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Abstract

This paper explores empirically the impact of enforcement efforts on environmental compliance, focusing
on the role of regulator reputation spillover effects. We find that, on the margin, the impact of a fine for
water pollutant violations is about a two-thirds reduction in the statewide violation rate in the year
following a fine. This large result obtains through the regulator’s enhanced reputation; the deterrence
impact on other plants in a state is almost as strong as the impact on the sanctioned plant. Focusing only on
the response of the sanctioned plant, as in previous studies, may therefore seriously underestimate the
efficacy of fines and other sanctions. This paper also examines the relative effectiveness of monitoring and
enforcement instruments. Non-monetary sanctions contribute no detected impact on compliance, and the
marginal fine induces substantially greater compliance than the marginal inspection.
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1. Introduction

Regulatory punishment for pollution violations is a mainstay of nearly every industrialized
nation’s environmental policy. A rich theoretical literature examines enforcement in general and
environmental enforcement in particular, but there is a surprising lack of empirical research on
the impact of fines on compliance. This paper takes up the issue, explicitly linking imposed fines
and other penalties to subsequent polluting behavior. We ask two main questions. First, ‘How do
fines deter environmental violations?’ In particular, we examine the extent to which a sanction on
a given plant spills over to deter violations at other plants through the regulator’s enhanced
reputation. Second, ‘How much do fines deter environmental violations?’ Here, we quantify the
initial improvement in environmental compliance that results from increased enforcement.
We study the efficacy of fines for two reasons. First, economists generally believe that effective

regulations require regular and large monetary sanctions. Therefore, we attempt to validate and
assign empirical magnitudes to important theoretical predictions. Second, there is a current policy
movement away from enforcement ‘with teeth’ to informational and advisory enforcement. For
example, recent evidence indicates that actual monitoring and sanction levels have been declining
in several areas. For 1992–2002, Internal Revenue Service (IRS) criminal tax prosecutions fell by
over 50% and the number of levies collected fell by about 80%. By 2000, Occupational Safety and
Health Administration (OSHA) safety inspections had fallen by over 50% from a peak in the mid-
eighties. Finally, Environmental Protection Agency (EPA) civil enforcements declined by more
than one-third over the last decade.1

We investigate our questions for the case of conventional water pollutants, in part because
water quality remains a significant issue in the US. According to the EPA, 75% of the US
population lives within 10 miles of an impaired waterway. In addition, over 40% each of assessed
river and stream mileage, lake acreage, and estuarine square mileage is unsafe for fishing and/or
swimming [30]. Water quality is vitally important for human health, economic welfare, and
ecosystem sustainability.
Our strategy is to link fines and other actual enforcement activities to subsequent compliance

behavior. One naturally expects a fine would help to deter future violations by the sanctioned
plant. Moreover, a fine may also credibly signal the regulator’s overall willingness to levy penalties
on other plants. We therefore examine both the overall reputation impact and the agent-specific
impact of fines.
Our approach differs substantially from previous empirical research. Most notably, prior

studies do not consider the overall regulator reputation-building impact of a levied sanction. Our
results show that a single fine on one plant strongly enhances the regulator’s credibility with all
plants, amplifying that fine’s impact. Any additional deterrence effect specific to the targeted plant
is relatively small, suggesting that plants carefully observe and learn from the experiences of their
neighbors. We show that other plants in a regulatory jurisdiction respond nearly as strongly to a
sanction as the fined firm itself. Focusing only on the response of the sanctioned firm, as the
previous literature has done, may seriously underestimate the efficacy of fines and other sanctions.
1IRS and EPA enforcement data were obtained through the Transactional Records Access Clearinghouse [25] at

Syracuse University. OSHA enforcement data were obtained from the US Department of Labor, Office of the Assistant

Secretary for Policy [26].
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Important policy implications arise from the identification and empirical measurement of
regulator reputation spillover effects. In particular, a surprisingly large increase in water quality
could be achieved from a relatively small additional investment in enforcement. When reputation
spillover effects are considered, a marginal fine induces an average two-thirds reduction in the
statewide violation rate in the year following a fine.
Our paper also differs from previous empirical research in that it considers the contribution of

fines relative to other types of monitoring and enforcement instruments. Since sanctions differ in
severity, cost-effective enforcement strategies require knowledge of the relative deterrence
associated with different enforcement instruments. Our results indicate that non-monetary
sanctions contribute no detected impact on compliance. Further, over the observed range of
monitoring and enforcement activities, the impact of the marginal inspection is small relative to
that of the marginal fine.
The paper proceeds as follows. Section 2 reviews the relevant literature and explores the

regulatory background of our case study industry. Section 3 discusses the data, its sources, and
the assumptions involved in its collection. Section 4 examines plants’ compliance decisions, and
Section 5 presents the econometric models. Section 6 presents the results and interpretations,
and Section 7 concludes.
2. Literature and background

2.1. Literature

To our knowledge, all previous work on environmental compliance and plant-level enforcement
has examined only the impact of enforcement activities on the sanctioned plant. The overall
reputation-building impact of a levied sanction is not considered. We attempt to fill this void. Our
results show that this regulator reputation spillover effect is a critically important aspect of
environmental enforcement; in other words, the reputation effect highlighted in this work is the
primary deterrence mechanism.
There is relatively scant empirical literature on environmental enforcement. Studies by Magat

and Viscusi [12] and Laplante and Rilstone [10] investigated the impact of inspections and the
threat of inspections, respectively, on the water pollution compliance rates of pulp and paper
plants. Gray and Deily [5] extended the analysis to include non-monetary enforcement actions.2

Each of these studies indicated that lagged enforcement and monitoring activity increased plant
compliance. The studies did not include fines, however, the enforcement instrument believed to
ultimately induce the greatest rates of compliance.
More recently, Nadeau [13] found that monitoring and enforcement activities reduced the

duration of air pollution non-compliance. Fines are included in the analysis, but they are not
investigated separately from other enforcement activities. Critically, Nadeau [13] also did not
address the issue of cross-plant reputation building, which in our analysis is the most important
2Gray and Deily [5] also investigated whether plant compliance rates influence regulatory behavior and whether plant

characteristics influence compliance or regulator behavior. These are important contributions, but not directly relevant

to this study.
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deterrent effect. Kleit et al. [9] examined the determinants of regulator behavior—i.e., what
factors determined whether a financial penalty is levied and what factors determined the amount
of civil penalties. While this study used similar data, it contained no analysis on firm responses to
regulator activities (fines or inspections). Stafford [22] showed that an increase in the maximum
possible penalty decreased violations for hazardous waste pollutants. The study examined the
number of violations before and after an administrative rule change, and consequently contained
no data on actual enforcement or penalties. Stafford [22] looked at how potential legal liability
affected compliance; we examine how actual enforcement affects compliance.
Our study, and all of the research reviewed above, focuses on the intensive margin (direct)

effects induced by environmental enforcement. Other studies, however, examined extensive
margin (less direct) effects. Deily and Gray [4] investigated the role of local political and economic
conditions in the environmental oversight of US steel mills. The results most relevant here
suggested that plants predicted to incur substantial regulatory action were more likely to shut
down. Stafford [21] found that state spending on environmental programs can deter plant
location, and Gray and Shadbegian [6] found that firms allocated lower production shares to
states with more stringent regulations.
2.2. Background

