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Abstract The expected costs of violating a regulation would typically increase if the
probability of regulatory inspection increases. Thus, changes in the anticipated threat
of inspection should affect firm compliance. Like environmental protection agencies in
several other countries, the Norwegian agency typically emphasizes compliance with
institutional requirements (e.g. firm-internal routines and auditing systems) rather than
emission caps. Using a panel dataset of polluting Norwegian plants, we find that the
threat of inspection significantly reduces the probability of serious violation. However,
emissions are not significantly affected. We point at various reasons for the regulator
to emphasize institutional requirements, but we also argue that the lack of effect on
emissions encourages the agency to review the pros and cons of the common emphasis
on institutional requirements over emissions.

Keywords Environmental regulation · Regulatory inspection · Compliance ·
Emission

JEL Classifications K42 · Q28 · L51 · K32

1 Introduction

Passing anti-pollution laws is only the first step in securing compliance with direct
environmental regulations. The existence of effective monitoring and enforcement pol-
icies is crucial to reach required environmental standards. Inspections are an important
feature of most countries’ monitoring policies. According to Becker’s (1968) theory
of rational crime, a firm complies if the expected (marginal) costs of complying are

K. Telle (B)
Research Department, Statistics Norway, P.O. Box 8131 Dept., 0033 Oslo, Norway
e-mail: kjetil.telle@ssb.no

123
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lower than the expected (marginal) penalty of violating. In the simplest framework,
compliance costs, the penalty and the probability of detection are constant. Hence,
after detection the firms simply pay the levied penalties and continue violating. Thus,
an inspection has no effect on the compliance status of a firm. However, in a more real-
istic setting, the regulator may change the inspection probability according to certain
criteria, like previous performance of the firm. Such an increase in expected inspection
probability (i.e. inspection threat) will then (ceteris paribus) raise the expected penalty
and thereby reduce violations. The present study investigates empirically whether such
an increased threat of inspection improves plant performance.

Although the number of theoretical studies of monitoring and enforcement of
environmental regulations is growing (see Cohen 2000 for a review), empirical contri-
butions are scarce. While several related aspects of monitoring and enforcement poli-
cies have been studied (see e.g. Magat and Viscusi 1990; Nadeau 1997; Dasgupta et al.
2001; Helland 1998; Rousseau 2005), we are only aware of a few papers that include
effects of the expected inspection probability on compliance status or emissions.
Eckert (2004) finds a positive relationship between expected inspections and compli-
ance. She considers compliance with the petroleum storage regulations in a province
in Canada. Gray and Deily (1996) investigate compliance and enforcement of envi-
ronmental regulations in the U.S. steel industry, and obtain similar results. Laplante
and Rilstone (1996) observe plants in the pulp and paper industry in Quebec. They
find a negative relationship between the probability of inspection and water emissions
relative to the cap. Earnhart (2004a,b) examines discharges relative to the cap from
municipal wastewater facilities in the state of Kansas. The effects of expected inspec-
tion probability on emissions are not fully clear in his studies, and when accounting
for unobserved plant heterogeneity in Earnhart (2004a), increased inspection threat
does not reduce emissions relative to the cap.1 Shadbegian and Gray (2005) apply
a dataset of U.S. pulp and paper, oil and steel plants, and find no negative effect of
inspection threat on emissions.2

The present study investigates the effects of the threat of inspection on both vio-
lations and emissions to air. We use a panel data set covering inspections, violations,
annual emissions and plant characteristics of about 90 polluting Norwegian manu-
facturing plants from 1990 to 2004. In Norway the compliance status of a firm does
not relate to emissions only, but also to extensive institutional requirements set in the
emission permit. For example, it is an almost universal requirement that internal rou-
tines and audit systems for environmental surveillance must be properly implemented.
Such regulatory focus on institutional aspects is not a peculiarity of the Norwegian
regulatory system (Nyborg and Telle 2006; Russell 1990). It is important to note that
any violation of the conditions of the emission permit, including both emission caps
and institutional requirements, is a violation of environmental regulations. Moreover,

1 Earnhart (2004a) seems to be the only one of these studies that includes regressions accounting for unob-
served plant heterogeneity. Dasgupta et al. (2001) account for unobserved plant heterogeneity and tend to
find a negative, but small, effect of the probability of inspection on emissions of polluters in China. More-
over, the effect is not statistically significant at the 5 percent level for all pollutants. Their setting, however,
is a bit different since it is not illegal to exceed the “emission caps” in China (Dasgupta et al. 2001, p. 490).
2 We are not aware of any previous quantitative study considering effects of inspection threats on emissions
or violations of environmental regulations using data from Europe.
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although the regulator monitors both emission caps and institutional requirements
during inspections, it seems to emphasize the institutional requirements (Nyborg and
Telle 2006). Hence, there may be weaker incentives to comply with emission caps
than with institutional requirements. This inspection policy might therefore result in
less violation despite unchanged or even increasing emissions.

The next section includes an overview of the theoretical background. In Sect. 3 we
sketch the monitoring and enforcement activities of the Norwegian Pollution Control
Authority (NPCA). Our econometric approach is discussed in Sect. 4. The approach
is based on two-step estimation, where, in the first step, we estimate the probability
of inspection. Predictions from this first step estimation are applied as our measure
of inspection threat. In the second step, we estimate the effect of the inspection threat
on plant compliance and emissions. In Sect. 5 we present the data, and in Sect. 6 we
present the results from the regressions and investigate the robustness of the results.
We conclude in Sect. 7.

2 Theoretical background

Following the ideas of Becker (1968), a firm will comply with environmental regula-
tions if it is profitable to do so.3 Let C denote compliance costs, π the fine for violators
and q the probability of inspection and detection. Then a (risk neutral) firm, i , will
violate as long as Ci > qiπ . Assuming that q is a constant, an inspection in period t
will have no influence on the future compliance status of the firm. However, if q in
period t is a function of variables like whether there was an inspection or not in period
t − 1, or whether violations have been detected or suspected in period t − 1, then an
inspection in period t can influence the future compliance status of the firm. Moreover,
if q is an increasing function of previously detected violations, an inspection in the
present period that reveals violations will increase the inspection probability in the
next period and thereby also the expected fine. Then the compliance costs of some
firms may turn lower than the expected fine, making it profitable to become compli-
ant. Hence, an increase in a firm’s expected inspection probability (i.e. the inspection
threat) can reduce violations.

