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Abstract 
 
 Economists generally view environmental enforcement as a tool to secure compliance with 

regulations. This paper demonstrates that credible enforcement significantly increases statutory over-

compliance with regulations as well. We find that many plants with discharges typically below legally 

permitted levels reduce discharges further when regulators issue fines, even on other plants. Also, likely 

non-compliant plants often respond to sanctions by reducing discharges well beyond reductions required by 

law. Thus, increased enforcement generates substantial discharge reductions above and beyond those 

expected from simply deterring violations. 
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1. Introduction 
 

Regulatory punishment for pollution violations is a mainstay of nearly every industrialized nation’s 

environmental policy. Economists generally view such enforcement as a tool to secure compliance. This 

paper empirically demonstrates that enforcement can significantly increase the degree of statutory over-

compliance with environmental regulations as well. We show that this effect can be economically rational 

given discharge randomness or discharge jointness. 

Previous research has demonstrated high levels of statutory compliance with Clean Water Act 

regulations. For example, McClelland and Horowitz [22] found that aggregated biochemical oxygen demand 

(BOD) discharges from pulp and paper plants were approximately 50 percent of allowable levels. Shimshack 

and Ward [28] reported that roughly 98 percent of plants were in compliance with total suspended solids 

(TSS) and BOD regulations during an average month. Given these significant compliance rates, one might 

expect small overall reductions in discharges from increased enforcement efforts. Under conventional 

economic wisdom, only violating plants have incentives to respond to an increased probability of fines and 

then only by reducing discharges to just the legal threshold.  

However, we demonstrate that this conventional wisdom is inaccurate. Even in an industry where 

compliance is generally high, an increase in enforcement through fines can cause a significant reduction in 

discharges. Enforcement not only induces non-compliant plants to become compliant, it provokes many 

typically over-compliant plants to reduce discharges even further below their permitted levels. One 

implication of our results is that analyzing only the effect of enforcement on the compliance decision, as in 

much of the previous literature, substantially underestimates the impact of enforcement on environmental 

quality. Another implication is that at least some degree of over-compliance is driven by traditional 

economic incentives, rather than by altruistic corporate social responsibility. While we make no attempt to 

explain the persistent low average level of discharges, we do find evidence that significant variation around 

this central tendency can be explained by variation in enforcement efforts. 

Our analysis begins with a conceptual framework that motivates the subsequent investigations. 

Plants with stochastic discharges face an uncertain and potentially changing regulatory environment. Plants 
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learn about this environment by observing the regulator’s recent enforcement history. When a plant observes 

a sanction on itself or on other plants within its state, it updates its beliefs about the regulator’s overall 

credibility and stringency. The plant bases its target discharge levels, in part, on these updated beliefs.   

Next, the paper investigates the empirical relationship between enforcement and discharges. We use 

a panel of plant-level water pollutant discharges and sanction data from the EPA’s Permit Compliance 

System (PCS). The sample spanning 1990-2004 is the most modern in the literature. First, we test the overall 

strength of the enforcement response using linear regressions. In periods of high regulatory stringency, 

average discharges fall significantly. Second, using quantile regressions, we demonstrate that most of this 

response is by plants that statistically over-comply, i.e. plants that usually discharge well below legally 

required levels. In periods of increased regulatory stringency, the entire statistical distribution of discharges, 

not just the upper tail, shifts downwards. In other words, plants with discharges below legally permitted 

levels reduce discharges further when regulators issue fines on other facilities. 

After demonstrating that enforcement significantly increases over-compliance, we explore two 

mechanisms for the link between enforcement and over-compliance: discharge randomness and discharge 

jointness. Plants with stochastic discharges or multiple pollutants may have economic incentives to reduce 

contaminants in periods of high enforcement, even if they are typically discharging well below legally 

permitted levels. We find that increased regulatory stringency induces plants to go further beyond 

compliance when they face higher risks from violation due to stochastic discharges. Hence, randomness 

does play a role in the degree of over-compliance attributable to enforcement. We also find that a pollutant’s 

response to enforcement is influenced by the risks from violation on a different pollutant discharged in the 

same production process. Hence, jointness also plays a role in determining the degree or extent of over-

compliance. 

This paper makes contributions to several threads of the literature. Most notably, we contribute to 

the enforcement literature by documenting that sanctions increase the extent of statistical over-compliance. 

Second, we contribute to the empirical randomness literature by demonstrating that the safety margin effect 

(Bandyopadhyay and Horowitz [5]) is at least partially attributable to an underlying enforcement 
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mechanism. Third, we link to a broader literature on over-compliance with regulations by documenting that 

significant variation in the degree of statistical over-compliance with regulations is attributable to variation 

in enforcement stringency. Note, however, that we do not analyze the determinants of persistent over-

compliance emphasized in the broader literature. We focus instead on changes in the level of discharges 

around a central tendency that are induced by changes in the enforcement environment; indeed, our fixed-

effects panel technique explicitly sweeps out the persistent element. 

The paper proceeds as follows. Section 2 reviews the relevant literature, provides industry 

background, and explores our conceptual framework. Section 3 summarizes our conventional water 

pollutant discharge and sanction data. Section 4 presents our first empirical methods and results. We 

establish that enforcement is a key determinant of statistical over-compliance, and we demonstrate that this 

result is robust. Section 5 then introduces and tests the randomness and jointness mechanisms potentially 

driving this relationship. Section 6 interprets our results for economics and policy and concludes with a 

discussion of future research possibilities. 

2. Context 
2.1 Literature 
Enforcement 
 

The empirical literature on enforcement emphasizes the direct role of coercive enforcement in 

reducing violations of standards. Studies by Magat and Viscusi [21] and Laplante and Rilstone [20] 

investigated the impact of inspections and the threat of inspections, respectively, on water pollution 

compliance rates and discharges. Gray and Deily [15] investigate non-monetary enforcement actions on 

compliance rates in the steel industry. Nadeau [23] considered the impact of enforcement activities on the 

duration of air pollution non-compliance. Stafford [30] showed that an increase in the maximum possible 

penalty decreased violations for hazardous waste polluters. Earnhart [13] investigated the impact of 

inspections, enforcement actions, and their threats on the discharges of Kansas wastewater treatment 

facilities.  

The above papers represent important contributions to the empirical enforcement literature. 

However, none of those papers highlight the effect of enforcement on the degree of over-compliance. 
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Further, the above papers examined the impact of enforcement actions only on the sanctioned facility. A key 

feature of our paper is the general deterrence associated with sanctions, since sanctions on other plants may 

lead a given plant to update its beliefs about regulatory stringency and increase its degree of over-

compliance. See Shimshack and Ward [28] for an empirical demonstration of this regulator reputation effect 

Over-Compliance 

The empirical literature on over-compliance emphasizes mechanisms that indirectly reduce 

discharges below statutory levels. Most relevant for this study is the discharge randomness mechanism. For 

example, plants may hedge to provide a margin of safety against violations due to stochastic discharges. 

When stochastic shocks are particularly large, a plant may reduce its average discharges in an effort to stay 

compliant. Brannlund and Lofgren [9] took such impacts into account in estimating the shadow price of 

pollution, and rejected a zero marginal value. Bandyopadhyay & Horowitz [5] demonstrated that plants with 

greater discharge volatility had lower average discharges, which suggests that discharge levels alone may 

not fully capture plant behavior. Therefore, they used the implied probability of violation to measure plant 

behavior. They studied the effects of polluter and community characteristics on the probability of violation, 

but did not examine enforcement. 

The bulk of the over-compliance literature focuses on explaining persistent over-compliance. 

Theoretical models by Arora and Gangopadhyay [4], Kirchoff [17], and Cavaliere [11] all showed that 

consumer preferences for environmental quality can generate over-compliance as a market outcome. Arora 

and Cason [2,3] found empirical support for this theory; larger firms with greater public contact were more 

likely to participate in the EPA’s 33/50 program. Arora and Cason [1] and Becker [8] used census data to 

show that demographic composition affected Toxics Release Inventory self-reported emissions and air 

pollution abatement expenditures, respectively. Similarly, Earnhart [14] demonstrated that community 

characteristics like unemployment, political factors, community size, and demographics impacted the 

environmental performance of Kansas wastewater treatment facilities. Perhaps the most economically 

intuitive explanation for voluntary over-compliance would be very low marginal variable costs of 

abatement, possibly due to “lumpy” abatement investments. For example, in a putty-clay investment 
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scenario, the plant might over-invest in a fixed technology for fear of future reductions in pollution 

standards. McClelland and Horowitz [22] statistically rejected this hypothesis of a negligible shadow value 

for discharges.  

