years compared to previous years, and 
thus validate our event study approach.  These probabilities also provide 
information on the “treatment effect”:  a single inspection raises the probability of 
inspection from about 50 percent to 100 percent.   

The basic event study proposed in Equation [1] offers us a convenient 
check for the exclusion restriction that inspections do not happen after unusually 
high emitting years and that a fall in emissions that follows an inspection does not 
merely follow from mean reversion.  For this exclusion restriction to be met, the 

estimates of coefficients β−4 to β−1 should not be significantly different from each 
other.  However, interpreting the treatment effect is not straightforward.  In 
Specification [1], the emission response in year K to an inspection in year 0 is 

given by the difference between the coefficient βΚ and the last coefficient on the 

pre-inspection period β−1.  An alternative and perhaps more convenient 
representation of the effect of inspections on emissions can be obtained from the 
following specification: 

ntiircnttotoircnttotoircnt uwDDae ++++= −− ,4040,4444)log( ββ ,       

ircntircntrnrt zjs εγ ++++ ˆ  [2] 

where εircnt is the stochastic error term and D-4to4,ircnt  is an indicator variable that 
equals 1 if plant i was inspected in any of the four years following t, in t, or in the 
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4 years preceding t. 18   The main variable of interest is D0to4,ircnt , which is an 
indicator variable that equals 1 if plant i was inspected in year t or in any of the 

preceding 4 years.  The coefficient on D0to4,ircnt,, 40toβ ,measures the percentage 

change in the level of air emissions of a given plant in the five post-inspection 
years controlling for its own emissions in the years surrounding the inspection.   
 

Conditional on 

Having  an 

Inspection in 

Current Year

Conditional on 

Not Having an 

Inspection in 

Current Year Difference

Probability of : (1) (2) (3)

Inspection four years after 0.579 0.193 0.386

(0.494) (0.395) (0.003)***

Inspection three years after 0.604 0.183 0.421

(0.489) (0.387) (0.003)***

Inspection two years after 0.641 0.167 0.474

(0.480) (0.373) (0.003)***

Inspection one year after 0.660 0.161 0.499

(0.474) (0.368) (0.003)***

Inspection on current year 1.000 0.000 1.000

(0.000) (0.000) (0.000)***

Inspection one year before 0.703 0.183 0.521

(0.457) (0.386) (0.003)***

Inspection two years before 0.689 0.187 0.503

(0.463) (0.390) (0.002)***

Inspection three years before 0.657 0.205 0.452

(0.475) (0.404) (0.003)***

Inspection four years before 0.637 0.218 0.419

(0.481) (0.413) (0.003)***

Notes:  

2. * means significant at 10%; ** means significant at 5%; *** means significant at 1%.

3.  The data are drawn from the IDEA database.

Table 4: Probability of Inspections in Previous and Subsequent Years

1. Column 1 reports the probability of inspection in each year, given an inspection in

the current year. Column 2 reports this probability conditional on no inspection in the

current year.  The difference is reported in Column 3.

 
 

                                                           
18 We present a log specification so that the coefficients can be interpreted as the percentage 
change in emissions due to an inspection.  The results where the dependent variable is the 
emissions level are similar to those where the dependent variable is the log of the emissions level.  
These results can be obtained from the authors upon request. 
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This coefficient can be interpreted as the average effect over the five years 
following an inspection plus the inspection year.   

We first present the results from the estimation of Equation [1] to provide 
a check on the exclusion restrictions.  Then, we present the results from the 
estimation of Equation [2] as our main specification to provide easily 
interpretable estimates of the effect of an actual inspection. 
 
IV. RESULTS 

 

Figure 2 plots the coefficients (and 95-percent confidence intervals) of the nine 
indicator variables Dt-k, from Specification [1].  We restrict the sample to the 
17,041 plants (153,371 observations) with four years of leads and lags available.  
In Panel A, the dependent variable is air emissions, while “emissions other than 
air” is the dependent variable in Panel B.  The vertical line divides the periods 
before and after the inspection.  Note that a response to an inspection could be 
observed starting on t=0, since on a given year the inspection may occur before 
the emissions are reported. Hence, we include t=0 in the “after inspection” period. 
The corresponding regression coefficients for these figures are reported in 
Appendix Table 1. 