However, how much to emit is not a dichotomous choice, like comply vs. violate.
For emissions the idea of Becker implies that the plant will emit until the expected
marginal benefit of higher emissions is equal to the expected marginal costs of abat-
ing. Then, if the emission caps impose actual restrictions on the plant’s emissions and
the penalty function is smooth and continuously increasing in excess emissions, stan-
dard theory predicts that plants will emit in excess of emission caps. Hence, increased
inspection threat, which raises the expected costs of excess emissions, would reduce
emissions.

In this setting one may correctly argue, however, that increased inspection threat
will not necessarily raise compliance in a model where the penalty function makes
a discrete jump at the cap: firms may face a penalty of zero if emissions are at the

3 See e.g. Heyes (1998) for an introduction to some applications of Becker’s (1968) ideas in the economics
of environmental regulations.
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cap, but a high penalty if emissions are just above the cap. The optimal emission level
may now no longer be to emit in excess of the cap, but rather just at the cap. In this
particular case it is straightforward to show that optimal emissions may be unaffected
by a change in inspection threat (cf. Fig. 1 and footnote 6).

As we shall see, whether or not theory predicts inspection threat to affect emissions
is important for the interpretation of our empirical results. In the following, we will
therefore show that the inspection threat does affect optimal emissions even in a model
where the penalty makes a jump at the cap:4 assume a model where the firm cannot
fully control its emissions, meaning that it may emit more (or less) than the cap by
mistake. Then it can be optimal for the firm to take on additional abatement costs to
reduce the probability of having to pay the high above-cap-penalty by mistake. In this
case a higher inspection threat amplifies the firm’s need to reduce the likelihood of
having to pay the above-cap-penalty. Thus, when a firm cannot completely control its
emissions, optimal emissions will fall as the inspection threat increases, even in the
presence of a discrete jump in the penalty at the cap.5

Let q ∈ (0,1] denote the probability of regulatory inspection, Y the emission level
of the firm and s the maximum allowed emission level. Then, the penalty function, �,
can be defined as,

�(Y ) =
{

0, Y ≤ s
qπ(Y ), Y > s, π ′ > 0

(1)

We allow the penalty to make a descrete jump at the cap

(
lim

Y→s+ π(Y ) > 0

)
. Let

x denote abatement undertaken by the firm. The costs of such abatement can then be
defined as follows,

C = c(x), c′ > 0

Assume that the plant cannot completely control its actual emissions, for example
as employees commit errors, machinery fail or the contents of pollutants in inputs
varies. In particular, for any given level of abatement the resulting emission level is
to some extent random. Let V be a random variable with expectation zero and finite
variance. Then we can let the emission function comprise a deterministic (y(x)) and
a random (V ) component,

Y = y(x) + V, y′ < 0 (2)

The problem of the firm is to minimize expected overall costs,

minx {E[�] + C}

4 As we shall see in Sect. 3, the sanctioning policy of the NPCA indicates that the penalty facing violating
firms in our sample does not make a discrete jump at the cap.
5 Previous theory on effects of errors on compliance and enforcement is limited, see Polinsky and Shavell
(2007) for a brief overview. Our approach here is somewhat similar in spirit to the approach of Craswell
and Calfee (1986). See also Segerson (1988) and Rousseau (2008).
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This yields the first order condition,

dE[�]
dx

= −c′ (3)

Let p(V ) denote the probability density function of V , assumed to be continu-
ous (and everywhere differentiable), and let v denote an outcome of V (and l and h
denote the minimum and maximum value of v, possibly infinite). The derivative of
the expected penalty is then (see Appendix A),

dE[�]
dx

= qp(s − y(x))π(s)y′ + qy′
h∫

s−y(x)

p(v)π ′(y(x) + v)dv > 0 (4)

The first term in (4) captures the effect of a change in x on the probability that above-
zero penalties occur. The second term captures the effect of a change in x on the size
of every above-zero penalty. Since both terms are negative, the overall expression is
negative: The expected penalty falls when abatement increases.

Inserting (4) into (3), the first order condition (3) says that abatement should increase
until the benefits of the decline in the likelihood of punishments and the decline in the
size of punishments equal the marginal cost of abatement.

Now consider this situation in Fig. 1. We see that E�+ C (the continuous and thin
line) does not exhibit a discrete jump despite � exhibiting such a jump: Taking the
expectation of � has smoothed the function. This implies that E�+C will eventually
approach C from above as x increases. As x declines from high values towards values
in the vicinity of x∗ (where x∗ yields emissions exactly at the cap by definition) the
shape of E�+C will be sensitive to the curvature of the probability density function,

(y(x)) 

c(x)

$
(y(x))+c(x) E[ (y(x)+V)]+c(x) 

x*
x

x**

Fig. 1 Higher inspection threat increases abatement even in the presence of a discrete jump in the penalty
function
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and more than one local minimum may exit. Given the way E�+C is drawn in Fig. 1,
we see that the optimal x(x∗∗) is above x∗.6

In addition to increasing abatement, we also see that changes in q (recall from (1)
that � is increasing in q) affect the optimal choice of x , not only for x < x∗, but also
for x ≥ x∗. Moreover, it can be shown that the derivative of the optimal x with respect
to q is positive (see Appendix A); implying that expected emissions will drop as the
probability of inspection increases.

To conclude, within this model with errors it cannot be maintained that an increase
in the threat of inspection has no effect on emissions due to possible discrete jumps
in the penalty function. As long as the firm cannot fully control its emission level,
increased inspection threat reduces expected emissions.

3 A sketch of the Norwegian regulatory system7

Any emission from a manufacturing plant that harms or may harm the environment is
prohibited in Norway. However, the Norwegian Pollution Control Authority (NPCA)
may grant emission permits. The permits contain two types of regulations. First, it
contains emission caps that specify e.g. maximum emissions per unit of time, per unit
of production and/or per unit of spill water. It may also specify maximum production
levels. Unfortunately, the heterogeneity of these quantitative regulations across pol-
lutants and plants makes it very difficult to compare actual emissions with emission
caps for different plants. Therefore, data indicating to what extent the plants meet their
emission caps are unavailable for quantitative analysis.8 Second, the permits contain
institutional requirements, like a variety of qualitative requirements concerning insti-
tutional aspects within the plant. Thus, a violation will occur if there is a violation of
at least one of these two types of regulations.