The preceding explanations may well explain part of persistent over-compliance. However, these 

mechanisms move too slowly to explain much of the important short-run variation in observed over-

compliance. In contrast, this short-run variation is the focus of our study, and we document that significant 

variation in the degree of over-compliance is attributable to variation in enforcement stringency. Further, the 

broader literature interprets over-compliance as discharges below permitted levels due to factors beyond 

regulation. Our interpretation might be thought of as statistical over-compliance, in the sense that there is 

some underlying risk of violation and sanction motivating reductions beyond what is required by law. 

2.2 Background 
 

Water pollutants for the U.S. pulp and paper industry are the focus of our analysis, in part because 

water quality remains a significant issue in the US. According to the EPA, 75 percent of the US population 

lives within 10 miles of an impaired waterway. We choose the pulp and paper industry because it is the 

largest discharger of conventional pollutants into U.S. waterways, releasing over 16 million cubic meters of 

wastewater daily. Additionally, pulp and paper mills exist in a wide range of states.  

Water pollution permitting, inspection, and enforcement activities are conducted by state-level 

regulatory authorities under the auspices of the National Pollution Discharge Elimination System (NPDES).1 

Monthly self-monitoring reports are the primary source of compliance information. On-site regulator 

inspections are intended to ensure the accuracy of these self-reports. Inspections also identify maintenance 

issues, serve as a source of information for future permitting, and provide an avenue to gather evidence to 

support enforcement actions. Inspections vary in purpose, but sampling inspections are the most significant. 

Sampling inspections consist of equipment examination, performance auditing, and regulator sampling of 

discharges.  

Enforcement actions range from levying fines to making warning telephone calls. The full deterrent 

effect of sanctions may be greater than the nominal monetary cost, which is often significant by itself. Fine 
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events may be signals of a broad willingness to be tough on non-compliance. Increased regulatory threats 

may include enhanced penalties, some of which may be severe. Of course, very few such severe sanctions 

would be observed if the threat of them is credible.  

Treatment 

 Pulp and paper plants can meet mandated NPDES pollution limitations by modifying production 

processes or treating effluents. Historically, most abatement was from external end-of-pipe treatment. More 

recently, external treatment options have been coupled with modern production practices that mitigate 

effluent production. 

 In the pulp and paper industry, wastewater treatment typically follows three steps: screening, 

primary clarification, and secondary biological treatment. Typically, wastewater first passes through bar 

screens that remove large solids. Second, gravity sedimentation or dissolved air floatation removes most 

suspended solids. Third, wastewater from the primary clarifiers is fed to facilities that use microorganisms to 

remove the effluents’ organic molecules. The most common of these secondary treatment technologies is the 

activated sludge process. 

 Pulp and paper treatment often produces discharges that are volatile from the plant’s perspective. 

Efficiency for common secondary biological treatment processes, for example, is highly sensitive to the 

number and composition of microorganisms, temperature, acidity, light, nutrient concentrations, substrate 

(organic matter) concentrations, dissolved oxygen levels, and sludge age [31]. Further, many primary 

clarifiers and secondary treatment basins are located outside and are therefore sensitive to weather and 

climatic conditions.  

 Environmental control in the industry also involves pollution jointness. For example, secondary 

biological treatment inherently removes both oxygen demanding substances and solids. Further, discharge 

reductions increasingly occur via process modifications. In pulping, changes for improved environmental 

performance include alternative raw materials, modern debarking and chip preparation, mechanical raw 

material transport, liquor spill control, and thermo-chemical changes [29]. In papermaking, the major 
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environmental improvement has been wastewater recycling. These process modifications jointly reduce 

effluents as a whole. 

2.3 Conceptual Framework 
 

We take a standard view of the regulated plant. As a by-product of production, the plant may 

generate multiple waste products that it discharges into the environment. The regulator accurately observes 

these discharges, and may issue a fine if they exceed legal levels. The plant is a rational decision-maker that 

undertakes abatement effort to the point where the marginal cost of such effort equals the corresponding 

marginal benefit.  

Plants face an uncertain regulatory environment, so their assessments of the threat of a fine for non-

compliance are updated based upon experience. Following Sah’s [25] work on social osmosis in crime, we 

assume that an important credible source of information about the probability of a fine is the enforcement 

history of the regulator. Since there are likely to be shocks to the regulatory system, including changes from 

local political and economic conditions, the most informative data about current conditions is from the 

recent past. Recent sanctions by a regulator, on any plant, affect the regulator’s overall credibility and thus 

impact each plant’s perceived threat of a fine.2 Consequently, recent fines may influence discharges of both 

sanctioned plants and other plants in the same state. 

3. Data 
3.1 Our Sample 
 

The EPA’s Permit Compliance System (PCS) serves as our specific data source. Established in 

conjunction with the Clean Water Act and its amendments, the PCS tracks monthly plant-level self-reported 

discharges, permitted effluent limitations, inspections, and enforcement actions. Our sample includes the 

most modern data currently available in the public version of the PCS. We consider 251 “major” pulp, 

paper, and paperboard mills in 28 sample states over 14 years. Specifically, we track plant’s discharges, 

limits, and enforcement activity for the 168 months between 1990-1996 and 1998-2004.3 The EPA identifies 

plants as major if they have a flow of one million gallons or more per day or pose a significant impact to 

water quality. We only consider major plants because these facilities are required to report their own 
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discharges levels for operating pipes each month. We consider all states with two or more major pulp, paper, 

or paperboard mills. 

The dataset contains the relevant information for the conventional water pollutants biochemical 

oxygen demand (BOD) and total suspended solids (TSS). We choose these contaminants because nearly all 

pulp and paper mills produce wastewater with significant amounts of these discharges. While there are 

several measures of effluent discharges and limits, we examine average monthly quantities. All 251 plants 

report TSS quantities and a subset of 242 plants also report BOD quanitities. For the purposes of analysis, 

we scale discharges to obtain ratios of actual to permitted discharges, which can be thought of as discharges 

as a percent of the standard. Since some plants may have multiple outfalls, our final plant-level unit of 

observation is the maximum discharge ratio for each pollutant across all outfalls.4 

In addition to discharges, the dataset contains information on administrative fines and inspections. 

Fines are monetary charges imposed by the state agency, rather than a court, for a violation. We consider 

fines coded as effluent violations in the PCS. This excludes sanctions for other types of violations such as 

paperwork errors, reporting errors, or poor equipment maintenance. To isolate fines at least partially 

attributable to BOD and TSS, we choose those effluent sanctions preceded by one or more BOD or TSS 

violations in the previous year. We consider all inspections in which the regulator conducts effluent 

sampling. 

The final number of observations analyzed is somewhat less than the total number of plants times 

the 168 months in our sample. This occurs for four reasons. First, three states had not yet entered very recent 

data into the PCS. Second, many observations represent closed pipes reporting negligible discharges. Closed 

pipes typically indicate that the production unit is offline, yet such pipes are still required to report regularly. 

Third, some plants are not monitored for conventional water pollutant quantities. Finally, some of the data 

are missing without explanation. Missing data represent about 20 percent of an ideal square dataset. 

Unexplained missing data, however, represent less than 10 percent of a square dataset. Further, unexplained 

missing data decrease to less than 3 percent of a square dataset in the second half of the sample (1998-2004). 
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 All discharge and violation data in the PCS, and thus in the empirical analysis, is self-reported. A 

USEPA Center for Environmental Information and Statistics [32] independent analysis has confirmed the 

accuracy of PCS data.  Laplante and Rilstone [20] suggested a test for the accuracy of self-reported data 

based on the difference in reported discharges when an inspector is present or absent. In a regression of 

discharges on inspections and plant-level fixed effects, we fail to reject the null hypothesis of accurate self-

reporting for both BOD and TSS. 