As Panel A of Figure 2 illustrates, air emissions decline in the period after 
an inspection event.  The downward trend in emissions occurs only after the 
inspection event and not before, suggesting that the EPA is not targeting plants 
that already display a negative trend in emissions.  The fall in emissions by the 
third and four year after an inspection falls out of the range of the confidence 
intervals in the preceding period, suggesting the inspection event had a significant 
effect on emissions. Panel A of Figure 2 also suggests a causal effect of 
inspections on emissions since inspections do not follow abnormally high 
emission years: emissions in all four years preceding an inspection are not 
significantly different across years, i.e. emissions do not “spike” previous to the 
inspection year.  Interestingly, we observe a slight increase in emissions other 
than air after the inspections event (Panel B).  This may suggest a substitution 
towards other forms of emissions after an inspection event.  

Next, we estimate Specification [2] to test for the significance of the five-

year average effect of inspections given by coefficient β0το4.  In Table 5, we present 
the results of this estimation.  The dependent variable in Panel A is the log of air 
emissions, while the dependent variable in Panel B is the log of emissions other 
than air.  In Column 1, we present a variation of Specification [2] in which we do 
not include the plant fixed effects and instead include county fixed effects, gc: 

circnttotoircnttotoircnt gDDae +++= −− ,4040,4444)log( ββ   

                                        icrntircntirtnt ztdsu εγ +++++ ˆ   [3] 
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(1) (2)

A.  Air Emissions

0.462 -0.153

(0.062)*** (0.048)***

Fitted probability of inspection 0.009 0.002

(0.002)*** (0.001)

B.  All Emissions Other than Air

0.347 -0.001

(0.028)*** (0.018)

Fitted probability of inspection 0.003 0.001

(0.001)*** (0.001)*

County Fixed Effect X

Plant Fixed Effect X

Notes:  

4. Inspection and fine data are drawn from the IDEA database. Emissions data are drawn

from the Toxic Release Inventory.

Table 5:  Event Analysis of the Relationship Between Inspections and Air 

Emissions

Inspection in any of the four previous years or in the 

current year

Inspection in any of the four previous years or in the 

current year

1. This table reports the results of regressions of the log of emissions on a constant, a

dummy for the nine years around the inspection and a dummy for five years after the

inspection including the year of the inspection itself. All specifications control for year-

region fixed effects, industry-year interactions, region-year interactions, plant fixed effects

and the predicted probability of inspection. The coefficient on the five years after the

inspection dummy and the predicted probability of inspection are reported. In Panel A the

dependent variable is the log of air emissions, while in Panel B the dependent variable is

the log of emissions other than air emissions. 

2.  Standard errors are clustered at the plant level and are in parentheses.

3.  * means significant at 10%; ** means significant at 5%; *** means significant at 1%.

 
 
In Column 2, we estimate the model controlling for plant-level 

heterogeneity (Specification [2]).   The table reports the coefficient on the dummy 
for the four years after the inspection and on the inspection threat.  All standard 
errors are clustered at the plant level.   

Even after controlling for county, industrial trends, and regional trends in 
inspections, plants have significantly higher emissions rates after an inspection 
(Column 1 of Table 5).  However, this model includes plants that have never been 
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inspected, which tend to have lower emissions.  Thus, this coefficient may not 
only capture the effect of an inspection, but also the selection effect of being 
chosen for an inspection in the first place. Moreover, this coefficient may simply 
be capturing the fact that, even after controlling for all industrial and regional 
trends, the EPA may target plants that they expect will have higher pollution 
levels in the future.  Therefore, these results show the importance of controlling 
for plant level heterogeneity.  We turn to these results in Column 2 of Table 5.   
 We find that, on average, a plant emits 15 percent fewer air toxins in the 
post-inspection period compared to the pre-inspection period.  This effect is 
significant at the 1 percent level.  We cannot reject that the coefficient on the 
predicted probability of an inspection is different from zero.19  This may be due to 
the fact that we are “wiping out” a substantial part of the predicted probability 
through the fixed effects included in the regression.  This is confirmed also by a 
larger coefficient on predicted probability of inspection in Column 1.   