Conventional water pollutants for the US pulp and paper industry are the focus of our case
study. We choose this industry for several reasons. The pulp and paper industry is the largest
discharger of both biochemical oxygen demand (BOD) and total suspended solids (TSS) into US
waterways, releasing over 16 million cubic meters of wastewater daily. Additionally, pulp
(standard industrial classification (SIC) 2611), paper (SIC 2621), and paperboard (SIC 2631) mills
exist in a wide range of states and fall under the jurisdiction of many different permitting
authorities. Major production areas are located where raw materials (fiber-furnish) are most
plentiful: the southeast, the northwest, the northeast, and the north central region.
Permitting, inspection, and enforcement activities are conducted by a variety of regulatory

authorities. Most of these authorities are state environmental agencies; the rest are regional EPA
offices.3 Monthly self-monitoring reports are the primary source of compliance information.
Frequent on-site regulator inspections are intended to ensure the accuracy of these self-reports.
Inspections also identify maintenance issues, serve as a source of information for future
permitting, and provide an avenue to gather evidence to support enforcement actions (USEPA
1990).
Enforcement actions range from levying fines to making warning telephone calls. Beyond fines,

the most serious actions are considered ‘‘formal’’ by the EPA. The most common of these
intermediate enforcement actions (IEAs) are formal administrative orders, formal notices of non-
compliance, and administrative consent orders.
In the period we study, each permitting authority was required by law to inspect major

dischargers at least once a year. Five types of inspections directly apply to the non-toxic
discharges of a standard industry. The first type is a reconnaissance inspection. This brief
inspection typically lasts less than 1 day, and simply involves a visual inspection of the facility, its
3States have the option to oversee compliance. EPA regional offices step in for states which decline this option.
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effluent, and its receiving waters. Compliance evaluation inspections and performance audits
involve a more in-depth analysis of a plant’s compliance. These inspections include the visual
monitoring of a plant’s self-reporting records to determine accuracy and quality. Regulators
check that equipment required by the permit is in place and being properly operated.
Additionally, performance audits involve an inspector observing a plant’s sample collection.
No regulator sampling is conducted, and these inspections are likely to last between 2 and 12 days.
The final monitoring methods, compliance sampling and bio-monitoring inspections, require
approximately 30 days to complete and involve all of the actions and observations of the other
types, in addition to regulator sampling.
Inspections are, to some degree, predictable. Before any regulatory monitoring can occur, the

inspector must conduct a pre-inspection discussion with the management of the plant, outlining
the inspection’s plan. Also, specific inspections must be conducted based upon administrative
factors or specific evidence of an existing violation. Historically, the vast majority of resources
have been devoted to inspections motivated by administrative factors. In fact, a Supreme Court
ruling requires that the EPA base its monitoring activities on ‘‘neutral selection’’, wherein the
choice of plants to be inspected is based upon geographic factors and the length of time since the
last inspection [28]. Purely random inspections are prohibited.
3. Data

3.1. The permit compliance system

The EPA’s permit compliance system (PCS) serves as our data source. Established in
conjunction with the Clean Water Act and its subsequent amendments, the PCS tracks monthly
plant-level self-reported emissions, permitted effluent limitations, inspections, and enforcement
actions. In contrast to some previous literature, compliance status is observed in all periods.
Specifically, ensuing inspections and sanctions are not required for the observation of violations.4

Although the EPA administers the PCS, state agencies contribute much of its information. Our
sample consists of data generated by 23 regulatory jurisdictions. Fifteen of these jurisdictions
contain plants directly regulated by the states in which they are located. The other eight
jurisdictions contain plants regulated by EPA regional authorities.5

Our sample of PCS data is for the period 1988–1996. The data set contains the relevant
information for BOD and TSS emissions. We consider the conventional pollutants BOD and TSS
because all pulp and paper mills produce wastewater with significant amounts of these discharges.
Our sample consists of 217 ‘‘major’’ pulp, paper, and paperboard mills in our sample states. The
EPA identifies plants as major if they have a flow of one million gallons or more per day or pose a
significant impact to water quality [29]. We only consider major plants because these facilities are
4Violations are frequently reported in months with no inspections or ensuing sanctions.
5We disaggregate the EPA regional offices into the eight states they represent because regulatory information may not

necessarily flow freely between states. MA, ME, NH, and TX contain plants regulated solely by the EPA regional

offices. AR, LA, NC, and PA contain some plants that are regulated by state permitting authorities and some plants

regulated by EPA regional offices.
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required to report their own emissions levels for operating pipes each month. We consider all
states with four or more major pulp, paper, or paperboard mills.6

The 217 plants emit from 253 pipes; some plants operate multiple pipes. Our data set records
separate observations for BOD and TSS emissions. Since each plant has some degree of separate
control for different pollutants and different pipes, compliance by pipe and pollutant will be the basic
unit of analysis. We will, however, econometrically account for pipe and pollutant correlations.
3.2. Self-reported data

Although self-reporting for major plants is mandatory and our data set is quite complete,
missing data sometimes occur in the PCS. Legally, this is allowed when an effluent pipe is closed
entirely. While it is possible that plants sometimes fail to report on an operating pipe, a probit
analysis of missing reports yielded no evidence of strategic non-reporting. In particular, neither
lagged effluent levels nor lagged inspections predict missing data.
Another question with self-reported data is whether plants strategically misreport effluent

discharges. Kaplow and Shavell [8] demonstrated that agents can be induced to report their own
violations without materially affecting their incentives to refrain from violations. Further, intentional
misreporting is punishable by large criminal sanctions, including jail time. These criminal penalties
are borne directly by employees, unlike the effluent sanctions we study. Consequently, there are
strong incentives for truthful reporting. See Cohen [3] for a more detailed discussion.7

The ideal test of self-reporting would be a secret and random check of effluent concentrations
by the regulator. However, given the available data, only imperfect checks of the accuracy of self-
reporting are possible. It seems likely that plants report truthfully in the presence of a regulatory
inspector. Suppose, in contrast, that plants tend to under-report emissions when there is not an
inspection. This strategic behavior would result in a positive correlation between inspections and
contemporaneously reported emissions levels. It is theoretically possible that plants rapidly reduce
their emissions to the average reported level when an inspector is present. This behavior would be
undetected in our analysis, but any residual correlation, after accounting for exogenous
covariates, indicates strategic plant behavior.8