3.2 Summary Statistics 
 

Table 1 displays descriptive statistics about actual discharges and fines. Notably, Table 1 indicates 

very substantial levels of over-compliance. On average, aggregate BOD discharges are less than 40 percent 

of permitted levels. TSS discharges are about 30 percent of permitted levels. Histograms displaying 

discharge ratios for a typical month are presented in Figure 1 and Figure 2. In an average month, 

approximately 1 percent of plants are in violation. Several plants violated more than once. In total, 123 

plants violated in one or more months for at least one pollutant during our sample period.  Of these, 53 

plants recorded violations for both BOD and TSS. Over the entire sample, there were 439 BOD plant/month 

violations and 226 TSS plant/month violations. Overall, 62% of plant/month violations were BOD alone, 

26% were TSS alone, and 12% were both BOD and TSS. Violations declined over time, although non-

monotonically. The maximum number of violations for both BOD and TSS occurred in 1990 and the 

minimum number of violations occurred in 2004. Violations were also not distributed evenly across space, 

as both the total number of violations and violations per plant were considerably higher for a subset of states. 

The bottom portion of Table 1 presents descriptive statistics for administrative fines. There were 39 

fines associated with BOD or TSS quantity violations, and these fines averaged about $32,700. Note that 

these fines should be interpreted relative to the gain in plant-level profits obtained by exceeding a given 

pollution standard in a given month, not relative to the overall operating revenue of a plant.  Fines modestly 

declined over time. The maximum number of fines in a given sample year was 6, in both 1992 and 1993. 

The minimum number of fines in a given sample year was 0, in both 1998 and 2004. As noted in Table 1, 

thirteen states levied fines during our sample period. These thirteen states had mean violations per plant 
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between 2 and 4 times higher (TSS, BOD respectively) than the 15 states that did not levy fines. While we 

do not know precisely what violation triggered a fine, it seems that fines tended to over-represent violations 

for both pollutants simultaneously. Eight of our 39 fines were preceded solely by one or more BOD 

violations in the previous year and 10 of 39 fines were preceded solely by one or more TSS violations in the 

previous year. 

Table 1. Summary Statistics  
 

        
  DISCHARGES   
        

Pollutant Mean 
discharge 

ratio 

25% 
Quantile 

50%  
Quantile 

75%    
Quantile 

90%    
Quantile 

Violations  Violators 

        
BOD .384 .168 .334 .545 .751 439 101 
TSS .307 .130 .248 .428 .621 226 75 

        
  FINES   
        
  Total 

Fines 
States 

levying 
fines 

Median 
fine 

Std. dev. 
of fines 

  

        
  39 13 $9,000 $97,061   
        

 
 

Note that fines primarily enter our empirical specification though a regulator reputation variable that 

indicates the presence of a fine on another plant within the same state. Because one fine affects all other 

plants in the state, a significant fraction (8.8 percent) of observations have positive reputation effect fine 

variables.  

 The data also display significant volatility. The standard deviations of discharge ratios are 0.30 and 

0.28 for BOD and TSS. Plants with typically low discharges account for a large fraction of violations. About 

one-half of total BOD violations are by plants with median BOD discharge ratios below 50 percent and 

about sixth-tenths of total TSS violations are by plants with median TSS discharge ratios below 50 percent.  

 



 

 

13

 

4.  Demonstrating Enforcement-Induced Changes in Discharges 
 
 In this section, we use panel-data techniques to analyze plants’ discharge responses to changes in 

regulatory enforcement. Following our conceptual framework, a key determinant in this exploration is the 

regulator’s recent enforcement history, a proxy for the likelihood, at any given time, of the regulator issuing 

a fine for a violation. First, we explore the impact of this regulator reputation effect on mean levels of 

discharges. Second, we explore the impact of the reputation effect across all ranges of the discharge 

distribution, from those plants that typically violate to those that greatly over-comply.  

4.1 Variables 

The dependent variable in each of our analyses is the ratio of actual discharges to the legally 

permitted level (discharges as a percent of the standard). The key explanatory variable, following [28], is a 

0-1 dummy variable that indicates the existence of a fine on another plant j in plant i’s state in any of the 12 

months prior to t.5 This measure proxies for plant beliefs, and thus we refer to the variable as the regulator 

reputation effect. The ideal measure of regulator reputation would be plants’ perceptions of regulatory 

stringency. However, perceptions are unobserved and unobservable.6 Fines are generally quite rare, so the 

very existence of a recent fine may lead a plant to conclude rationally that the threat of fines is higher than 

average, given a non-static regulatory environment. We later show that using the dummy approach in 

estimation is consistent with a two-state model of threat.7  

We also consider the impact of regulator actions on the sanctioned plant. Thus, we include a 0-1 

dummy variable indicating whether that particular plant was fined in the previous year. This idiosyncratic 

deterrence effect might reflect increasing sanctions for plants with an offense history. Additionally, 

inspections may affect discharges at the plant-level. So, we include the number of sampling inspections in 

the previous year as an explanatory variable.  

Plant production varies seasonally, thus we include quarterly dummy variables. Technological 

change may be an issue given our long data series. Thus we include annual dummies to account for broad 

trends in abatement technology. Further, for all linear regressions, we include plant-specific linear time 

trends to account for possible variation in adoption of technology across plants. 
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Finally, we exploit the panel structure of the data by including fixed effects. For all linear 

regressions, we use plant-level fixed effects. Thus, we obtain identification only from within-group 

variation. Plant-level fixed effects allow us to capture systematic differences due to factors such as different 

SIC codes, production capacity, and geographic conditions. Further, a natural concern in plant-level analyses 

is that regulators may target some plants for stricter enforcement based on their overall environmental 

performance. Without fixed effects, this targeting might produce a positive correlation between enforcement 

and discharges simply from cross-plant differences in overall enforcement.  

4.2 Linear Regressions 

Does enforcement activity reduce the overall discharge ratio on average? Our goal here is to 

establish the basic relationship between the perceived probability of sanction and pollution discharges. Thus, 

we run fixed-effects linear regressions of discharge ratios on regulator reputation enforcement variables for 

BOD and TSS.8 In addition, we included all the exogenous variables discussed above as controls. Results are 

presented in Table 2. Computed standard errors are heteroskedastic-consistent. T-statistics appear in 

parentheses. 

Results in Table 2 indicate that the estimated impact of a fine on another plant in the same state on 

the discharge ratios is negative and strongly significant for both BOD and TSS.9 The average discharge ratio 

declines 0.024 in the year following a fine. Given the overall mean discharge ratios, this translates (on 

average) into an approximately 6 percent reduction in aggregate discharges for BOD and an approximately 8 

percent aggregate reduction for TSS.  

Idiosyncratic, individual fine deterrence effects are also statistically significant, but less 

economically significant than the reputation effects which simultaneously impact many plants. Seasonality 

appears to play a strong role in discharges, as all estimated related coefficients are large and significant. We 

also find that average discharges for both BOD and TSS trend downward over time. 
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Table 2. Plant-Level Linear Regression Results 
 
Variable Description BOD Regression 

Coefficients 
TSS Regression 

Coefficients 
   
Fine 1-12 months ago on another plant -0.0235* 

(-4.72) 
-0.0240* 
(-5.98) 

Fine 1-12 months ago on self  -0.0573* 
(-2.14) 

-0.0905* 
(-2.41) 

Inspections 1-12 months ago 0.0011 
(0.39) 

0.0025 
(0.82) 

Season2 Dummy -0.0447* 
(-8.08) 

-0.0442* 
(-9.14) 

Season3 Dummy -0.0585* 
(-6.51) 

-0.0631* 
(-7.66) 

Season4 Dummy -0.0441* 
(-3.40) 

-0.0469* 
(-3.85) 

Year Dummies 13 Year Dummies 13 Year Dummies 
Fixed Effects 241 Plant-Level FE’s 250 Plant-Level FE’s 
Linear Time Trends 241Plant-Specific TT’s 250 Plant-Specific TT’s 
   
 

a The dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the listed 
pollutant.  
b A superscript * indicates statistical significance at the 5% level. 
c The BOD plant-level analysis consists of 30,895 observations from 242 plants over the 168 sample months. 
d The TSS plant-level analysis consists of 32,995 observations from 251 plants over the 168  sample months. 
 
 
4.3 Conditional Quantile Regressions 
 

Do fines reduce discharges by plants statistically over-complying? Our goal here is to establish that 

the predicted fine-induced discharge response applies to over-compliers. The linear regression above 

demonstrated that average discharges respond to the increased regulatory threat associated with enforcement 

actions. However, this aggregate result might be driven solely by significant violators responding to the 

threat of sanctions. We therefore use Koenker and Bassett’s [18] conditional quantile regressions to examine 

the discharge response at various levels of compliance. Standard errors are estimated following [19,24]. 