As Column 2 of Panel B illustrates, we do not find evidence that plants 
increase other types of emissions over the five years following the inspection. The 
small positive effect found in Panel B of Figure 2 seems to fade over time and the 
fourth year after the inspection sees no difference in air pollution relative to the 
pre-inspection period.  This suggests that, plants may resort to increase other 
emissions in the short run.  However, they seem eventually to choose to dispose 
of air toxins properly, rather than converting them to wastewater or solids that are 
then improperly disposed.20   
 The next table explores the effect of a fine following the inspection.  After 
a violator is identified through an unannounced inspection and the violation is 
reported, the EPA and the State may continue monitoring the plant’s emissions 
until it achieves compliance.  Fines are imposed with either severe violations or a 
failure to comply within the compliance schedule (Consolidated Report on 
OECA’s Oversight of Regional and State Air Inspection Programs, 1998).  Given 

                                                           
19 We do not take into account the estimation error of one of our regressors, the predicted 

probability of inspection. Generally, the standard errors of a two-step model of this sort should 
account for the fact that one of the regressors is estimated.  However, under the null hypothesis 
that the coefficient of the predicted regressor is non-significant, the standard errors are consistent. 
Since our estimation provides evidence that supports this null hypothesis, we can claim that our 
standard errors are consistent. Wooldridge (2002) shows that a formal derivation of the result that 
“no adjustment to the standard errors is needed whenever the coefficient of the generated regressor 
is zero” (page 144).  
20 In Appendix Table 2, we provide the result of a robustness check where provide an alternative 
specification of the case with “zero” emissions in the dataset (i.e. the plant’s use of chemicals fell 
below the reporting requirement.  In Column 1, we replace the “zero” emissions with the 
minimum non-zero value for the plant.  The coefficient estimate falls slightly, but remains 
relatively large in magnitude and significant.  In Column 2, we interpolate the missing years.  In 
this case, the coefficient falls to zero, suggesting that plants may temporarily decrease emissions 
after an inspection, but may increase them again in later years. 
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that fines often reflect a failure to meet the compliance schedule, we would expect 
that plants that are given a fine after an inspection would be less likely to have 
reduced emissions than those who were not penalized.  Column 1 of Table 6 
provides the results of a specification where the inspection variables are interacted 
with indicators for whether or not a plant received a fine after the inspection: 

iircnttoCtoiircnttoCtoircnt FineDFineDae ×+×+= −− ,4040,4444)log( ββ       

iircnttoDto NoFineD ×+ −− ,4444β   iircnttoDto NoFineD ×+ ,4040β  

++++ rtnti suw jrn + γˆ z ircnt + εircnt   
[4] 

The specification includes plant fixed effects, with standard errors clustered at the 
plant level.  The results confirm that the plants that responded the most to a single 
inspection were those that were never fined.   

On the other hand, plants that were fined showed no change in emissions 
after an inspection.  It is likely that for these plants, the cost of cleanup was 
greater than the potential fines that the plants faced, so they had no incentive to 
clean up their emissions.   