In the econometric section, we therefore test whether current inspections, after controlling for
possible inspection targeting, have explanatory power for reported compliance decisions. We find
a rather small and statistically insignificant correlation (with t-statistics less than 1.00), suggesting
the plausibility that most plants do not respond strategically to the presence of an inspector. We
therefore fail to reject the accuracy of self-reporting.9
6We exclude states with very few plants for two reasons. First, we are particularly interested in cross-plant regulator

reputation spillovers within a state. Second, we need multiple plants to construct the instruments used in the statistical

analysis.
7The Center for Environmental Information and Statistics has also performed an independent analysis of the

reliability of PCS data [27]. They conclude that emissions, limit, inspection, and enforcement data are accurate.
8Additionally, it may be possible that the regulator has some signal of plants’ discharges and conducts inspections

during periods of high emissions. Such targeting would tend to produce a positive correlation. However, in the

empirical section we control for this possibility.
9Similarly, Laplante and Rilstone [10] conduct a comparison of means test on Canadian pulp and paper emissions

when inspectors are present or absent. They also fail to reject the accuracy of self-reporting.
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Nonetheless, self-reported data may be problematic, particularly when estimating the impact of
enforcement-induced deterrence. For example, it is possible that plants are particularly likely to
intentionally misreport if they believe they are particularly likely to face a (potentially severe)
sanction for a reported violation. In this case, our estimates of enforcement impacts would be
upwardly biased. However, we check whether compliance rates after levied sanctions change in
the presence of an inspector.10 For observations with fines in the past year, supplemental t-tests
for equal mean compliance rates when an inspector is present versus when an inspector is absent
cannot be rejected. Further, it seems likely that a regulator particularly willing to severely sanction
pollution violations also would be more likely to severely sanction intentional misreporting.
3.3. Sanction data

Our analysis considers civil fines attributable to BOD or TSS non-compliance. This excludes
sanctions for other types of violations such as paperwork errors, reporting errors, or poor
equipment maintenance. Although enforcement actions in the PCS are not explicitly linked to
particular violations, we are able to identify penalties explicitly linked to effluent violations. We
therefore included all effluent sanctions preceded by one or more BOD or TSS violations in the
previous year.11

In addition to fines, we include all IEAs attributable to BOD or TSS violations. Such actions
include all non-fine enforcement actions that the PCS codes as ‘‘formal’’. Of the 11 IEA categories
of action, the most common are formal administrative orders, formal notices of non-compliance,
and administrative consent orders.
3.4. Summary statistics

The reader may find the enforcement summary statistics presented in Table 1, broken down by
EPA and state jurisdictions, useful. Additional details are presented below. The average number
of inspections per year is approximately 1.1 (2132 inspections across 217 plants in 9 years). Eight
permitting authorities levied BOD/TSS fines, and 18 authorities levied BOD/TSS formal IEAs. To
check the data set’s completeness, we confirmed that all 23 authorities record enforcement actions
of some sort, including sanctions for non-effluent violations.
Just under half of our sample plants, 99 out of 217, violated their effluent limitations at least

once in the sample period. Violations occurred in all 23 jurisdictions. In an average month, over
2% of plants are discovered to be in violation. Violations also appear to be seasonal: one-third as
many violations occur in September than occur in January. These numbers indicate that although
compliance is generally high in a given month, over time the number of violations is significant.
10Ideally, we could distinguish sampling-specific inspections from more general inspections. Our data set does not

include this detail, but our understanding is that about 40% of pulp and paper inspections overall conduct some bio-

monitoring or pollutant sampling.
11We were able to track down legal records for several of these sanctions. In each case, the sanctions were in fact for

BOD and TSS violations.
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Table 1

Enforcement summary statistics by permitting authority

Variable States EPA regions Total

Authorities 15 8 23

Plants 172 45 217

Violations 299 124 423

Fines 22 2 24

Fine average $43,500 $97,500 $48,000

Fine maximum $600,000 $100,000 $600,000

Fine minimum $500 $95,000 $500

IEAs 28 16 44

Inspections 1,718 414 2,132

J.P. Shimshack, M.B. Ward / Journal of Environmental Economics and Management 50 (2005) 519–540526
4. Compliance decisions

We take the standard view of the plant as a rational economic decision-maker which violates its
effluent standard when the benefits of doing so exceed the expected penalties. This is consistent
with the traditional law and economic framework, originating with Becker [1], Stigler [23], and
Posner [18], and applied to pollution control in Russell, Harrington, and Vaughan [19]. See also
Polinsky and Shavell [17] for a recent synthesis of literature. In our setting, marginal benefits are
known to the plant and reflect increased production possibilities and decreased abatement
expenditures. Marginal costs are at least partially uncertain to the plant and consist of the
expected damages associated with sanctions. Plants, however, can update their uncertain beliefs
by observing regulatory actions.
The relevant marginal benefit is the gain from exceeding the permitted average effluent

limitation over the course of a month. Given adequate maintenance, conventional pollutant
violations are rarely the result of catastrophic equipment failure, so truly accidental violations are
unusual. We interpret violations as a choice variable, influenced by production level, equipment
maintenance, product mix, and human attentiveness decisions.
The marginal cost is the expected sanction for non-compliance. However, one must interpret

the role of any sanction with caution. The direct pecuniary costs of fines may not alone be the true
economic penalty. For example, the expected cost may reflect indirect costs such as bad publicity
or degraded relations with the regulator. Additionally, as Polinsky and Shavell [16] point out, it
may be rational for a regulator to increase sanctions for repeat offenders. So, it is plausible that
IEAs, although not a direct economic sanction, may also impose costs on the plant as a signal of
future fines or through indirect costs.
The regulatory environment is uncertain to the plant. Both the probability and magnitude of a

sanction for a violation are imperfectly known. One reason is that local regulators have
considerable discretion under the law over the existence, type, and severity of sanction. In
addition, there are likely to be shocks to the regulatory system, including shocks from local
political and economic conditions: see Deily and Gray [4] and Gray and Deily [5]. It is important
to note that, in our sample, few detected violations are sanctioned. Indeed, one purpose of this
paper is to investigate the consequences of increasing the rate and severity of sanctions.
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The plant learns about the uncertain regulatory environment through experience. Our approach
to learning is based on Sah’s [20] work on social osmosis in crime. The main credible source of
information is the actual enforcement history of the regulator. When a plant observes a fine on
any plant within the same jurisdiction, it may upwardly adjust its beliefs regarding the expected
sanction for one of its own violations. Similarly, if the regulator leaves several violations
unpunished, the plant may downwardly adjust its expectations. The plant may draw additional
idiosyncratic information from sanctions or lack of sanctions for its own violations.
Thus, plants’ perceptions of the regulatory environment drive their compliance decisions. So

long as plants believe the regulatory environment may be changing, they place more weight on
recent experiences.12 Consequently, the effect of past enforcement actions on current beliefs decays.
To summarize, the rational plant chooses to violate when the benefit of doing so exceeds the

expected costs. Benefits are known to the plant. Costs are uncertain, but plants form expectations
of sanction costs. These expectations are updated based on recent enforcement actions levied
against the plant and its neighbors.
5. Econometrics