Inspections are the most important instrument in NPCA’s monitoring of plant com-
pliance. Both actual emission levels and institutional requirements, like routines and
general maintenance of equipment, are subject to investigation during the same inspec-
tions. However, the NPCA seems to emphasize institutional requirements, rather than
actual emissions (Nyborg and Telle 2006). As the overall purpose of the NPCA is
to protect the environment, it may appear more effective to devote attention to envi-
ronmentally detrimental emissions. The following seems to be the main arguments
applied by regulators for focusing on institutional requirements. First, according to
emission permits, emissions may legally fluctuate during a day, week, or year; there-
fore, to measure emissions at the time of an inspection may say little about the firm’s
actual compliance with the regulations. Second, emissions may be closely related to
the technology used by the firm or the maintenance and condition of the abatement
equipment. Third, the purpose of the inspections is not only to verify past and/or current

6 This result is not general as it depends on the properties of the probability density function (see Craswell
and Calfee 1986). Note that x∗ would be optimal in the case of no errors, and that this optimal x would be
unaffected by inspection threat.
7 See Nyborg and Telle (2006) for a more careful description of the practice of the NPCA.
8 For each plant, however, emission caps are formulated, and they are subject to investigation during
inspections.
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violations, but also to prevent future environmental damage; and if a firm does not
comply with the institutional requirements (e.g. maintaining an internal environmental
audit system) this is believed to increase the probability of such future damages.

So, although there are formal restrictions on the emissions,9 in practice, however,
it is not obvious that sanctions should always be expected for emissions in excess of
the caps since the NPCA possesses limited monitoring and enforcement resources and
tends to focus on serious violations. Or putting it differently, it does not appear obvious
that all emission caps are actually binding. Further, if they are not binding, the theory
does not predict any effect of expected inspection frequency on emissions. On the
other hand, however, if the caps were not binding, then why would the NPCA bother
to incorporate them in emission permits, or require firms to self-report emissions? And
why would the NPCA devote any effort to actual emissions during inspections if excess
emissions are not sanctioned? While these questions make it appear unreasonable that
at least excessive above-cap emissions will not meet sanctioning, we will return to
the question of whether the emission caps are actually binding when interpreting and
discussing the results in Sect. 7.

The inspection frequency of the NPCA follows a scheme that dictates the regular
inspection frequency of groups of plants. This scheme depends on the risk class of
the plant: When a plant is granted a permit, which is ordinarily valid for 10 years,
the NPCA puts the plant in one of four risk classes; with risk class one embracing
plants whose operation is considered potentially highly environmentally dangerous.
The potentially least dangerous plants are placed in risk class four, etc. Since the
operation’s potential environmental harm is closely related to its potential to violate
regulations, the risk class of the plant also carries information on its likelihood of
violation. The NPCA could deviate from the inspection frequency dictated by the
scheme for several reasons. First, after an inspection, the inspection officer makes
an evaluation of the need for future inspections based on an overall judgment of his
observations during the inspection. Normally, when non-minor violations are observed
or suspected, the inspection officer recommends inspections more frequent than the
scheme.10 Second, information from the plant, the police or the public may also result
in more than regular inspections.11

9 As mentioned, any emissions from plants are prohibited without a permit. Also, every permit includes a
general statement that even emissions allowed by the permit ought to be reduced if practicable.
10 This practice carries some resemblance to the approach suggested by Harrington (1988). He applies a
model were the inspection frequency depends on the compliance history of the firm, and this history-depen-
dency enables the regulator to reach a compliance target at lower costs. As the compliance rate approaches
one, however, this cost reduction only appears under the unrealistic assumption that a firm violating once
will face perpetual surveillance.
11 One may find it peculiar that the current emissions of the plant are not an important determinant of
NPCA’s inspection frequency. The NPCA may receive reports of emissions that cause instant damage to the
local environment, like emissions of very hazardous pollutants, and such reports can trigger an inspection.
However, high emissions of the pollutants considered here are unlikely to be an important determinant
of inspection frequency except through bad inspection evaluations. The reason is, first, that emissions of
these pollutants are closely related to energy consumption. Thus, excessive and uncontrolled emissions are
typically unlikely. Second, and generally, emissions of pollutants that are not very hazardous are not easily
observed without an inspection. Hence, the NPCA does not know the current emissions of the plant, and it
is therefore unable to base its current decision to inspect on the plant’s current emissions.
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NPCA has numerous ways of imposing costs on violators. Although severe crimi-
nal penalties are formally available, NPCA seldom prosecutes plants. Some coercive
fines are issued annually, but few are collected since plants normally comply before
the time limit specified in the decision necessary to impose coercive fines. The inspec-
tions of the NPCA do not only serve monitoring purposes, but can also be considered
to carry elements of enforcement and sanctioning. The reason is, first, that the costs
(which can be considerable12) of NPCA of performing an inspection have to be cov-
ered by the inspected plant. Second, an inspection can also involve considerable work
on the plant’s own staff. Hence, since the NPCA increases the inspection frequency
if it observes or suspects unsatisfactory performance, this practice could reasonably
be considered as sanctioning of non-compliant plants. Nyborg and Telle (2006) doc-
ument that even minor violations result in the NPCA imposing sanctions costly to the
firm, but these costs can be very small (like firm staff having to respond to letters from
the regulator or having to pay external-consultants for providing additional documen-
tation, etc.). Roughly, it seems like the NPCA carefully adapts the seriousness of its
sanction to reflect the seriousness of the detected violation.