An interesting extension of this analysis is to ask whether plants that 
belong to industries that tend to be fined are more likely to clean up.  In Column 2 
of Table 6, we estimate Specification [4], replacing the actual fine variable with 
an indicator variable for whether the plant belonged to an industry with high fine 
rates in the first four years of our study.  We find that plants that belong to 
industries that have a low probability of fine reduce emissions by about 23 
percent after an inspection event.  Those that belong to industries that tend to be 
fined also reduce emissions by about eight percent, but not significantly so.  This 
finding has several explanations.  For example, those industries with high fine 
levels also happen to be the ones with high abatement costs.  Thus, the fine 
variable could be capturing other characteristics other than the fine. 
 Taken together, the findings reported above indicate that plants do react to 
an inspection event by reducing emissions.  This naturally raises the question as to 
which types of plants respond the most to an inspection event.  In Table 7, we 
shed some light on this question.  We first estimate a specification where the 
inspection variables are interacted with indicator variables for whether a plant 
belongs to a clean or dirty industry: 
 

nircnttoCtonircnttoCtoircnt CleanDCleanDae ×+×+= −− ,4040,4444)log( ββ        

nircnttoDto DirtyD ×+ −− ,4444β ++++×+ rtntinircnttoDto suwDirtyD ,4040β

ircntnircntnircntrn DirtyzCleanzj ελγ +×+×+ ˆˆ
  
[5] 

 
The results are reported in Column 1.  In Column 2, we report results from a 
similar specification where we interact the inspection variables with a dummy  
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(1) (2)

0.039

(0.024)

-0.168

(0.048)***

-0.081

(0.071)

-0.231

(0.064)***

Plant Fixed Effect X X

Notes:  

Inspection Event × Low  Probability of Fine

1. In Column 1, we report the results of regressions of the log of emissions on a

constant, and the inspection dummies (one for the nine years around the inspection

and one for the five years after the inspection) interacted with an indicator variable for

whether a plant received a fine in the five years following an inspection or not. We

report the results on the interactions between the post-inspection dummy and the fine

status of the plant. In Column 2, we replicate this analysis for whether the plant has a

high or low probability of fine, based on fine levels at the state level from 1985 to 1988.

2. All specifications control for year-region effects, industry-year interactions, region-

year interactions, plant fixed effects and the predicted probability of inspection from

Column 1 of Table 3. 

3.  Standard errors are clustered at the plant level and are in parentheses.

4.  * means significant at 10%; ** means significant at 5%; *** means significant at 1%.

5. Inspection and fine data are drawn from the IDEA database. Emissions data are

drawn from the Toxic Release Inventory.

Table 6:  The Effect of Emissions from an Inspection Interacted with a 

Fine

Inspection Event × No Fine 

Inspection Event × Fine 

Inspection Event × High Probability of Fine

 
 
variable for whether a plant belongs to a low abatement cost or high abatement 
cost industry.  Finally, Column 3 reports whether plants that belong to industries 
that were less likely to be inspected in 1985-1988 react differently than those that 
belong to industries that are frequently inspected.   All regressions include plant 
fixed effects, and thus correspond to the regression in Table 5, Column 2.  All 
standard errors are clustered at the plant-level. 
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 We find that the effect of an inspection on emissions varies by some, but 
not all, industry characteristics.  Column 1 of Table 7 shows that clean and dirty 
plants tend to have similar reactions to an inspection:  both have about a 16 
percent decline in emissions after an inspection event.  On the other hand, 
Column 2 of Table 7 shows a large impact of the inspections on plants in 
industries with low abatement costs and no effect on plants in industries with high 
abatement costs.  This finding provides additional evidence that plants react most 
strongly to an inspection when it is relatively cheap for them to do so (when the 
cost of cleanup may be less than a potential fine).21   Finally, we find evidence 
that plants belonging to industries that are less frequently inspected are more 
likely to reduce emission after an inspection event (Column 3).  Specifically, 
plants belonging to industries that are less frequently inspected reduce emissions 
by about 26 percent after an actual inspection.   

In sum, we find that air inspections reduce air emissions by about 15 
percent, with no significant resulting increase in emissions through other media.  
Given that inspections have been shown to reduce emissions, the next question is 
whether the inspection is cost-effective or whether emissions can be cut more 
effectively by other means.   We attempt to provide evidence on this question in 
the next section.  
 