Our overall econometric strategy is to link fines and other actual enforcement decisions to
subsequent compliance behavior. The most important of these actions are levying fines, imposing
intermediate sanctions, and conducting inspections. Enforcement strategies vary across both
states and time. For evident reasons, plants respond to the enforcement actions within their own
jurisdiction only.
We examine plant-level data, as opposed to state-level data. The dependent variable in our

analysis is a 0/1 plant-specific compliance indicator. We are then able to examine a fine’s
reputation spillover effects and plant-specific effects. We are also able to predict the probability of
inspection for a particular plant, much like a plant itself might do. In addition, we are able to
control for potential endogeneity of inspections at the plant level. Finally, plant-level analysis
allows us to better capture the effects of plant and source heterogeneity. For purposes of
comparison, we later provide a simple aggregate analysis as a robustness check.
5.1. Explanatory variables

Complete summary statistics are presented in Table 2. We begin our discussion, however, by
examining fine variables. Fines may have a deterrent effect on both the fined plant and on other
plants regulated by the same authority. We therefore decompose the deterrent effect of fines into
two parts: A regulator reputation effect common to all plants and an idiosyncratic, plant-specific
effect. The reputation spillover effect is a decrease in violations by all facilities within a regulatory
jurisdiction. The idiosyncratic individual-specific effect is a decrease in violations by the particular
plant fined for non-compliance. This effect might reflect increasing sanctions for plants with an
offense history.
12Note that this does not require that the regulatory strategy is actually changing, just that plants are uncertain

enough to believe that the strategy may be changing.
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Table 2

General summary statisticsa,b

Variable description Mean Standard deviation

Compliance in this period (dummy) 0.012 0.11

Fine 1–12 months ago on anyone (dummy) 0.010 0.30

Fine 1–12 months ago on self (dummy) 0.014 0.12

Fines 1–12 months ago on anyone (log magnitude) 1.010 3.08

Fines 1–12 months ago on self (log magnitude) 0.137 1.17

IEAs 1–12 months ago on anyone 0.336 0.67

IEAs 1–12 months ago on self 0.305 0.20

Predicted inspection probability 0.120 0.10

Inspection this month 0.120 0.33

Inspections 1–12 months ago 1.484 1.06

BOD or TSS (dummy) 0.479 0.50

Producer price index 1.345 0.217

Ratio of actual to permitted emissions 0.354 0.30

Capacity (million tons) 0.798 0.821

Standard Industrial Classification Code 2611 (pulp) 0.369 0.48

Standard Industrial Classification Code 2621 (paper) 0.476 0.50

Standard Industrial Classification Code 2631 (paperboard) 0.155 0.36

Gross state product for pulp and paper (billions of dollars) 2.159 1.17

County per capita income (thousands of dollars) 11.83 2.12

County percent urban 26.40 33.3

County percent White 85.00 16.5

County unemployment rate 7.34 3.03

County median house value (thousands of dollars) 62.14 24.1

aThe sample consists of 32,953 BOD and TSS observations from 253 distinct effluent pipes over the 84 months

spanning 1990–1996. In all, 217 plants are represented.
bState-level fixed effects, year dummies, and seasonality corrections are omitted to conserve space. Dummies

indicating missing capacity data and pipe closure data (for ratio of actual to permitted emissions data) are also omitted.

J.P. Shimshack, M.B. Ward / Journal of Environmental Economics and Management 50 (2005) 519–540528
In order to capture the regulator reputation effect, we include a dummy variable indicating
whether any plant within a given jurisdiction was fined in the previous year. In addition, we
capture plant-specific effects by including a dummy variable indicating whether that particular
plant was fined in the previous year. Because our reputation spillover effect variable includes the
sanctioned plant itself, the plant-specific (own-effect) variable measures the supplemental impact
of sanctions on the fined plant, above and beyond a generic reputation effect common to all
plants. We suspect that the deterrent effects of a fine may decay over time; therefore, we include
all fine variables lagged an additional year.
One might expect that the magnitude of a fine, as well as its mere existence, impacts compliance

decisions. A sanction’s magnitude goes directly to the expected cost of a violation. So, in a parallel
analysis we replace the fine dummies with corresponding magnitude variables. These variables are
expressed as the logged sum of fines.13 The regulator reputation effect variables are the logged
13To be precise, all fine magnitude variables are log{magnitudes+1}.
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sum of fines on all plants in the jurisdiction in the past year and lagged one additional year.
Similarly, the plant-specific variables are the logged sum of fines on the particular plant in the past
year and lagged an additional year.
Our second set of enforcement variables is the number of IEAs, such as formal notices of non-

compliance. Parallel to the fine analysis, we include both regulator reputation and plant-specific
IEA variables lagged 1 and 2 years. These variables are the count of IEAs in the relevant time
period.
We also consider the impact of inspections at the plant level. Even without the threat of a

sanction, inspections may prevent some violations. For example, an inspector may notice an easily
correctable problem. Additionally, inspections are often a necessary precursor to the levying of
sanctions. So, we include a variable for the number of inspections lagged 1 and 2 years. We also
incorporate the predicted probabilities of an inspection, calculated from a probit regression of
possible determinants, such as the time since last inspection. Finally, we include a dummy for
current inspections as an explanatory variable, which allows us to examine whether plants
respond strategically to the presence of an inspector. This is the basis of our check of self-
reporting anomalies discussed in the data section.
We incorporate several other explanatory variables. First, we include a dummy variable with a

value of 1 when the effluent is BOD, and a value of 0 for TSS. To capture changes in the plant’s
technology over time, we use the ratio of actual to permitted emissions lagged 12 months.14 We
also include a corresponding dummy to allow for pipes closed 12 months prior. Production
capacity for the plant, gathered from an industry directory [11] is also a covariate since large
plants may enjoy economies of scale in abatement or may be more visible targets for enforcement
actions. We incorporate a corresponding dummy for the few plants where the capacity data were
missing from the directory.
We also include community characteristics. Although the most direct role for these factors is

through influence on the previously modeled rigor of enforcement, it is possible such
characteristics may affect firms through community pressure, citizen suits, and similar avenues.
From the 1990 United States Census, we include per capita income, median housing values,
percent urban, and percent white at the county level. From the US Department of Labor, Bureau
of Labor Statistics, Local Area Unemployment Statistics, we include monthly unemployment
data at the county level.
Finally, we include several additional control variables. State-level dummy variables control for

heterogeneity across authorities, and year dummies capture time trends and some additional
unobserved heterogeneity.15 Seasonality terms control for variability in production rates over the
course of a year. The Bureau of Labor Statistics’ producer price index, PPI, accounts for monthly
variation in output price and the US Department of Commerce, Bureau of Economic Analysis’
annual gross state product for paper and allied trades controls for production fluctuations. Lastly,
14Magat and Viscusi [12] suggest this measure as a proxy for the plant’s stock of capital related to pollution control

and for the general character of its abatement technology.
15The year dummies provide a different constant for the first month of each year. The effective constant for the

intervening months is produced by a linear interpolation. Technically, this is a linear-spline time trend with one knot per

year.
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we include dummies for a plant’s SIC codes, since potentially important differences in
technologies and compliance costs may exist across our three industrial sub-categories.16