4 The econometric approach

When estimating the effect of the inspection threat on violations and emissions we
first need an operational measure of inspection threat. To estimate this effect, we
apply so-called two-step estimation. In the first step, we estimate the probability of
inspection, which, according to the inspection policy of the NPCA, depends on several
variables like the risk class of the firm and compliance status observed by NPCA in
previous inspections. Then we use these results to predict individual probabilities of
inspection, and use these predictions as our measure of inspection threat. In the sec-
ond step, we estimate violation and emissions on the inspection threat. This two-step
approach is similar to the approach taken by e.g. Earnhart (2004a), Eckert (2004) or
Gray and Deily (1996).13

Consider the following first-step relation,

Pr(Inspectioni,t = 1) = �
(
α + PreviousPerformancei,t−1β + Xi,tγ + ηi

)
(5)

where the variable Inspectioni,t is a dichotomous variable set to one if plant i was
inspected in period t (otherwise zero). The vector PreviousPerformancei,t−l represents
the evaluation of the plant if inspected in the previous period (otherwise zero) and the
vector X includes observable plant specific characteristics, like the risk class or the size
of the plant. η captures unobserved time-invariant plant specific characteristics, like
plant location, sub-industry or vulnerability of the plant’s primary recipient, or time-

12 Nyborg and Telle (2006) report the median costs of the most frequent types of inspections of firms in
risk class 1 to be NOK 120,000 (about 15,000 Euro).
13 Such two-step estimation yields consistent estimators under standard conditions (see e.g. Cameron and
Trivedi 2005; Greene 2000; Murphy and Topel 1985). Note the resemblance of this approach to traditional
instrumental variable methods, applied in e.g. Shadbegian and Gray (2005).
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invariant elements of plant technology, vintage, management, employee motivation
and education, etc.

The parameters in (5) can be estimated consistently by OLS (with fixed effects) if
the error term is uncorrelated with the right hand side variables. Since it is a priori
not completely clear what variables to include in X , there is a possibility that this
assumption does not hold. There is at least one reason why this concern should not be
over-emphasized, though. As long as the possibly erroneously omitted variables are
relatively time-invariant, they would to a large extent be controlled for by the plant
specific effects (η).

Although applying OLS on (5) would produce consistent estimates under standard
assumptions, such a linear probability model is not efficient and it is likely to produce
predicted values of the probability of inspection that are above one or below zero.
Thus, to avoid non-sense probability predictions we apply maximum likelihood esti-
mation based on the logit model with random effects (see e.g. Baltagi 2001; Arellano
and Honore 2001 or Hsiao 1992). In Sect. 6.3 we investigate whether our main results
are robust to some other estimation methods and model specifications.

Consider the following second-step relations,

Pr(Violationi,t = 1) = �
(
a + bInspectionThreati,t + Xi,t d + vi

)
(6a)

E p
i,t = a + bInspectionThreati,t + Xi,t d + vi + ui,t (6b)

where E p
i,t denotes emissions of pollutant p for plant i in year t . We have separated

the second step relation (6) into (6a) and (6b) to make it clear that, since Violationi,t is
dichotomous and E p

i,t is continuous, we estimate (6a) by a non-linear probability model
and (6b) by a linear regression model. The threat of inspection (InspectionThreati,t ) is
operationalized as the predicted probability of inspection based on (5); and X is the set
of observed plant characteristics affecting the dependent variable (E p

i,t or Violationi,t ).
Again, we control for unobserved time-invariant plant specific effects (vi ). ui,t is the
error term with mean zero.

The coefficient of main interest in (6) is b, which captures the effect of the threat of
inspection on violation or emissions of the plant. Since we assume that I nspection-
T hreati,t is consistently estimated from the first step, applying OLS (with fixed
effects) on (6) would result in a consistent estimate of b provided that the right hand
side variables are uncorrelated with the error term. Again, however, we apply max-
imum likelihood estimation based on the logit model with random effects when the
response variable is whether the plant is in violation or not (6a) (see e.g. Baltagi 2001;
Arellano and Honore 2001 or Hsiao 1992). When the response variable is emissions
(6b), we apply GLS with random effects (see e.g. Greene 2000, Ch. 14, or Earnhart
2004a). In Sect. 6.3 we investigate whether our main results are robust to other esti-
mation methods and model specifications.

There are some concerns regarding this two-step econometric strategy. First, the
previous studies seem to disregard unobserved plant specific effects in the first step,
cf. η in (5). This strong assumption enables application of a standard logit or probit
model where the probability of inspection can be predicted straightforwardly. We,
however, allow for unobserved plant heterogeneity in the first step: The unobserved
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plant specific effects are represented by random effects in the logit model (see e.g.
Baltagi 2001).14 As these unobserved effects cannot be predicted, we need to make
assumptions about these effects to predict the probability of inspection needed in (6).
In our main approach we assume that these effects are zero. Thus, it is not clear that
our approach is preferable to the approach of previous studies. In Sect. 6.3, we there-
fore investigate whether our main results are similar under both of these assumptions
regarding unobserved plant heterogeneity in (5). There we also investigate the impor-
tance of these heterogeneity assumptions by checking whether our main results are
maintained in an OLS estimation with fixed effects. Applying the OLS with fixed
effects enables predictions of the inspection probability without having to impose the
assumption that there is no unobserved plant heterogeneity when estimating or when
predicting.15 Moreover, in Appendix B we outline an alternative econometric speci-
fication where we can identify the effect of the threat of inspection on the outcome
variable (V iolationi,t or E p

i,t ) using the estimate of β from (5). This specification
does not require predictions of the probability of inspection from (5), and we thereby
circumvent the problem of retrieving predictions of the unobserved plant heterogene-
ity. As shown in the appendix, applying this econometric specification yields the same
main qualitative results as those evolving from the econometric strategy presented in
the main body of the text.

Second, it is important for the credibility of our identification strategy that the
vector PreviousPerformance in (5) is correctly excluded from (6);16 i.e., except for
the effect through changes in inspection probability, PreviousPerformance must not
be a direct determinant of violation or emissions in (6). Judging from the inspec-
tion strategy of the NPCA, it does not seem likely that being inspected in previous
period, and the outcome of this inspection, should be an important determinant of the
plant’s current outcome—except for the effect that this inspection has on the prob-
ability of future inspection (captured in (5)). On the other hand, one might imagine
that the plant could, e.g., have learned how to improve performance (or mislead the
regulator) if recently inspected. Such a learning effect, however, appears much more
likely for smaller plants with low-skilled management than for the big, technologically
skilled, professionally managed and mostly internationally competing manufacturing
plants considered here. Nevertheless, we investigate this empirically. If PreviousPer-
formance were incorrectly excluded from (6), this would introduce an omitted variable
bias. Thus, if these variables were incorrectly omitted from the second stage model,
we would expect our estimate of b to be sensitive to inclusions of these variables. We
investigate this empirically in Sect. 6.3.