In our context, the role of the quantile regression is to decompose the mean response revealed by the 

linear regression into changes across the state-wide probability distribution of discharge levels. Conditional 

quantile regressions allow us to estimate different fine slope coefficients for different discharge quantiles. 

For example, a regression on the 50th percentile estimates the effect of the fine reputation effect on the 

sample median. Since the sample median of discharges is well into the over-compliance region, a significant 
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predicted fine response for the 50th percentile would indicate that even plants in that statistically over-

comply typically reduce discharges after a fine. In addition to the median regression, we also ran the 25th, 

75th, and 90th percentile regressions. Here, higher quantiles correspond to higher discharges. We do not 

examine more extreme quantiles such as the 95th percentile because quantile regressions are generally 

unstable at the extreme tails of distributions, due to reductions in sampling variation [10].  

In the quantile regression analyses, we include state-level fixed effects and state-level linear time 

trends to identify what happens to the overall discharge distribution within a state. We do not include plant-

level fixed effects because such plant-level fixed effects in quantile regressions would yield coefficients that 

indicate a typical plant’s fine responses across the distribution of departures from the individual’s usual 

discharge level. So, a 90th percentile coefficient would be the fine response when plants are emitting a 

particularly large amount relative to their idiosyncratic typical levels. Our purpose, however, is to investigate 

if the pollution distribution shifts for plants operating below their discharge standard. In a linear regression 

context, the overall mean discharge response does not depend on which specific plants adjust. In contrast, 

the overall change in the shape of the state-level discharge distribution reflected in the quantile regression 

approach does. 

Quantile regression results for BOD and TSS are presented in Tables 3 and 4, respectively. We find 

strong evidence that plants reduce discharges after an increase in the predicted probability of a sanction for 

violation across the entire range of the discharges distribution. For both pollutants, enforcement significantly 

reduces discharges reductions at every estimated quantile. Recall that even the 90th percentile is in the over-

compliance region, as this percentile represents a discharge ratio of about 0.75 for BOD and 0.62 for TSS. 

The important lesson from these quantile regressions is that the entire discharge distribution significantly 

shifts in response to the reputation effect. 
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Table 3. BOD Quantile Regression Results 
 
Variable Description 25% Quantile 50% Quantile 75% Quantile 90% Quantile 
     
Fine 1-12 months ago on another 
      Plant 

-0.0263* 
(-5.60) 

-0.0234* 
(-3.49) 

-0.0386* 
(-4.67) 

-0.0411* 
(-4.02) 

Fine 1-12 months ago on self 
 

0.0466* 
(4.24) 

0.0782* 
(4.93) 

0.0612* 
(3.14) 

0.0290 
(1.23) 

Inspections 1-12 months ago  
      (in state) 

0.0021* 
(3.62) 

0.0017* 
(2.09) 

0.0015 
(1.54) 

-0.0001 
(-0.10) 

Season2 Dummy -0.0311* 
(-6.00) 

-0.0401* 
(-5.41) 

-0.0561* 
(-6.24) 

-0.0469* 
(-4.31) 

Season3 Dummy -0.0420* 
(-4.76) 

-0.0430* 
(-3.41) 

-0.0604* 
(-3.92) 

-0.0265 
(-1.40) 

Season4 Dummy -0.0272* 
(-2.13) 

-0.0224 
(-1.23) 

-0.0387 
(-1.74) 

0.0022 
(0.08) 

Year Dummies 13 Year Dummies 13 Year Dummies 13 Year Dummies 13 Year Dummies
Fixed Effects 27 State FE’s 27 State FE’s 27 State FE’s 27 State FE’s 
Linear Time Trends 27 State-Specific 

Time Trends 
27 State-Specific 

Time Trends 
27 State-Specific 

Time Trends 
27 State-Specific 

Time Trends 
     
 

a The dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the listed 
pollutant.  
b  A superscript * indicates statistical significance at the 5% level. 
c The BOD plant-level analysis consists of 30,895 observations from 242 plants in 28 states over the 168 sample months. 
 

 

Moreover, we find that the response at the highest quantiles tends to be larger than at the lowest. For 

both BOD and TSS, fines responses at the 25th and 90th percentiles are economically different from one 

another. For example, the TSS results in Table 4 indicate that the fine response at the 90th discharge 

percentile is more than 2.5 times greater than the fine response at the 25th discharge percentile. BOD results 

in Table 3 indicate that the fine response at the 90th percentile is approximately 6/10 greater than the fine 

response at the 25th percentile. Some, but not all, differences are statistically significant as well (e.g. TSS 

25th vs. 90th, TSS 50th vs. 90th). These results are intuitive; plants closer to violating their standard may 

respond to a greater extent.  
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Table 4. TSS Quantile Regression Results 
 
Variable Description 25% Quantile 50% Quantile 75% Quantile 90% Quantile 
     
Fine 1-12 months ago on another 
     Plant 

-0.0218* 
(-5.54) 

-0.0353* 
(-6.86) 

-0.0533* 
(-7.83) 

-0.0574* 
(-4.96) 

Fine 1-12 months ago on self 
 

0.1162* 
(12.7) 

0.1815* 
(15.1) 

0.2245* 
(14.3) 

0.1519* 
(5.77) 

Inspections 1-12 months ago  
     (in state) 

0.0005 
(1.03) 

0.0014* 
(2.24) 

0.0026* 
(3.17) 

0.0031* 
(2.21) 

Season2 Dummy -0.0181* 
(-4.19) 

-0.0339* 
(-5.95) 

-0.0531* 
(-7.06) 

-0.0636* 
(-4.95) 

Season3 Dummy -0.0202* 
(-2.75) 

-0.0478* 
(-4.94) 

-0.0756* 
(-5.94) 

-0.0944* 
(-4.35) 

Season4 Dummy -0.0086 
(-0.81) 

-0.0362* 
(-2.59) 

-0.0575* 
(-3.14) 

-0.0675* 
(-2.17) 

Year Dummies 13 Year Dummies 13 Year Dummies 13 Year Dummies 13 Year Dummies
Fixed Effects 27 State FE’s 27 State FE’s 27 State FE’s 27 State FE’s 
Linear Time Trends 27 State-Specific 

Time Trends 
27 State-Specific 

Time Trends 
27 State-Specific 

Time Trends 
27 State-Specific 

Time Trends 
     
 

a The dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the listed 
pollutant.  
b  A superscript * indicates statistical significance at the 5% level. 
c The TSS plant-level analysis consists of 32,995 observations from 251 plants in 28 states over the 168 sample months. 

 

The results establish that a fine induces a significant over-compliance response across all quantiles 

of the discharge distribution, including the lowest. Given this broad-based response, two questions naturally 

arise: Why would plants which statistically over-comply reduce discharges in response to an increased threat 

of sanction for a violation? Why would plants that sometimes violate reduce discharges in all periods, rather 

than simply reducing violations to the standard threshold? Section 5 explores these issues in more depth; we 

test the extent to which discharge randomness and jointness in pollution production can resolve these 

puzzles. However, we first explore the sensitivity of our key empirical regularity. 

4.4 Sensitivity Analysis 
Statistical Plausibility 
 

Are the statistical findings reasonable given the number of fines? An alternative and non-parametric 

analysis is a simple comparison of means event study. Here, we compare statewide discharges in the year 

before and the year after a fine in that state, omitting the fined plant itself to ensure a fair comparison. We 

find that BOD discharges drop 5.2 percent and TSS discharges drop 9.6 percent. These results are 
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comfortably close to those of the regression analysis, which is the preferred method because it accounts for 

covariates. 

Perhaps one might still be concerned that the results are a consequence of some spurious correlation 

between the timing of fines and some general economic or political condition, not accounted for in our 

regression models. If that were the case, we might expect discharges in other states to react at the same time 

to the true cause. Thus, we perform a counterfactual experiment which randomly shuffled the fine reputation 

variable at time t across the pool of all plants. In other words, plant 2 in Alabama might enter the regression 

in month 20 with the fine variable actually belonging to plant 3 in Florida in month 20. We performed this 

exercise 50 times for each pollutant, and found negligibly small average linear regression coefficients and t-

statistics. 