5.2. Regression model

The decision to violate is a dichotomous choice of the type typically estimated using the familiar
probit analysis. The latent variable is expected profits conditional on a violation minus expected
profits conditional on no violation. This model is sensible even if a random event, such as
equipment failure, causes the plant to violate. Such shocks are included in the error process, and
can be interpreted as an extremely high cost of compliance for that period.
For latent variable y�, the basic model is y�

it ¼ Xitb þ ai þ �it. Here, i indexes the unit of
observation (a pollutant/pipe combination), and t indexes time (months). A violation occurs,
yit ¼ 1, if y�it40. Compliance occurs otherwise, yit ¼ 0. The term ai can be thought of as a time-
invariant random effect. The term �it is the usual idiosyncratic shock, which may be serially
correlated over time. Since the unit of analysis is a given pollutant at a given pipe, it is important
to account for correlations across pipes and pollutants within a plant for both the random effect ai

and the idiosyncratic shock �it. For the special case of all within-plant correlations equal to one,
this empirical model nests an alternative specification with strictly plant-level observations, rather
than pipe/pollutant observations.

5.3. Consistency considerations

In order to produce consistent estimates, careful attention must be paid to the model’s error
structure. There are several potential sources of inconsistency. First, the time-invariant random
effect ai may be correlated with the row vector of explanatory variables Xit. The time-varying
shock �it may similarly be correlated with Xit. Further, if serial correlation exists in �it, even lagged
inspections may then be correlated with the current error term. Any of these correlations would
produce asymptotically biased estimates.
The time-invariant element ai accounts for plant heterogeneity. Since this random effect

partially reflects variation in plants’ costs of compliance, it is likely that this term is correlated
with the average inspection rate for that plant, as well as other regulatory variables. For example,
consider the possibility that regulators frequently inspect plants that generally seem to be more
likely to violate. Helland [7] finds evidence for such targeting. Failure to account for targeting may
produce bias. In a linear model, one could control for this problem with fixed effects.
Unfortunately, including fixed effects in a panel probit regression yields inconsistent estimates of
the slope coefficients.
We control for this possible bias using Chamberlain’s [2] conditional random effects (CREs)

probit model. Since our goal in introducing plant-specific effects is to control for missing variables
potentially correlated with the explanatory variables, the Chamberlain approach specifies a
distribution for ai conditional on xi. Our density function for y becomes marginal on ai, and the
16While we do have plants from three industrial sub-categories (SIC codes 2611, 2621, and 2631), it is our belief that

the regulatory agency is likely to treat each plant type similarly. In fact, the EPA’s enforcement and inspection

guidelines are issued for the pulp and paper industry as a whole. For this reason, we do not run separate regressions

across SIC codes.



ARTICLE IN PRESS

J.P. Shimshack, M.B. Ward / Journal of Environmental Economics and Management 50 (2005) 519–540 531
subsequent random effects specification yields consistent estimators for our original parameters of
interest. This allows us to estimate the effect of changes in important explanatory variables while
‘sweeping out’ their potentially correlated time averages.
CREs are persistent effects at the plant level, and they generally achieve the same intuitive

outcome as fixed effects. Instead of conditioning on the sample averages of all variables (fixed
effects), CREs condition on the sample averages of the variables of most direct theoretical
concern. So, in our context, we condition the distribution of the error term’s persistent component
on the average value of inspections for that plant over the entire sample period. In practice, this
control is implemented by including the average inspections for the plant in the same fashion as an
explanatory variable; the interpretation, however, is different than a standard covariate. We
similarly apply this CREs correction to account for heterogeneity reflected in fines, IEAs, and
emissions as well. Thus, the average values by pipe of current inspections, fines, IEAs, and the
ratio of actual to permitted emissions are included as conditioning variates in the plant-level
regressions. Consequently, time variation, but not cross-sectional variation, contributes to
identification of the corresponding variables’ coefficients. For reference, a fixed effects
specification would have a similar feature, but cross-sectional variation would not contribute to
the identification of any explanatory variables’ coefficients.17

A second source of potential inconsistency is correlation between the time-variate error term �it

and the explanatory variables Xit. Again, our concern is the inspection process. It is possible that a
regulator may inspect a given plant more frequently when that plant is more likely than usual,
given the other explanatory variables, to be out of compliance. While the CREs approach controls
for general inspection targeting of a plant, it does not control for variation in idiosyncratic
targeting over time.
Instrumental variables estimation is the standard approach to control for this type of

correlation. The obvious difficulty is identifying valid instruments. We need variables correlated
with inspections, but not associated with idiosyncratic targeting. Our chosen instrument is the rate
of inspections on other plants in the same jurisdiction for that month.18 Changes in the inspection
rate on other plants partially reflect changes in the overall inspection rate within a jurisdiction. So,
inspections on a given plant should be positively correlated with the corresponding instruments.
We believe that our instrument is not affected by idiosyncratic targeting because the pulp and
paper industry is only one component of the various regulators’ monitoring responsibilities.
Therefore, an additional targeting inspection at a given plant does not necessarily imply one fewer
inspection at other plants.19
17One can think of Chamberlain’s [2] model as a statistically consistent generalization of the traditional fixed effects

for latent variable models. The relationship between these approaches is most clear if one considers the

Hausman–Taylor instrumental variables equivalent of a traditional linear fixed effects model.
18Two of the 23 jurisdictions contain only one plant, so we drop these two from the plant-level analysis.
19An alternative argument is that there is a predetermined number of inspections per period. If this were the case, our

instrument would be weakly correlated with the targeting component, because a targeting inspection at a given plant

would imply one fewer inspection at other plants. The data, however, suggest that there seems to be no fixed number of

inspections per period for any state. This makes sense because regulators have many other industries to inspect.