14 As discussed by Arellano and Honore (2001), little is known about the properties of the estimators of
nonlinear panel models with lagged dependent variables. Thus, in Sect. 6.3 we also investigate robustness
of the results to models without plant specific effects.
15 As mentioned above, although consistency is secured under standard assumptions, there are several
drawbacks of OLS in this setting.
16 If OLS were applied in the first and second stage estimations, not excluding an element of Previous-
Performance in (6) would unable identification of b since InspectionThreat would be a linear combination of
the other right hand side variables. If non-linear procedures are applied, b could still be (weakly) identified
by functional form.
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Another concern is that PreviousPerformance must be an important determinant
of NPCA’s inspection frequency.17 This can be evaluated by testing the significance
of the estimate of β in (5). Even under standard conditions, which are sufficient to
render consistent the estimate of b in (6), applying a standard estimation procedure
would provide incorrect estimates of the standard errors since I nspectionT hreati,t
is predicted (Murphy and Topel 1985). We correct the standard errors as described by
Greene (2000) and Hardin (2002).

5 Data and dataset issues

To analyze what determines the inspection frequency of plants, and the effect of
inspection threat on plant performance, we use a plant level panel data set with annual
observations for 1990–2004. The dataset consists of plants holding emission permits
and belonging to the following four industries: chemicals, basic metals, pulp and paper
and other non-metallic minerals (NACE-codes 24, 27, 21 and 26 respectively). Hence,
the sample is not representative for Norwegian manufacturing plants: The (potentially)
most polluting plants and industries are over-represented.

Statistics Norway and the NPCA publish emission data for the manufacturing indus-
tries in Norway; see e.g. Flugsrud et al. (2000). From this inventory, we apply plant
specific annual emissions for 1990–2004 of greenhouse gases, acids, nmvoc-equiv-
alents (ozone precursors) and particles. The emission data initially originates from
plants’ self reports. However, the quality of the reported data is carefully investigated,
e.g. by comparing the figures with data on energy or input consumption originating
from census data. When inconsistencies are observed, officers at the NPCA or the plant
are normally consulted, and the figure most consistent with the energy or input data
may be chosen. This procedure secures that the plant incentives to under-report emis-
sions is unlikely to seriously bias the data.18 In the analysis, we normalize emissions
by production (in fixed prices), and hereafter refer to emissions relative to production
of greenhouse gases, acids, particles and nmvoc-equivalents as, respectively, Green-
houseGases, Acids, Particles and Nmvoc.

The NPCA keeps a database including every one of its regulatory inspections of
these plants. From this source, which includes various aspects of each inspection, like
date and the officer’s evaluation, we construct two annual variables for the period
1990–2004.

First, we construct an indicator of the plant’s compliance status in year t . Data on
the compliance status of plants is inherently difficult to obtain. Eckert (2004) uses
violations observed in inspections. Magat and Viscusi (1990) get data on emissions
in excess of the permitted levels from plants’ self-reports, and this seems to be the
case for Gray and Deily (1996) too. Regardless of the data source being self-reports
or inspections, firms can have incentives to misreport or to conceal violations; see

17 Or, in the IV-terminology, the instruments must be relevant. In the same terminology, the previous
paragraph discussed whether the instruments are valid.
18 If reliable data is not available, emissions may be set to missing. Hence, observations of emissions are
missing for pollutants or plants in some years.
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theoretical studies by e.g. Heyes (1994) or Kambhu (1989). Thus, all studies in this
field, including the present, have no choice but to rely on data on reported or detected
violations, rather than data on actual violations.19

As mentioned in Sect. 3 above, data on whether emissions are in excess of permitted
levels is unavailable in Norway, and therefore we follow the approach of Eckert (2004)
and rely on violations detected in inspections. This has the advantage of circumventing
the potential problem arising from plant incentives to underreport violations in self-
reports or surveys. This has the disadvantage, however, of restricting the observations
of violations to plants actually inspected. This selection problem involves an important
concern: Our estimated effect of threat of inspection on violation may only be valid for
plants with high probability of inspection. This argument would have greater impact,
however, if we could indicate some reasonable and important causes for the threat of
inspection to affect outcome differently for these two groups of plants (Wooldridge
2002, Ch. 17). Nevertheless, we should be cautious in generalizing the results based
on the violation variable to plants with low threat of inspection.

Another impact of the violation variable only being observed if the plant is inspected,
is that we cannot carry out the first and second stage of the two-stage estimation pro-
cedure on one identical dataset; since there would be no variation in the dependent
variable of the first stage regression as all plants would have been inspected in period t .
Thus, we utilize all information in the data by performing the first stage regression on
all available observations (both plants inspected and not inspected in period t). In the
second stage, only a sub-set of observations utilized in the first stage, i.e. the observa-
tions of actually inspected plants, can be applied. This feature of the dataset disables
application of estimators that cannot be based on actual two-step estimations.20

NPCA’s post-inspection evaluations contain a separate category for serious viola-
tion(s). In the present study we set the annual violation variable to one if a serious
violation was detected at least once during year t . This variable is hereafter referred
to as Violation.

Second, indicators of previous performance, i.e. the PreviousPerformance-vec-
tor in (5), are constructed. An indicator of bad performance (BadPerformance) is
set to one if the evaluation of the last inspection in year t states that serious vio-
lations were observed and/or that the plant should be inspected more frequent than
what is dictated by the inspection scheme, either because non-minor violations are
observed or because violations are suspected.21 Moreover, an indicator of normal per-
formance (NormalPerformance) is set to one if the evaluation of the last inspection
in year t states that there is little need for more frequent inspection than what is dic-
tated by the inspection scheme; typically because non-minor violations are neither
observed nor suspected. Finally, we include an indicator that the evaluation of the

19 Throughout the paper we employ the colloquial expression “probability/threat of violation” instead of
the more precise “probability/threat of detected violation.”
20 This implies that estimators often interpreted in a two-stage setting, like IV-estimators, but that are in
fact one-step estimators, are not applicable.
21 After an inspection the NPCA routinely notifies the inspected plant of detected violations. The standard
wording in these notifying letters depends on the observed compliance status. Formally, these letters have
no legal implications, they only remind the plant of obligations and penalties.
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last inspection in year t is missing (PerformanceMissing). Hence, this set of dummies
(BadPerformance, NormalPerformacne, PerformanceMissing) tends to serve as indi-
cators of NPCA’s expectations of future violations. Along with the risk class of the
plant (included as dummies) these variables should capture much of NPCA’s expec-
tations about future violations of institutional requirements and above-cap emissions.