While the above experiment presents evidence that omitted national shocks are not driving the 

results, an additional concern may be omitted state-level shocks. Fines occur when discharges are 

particularly high, and suppose particularly high discharges for one plant reflect omitted state-level common 

shocks (like weather) that induce particularly high discharges for all plants within the state. Therefore, one 

might naturally expect discharges to be less high in the next period anyway; this is the standard “regression 

towards the mean” effect.10 However, this comparison is not what our fixed effects analysis investigates. Our 

analysis reveals a fine-induced decrease in discharges relative to the plant’s conditional average discharges, 

not relative to the fined period’s discharges. Consequently, an omitted state-level common shock could only 

produce our results if the common shock was accompanied by strong and persistent negative serial 

correlation. We find no systematic evidence of negative serial correlation in either the short- or the long-

term. 

We also consider the sensitivity of the results to the type of fine included. Recall that our analysis is 

based on fines for BOD or TSS effluent violations. However, plants may be sanctioned for other violations 

associated with paperwork, scheduling, or non-conventional and toxic pollutants. It seems possible that 

plants respond more generally to fines on all such violations. However, when this broader category of fines 

is included in the analysis, it is not statistically significant.  
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Sensitivity to Assumptions 

The link between enforcement and over-compliance established in the preceding sections is 

consistent across two pollutants, two regression techniques, and a non-parametric event study analysis. 

Further, the results are robust to a spurious correlation test. Below, we provide evidence that the results are 

also insensitive to a number of other assumptions. 

Our results are robust to alternative specifications for our key fine reputation effect.  One natural 

alternative to our fine dummy approach is a fines per violation measure, where “violation” indicates the 

presence of a plant/month violation for BOD, TSS, or both. Initially, we set the fines per violation measure 

equal to 0 if there were no lagged violations and no fines. Results are economically and statistically similar 

to presented results. We then repeated the fines per violation specification while dropping all observations 

where there were no lagged violations and no fines, since plants may not know precisely how to update their 

regulatory beliefs when there are no violations. Again, results are economically and statistically similar to 

presented results. We also considered the possibility that unfined violations contribute to the regulator 

reputation effect by including the number of unfined violations per plant as an explanatory variable. Results 

for the original fine variables are extremely similar. The coefficient on the unfined violations measure is 

positive and significant for BOD, as expected for a deterrence model in which unfined violations lead plants 

to believe the regulator is being lax. Unfined violations do not influence TSS discharges on average. Finally, 

we tried a linearly diminishing function for the fine variable, rather than a dummy. Results are again 

economically similar to those presented, and a specification test favors the dummy approach. 

Our results are also robust to an alternative approach to plant-specific technological change.  Our 

analysis used plant-specific linear time trends, as well as overall year dummies. An alternative approach of 

including an auto-regressive term lagged one year, used by Magat and Viscusi [21], yields very similar 

results. 

Finally, it may initially seem puzzling that the ‘fine 1-12 months on self’ and inspections 

coefficients are frequently positive in the quantile regressions. However, these results are consistent with the 

absence of plant-level fixed effects. Without plant-level fixed effects, if regulators target plants for stricter 
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enforcement based on their overall environmental performance, these control variable coefficients may be 

positive.11 Nonetheless, as a robustness check, we ran regressions that omitted the own fine variable and 

regressions that included the fined plant in the reputation effect. In all regression analyses, results are 

economically similar to those presented in the tables.  

5. Mechanisms for Enforcement-Induced Changes in Over-Compliance 
 
 Can the empirical results documented in the explorations of Section 4 be explained by economic 

mechanisms? In a simple deterministic one-pollutant model of the firm, statistically over-complying plants 

would have no reason to react further to enforcement, since they face no threat of sanction. However, plants 

with stochastic discharges may face some possibility of a fine from accidental discharges over the legal 

standard.12 Many factors such as equipment failures, human error, or poor maintenance may cause realized 

discharges to differ from target, or intended, discharges during any particular time.13 Moreover, a plant 

compliant in one pollutant may face some possibility of a fine for violations of a different, but jointly-

produced, pollutant. Either of these mechanisms, or both, could in principle explain the reaction of 

statistically over-compliant plants to changes in enforcement. 

 Basic economic logic implies that the marginal expected fine should help explain discharges, since 

plants balance the marginal benefits of discharging with the marginal costs of the expected sanction from 

violating. There are potentially two uncertain elements to sanctions and thus the marginal expected fine. 

First, as discussed above, discharges are volatile and may be partially random, even from the plant’s 

perspective. Thus, even if the plant’s target discharges z for a given pollutant are below the legal limit, there 

may be a positive expected penalty F(z), which accounts for volatility in actual discharges around z. Another 

uncertain element of sanctions is the whether a given violation will be fined. Empirically, many violations 

are not sanctioned, so a fine occurs with some probability P. In our conceptual framework, a key assumption 

is that the plant’s assessment of P depends on recent enforcement actions. Taking the these two components 

together, the marginal expected fine is P  × F′(z). Changes in the perceived probability of sanction influence 

discharges through this term, so one reasonable and intuitive way to account for regulator reputation is to 

include the marginal expected fine for each jointly-produced pollutant in the linear discharges regression 
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rather than a dummy for the presence of a fine. In the appendix, we formally demonstrate that this intuitive 

specification can be exactly rationalized for the case of a plant with profits that are quadratic in discharges.  

We also assume a simple two-state threat perception model, with the default setting of low threat 

because fines are so uncommon. Suppose P  can take only take two values: loP  and hiP . The plant believes 

the threat is high in periods after a fine, which we code with the regulator reputation dummy variable R  . 

Note that the marginal expected penalty terms can then be written in the form ( )lo hi loP F P P RF′ ′+ − . In our 

regression, we exploit this simple technique by including both F ′  and RF ′  as regression explanatory 

variables. Then loP  and hiP  need not be pre-specified, as they will be implicitly absorbed into the regression 

coefficients to be estimated. The baseline marginal expected penalty is thus accounted for by including F ′  

in the discharge regression. The interaction with the reputation dummy RF ′ allows for increased importance 

of the expected fine when the threat of such a fine is higher. This interaction term is the key explanatory 

variable of interest. 

Randomness 
 

To the extent that randomness explains the over-compliance response, we would expect plants 

facing a higher risk from random violation to respond more strongly to an increased probability of sanctions. 

In particular, this impact should be transmitted through the marginal expected fine. In this section, we 

explore to what extent randomness can empirically rationalize the post-fine discharge responses documented 

in Section 4. As discussed above, we do so by interacting the reputation dummy R with the marginal 

expected fine.14 In sum, we replace R in each discharge regression with F ′and RF ′  for that same 

pollutant. We then test whether the over-compliance response is better explained through this randomness 

mechanism than under the original exploratory regressions. 

To construct the marginal expected sanction measures, we must first have an empirical measure of 

the stochastic shocks ε  to discharges. These shocks are the difference between intended discharges, z, and 

actual discharges, z% .  Of course, determining the marginal expected penalty requires integration over an 

estimate of the statistical distribution of discharges, ( ) ( )h h z zε = −% , since any fine would depend on the 
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realized level of random discharges. Our premise is that a reasonable estimate of random shocks is the 

empirical density of regression residuals.  

One might simply assume a fixed distribution for the random shocks about their expected value, 

using observed residuals to identify parameters of the assumed distribution. For example, one might assume 

a Gaussian distribution of random shocks and set the variance parameter equal to the mean squared 

regression residuals. However, this approach would be problematic in our context. The shape and scale of 

regression residuals differ considerably from plant to plant. Visual inspections of histograms generated from 

the residuals of regressions similar to those reported in Table 2 indicate some residual densities are highly 

skewed to the right and some are symmetric. See Figure 3 for three illustrative examples. Fitting a simple 

parametric density to such diverse densities is particularly unsatisfactory because the upper tail of these 

distributions is critical for correctly assessing the probability of violation due to randomness. 

We therefore turn to non-parametric density estimation to estimate plant-specific distributions of 

random shocks. This approach better captures the variability in the distribution of random shocks across 

plants. One standard density estimation technique is kernel estimation, which, intuitively speaking, smoothes 

out a histogram. We apply an adaptive-bandwidth kernel density estimator, which allows the degree of 

smoothing to vary somewhat across the distribution; see [26] for a more complete discussion. We adopt the 

adaptive kernel, as opposed to a kernel estimator with a fixed bandwidth, because we are particularly 

interested in the upper tail of the distribution where data can be sparse. In our analysis, the optimal 

bandwidth is fit locally by a cross-validation criterion; estimates are generated using the implementation by 

Van Kerm [33]. Figure 3 overlays adaptive kernel estimates to residual histograms for three representative 

facilities. 