V.  INTERPRETATION 

 
The “right” level of inspections depends, of course, on the benefits of the 
inspections—reduced emissions, which helps to reduce damage to ozone layers, 
potential improvements in health, etc.—versus the costs of an inspection.  While 
measuring the costs of an inspection is relatively straightforward, measuring the 
benefits is much more challenging.  Many assumptions need to be made to assess 
benefits:  What is the relationship between a reduction in emissions and human 
health?  What value do we place on human health?  And so forth.  With this in 
mind, we attempt to put our results into context.   

In our analysis, we find that plants reduce emissions in the period 
immediately after an inspection by about fifteen percent.  Each inspection can be 
thought of as reducing the number of passenger cars on the road by 50 cars per 
year for five years.  Given that a typical inspection costs about $2,000 - $5,000, 
 
                                                           
21 In Appendix Table 3, we report the results of specification with continuous measures of the 
pollution level and abatement costs for the industries that the plant belongs to.  As in Table 7, we 
do not observe a difference in reaction to the inspection event between those in cleaner or dirtier 
industries (Column 1).  Moreover, while the direction of the coefficient is positive (as expected), 
we do not observe a significant difference in the reaction to the inspection event by abatement cost 
(Column 2).  This suggests that while we see broad difference across those with high and low 
abatement costs, local changes in abatement costs may not be large enough for us to measure.  
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one “inspection” dollar results in a reduction of 1.8 to 4.5 pounds of air emissions 
per year.   

It is important to note two key caveats regarding this estimate of the cost 
effectiveness.  First, our measure only captures the emissions averted as a result 
of the actual cost of an inspection—the estimate does not include the potential 
economic costs if the inspections hinder firm activity.   While we cannot measure 
these economic effects within the scope of our study, the literature suggests that 
firms do make location decisions based on the stringency of environmental 
conditions (see for example, Hanna, 2009; Levinson and Keller, 2002; Kahn, 
1997; Greenstone, 2002).  Therefore, it is possible that our measure 
underestimates the total costs of inspection. 

Second, our measure does not quantify the benefits of the inspection 
program.  Reductions in emissions can translate into significant health gains.  A 
large share of the emissions studied in this paper falls under the VOC/ozone 
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category, with a well-documented connection between ambient VOC 
concentrations and health.  For example, Levy, et al (2001) showed a 0.5 percent 

increase in premature deaths per 10 µg/m3 increase in average ozone 
concentrations, and also showed a 0.1 percent increase in Minor Restricted 

Activity Days per µg/m3 increase in two-week average high-hour ozone 
concentrations.  Borja-Aburto, et al (1997) found a 0.4 percent increase in 

premature deaths per 10 µg/m3 increase in average ozone.  However, to fully 
quantify the impact of the inspections policy on health outcomes would require 
additional assumptions as to how the emissions translate to ambient 
concentrations.  While this is outside the scope of this study, it is an important 
component of our future research. 
 
VI. CONCLUSION 

 
This study estimates the impact of inspections under the Clean Air Act on 
individual plant emissions.  Using an event study methodology, we find that 
plants significantly reduce their air emissions in the years following an inspection.   
In particular, an actual inspection reduces the air emissions of a plant by about 15 
percent over the five years that follow an inspection, with little to no resulting 
increase in emissions from other media.  The effect is concentrated among plants 
with low pollution abatement costs and plants that belong to industries that are 
infrequently inspected. 

These results suggest several interesting directions for future work.  What 
can be done to improve the efficiency and impact of environmental inspections?  
What frequency and duration of inspection events will maximize benefits relative 
to costs?  How do variations in the level of fines per violation affect the behavior 
of plants?   Is increasing the fine per violation a more effective policy tool than 
conducting more frequent inspections?  In addition to shedding more light on 
these questions, future research should also aim to provide further insight into the 
social benefits and costs of inspection programs, and to compare these programs 
to other approaches that are designed to combat environmental degradation.   
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