However, if there were a predetermined number of inspections, then the total number of inspections within a

jurisdiction, including those on the plant of interest, would be a valid instrument. As a robustness check, we ran our

regressions with this alternate instrument. Results do not vary substantively from reported results.
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We also use instruments for the first year of lagged inspections. We find evidence for serial
correlation of no more than 3 months. The correlation between current and lagged residuals
rapidly declines from about 0.3 in the first lagged month to about zero by the fourth lag. Given
serial correlation, it seems possible that lagged inspections are correlated with the current error
process. For example, if current inspections are correlated with �it and �it is correlated with �itþ1,
then this month’s inspections may be correlated with next month’s error term. Intuitively, suppose
that the regulator conducts a targeting inspection when it suspects that a plant is unusually likely
to be in violation. Since we find positive serial correlation for up to 3 months, the plant may also
be unusually likely to violate 1 or 2 months later. Therefore, the first year of lagged inspections
may be correlated with the current error term.20

5.4. Efficiency considerations

The consistency controls discussed above are crucial; however, efficiency should also be a
consideration. We therefore explicitly model the persistent shocks and serial correlation, and the
overall likelihood function is the product of the probabilities of the observed outcomes for each
plant. Our estimation technique is maximum likelihood.21 The observations for a particular plant
are not assumed to be statistically independent across observations because we allow for plant-
level random effects and serial correlation. In this case, the likelihood function is difficult to
evaluate numerically with precision because the joint likelihood of outcomes at a plant contains a
high-dimensional integral. We can, however, obtain a good estimate by using Monte-Carlo
techniques to approximate numerically the likelihood [15]. Specifically, we utilize Stern’s [24]
factor-analytic simulator because it is well suited to our correlation structure. The reader should
note that neither the simulated likelihood technique nor the specific simulator itself changes the
underlying estimation; we are simply employing a numerical technique for evaluating the
likelihood function.

5.5. Regressions

To summarize, the basic latent variable model is y�it ¼ Xitb þ ai þ �it, where i indexes the unit of
observation (a pollutant/pipe combination) and t indexes time (months). If y�

it40, a violation
occurs. The columns of the matrix X include all of the explanatory variables discussed above. The
most important of these variables are fines lagged 1 and 2 years, IEA’s lagged 1 and 2 years,
contemporaneous inspections, predicted probabilities of inspection, and inspections lagged 1 and
2 years.
Key plant-level coefficients are presented in Table 3. The sample consists of 32,953 observations

from 253 distinct effluent pipes from our 217 plants over the 84 months spanning 1990–1996.
Each of these observations reflects emissions of one pollutant type at one pipe for 1 month. The
20We do not feel this concern applies to sanctions because of the time lag between a violation and its associated

sanction. The mean lag between a violation and the imposition of a fine exceeds 5 months.
21An alternative, but less efficient, estimator would be to obtain consistent estimates with an independent probit

specification. Standard errors could then be estimated using a method of moments interpretation of the probit scores.

This approach would be intuitively analogous to running OLS with correlated errors, and then correcting the standard

errors.
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Table 3

Important coefficients and t-statistics for the plant-level regressionsa

Variable description Regressions with fine dummies Regressions with fine log

magnitudes

Naı̈ve

regressionb
Final

regressionb
Naı̈ve

regressionb
Final

regressionb

Fine 1–12 months ago on anyone (dummy) �0.495 (�4.23) �0.509* (�3.75)

Fine 13–24 months ago on anyone (dummy) �0.171 (�1.52) �0.145 (�1.10)

Fine 1–12 months ago on self (dummy) 0.267 (1.51) �0.066 (�0.32)

Fine 13–24 months ago self (dummy) 0.104 (0.56) �0.188 (�0.86)

Fines 1–12 months ago on anyone (log magnitude) �0.045 (�4.10) �0.046* (�3.72)

Fines 13–24 months ago on anyone (log magnitude) �0.018 (�1.63) �0.016 (�1.26)

Fines 1–12 months ago on self (log magnitude) 0.019 (1.06) �0.014 (�0.66)

Fines 13–24 months ago on self (log magnitude) 0.008 (0.44) �0.019 (�0.86)

IEAs 1–12 months ago on anyone 0.020 (0.57) 0.048 (1.19) 0.019 (0.53) 0.048 (1.22)

IEAs 13–24 months ago on anyone �0.043 (�1.06) �0.027 (�0.38) �0.043 (�1.06) �0.018 (�0.39)

IEAs 1–12 months ago on self 0.287 (4.06) 0.074 (0.76) 0.291 (4.12) 0.076 (0.78)

IEAs 13–24 months ago on self 0.076 (0.84) �0.078 (�0.65) 0.079 (0.87) �0.076 (�0.63)

Predicted inspection probability 0.168 (0.61) 0.367 (1.24) 0.168 (0.61) 0.363 (1.23)

Inspection this monthc 0.052 (0.81) 0.231 (0.55) 0.052 (0.81) 0.238 (0.57)

Inspections 1–12 months agoc 0.091 (4.03) �0.185* (�2.50) 0.091 (4.02) �0.181* (�2.45)

Inspections 13–24 months ago �0.021 (�0.88) �0.030 (�1.06) �0.022 (�0.88) �0.031 (�1.10)

Emissions ratio 12 months ago 0.431 (9.47) 0.348* (7.02) 0.432 (9.52) 0.346* (6.99)

Pipe closure 12 months ago 0.256 (3.63) 0.294* (3.71) 0.259 (3.67) 0.297* (3.75)

Plant capacity (kilotons) �0.117 (�2.96) �0.176* (�3.60) �0.117 (�2.95) �0.170* (�3.50)

Plant capacity unknown �0.060 (�0.86) �0.082 (�1.03) �0.061 (�0.88) �0.073 (�0.94)

Pollutant type (BOD or TSS) 0.266 (6.14) 0.292* (5.73) 0.267 (6.15) 0.291* (5.73)

Producer price index (PPI) �0.307 (�1.92) �0.444 (�1.88) �0.318 (�1.99) �0.456 (�1.93)

Gross state product 0.133 (0.83) 0.063 (0.37) 0.137 (0.86) 0.068 (0.39)

County per capita income �0.037 (�1.12) �0.033 (�0.85) �0.037 (�1.11) �0.034 (�0.87)

County percent urban �0.000 (�0.34) �0.002 (�1.51) �0.000 (�0.31) �0.002 (�1.49)

County percent white �0.011 (�3.66) �0.005 (�1.42) �0.011 (�3.70) �0.005 (�1.46)

County unemployment rate �0.042 (�4.00) �0.040* (�3.50) �0.041 (�3.96) �0.040* (�3.50)

County median house value �0.001 (�0.27) 0.003 (0.86) �0.001 (�0.28) 0.003 (0.87)

Conditional random effects

Mean of current inspection 2.118* (2.90) 2.168* (2.97)

Mean of fine 1.210* (2.81) 0.099* (2.31)

Mean of IEA 1.293* (4.71) 1.296* (4.72)

Mean of emissions ratio 1.031* (5.43) 1.067* (5.63)