Given density estimates, we can construct our empirical measure of the marginal economic risk 

from random violation, F′.15 To operationalize this measure, we must specify the fine as a function of the 

extent of violation. Since this function is unknown, we present results for two specifications. The first is a 

flat fine for any violation, independent of the extent. The second is a penalty linear in the extent of violation. 

Applying these specifications to our conditional density estimate for discharges, we numerically calculate 
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the derivative of the expected fine, F′. The marginal expected penalty for a fixed fine is trivially proportional 

to the density of discharges at the standard. For the case with fines linear in the extent of violation, assume 

discharges are measured on a ratio scale so that a violation occurs whenever 1z >% .  The expected penalty is 

then  
1

( 1) ( )z h z z dz
∞

− −∫ % % % . Taking the derivative with respect to z, and then integrating by parts, the marginal 

expected penalty is proportional to 1 (1 )H z− − , which can be interpreted as the probability of a violation.  

Different error or fine structures would lead to different calculations.   

 
Table 5. Randomness Exploration Regressions 
 
Variable Description BOD Regressions TSS Regressions 
 Flat 

Fine 
Penalty 

 

Linear Penalty 
Function 

 

Flat 
Fine 

Penalty 
 

Linear 
Penalty 

Function 
 

     
Fine – Marginal Expected Penalty  (R F′) -6.912* 

(-3.08) 
-1.899* 
(-5.27) 

-2.727 
(-1.01) 

-0.9136 
(-1.81) 

Marginal Expected Penalty (F′)  -10.321* 
(-4.30) 

-.9743* 
(-7.94) 

-14.571* 
(-2.46) 

0.2303 
(0.75) 

Fine 1-12 months ago on self -0.0662* 
(-2.52) 

-0.0745* 
(-2.77) 

-0.1123* 
(-3.02) 

-0.0823* 
(-2.16) 

Inspections 1-12 months ago 0.0020 
(0.74) 

0.0026 
(0.97) 

0.0039 
(1.22) 

0.0030 
(1.02) 

Season2 Dummy -0.0512* 
(-9.37) 

-0.0496* 
(-9.05) 

-0.0496* 
(-9.31) 

-0.0435* 
(-8.62) 

Season3 Dummy -0.0669* 
(-7.26) 

-0.0648* 
(-7.19) 

-0.0710* 
(-8.80) 

-0.0621* 
(-7.01) 

Season4 Dummy -0.0504* 
(-3.86) 

-0.0489* 
(-3.77) 

-0.0534* 
(-4.64) 

-0.0461* 
(-3.62) 

Year Dummies 13 Year Dummies 13 Year Dummies 
Plant-Level Fixed Effects 241 Plant-Level Fixed Effects 250 Plant-Level Fixed Effects 
Plant-Specific Linear Time Trends 241 Plant-Specific Time Trends 250 Plant-Specific Time Trends
       
 

a The dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the listed 
pollutant.  
b  A superscript * indicates statistical significance at the 5% level. 
c The BOD plant-level analysis consists of 30,895 observations from 242 plants over the 168 sample months. 
d The TSS plant-level analysis consists of 32,995 observations from 251 plants over the 168  sample months. 

 

Table 5 presents the results of our randomness exploration regressions. We find strong evidence that 

BOD randomness plays an important role in enforcement-induced changes in over-compliance for that 
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pollutant. Coefficients on the interaction between the fine reputation effect and the marginal expected 

sanction (R F′) are statistically significant for both penalty specifications. This indicates that, in periods 

when regulators are perceived as more willing to impose fines, the BOD over-compliance response is greater 

when plants have higher marginal expected sanctions due to BOD randomness.16    

Can BOD randomness alone rationalize the enforcement-induced over-compliance response for this 

pollutant?  One check is a specification test of the randomness model (Table 5) against the previous 

uninteracted model (Table 2) that used only a non-interacted reputation term (R). Performing non-nested P-

tests [12], for both BOD fine specifications, we can reject the uninteracted model against the randomness 

model. For BOD, randomness does appear sufficient to explain the enforcement-induced over-compliance 

response.  

In contrast to BOD, we find no systematic evidence that TSS randomness plays an important role in 

enforcement-induced changes in over-compliance for that pollutant. Coefficients on the interaction between 

the fine reputation effect and the marginal expected sanction (R F′) are not statistically significant for both 

penalty specifications. In periods when regulators are perceived as more willing to impose fines, the TSS 

over-compliance response is not enhanced when plants have higher marginal expected sanctions due to TSS 

randomness. 

Further, the specification tests for the TSS randomness model yield ambiguous results. For the linear 

penalty specification, a P-test fails to reject the uninteracted model (Table 2) against the randomness model 

(Table 5). For the flat fine penalty specification, a P-test does reject the uninteracted model against the 

alternative randomness model. For TSS, randomness does not appear to systematically explain the 

enforcement-induced over-compliance response. Thus, it seems that enforcement is affecting TSS discharges 

through some mechanism beyond randomness alone. 

Jointness 
 

Another possible explanation for enhanced over-compliance is jointness in pollution production and 

abatement. As discussed in the background section, BOD and TSS discharges are (at least partially) jointly 

determined. Wastewater treatment technologies treat both BOD and TSS simultaneously, and modern 
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production practices to improve environmental performance reduce many pollutants at once. To the extent 

that a high penalty risk for one pollutant induces a plant to undertake environmental improvements, those 

actions may reduce the other, jointly determined, pollutant. 

We extend the regressions of the previous section to account for jointness, as well as randomness, 

by including cross-pollutant risk, as derived in the appendix. To do so, we augment the analysis presented in 

Table 5 to include the other pollutant’s marginal expected penalty F′ and the interaction of the reputation 

effect with the other pollutant’s marginal expected penalty R F′. Thus, for example, BOD regressions 

include the BOD marginal expected penalty F′B, the BOD interaction F′B R, the TSS marginal expected 

penalty F′T, and the TSS interaction F′T R. TSS regressions are symmetric. Simultaneous estimation of the 

BOD and TSS equations through a SUR regression would yield no efficiency gain, since the covariates in 

each equation are identical. 

Table 6. Jointness & Randomness Exploration Regressions 
 
Variable Description BOD Regressions TSS Regressions 
 Flat 

Fine 
Penalty 

 

Linear Penalty 
Function 

 

Flat 
Fine 

Penalty 
 

Linear 
Penalty 

Function 
 

     
BOD Fine – Marginal Expected Penalty  (R F′) -6.940* 

(-3.02) 
-2.038* 
(-5.29) 

-4.921* 
(-5.14) 

-0.9700* 
(-4.92) 

TSS Fine – Marginal Expected Penalty  (R F′) -0.4371 
(-0.24) 

0.6554 
(1.54) 

-2.294 
(-0.80) 

-0.1860 
(-0.29) 

BOD Marginal Expected Penalty (F′) -9.793* 
(-4.25) 

-0.9834* 
(-4.95) 

-5.130* 
(-2.27) 

-0.1535 
(-1.60) 

TSS Marginal Expected Penalty (F′) -3.545* 
(-2.83) 

0.1858* 
(2.06) 

-14.438 
(-2.36) 

0.4543 
(1.17) 

Fine 1-12 months ago on self -0.0714* 
(-2.70) 

-0.0672* 
(-2.50) 

-0.1201* 
(-3.00) 

-0.0836* 
(-2.02) 

Inspections 1-12 months ago 0.0026 
(0.94) 

0.0031 
(1.11) 

0.0039 
(1.18) 

0.0032 
(1.01) 

Seasonality Dummies 3 Season Dummies 3 Season Dummies 
Year Dummies 13 Year Dummies 13 Year Dummies 
Plant-Level Fixed Effects 241 Plant-Level Fixed Effects 250 Plant-Level Fixed Effects 
Plant-Specific Linear Time Trends         241 Plant-Specific Trends       250 Plant-Specific Trends 
       
 

a The dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the listed 
pollutant.  
b  A superscript * indicates statistical significance at the 5% level. 
c All plant-level analyses consist of the 30,600 observations with both BOD and TSS . 
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Results of the simultaneous jointness/randomness exploration are presented in Table 6. Note 

especially rows 1 and 2. Here, we find strong evidence that BOD randomness plays an important role in 

enforcement-induced changes in over-compliance for both BOD and TSS discharges. Coefficients on the 

interaction of the fine reputation effect and the BOD marginal expected sanction (R F′B) (Table 6, Row 1) 

are statistically significant for both specifications for both pollutants. This indicates that, in periods when 

regulators are perceived as more willing to impose fines, both BOD and TSS statistical over-compliance 

responses are greater when plants have higher marginal expected sanctions due to BOD randomness. In 

contrast, we find no statistically significant evidence that TSS randomness plays an important role in 

enforcement-induced changes in over-compliance for either BOD or TSS discharges. Coefficients on the 

interaction of the fine reputation effect and the TSS marginal expected sanction (R F′T) (Table 6, Row 2) are 

not statistically significant for both specifications for both pollutants. 

