Conclusion

In this paper, we first derive the condition under which it is cost-effective for a regulator to induce perfect compliance in an emissions control program. This condition depends on the cost of monitoring and sanctioning firms, as well as on the structure of the penalty for violations. It is not instrument-dependent. If the condition is met, the regulator has to induce perfect compliance independently of whether it is implementing emission standards or transferable permits. Because we assume that the regulator's monitoring and sanctioning costs are firm-specific, the condition itself is firm-specific. In other words, it is possible that cost-effectiveness calls the regulator to induce some firms to comply with the legislation while at the same time letting others violate it. This cannot happen when one assumes that the regulator's monitoring and sanctioning costs are the same for all firms. In this case, the regulator either has to induce compliance on all firms or allow all firms to violate.

Second, we characterize the total-cost-minimizing design of a program that caps aggregate emissions of a given pollutant from a set of heterogeneous firms based on emissions standards when it is cost-effective to induce perfect compliance and when it is not. We then allow the regulator to choose the optimality of inducing compliance or not. Doing this, we find that the total cost-effective design of such a program is one in which standards are firm-specific and perfectly enforced.

Third, we compare the costs of such an optimally designed program with that of an optimally designed program based on a perfectly competitive emission permits market, which also calls for perfect enforcement according to Stranlund (2007). This comparison allows us to conclude that the total costs of the latter are always larger than the costs of the former, except when the regulator's cost of monitoring a firm's emissions are the same for all firms or the marginal penalty for violations is constant. Moreover, when it is cost-effective to allow violations, tradable permits minimize costs only under even more special conditions.

In deriving the above results, we assume that the regulator has perfect information on the firms' abatement costs. This assumption is, of course, unrealistic. For this reason, we also derive the condition under which it is expected-cost-effective for a regulator to induce perfect compliance in an emissions control program based on emission standards when it has imperfect information on abatement costs. This condition is different from the corresponding condition under complete information, depending on covariance and expectation terms that capture the fact that the regulator is uncertain with respect to the firms' reactions to the different pairs of emission standards and monitoring probability. Quite differently, in the case of tradable permits, the regulator could surmount the informational problem (and therefore the uncertainty of whether it has to induce perfect compliance or not in this program) using a constant marginal penalty tied to the observed price of the permits. On the contrary, the regulator cannot surmount the informational problem in the case of tradable permits if it uses an increasing marginal penalty. The policy recommendation that emerges from these results is clear: when capping emissions from a set of sources whose abatement costs are not perfectly known, environmental regulators should use tradable permits and perfectly enforce them with a constant marginal penalty tied to the permit price if they want to minimize the total cost of the program.
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Proof of Proposition 1 If  
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  we can re-write the first-order conditions (FOC 1) and (FOC 2) of the regulator's problem as:
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Re-arranging the expressions and dividing:
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From the firm's optimal choice of emissions, we know that:
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From where,
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Because a cost-minimizing regulator that wants to achieve  
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  in order not to waste monitoring resources, we can write:
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or


[image: image13.emf]

i



i

f0

f0



i



i

f



0



2

i


From where, using  
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Dividing both sides of equation (cond 1) by  
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  We have proven that when a cost-minimizing regulator induces perfect compliance, this condition is met. The reverse is also true. Assume to the contrary that  
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  holds but  
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From these and the firm's optimal choice of emissions:
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After substituting for the functional form of  
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  operating, and rearranging, we can write:
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which is a contradiction. Hence, when  
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  is met, it is cost-effective for the regulator to allow firm  
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  to comply with the emission standard, Q.E.D.