*Significant at the 5% level in final regressions.
aThe plant-level sample consists of 32,953 BOD and TSS observations from 253 distinct effluent pipes over the 84

months spanning 1990–1996. The dependent variable is the 0/1 compliance decision for each pipe/pollutant/month

combination. For brevity, state dummies, industrial classification dummies, and seasonality corrections are omitted.
bNaı̈ve regressions represent simple probit estimations. Final regressions incorporate all necessary controls:

instrumented inspections, conditional random effects controls, and correlated error structures.
cFor the final regressions with full controls, contemporaneous inspections and inspections lagged 1 year are

instrumented as described in the text.
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pseudo-R2 is approximately 0.08, calculated with state-level fixed effects in the restricted
regression. We consider two additional goodness-of-fit measures. The predicted probability of
violation for observations with observed non-compliance is over four times greater than the
predicted probability of violation averaged over all observations. Similarly, for each plant, we
examine the relationship between predicted probabilities of violation during periods of observed
non-compliance versus predicted probabilities for periods of observed compliance. On average,
the predicted probability of violation for a given plant, when actually violating, is approximately
twice the predicted probability of violation (for that same plant) when complying.
The multiple columns of Table 3 present different plant-level specifications. Column one

presents results from a naı̈ve probit analysis for the specification with fine dummies, and column
three similarly presents results from a naı̈ve probit analysis for the specification with logged
magnitude of fines. These particular regression results are provided for reference; they do not
contain the important consistency and efficiency controls discussed in the preceding subsections.
Columns two and four of Table 3 present our final regression results with full controls. We

implement CREs by including the means, by plant, of current inspections, fines, IEAs, and the
lagged ratio of actual to permitted emissions. As discussed, we also incorporate an instrumental
variables correction for current inspections and inspections lagged 1 year following the method of
Nelson and Olson [14]. Finally, the error structure accounts for third-order serial correlation,
plant-level random effects, and correlation between BOD and TSS emissions within a given plant.
We defer interpretation of plant-level regression coefficients relating to sanctions and

inspections to Section 6. Our regressions also include control variables such as annual fixed
effects, plant capacity, and community characteristics; we briefly discuss them here. Coefficients
indicate that compliance rates increase over time and smaller plants are more likely to violate.
Significant differences in compliance exist across industrial sub-categories, with paperboard mills
(SIC 2631) complying most frequently, followed by paper mills (SIC 2621), and finally pulp mills
(SIC 2611). We omit state dummies and seasonality controls from Table 3 to conserve space, but
all affect the regression results.
Community characteristics are generally insignificant. We find this result unsurprising, because

the most direct role for community characteristics is through influence on the rigor of
enforcement. Since enforcement is already accounted for in the regression, community
characteristics in general add little power to predicting violations. Unemployment is an exception.
Monthly county-level unemployment is significant with a negative sign. This result is perhaps
counterintuitive. The most obvious reason for higher unemployment to be correlated with higher
compliance is that unemployment is serving as a proxy for production.22 However, we already
include state-level gross state product for pulp and paper industries in the regression, which turns
out to be insignificant. Another possible interpretation is that high levels of unemployment result
in an increased sensitivity to plants’ polluting and social behavior. A more detailed examination is
beyond the scope of this paper, and is a promising subject for future research.23
22In Washington, e.g., average plant employment is 220 and nearly 70% of employees work at plants with more than

500 people. However, it is difficult to assess the total local employment resulting indirectly from plant operations.
23Reassuringly, inclusion of community characteristics does not qualitatively affect the signs, magnitude, or statistical

significance any of the enforcement variables.
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6. Results and interpretation

In this section, we present and discuss the results of our econometric model, as summarized in
the second and fourth columns of Table 3. We first focus on our fine variables. In addition to the
standard discussion of coefficients and statistical significance, we translate our fine results into a
more readily interpretable form. Specifically, we present the results of an experiment to
approximate the marginal impacts of individual fines on overall compliance. We then examine our
IEA and inspection results. After these discussions, we consider the robustness of our regressions.
Several of our fine variables are strongly significant. Since the probit specification is non-linear,

we perform a simple numerical experiment to examine their marginal impacts. For example, to
examine an observed fine’s effect, we compare a state’s average predicted probability of violation
with the fine against that state’s counterfactual predicted probability in the absence of that fine.
Each observed fine provides an opportunity to conduct an experiment. The final impact, then, is
the mean over all such experiments.
6.1. Enforcement variables

The coefficient on any plant’s recent fine is negative and strongly significant in both the fine
dummy and fine magnitude analyses. Coefficients on fines 13–24 months ago are also negative,
but they are approximately one-half as large as their more recent counterparts. We refer the
reader to Table 3.
Experimentally interpreting the analysis that includes the fine dummies, we find that the

regulator reputation-based deterrence component of an additional fine induces an approximately
64% reduction in the statewide probability of a violation in the year following a fine.24 We
emphasize that this is an average reduction for all plants within a state; the impact is not limited to
a single plant. This reputation signaling effect declines to about 27% in the second year.
Reputation spillover effects do differ somewhat across states. The experimentally induced changes
in statewide violation rates for the year following a fine ranged from 31% to 75%, and the
experimental standard deviation is approximately 13%.
For the parallel analysis, the regulator reputation-based deterrence component of a 1.0%

increase in fine magnitude induces a 0.11% decrease in the statewide probability of a violation in
the year following a fine. The standard deviation over all such fine magnitude experiments is
0.03%, and the induced changes range from 0.04% to 0.14%. This reputation effect declines to an
approximate 0.04% decrease in the violation probability in the second year. Overall, these results
are consistent with the analysis that includes fine dummies. Interpreting the fine magnitude
specification results with the same numerical experiment employed for the fine dummy
specification, we find similar results. Based upon reputation spillover effects alone, on average,
the additional fine induces a 61% reduction in the statewide probability of violation in the year
following a fine. This reputation signaling effect declines to about 30% in the second year.
24In order to maintain parallel structure, we report spillover effects that separately count compliance decisions for

each pipe/pollutant combination. As these effects are reported in percent-change form, this choice should be generally

innocuous. The selection does place slightly more weight on larger, multi-pipe plants. This seems appropriate to us from

both an enforcement and environmental impact perspective.
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In contrast to the strong reputation effects, we find little evidence of idiosyncratic, individual-
specific deterrence effects contributing to plants’ enforcement expectation updates. Table 3 reveals
that coefficients on a plant’s own fine are negative, yet insignificant, in both final regression
specifications. Given the lack of statistical significance, reliable interpretation is difficult. For
comparison’s sake, however, we report the following experimental outcome. The addition of the
plant-specific component drives the total deterrence of the average marginal fine to a 67%
reduction in the statewide probability of a violation in the year following a fine. This is only slight
stronger than the 63% decrease due to the reputation based component.
We detect no impact of less severe IEAs on environmental compliance. Table 3 reveals that all

final regression coefficients on IEA variables are statistically insignificant. Further, some results
are positive and some are negative. Since the coefficients are not significant and there is no
obvious sign pattern, we do not present marginal impacts.
Of course, some means of verification of emissions is necessary in any enforcement system.