Unfortunately, firm-level data on sanctioning is not available. However, we are not
aware that the size or frequency of formal sanctioning has changed radically during
the period studied in this paper, and therefore it does not appear very unreasonable that
year dummies, along with industry dummies or time-invariant plant specific effects,
could be an adequate way to control for possible changes in sanctioning. Nevertheless,
we return to this data limitation when discussing our results in the concluding section.

Census data on manufacturing plants are available from Statistics Norway. This
extensive database includes a variety of annual plant specific data; in particular, we
use employment (Employees), investments, production and industry.

The production variable that we apply is current value of production deflated to
1992. A proxy for capital stock is created as follows. First current values of gross
investment are deflated to 1983 (using a price index for investments in manufacturing
industries). Then the capital stock for 1983 is set to the mean of gross investments in
1983–1985 (or earliest available years) divided by the depreciation rate (set to 0.08,
cf. Todsen 1997). Finally, deflating the capital stock of the previous year and adding
gross investments yields the capital stocks at the beginning of the present year. This
variable is referred to as Capital.

Combining non-missing observations from these sources yield an unbalanced panel
of 1,359 observations over the period 1990–2004. The number of plants varies from a
minimum of 88 in 1994 to a maximum of 93 in 2001. Eighty-three plants are present
in all years, while 14 enter and 7 exit over the period. This dataset is used for the
inspection regression (5), where the number of observations is reduced to 1238 since
some explanatory variables are lagged one period. For reasons explained above, sub-
samples of the dataset applied in the first stage regression are used for the violation
and emission regressions (6). Table 1 provides summary statistics for the variables in
the dataset.

6 Results

6.1 Probability of inspection (fist step estimation)

As mentioned, the NPCA has an inspection frequency scheme depending mainly
on the risk class of the plant (RiskClass2i , RiskClass3i ; excluding firms that are
in RiskClass1i ), as well as the previously detected performance of the plant (Bad
Performancei,t−1, NormalPerformancei,t−1, PerformanceMissingi,t−1; excluding
non-inspected group). In addition, we control for observed plant heterogeneity and
changes over time by including Employeesi,t−1, Capitali,t , industry-dummies (Pulp
and paper excluded) and year-dummies (1991 excluded). Moreover, the included ran-
dom effects account for unobserved time-invariant plant heterogeneity. The dependent
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Table 1 Variables and summary statistics for 1991–2004

Variable name Obs Mean St. dev.

Inspection 1238 0.55
NormalPerformance 1238 0.45
BadPerformance 1238 0.05
PerformanceMissing 1238 0.05
Capital 1238 338.47 472.19
Employees 1238 260.33 225.36
Pulp and paper industry 1238 0.11
Chemicals industry 1238 0.34
Non-metallic minerals industry 1238 0.18
Basic metals industry 1238 0.37
Risk class 1 1238 0.56
Risk class 2 1238 0.23
Risk class 3 1238 0.21
Risk class 4 1238 0.00
Violation 680 0.04
GreenhouseGases 938 0.31 0.43
Acids 853 0.05 0.07
Nmvoc 945 1.25 2.00
Particles 1062 0.39 0.84

variable, Inspectioni,t , is one if the plant was inspected at least once in year t ; zero
otherwise.

The results of the maximum likelihood estimation of this logit model with random
effects are presented in the first column of Table 2. In accordance with the inspec-
tion scheme of the NPCA, the probability of an inspection is significantly22 lower for
plants in risk class 2 and 3 than for plants in risk class 1. Again as expected, if the plant
performed well in the last inspection of the previous year (NormalPerformancei,t−1),
the probability of inspection in the subsequent year decreases. A test of the hypoth-
esis that the year dummies are jointly insignificant can be rejected (chi-square test),
and the estimated year dummies indicate that the probability of inspection increases
at the very beginning of the period and then starts to decline. The probability of an
inspection increases with Employees and Capital, but Employees and Capital are only
jointly significant. Basically, these results are as one would expect given the inspection
policy of the NPCA discussed above.

6.2 Effect on performance of inspection threat (second step estimation)

We now turn to the main issue of the paper: Does the inspection threat affect the
compliance status and emissions of the plant? As mentioned, the NPCA’s focus on
institutional requirements may impact plant incentives so that compliance can improve
despite unchanged emissions.

22 Unless otherwise stated, we refer to an estimate as significant if the p-value is below .05. All estimations
are performed using STATA9.
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In relation (6) our main interest is how InspectionThreat affects the response
variable. We also control for observed plant heterogeneity and changes over time by
including RiskClass2i , RiskClass3i (excluding RiskClass1i group), Employeesi,t−1,
Capitali,t , industry-dummies (pulp and paper excluded) and year-dummies (1991
excluded). Moreover, the included random effects account for unobserved time-invari-
ant plant heterogeneity, like plant location or sub-industry, or time-invariant elements
of plant technology, vintage, management, employee motivation and education, etc.
The dependent variable is either the dichotomous variable indicating violation (Viola-
tion), or the emissions relative to production of the four pollutants (GreenhouseGases,
Acids, Particles and Nmvoc).

The results of the maximum likelihood estimation (logit with random effects) of
the violation relation (6a) are presented in the second column of Table 2.23 While the
capital stock (Capital) of the plant does not appear an important determinant of viola-
tion, the likelihood of violation increases with the labor stock (Employees). Although
not statistically significant, violations do also tend to be less likely for plants in risk
classes 2 and 3 than for plants in risk class 1, and tend to be more likely in the Pulp
and paper industry compared to the three other industries. There is no clear pattern
over time.

Our main interest, the effect of the inspection threat on violation (b), is, as expected,
negative. It is also statistically significant. The estimated coefficient of −7.43 corre-
sponds to a mean marginal effect of −0.176. The elasticity of violation with respect to
threat of inspection is about −3. Thus, a one percent increase in the threat of inspection
yields three percent lower likelihood of violation, which seems a substantial effect.
This result indicates that the inspection policy of the NPCA improves compliance,
which can be taken to represent a reassuring evaluation of the performance of the
inspection policy of the NPCA.