Results suggest that enhanced over-compliance in TSS after a fine may be at least partially a side-

effect of efforts to avoid violations in BOD discharges, which are jointly determined with TSS. This 

implication is plausible for four reasons. First, as discussed, empirically observed jointness is consistent with 

the economic logic for jointly-produced multiple pollutants. Second, the randomness regressions and P-tests 

previously discussed suggested that something beyond randomness alone was driving TSS enforcement-

induced changes in over-compliance. Third, BOD violations occur about twice as frequently as TSS 

violations, and so represent the predominant concern for violations. Fourth, the volatility of BOD discharges 

is generally much higher than TSS, so that randomness is may be a more fundamental concern in the case of 

BOD. 

Can randomness and jointness rationalize the enforcement-induced over-compliance responses for 

both pollutants observed in Section 4?  To check, we run specification tests of the randomness and jointness 

model (Table 6) against the previous model (Table 2) that used only a non-interacted reputation term (R). P-

tests for both fine specifications for both BOD and TSS reject the uninteracted model against the 

randomness and jointness model. For both discharge types, randomness and jointness do appear sufficient to 

explain the observed enforcement-induced over-compliance response.  
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6. Discussion and Conclusions 
 

The main contribution of this paper is explicitly linking the enforcement and over-compliance 

literatures. We empirically demonstrate that many statistically over-complying plants reduce discharges 

when regulators issue fines, even fines on other plants. Aggregate BOD and TSS discharges within a state 

fall approximately 7 percent in the year following a sanction within that state. Most of this reduction is due 

to enhanced over-compliance, rather than simply a reduction in violations.  

These empirical results can be rationalized by economic theory. We find economically and 

statistically significant evidence that discharge randomness and jointness in pollution production play 

important roles in the degree of over-compliance. In particular, a simultaneous analysis of these factors 

indicates that the risk of accidental violation due to BOD randomness is the predominant mechanism of the 

enforcement-induced changes in over-compliance for both BOD and the jointly determined pollutant TSS.  

Are the results reasonable? Observed deterrence is not out of line with the related literature. Several 

empirical studies document a significant decrease in violations following regulatory actions which may seem 

modest [21, 20, 23, 13, 28]. We demonstrate that sanctions of similarly modest scope can also induce 

economically significant increases in over-compliance. 

Significant policy implications follow from our analysis. First, variation in the degree of over-

compliance is driven by traditional economic incentives, rather than altruistic corporate social responsibility. 

Second, randomness and jointness results indicate that BOD reductions have important implications for 

other pollutant levels. These implications should perhaps be considered in permitting and enforcement. 

Third, and most notably, enforcement generates substantial discharge reductions above and beyond those 

expected from simply deterring violations. Ignoring the impact of sanctions on over-compliance 

considerably understates fines’ effect on environmental discharges. If standards are not overly tight, 

enforcement-induced changes in over-compliance may also translate into larger welfare gains than 

anticipated. Consequently, a substantial improvement in environmental quality might be achieved from a 

relatively small additional investment in traditional adversarial enforcement. Given this result, it is perhaps 

an interesting institutional research question why fines are not imposed more regularly. 



 

 

29

 

Acknowledgements 
 

Both authors would like to thank the journal editor and two anonymous referees, and seminar 

participants at Yale University, the AERE sessions at the AAEA annual meetings, the California Workshop 

at UCSB, and the 3rd World Congress. Additional thanks are due to Timothy Beatty, Nat Keohane, Gib 

Metcalf, Sarani Saha, Kurt Schwabe, John Stranlund, and Jeff Zabel. Jay Shimshack would also like to thank 

Tufts University’s Faculty Research Awards Committee (FRAC) for generous financial assistance and the 

Donald Bren School of Environmental Science and Management for space and support. 

References 
 
[1] S. Arora and T.N. Cason, Do Community Characteristics Influence Environmental Outcomes? Evidence 

from the Toxics Release Inventory, Southern Econ. J. 65(4), 691-716 (1999). 

[2] S. Arora and T.N. Cason, Why do Firms Volunteer to Exceed Environmental Regulations? Participation 

in EPA’s 33/50 Program? Land Econ. 72, 413-432 (1996). 

[3] S. Arora and T.N. Cason, An Experiment in Voluntary Environmental Regulation: Participation in 

EPA’s 33/50 Program, J. Environ. Econ. Manage. 28, 271-286 (1995). 

[4] S. Arora and S. Gangopadhyay, Toward a Theoretical Model of Voluntary Overcompliance, J. Econ. 

Behav. Org. 28, 289-309 (1995).  

[5] S. Bandyopadhyay and J. Horowitz, Do Plants Overcomply with Water Pollution Regulations? The Role 

of Discharge Variability, Topics in Econ. Analysis and Policy 6, Art. 4 (2006). 

[6] B. Beavis and I. Dobbs, Firm Behaviour under Regulatory Control of Stochastic Environmental Wastes 

by Probabilistic Constraints, J. Environ. Econ. Manage. 14, 112-127 (1987).   

[7] B. Beavis  and M. Walker, Achieving Environmental Standards with Stochastic Discharges, J. Environ. 

Econ. Manage. 10: 103-111 (1983). 

[8] R. Becker, Pollution Abatement Expenditure by Manufacturing Plants: Do Community Characteristics 

Matter? Contributions to Econ. Analysis and Policy 3, Art. 6 (2004). 

[9] R. Brannlund and K. Lofgren, Emission standards and stochastic waste load, Land Econ. 72, 218–230 

(1996). 



 

 

30

 

[10] B. Cade and B. Noon, A Gentle Introduction to Quantile Regression for Ecologists, Frontiers Ecology 

Environ. 1, 412-420 (2003). 

[11] A. Cavaliere, Overcompliance and Voluntary Agreements, Env. Res. Econ. 17, 195-202 (2000). 

[12] R. Davidson and J. MacKinnon, Several Tests for Model Specification in the Presence of Alternative 

Hypotheses, Econometrica 49, 781-793 (1981). 

[13] D. Earnhart, Regulatory Factors Shaping Environmental Performance at Publicly-Owned Treatment 

Plants, J. Environ. Econ. Manage. 48, 655-681 (2004). 

[14] D. Earnhart, The Effects of Community Characteristics on Polluter Compliance Levels, Land Econ. 80, 

208-432 (2004). 

[15] W. Gray and M. Deily, Compliance and Enforcement: Air Pollution Regulation in the U.S. Steel 

Industry, J. Environ. Econ. Manage. 31, 96-111 (1996). 

 [16] E. Helland, The Enforcement of Pollution Control Laws: Inspections, Violations, and Self-Reporting, 

Rev. Econ. Statist. 80, 141-153 (1998). 

[17] S. Kirchhoff, Green Business and Blue Angels, Environ. Resource Econ. 15, 403-420 (2000). 

[18] R. Koenker and G. Bassett, Regression Quantiles, Econometrica 46, 33-50 (1978). 

[19] R. Koenker and G. Bassett, Robust Tests for Heteroskedasticity based on Regression Quantiles, 

Econometrica 50, 43-61 (1982). 

[20] B. LaPlante and P. Rilstone, Environmental Inspections and Emissions of the Pulp & Paper Industry in 

Quebec, J. Environ. Econ. Manage. 31, 19-36 (1996). 

[21] W. Magat and W.K. Viscusi, Effectiveness of the EPA’s Regulatory Enforcement: The Case of 

Industrial Effluent Standards, J. Law Econ. 33, 331-360 (1990). 

 [22] J. McClelland and J. Horowitz, The Costs of Water Pollution Regulation in the Pulp and Paper 

Industry, Land Econ. 75, 220-32 (1999). 