Therefore, one expects inspections to play an important overall role. Our analysis, however,
focuses on the effects of a marginal inspection, since we can only identify impacts over the
observed range of variation in the data.
The coefficients on inspections 1–12 months ago are negative and significant in both final

specifications. Coefficients on inspections 13–24 months ago are one-sixth as large as the 1 year
effect, and not statistically significant. The marginal inspection plays a role in environmental
compliance, but the impact decays rapidly. This seems reasonable since one of the purposes of
inspections is to identify maintenance issues.25

6.2. Sensitivity analysis

Are the final regression results presented in Table 3 reasonable? The most naı̈ve approach we
can think of is a simple comparison of observed statewide violation rates in the year after a fine to
observed rates when there was no fine. Clearly this simple experiment ignores many economic and
econometric issues; however, this approach is likely to pick up any large signal in the data.
Running this comparison, we find the statewide violation rate is on average 62% lower in years
subsequent to a fine than in other years. For purposes of comparison, our regression results
suggest about a two-thirds reduction.
A somewhat more sophisticated, but still simplistic approach, would be to run a state-level

linear probability model with multiple covariates. This aggregate analysis allows us to examine the
average plant impact of enforcement actions by the permitting authority. Using a fixed-effects
panel model, we are able to identify the plants’ short-run responses to changes in a permitting
authority’s enforcement strategy. Since this is a fixed-effects regression, identification comes from
within-group variation (the time-series), rather than between-group variation (the cross section).26

Our state-level linear probability estimates are from a GLS regression. The standard errors are
robust, using a heteroskedastic-consistent correction and a correction for serial correlation. As in
25We also checked whether enforcement variables impact the severity of violations, in addition to their impact on

compliance decisions. We performed a Heckman two-step estimation, where the second stage regressed the violation

amount on our same explanatory variables. Enforcement variables were not statistically significant.
26The fixed-effects model removes any potential bias introduced if there was a specific regulatory reason that some

plants are regulated by the EPA and some are regulated by state jurisdictions.
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Table 4

Important coefficients and t-statistics for the aggregate linear probability modela

Variable description Fine dummies Fine logged

Fine 1–12 months ago (dummy) �0.0125* (�2.82)

Fine 13–24 months ago (dummy) �0.0080 (�1.76)

Fine 1–12 months ago (logged magnitude) �0.0012* (�2.89)

Fine 13–24 months ago (logged magnitude) �0.0008 (�1.92)

IEAs 1–12 months ago �0.0143 (�0.50) �0.0139 (�0.49)

IEAs 13–24 months ago �0.0445 (�1.69) �0.0444 (�1.69)

Inspection rate this month 0.0030 (0.44) 0.0030 (0.44)

Inspection rate over last 12 months �0.0026 (�0.67) �0.0025 (�0.66)

Inspection rate 13–24 months ago �0.0004 (�0.11) �0.0005 (�0.13)

aThe state-level sample consists of 1932 observations representing 23 permitting authorities over the 84 months

spanning 1990–1996. The dependent variable is violation rate for that authority/month combination. For brevity, state

dummies, time, and seasonality corrections are omitted from the table.
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the plant-level analysis, we again find large and significant fine impacts, undetected IEA
compliance effects, and, in this case, insignificant inspection results.27 These aggregate regression
results are presented in Table 4.
While illustrative, this state-level approach has a few key weaknesses. For example, because

data are pooled to the state level, we are unable to disentangle a fine’s reputation spillover effect
from plant-specific effects. We are also unable to control for the potential endogeneity of
inspections. Finally, the more detailed analysis provides the opportunity to better capture the
effects of plant and source heterogeneity.
Since our key variable of interest is fines, in our final plant-level analysis we provide two

alternative specifications for fine impacts. Specifically, we have presented regressions with a
dummy for the presence of fines and also the logged magnitude of fines. Results across these
specifications are qualitatively similar; the corresponding fine variables in each specification
display similar relative magnitudes and levels of significance. Other coefficients were also
qualitatively similar.
A natural concern is that we may be inflating statistical significance by including observations

at the pipe/pollutant level, instead of at the plant level. Since our likelihood function includes
correlation, the reported standard errors (from the inverse log-likelihood Hessian) should
correctly account for this issue. However, as a robustness check, we replicated our results
aggregating up to the plant level, where the new dependent variable is overall plant compliance.
Results are quite similar; all enforcement variables have similar coefficients and significance
patterns.28

Self-reported data may be problematic in the context of estimating deterrence. In the data
section, we discussed this issue and the statistical tests that found no evidence of strategic
misreporting. In particular, the instrumented coefficient on current inspections is not statistically
27In this aggregate regression, we are unable to provide instruments for inspections.
28The only change of significance was for inspections in the past year. The t-stat has fallen (in magnitude) to �1.66.
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significant. Here, we present a final robustness check. Our current specification is both efficient
and consistent under the null of truthful reporting. Under the alternative hypothesis of strategic
reporting, a less efficient but consistent estimator would be a selectivity-corrected probit using
only those observations for which an inspector is present. We compare these estimators using a
Hausman test of equality and again fail to reject the null hypothesis of accurate self-reported
emissions.
Our final sensitivity consideration in the plant-level probit analysis is the impact of CREs and

instruments. CREs are included to account for conditional heterogeneity of the error term. As
seen in Table 3, each of the CRE coefficients came in positive and strongly significant. For
example, examining the coefficient on the mean of current inspections indicates that, at least in the
long term, authorities more frequently inspect those plants that are more likely to be out of
compliance. So, we would generally expect regressions without these controls to exhibit a positive
bias in the corresponding coefficients. We confirm this expectation by examining the naive plant-
level analyses presented in columns one and three of Table 3. We observe that all significant
coefficients on fines, IEAs, and inspections are in fact positively biased (or unchanged) without
the appropriate controls. A similar correction was the inclusion of an instrument for inspections.
As can be seen in the table, inspections were positive in the absence of the instrument.
7. Conclusions

On the margin, a fine produces a surprisingly large decrease in violation rates, on the order of
about a two-thirds reduction. The majority of this impact can be attributed to reputation
enhancement by the regulator; other plants reduce violations almost as dramatically as the fined
plant. We find the strength of this reputation spillover effect to be quite surprising.
In contrast, IEAs have statistically insignificant impacts on compliance. It is important to note

that this small influence obtains even allowing for reputation impacts. While one theoretical
argument may be that IEAs induce compliance by establishing a plant’s offense history or serving
as a precursor to fines, it is perhaps not surprising that their empirical impact is weak. They are
not themselves meaningful monetary sanctions.
Striking policy implications arise from our results. The marginal impact of a fine is large

because of the amplification provided by the regulator reputation spillover effects. In contrast,
non-pecuniary actions, such as IEAs (informational enforcement), have little impact with or
without a reputation effects. Empirically, large improvements follow even from modest sanctions,
as long as they have economic ‘teeth’. Consequently, a substantial improvement in water quality
might be achieved from a relatively small additional investment in traditional adversarial
enforcement. Given this result, it is perhaps an interesting institutional research question why
fines are not imposed with greater regularity.
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