We now turn to the results of the estimation of the effect of the inspection threat on
emissions. The results of the GLS estimation (with random effects) of the emission
relations (6b) are presented in columns 3 to 6 of Table 2. Emissions are generally
lower for plants in risk classes 2 and 3 than for plants in risk class 1 and tend to decline
with Employees. Emissions are also generally lower in the Pulp and paper industry,
compared to the other three industries. Maybe except for GreenhouseGases, there is
a tendency for emissions to decline over time.

Contrary to expectation, the inspection threat has a positive effect on emissions
of all pollutants. However, as the estimated effect is not statistically significant for
any of the pollutants, we conclude that the inspection threat does not affect the
emissions of the plants. Hence, the result does not confirm the a priori expecta-
tion that the inspection policy of NPCA lowers emissions. Before we discuss pos-
sible interpretations, reasons and implications of this in the next section, we consider
robustness.

23 As indicated in Sect. 4, standard errors of the second step estimations in the paper are corrected for the
fact that the threat of inspection is a prediction from the first step estimation.
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6.3 Some investigations of robustness

Here we investigate the robustness of our two main results, i.e., first, that the threat
of inspection reduces the likelihood of violation, but, second, that this threat does not
reduce emissions. As mentioned, there are some important concerns regarding our
identification strategy; first, the NormalPerformance, BadPerformance and Perfor-
manceMissing variables must be clearly significant determinants of NPCA’s inspec-
tion frequency (cf. Staiger and Stock 1997 for a discussion of problems related to
weak instruments). From the test of the joint significance of NormalPerformancei,t−1,
BadPerformancei,t−1 and PerformanceMissingi,t−1 reported in Table 2, it is clear that
this is indeed the case.

Second, these variables must not be incorrectly excluded from relation (6). If they
were incorrectly excluded, the estimated effect of inspection threat (b) on the response
variable in (6) would be biased. Such a misspecification can be considered an omitted
variable problem, and, thus, if these variables were incorrectly omitted from the sec-
ond stage model, we would expect our estimate of b in (6) to be sensitive to inclusion
of these variables. In Table 3 we report the results of including these variables, and a
related one, in the second stage regressions. All variables included in the second stage
regressions reported in Table 2 are also included here, but only the estimates of b and
of the variables relevant for the current discussion on the exclusion restrictions are
reported in the table. From Table 3 we see that including in the second stage a dummy
being one if the plant was inspected in the previous period (otherwise zero) increases
the estimate of b in the violation relation somewhat. However, this dummy variable is
not significant. Moreover, we see that the estimate of the effect of inspection threat is
almost unaffected by including NormalPerformancei,t−1, BadPerformancei,t−1 and
PerformanceMissingi,t−1. Also, none of these three variables are individually signifi-
cant, and a test of the joint significance of them also fails. Summing up, there appears
to be little support for a concern that our exclusion restrictions are very implausible.

Unobserved plant heterogeneity is controlled for in all regressions reported in
Table 2. Results reported in Table 4 investigate whether our two main results are robust
to model specifications not accounting for plant specific effects. At the top of Table 4
we report the estimated effect of threat of inspection on violations or emissions (b)
when the first stage model accounts for random effects, while such effects are not
accounted for in the second stage regression. Then Table 4 reports the results when the
first stage model does not account for plant specific effects, while such effects are, or
are not, accounted for in the second stage model. The general impression is that our
two main results are not particularly sensitive to these changes in model specification.
Finally, we see that our two main results also hold when applying a probit model with
random effects, as well as in OLS models with and without fixed effects.

7 Concluding discussion

We have investigated the effect of inspection threat (i.e. predicted probability of inspec-
tion) on the likelihood of violation and emissions using data of about 90 Norwegian
manufacturing plants from 1990 to 2004. The regression analysis reveals that a higher
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inspection threat significantly reduces the likelihood of violation. The estimated effect
of inspection threat on the likelihood of violation appears substantial, as a one percent
increase in the inspection threat is estimated to yield a three percent reduction in the
likelihood of violation. However, we do not estimate an expected negative effect of
inspection threat on emissions; in general the threat of inspection has a positive but
insignificant effect on emissions. Thus, we find no empirical support for the hypothesis
that the inspection policy of the NPCA reduces emissions.24

It is often argued that unlike criminal activities, violations of environmental regu-
lations may typically be inadvertent rather than willful, especially after initial compli-
ance has been achieved (see e.g. Harrington 1988, p. 32). Violations of environmental
regulations can result from a combination of several stochastic events, such as var-
iation in input quality or breakdown of abatement equipment combined with weak
firm-internal routines and auditing systems, rather than deliberate acts. Still, firms
have choices of maintenance, operation and surveillance of abatement equipment, and
these choices can strongly affect the likelihood and magnitude of violations. It thus
appears reasonable that firm dilingence would be greater the greater the costs of viola-
tions. Moreover, if violations are closely related to the implemented equipment of the
firm, it seems important to monitor, regulate and enforce the installation, operation,
maintenance and firm-internal auditing of this equipment. Thus, regulators may have
ample reason for the common practice of emphasizing compliance with institutional
requirements (e.g. operation and maintenance of abatement equipment, firm-internal
routines, auditing systems) rather than emission caps.

As always, the empirical results are contingent on the applied model specifications,
the institutional settings, the actual dataset, etc. Given the regulatory policy of the
NPCA, the lack of effect on emissions may not be very surprising. Like environmen-
tal protection agencies elsewhere (Nyborg and Telle 2006; Russell 1990; Rousseau
2007), the NPCA puts emphasis on institutional requirements rather than emissions.
Doing so, the NPCA may provide incentives for the plants to put more effort in
improving performance in these areas rather than in reducing emissions. Hence, from
the monitoring and enforcement activity of the NPCA, the plants may learn that there
are none or very lenient sanctioning of excess emissions of some pollutants.25 This
might indicate that it is not appropriate, as we have done here, to assume that the
regulations of emissions impose actual restrictions on plant emissions. If the emis-
sions caps are superfluous in the sense that they are set higher than the emissions the
plant would have had in the case of no regulations, then there is no reason to expect

24 Not finding an effect of inspection threat on emissions is not unambiguously in conflict with previous
studies. Most studies find a negative relationship between emissions relative to the cap and previous inspec-
tion or the probability of inspection (Laplante and Rilstone 1996; Magat and Viscusi 1990), but these do not
account for unobserved plant heterogeneity. When Dasgupta et al. (2001) and Earnhart (2004a) control for
plant specific effects, their results are not so clear. In Dasgupta et al. (2001) the effect of the probability of
inspection is not significant at the 5 percent level for all pollutants, and Earnhart (2004a) does not find that
higher probability of inspection significantly reduces emissions (relative to cap). Moreover, Shadbegian
and Gray (2005) investigate the effect of inspection threat on emissions (relative to production) of several
pollutants, and they do, like us, not find a negative effect.
25 Another possibility is that inspection threat increases reported emissions, while it may still reduce actual
emissions. If so, we would estimate a positive effect of inspection threat on (reported) emissions, although
actual emissions might in fact have remained unchanged or even declined.
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increased inspection threat to reduce emissions. The possibility that emissions caps
are not binding can only be ruled out by documenting that marginal abatement costs
are positive;26 which is a challenging task left for future research.