[23] L. Nadeau, EPA Effectiveness at Reducing the Duration of Plant-Level Non-Compliance, J. Environ. 

Econ. Manage. 34, 54-78 (1997). 



 

 

31

 

[24] W.H. Rogers, Calculation of Quantile Regression Standard Errors, Stata Technical Bull. 13, 18-19 

(1993). 

[25] R. Sah, Social Osmosis and Patterns of Crime, J. Polit. Econ. 99, 1272-1295 (1991). 

[26] S. Sain and D. Scott, On Locally Adaptive Density Estimation, J. Amer. Statist. Assoc. 91, 1525-1534 

(1996). 

[27] K. Segerson, Uncertainty and Incentives for Nonpoint Pollution Control, J. Environ. Econ. Manage. 15, 

87-98 (1988). 

[28] J. Shimshack and M.B. Ward, Regulator Reputation, Enforcement, and Environmental Compliance, J. 

Environ. Econ. Manage. 50, 519-540 (2005). 

[29] A.M. Springer 2000. Industrial Environmental Control: Pulp and Paper Industry (3rd Edition). TAPPI 

Press, Atlanta, GA. 

[30] S. Stafford, The Effect of Punishment on Firm Compliance with Hazardous Waste Regulations, J. 

Environ. Econ. Manage. 44, 290-308 (2002). 

[31] G. Thompson, J. Swain, M. Kay, and C.F. Foster, The Treatment of Pulp and Paper Mill Effluent: A 

review, Bioresource Technol. 77: 275-286 (2001). 

 [32] USEPA, Center for Environ. Info. and Statist., Major findings from the CEIS review of EPA’s permit 

compliance system database, Washington, DC (1999). 

[33] P. Van Kerm, Adaptive Kernel Density Estimation, Stata J. 3, 108 (2003). 



 

 

32

 

 Foonotes 
 
1 Across the entire NPDES water pollution regime, some plants are regulated by regional or national 

authorities. However, in our sample of pulp and paper mills, all plants are regulated by their 

respective state agencies. 

2 One could formally model this learning process in a Bayesian framework. However, for our purposes, the 

practical value of such a model is low, since the basic lesson that plants update their beliefs in 

response to new information is quite straightforward. We refer the interested reader to Sah [25] for a 

formal treatment. 

3 Our comprehensive sample is constructed from a pre-existing 1990-1996 dataset and a newly obtained 

1998-2004 dataset. When the more recent subsample was obtained, information for 1997 was no 

longer present in the publicly available version of the PCS. 

4 In any given month, the vast majority of plants emit a measured pollutant from a single outfall. Further, the 

composition of discharges across outfalls remains relatively constant over time. Thus, it is unlikely 

that this convenient aggregation biases our results. 

5 We define this variable over one year because the literature indicates that this reputation signaling effect 

declines quite rapidly after 12 months. We explore an alternative decay specification in the 

sensitivity analysis. 

6 One can view our measure as a proxy for true perceptions. To the extent this is imperfect, it will 

conservatively bias coefficients towards zero. So, use of a proxy should not spuriously cause 

affirmative results. 

7 One potential weakness is that the dummy variable approach does not account for the number of violations. 

An alternative measure that does so, in principle, would be the ratio of fines to violations over the 

past year. However, as compliance is generally quite high in our dataset, this ratio most often takes 

the same 0-1 values as the dummy and has a sample mean within 15% of the dummy. Moreover, 

constructing a ratio requires dropping data in the case of no recent violations. Since the two variable 

specifications are numerically similar, for this particular dataset with few fines and high compliance, 
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we use fine existence for the main results and explore the fines per violation specification as a 

sensitivity analysis.  

8 We also ran specifications with logged dependent variables. Logs have the advantage of preventing 

negative predicted discharges. However, as a practical matter, the current specifications predict very 

few negative discharges. The logged specifications yielded statistically similar results, but the key 

coefficient magnitudes were larger in absolute value. We ultimately chose the current specification 

to be conservative and because many detrended and seasonally corrected plant discharge 

distributions do not appear log-linear (as will be demonstrated in Figure 3).  

9 We construct the reputation effect variable using fines on both BOD and TSS, since plants would extract 

signals about overall regulator stringency from sanctions on both.  Thus, we have a single proxy for 

an increased probability of sanctions on both pollutants.   

10 Concern with regression towards the mean is why we omitted the fined plant in the simple comparison of 

means discussed above. 

11 Helland [16] finds evidence for such plant-specific targeting. 

12 The issue of random pollution levels, and its theoretical implications for regulation in different contexts, 

has been addressed by numerous authors including Beavis and Walker [7], Beavis and Dobbs [6], 

and Segerson [27].  

13  If the plant is uncertain about future operating and market conditions, it will also be uncertain about what 

discharge levels will be desirable in the near future. Since abatement steps such as preventive 

maintenance or operator training may require lead-time, both accidental discharge variation and 

uncertain near-future operating conditions are important sources of randomness from the plant’s 

perspective. 

14 Plants which have very little chance of random violations would contribute very little to the empirical 

post-fine over-compliance response. Also, a plant with low mean discharges and high volatility may 

have a higher marginal expected fine than one with high mean discharges and low volatility. So, the 

low-mean plant may be more responsive to regulatory threat. 
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15  Some care must be paid in the construction of the distributions underlying our measure of empirical risk 

from random violation. We do not want a function of εit to be included as an explanatory variable in 

a subsequent regression for plant i’s observation in period t. Therefore, the constructed density of 

random shocks for each observation is based upon plant i’s regression residuals for all of that plant’s 

periods not equal to t. 

16 It is possible that econometric volatility overstates volatility from the plants’ perspective. Thus, we 

experimented with adjusting the density of the econometric residuals by scale factors of ¾ and ½. 

This reduces our estimate of the risk of random violation. In both cases, the impact of randomness 

captured by the interaction R F′ remains significant for both the flat and linear BOD fine 

specifications. 
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Appendix 

In this appendix, we introduce a stylized model of the plant with a simple parametric specification. 

The purpose of this model is to motivate an economically reasonable, but parsimonious, empirical 

specification for the explorations of randomness and jointness as economic mechanisms for variation in 

over-compliance. 

The plant chooses intended discharge levels, z , which entails an opportunity cost through either 

reduced production or increased inputs into abatement. We assume that the plant's direct profit is quadratic 

in discharge levels. Actual discharge levels are intended discharges plus a random mean-zero shock, 

z z ε= +% . If actual discharges for any pollutant exceed the legal standard, then with probability P  they 

receive a fine which is a function of the actual discharge levels. Let ( )F z  be the expected fine as a function 

of intended discharges, where the expectation is over the random component ε  of actual discharges. 

 The expected profit of a plant with n  pollutants is then  

                                         1 0
1 1 1 1

( ,..., ) ( ),
n n n n

n j j jk j k j
j j k j

z z a a z a z z P F zπ
= = = =

= + + −∑ ∑∑ ∑  (1) 

where the a 's are plant-specific parameters. Note that if 0jka = for all j k≠ , then there is no jointness in 

discharges. 

 The first order optimality conditions can be solved to yield equations of linear form  

                                                                 
1

( ),
n

i i ij j
j

z P F zα β
=

′= + ∑  (2) 

where the parameters α  and β  depend on the parameters a  in (1). Here, non-jointness will result in 

0ijβ =  for i j≠ . For estimation purposes, we let the intercept depend linearly on a vector of covariates X , 

so that i iXα γ= . 

 Recalling that i i iz z ε= +% , we then have  

                                                                
1

.
n

i i ij j i
j

z X P Fγ β ε
=

′= + +∑%  (3) 
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Given the values of F ′ , one could run a standard regression to fit the parameters β  and γ . The solution 

would then satisfy (2). Unfortunately, we do not know F ′  a priori, because it depends on z . However, 

given regressions based on an initial estimate, we can in practice iteratively find an improved estimate of F ′  

by solving for z  from (2). The regressions presented in the paper include F ′  so calculated. 
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Figures 1 and 2 display substantial over-compliance with permitted standards for both BOD and TSS. The ratio of actual to permitted 
discharges nearly always lies in the compliance region (less than 1), and the majority of plants emit less than 50 percent of allowable levels. 
While the histograms represent discharge ratios for a single month of the sample, other sample months demonstrate similar over-compliance. 
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                                     Figure 3. Representative Histograms and Kernel Estimated Densities of Residuals 
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