Proof of Proposition 3 In order to prove Proposition 3, we need first to answer a previous question: what is the cost-minimizing structure of the fine when it is optimum to induce compliance and when it is not?
If the optimal policy is going to induce compliance for all  
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  We also know from Section 3 that, in this case, the characterization of the cost-effective design of a program based on standards calls  
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  From this, we can conclude that the regulator must choose as high a linear component  
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Therefore, if the optimal policy induces compliance for all  
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 , the cost-minimizing shape of the fine must be such that the linear component  
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If the regulator is going to allow non-compliance, how does it have to choose  
[image: image48.emf]

  and  
[image: image49.emf]

  in order to minimize the costs of a program that produces  
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  In other words, can the regulator decrease the costs of the program by altering the fine structure (the value of  
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  firms, it is impossible to move  
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  constant for all  
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  requires firm-specific fine parameters. We assume that this is the case, and we then show that the optimal design of the program calls for a uniform fine structure.

If the fine structure is firm-specific, we have  
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  when it is optimal to allow violations. Following Arguedas (2008), we ask ourselves whether we can decrease the costs of a program that allows a certain level of violation for each firm by changing the fine structure (changing the values of  
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  In order to answer this question, we evaluate the Lagrangian of the regulator's problem at  
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Dividing both sides by  
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We know that  
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  Substituting:
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And after some operations, we obtain:
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This means that the regulator can decrease the costs of a program that allows a violation  
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  for all levels of violations. On the other hand, there is no theoretical maximum value for  
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  In theory, this value is infinite and, therefore, it is not firm-specific. Therefore, the cost-minimizing design of a program based on standards calls for a uniform penalty structure for all firms:  
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  The regulator always decreases monitoring costs by increasing  
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  In conclusion, if the optimal policy allows non-compliance, the best shape of the penalty function is one in which the linear component  
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Having determined what is the cost-minimizing structure of the fine when it is optimum to induce compliance and when it is not, we now prove Proposition 3. Following Arguedas (2008), we assume that it is optimum to allow non-compliance, and call the optimal policy  
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  Now consider an alternative policy  
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  By construction, this policy induces compliance because  
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there are no sanctioning costs under policy  
[image: image134.emf]P

c

  because there are no violations, Q.E.D.

Proof of Proposition 6 The Lagrange of the regulator's problem can be written as:
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  necessary Kuhn-Tucker conditions for positive levels of the standard and the auditing probability are:
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We assume that these conditions are necessary and sufficient to characterize the optimal solution of the problem.
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  and operating, we can re-write the Kuhn-Tucker conditions (Proof8'KT1) and (Proof8'KT2) as:
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Dividing both expressions, we obtain:
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From the firm's optimal choice of emissions, we know that:
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if the firm violates the standard ( 
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, we can write
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  Incorporating the assumption of a quadratic fine structure so that  
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  we can rewrite the above expression as:
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Similarly, we can also write:
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Using these two expressions we can write:
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Now, in order to compare this expression with (E(de/ds)/E(de/dpi)), we need to evaluate (31) at  
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  Assume that  
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  i.e., the plant is monitored as if it had the highest possible marginal abatement costs. The proof of this result is quite intuitive. Assume that the regulator monitors firm  
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Assuming a cost-minimizing regulator, this will set  
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  (perfect compliance with certainty). Therefore, we can write (E(de/ds)/E(de/dpi)2) as:
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and (E(de/ds)/E(de/dpi)) as:

[image: image208.emf]E



e

i



s

i

,



i

,



i





s

i

E



e

i



s

i

,



i

,



i







i

e

i



s

i

,



i

,



i





s

i





i



J

i

f0



2

i

Covc

i

s

i

,



i

,



e

i



s

i

,



J

i

,



i





s

i





i

Covc

i

s

i

,



i

,



e

i



s

i

,



J

i

,



i







i


Combining these two equations, we obtain:
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or, after operating and using  
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Q.E.D.
The sign of  
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  Without loss of generality, we assume that  
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  the first term of the above expression is positive. With respect to the second one,  
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it is easy to see that this expression is also negative.

Therefore, we can conclude that  
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  is positive. Q.E.D.
The sign of  
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  Similarly to what we assume in the above proof, we assume that  
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  as we do throughout, and recalling that  
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  the first term of the above expression is positive. With respect to the second one,  
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  and rewriting
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Therefore, we can conclude that  
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  is positive. Q.E.D.
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