The dataset is not as comprehensive as one could wish for, and data on more
plants and more industries would be important for making more general assessments.
In particular, data on the sanctioning of individual plants is not available. Like us
Shadbegian and Gray (2005) do not find a negative effect of inspection threat on emis-
sions. However, they do, as one would expect, find a negative effect of enforcement
activities directed towards each plant (penalties, notice of violation, etc.). Thus, and
since various monitoring and enforcement activities are likely to impact firm behavior
differently (see also e.g. Rousseau 2007), having data that does distinguish between
inspection threat and such direct sanctioning activity would enable an important check
of the robustness of the results of the present analysis. Despite these caveats, we think
the present study can provide an interesting point of departure for regulatory agen-
cies, as well as researchers, when discussing various aspects of inspection policies, in
particular the common policy-emphasis on institutional requirements.
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Appendix A

The expected penalty can be written as,

E[�] =
h∫

l

p(v)�(Y )dv =
s−y(x)∫

l

p(v)�(Y )dv +
h∫

s−y(x)

p(v)�(Y )dv

Here we note that the prior integral is zero since �(Y ) is zero (follows from (1)
and (2)). Thus, we have,

E[�] = q

h∫
s−y(x)

p(v)π(y(x) + v)dv

26 Although data on marginal abatement costs is unavailable, firms’ expenditures on environmental pro-
tection appear to be non-negligible. In 2002, Statistics Norway asked a sample of firms in manufacturing
industries about their environmental protection expenditures (see Hass 2004). All sub-industries report
positive costs, and firms in pulp and paper and non-metallic minerals report environmental expenditures of
about 2 percent of total input costs (incl. personnel costs), and end-of-pipe-investments of 11–22 percent
of overall gross investments.
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The derivative of the expected penalty with respect to x is then (using Leibnitz’
formula) given by (4).27

We now show that the derivative of the optimal x with respect to q is positive.
Inserting (4) into (3), the first order condition (3) becomes,

qp(s − y(x))π (s) y′ + qy′
h∫

s−y(x)

p(v)π ′ (y(x) + v) dv = −c′

Differentiating this first order condition with respect to x and q yields,

dx

dq
=

−y′
[
π(s)p(s − y(x)) + ∫ h

s−y(x)
p(v)π ′dv

]
d2 E[�]

dx2 + c′′

By noting that the second order condition for the minimization problem is d2 E[�]
dx2 +

c′′ > 0, it is clear that the overall expression is positive.

Appendix B

Here we outline an alternative econometric specification where we can identify the
effect of the threat of inspection on violations and emissions without having to use
predictions of the probability of inspection from (5). Thus, we can allow for unob-
served plant heterogeneity and simultaneously circumvent the problem of retrieving
predictions of the unobserved plant heterogeneity. To do this, we operationalize the
threat of inspection as the log-odds ratio of the probability of inspection.

The logit models of relation (5) and (6a) with random effects can be written as
follows

Pr(Inspectioni,t = 1) = 1

1+ exp
(−α−PreviousPerformancei,t−1β−Xi,tγ−ηi

)
(A1)

Pr(V iolationi,t = 1) = 1

1 + exp
(−a − Ii,t b − Xi,t c − vi

) (A2)

where Ii,t captures the firm’s anticipated inspection threat. In the main body of the
text we have assumed that firms respond to the predicted probability of inspection,
but our qualitative results would be unaffected by applying any alternative measure
that is monotonically increasing in this predicted probability. The odds ratio measures
the probability of inspection relative to the probability of no inspection. The log-odds

27 We allow for a slight misuse of notation as π(s) now denotes π(s + e), where e is a positive and
infinitesimal number.
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Table A1 Main results of the estimated effect of threat of inspection on emissions and the probability of
violation applying the alternative econometric specification

Dependent variable

Violation GreenhouseGases Acids Nmvoc Particles

PreviousPerformancei,t−1β̂ −1.42 0.00 0.00 0.01 0.03
(2.73)** (0.49) (1.21) (0.32) (0.81)

Observations (i, t) 680 938 853 945 1062
(94, 14) (72, 14) (65, 14) (72, 14) (83, 14)

(*) and (**) indicate significance at the 10 and 5 percent level, respectively. Absolute value of z-statistics
in parentheses. Standard errors are not corrected for the fact that β has been estimated in the first step. All
controls included in second stage estimations reported in Table 2 are also included in the estimations in this
appendix, but they are not reported

ratio is monotonically increasing in the probability of inspection, and applying it is
convenient from a formal point of view. Following from (A1) the log-odds ratio is

Ii,t = ln
Pr(Inspectioni,t = 1)

1 − Pr(Inspectioni,t = 1)
= α + PreviousPerformancei,t−1β

+ Xi,tγ + ηi

Inserting this into (A2) yields

Pr(V iolationi,t = 1) = 1

1+ exp
(−â−bPreviousPerformancei,t−1β−Xi,t ĉ−v̂i

)
(A3)

where

â = a + αb
ĉ = c + bγ

v̂i = vi + bηi

We can now identify the effect of the threat of inspection on the probability of
violation (b) by obtaining (an estimate of) β from (an estimation on) (A1) and insert-
ing it into (A3). The effect of the threat of inspection on emissions can be obtained
analogously.

The logit model with random effects is applied in the first stage estimation, as well
as in the second stage estimation when the response variable is Violation. GLS with
random effects is applied for the second stage emissions regressions. Table A1 con-
tains the main results from these second step estimations, and we see that our main
qualitative results are the same as the ones reported in the main body of the text.
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