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Econometrica, Vol. 55, No. 1 (January, 1987), 95-115

THE DUAL THEORY OF CHOICE UNDER RISK
By MeNAHEM E. Yaarr

This paper investigates the consequences of the following modification of expected
utility theory: Instead of requiring independence with respect to probability mixtures of
risky prospects, require independence with respect to direct mixing of payments of risky
prospects. A new theory of choice under risk—a so-called dual theory—is obtained. Within
this new theory, the following questions are considered: (i) numerical representation of
preferences; (ii) properties of the utility function; (iii) the possibility for resolving the
“paradoxes” of expected utility theory; (iv) the characterization of risk aversion; (v)
comparative statics. The paper ends with a discussion of other non-expected-utility theories
proposed recently.

KEYWORDS: Risk, uncertainty, utility, duality.

1. INTRODUCTION

IN THIS ESSAY, a new theory of choice under risk is being proposed. It is a theory
which, in a sense that will become clear, is dual to expected utility theory, hence
the title ““dual theory.” Risky prospects are evaluated in this theory by a cardinal
numerical scale which resembles an expected utility, except that the roles of
payments and probabilities are reversed. This theme—the reversal of the roles
of probabilities and payments—will recur throughout the paper. I should empha-
size that playing games, with probabilities masquerading as payments and pay-
ments masquerading as probabilities, is not my object. Rather, I hope to convince
the reader that the dual theory has intrinsic economic significance and that, in
some areas, its predictions are superior to those of expected utility theory (while
in other areas the reverse will be the case).

Two reasons have prompted me to look for an alternative to expected utility
theory. The first reason is methodological: In expected utility theory, the agent’s
attitude towards risk and the agent’s attitude towards wealth are forever bonded
together. At the level of fundamental principles, risk aversion and diminishing
marginal utility of wealth, which are synonymous under expected utility theory,
are horses of different colors. The former expresses an attitute towards risk
(increased uncertainty hurts) while the latter expresses an attitude towards wealth
(the loss of a sheep hurts more when the agent is poor than when the agent is
rich). A question arises, therefore, as to whether these two notions can be kept
separate from each other in a full-fledged theory of cardinal utility. The dual
theory will have this property.

The second reason that leads me to look for an alternative to expected utility
theory is empirical: Behavior patterns which are systematic, yet inconsistent with
expected utility theory, have often been observed. (Two prominent references,
among many others, are Allais (1953) and Kahneman-Tversky (1979).) So deeply
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96 MENAHEM E. YAARI

rooted is our commitment to expected utility, that we tend to regard such behavior
patterns as ‘“paradoxical”, perhaps even as “irrational.”” The dual theory, it turns
out, rationalizes many of the “paradoxes” of expected utility theory. Obviously,
the dual theory will have its own “‘paradoxes”, many of which turn out to become
rationalized under expected utility. Roughly speaking, we find each theory resolv-
ing “paradoxes” in the other theory.

The dual theory has the property that utility is linear in wealth, in the sense
that applying an affine transformation to the payment levels of two gambles
always leaves the direction of preference between them unchanged. (Under
expected utility, this is true only when the agent is risk neutral.) In order to
forestall needless arguments, let me come clean right away and say that I do not
consider linearity in payments an empirically viable proposition. Behavior which
is inconsistent with such linearity is probably often observed. However, such
evidence should be viewed in proper perspective: Behavior which is inconsistent
with linearity in probabilities—a vital component of expected utility theory—is
also often observed. I shall return to this matter in Section 4, below.

In studying the behavior of firms, linearity in payments may in fact be an
appealing feature. Under the dual theory, maximization of a linear function of
profits can be entertained simultaneously with risk aversion. How often has the
desire to retain profit maximization led to contrived arguments about firms’ risk
neutrality?

The most general way of using cardinal utility to treat choice under risk is one
where preferences are represented by a measure which is defined on appropriate
subsets of the payment-probability plane. Both expected utility and the dual
theory are special cases of this approach, with the measure representing preferen-
ces being a product measure, factorizable into two marginal measures. In expected
utility, the marginal measure along the probability axis is Lebesgue measure, and
in the dual theory, the marginal measure along the payment axis is Lebesgue
measure. Dropping the condition that one of the marginal measures be Lebesgue
produces a theory which generalizes both expected utility and dual theory. A
special version of this generalized theory has been proposed recently by Quiggin
(1982), in a paper which studies the perception of risk from a cognitive point of
view. The case of preferences being represented by a nonfactorizable measure
has, to the best of my knowledge, not yet been studied.

An extension of the dual theory to the multivariate case exists, and is explored
in a separate paper (Yaari (1986)). It is interesting to note that, in the multivariate
version of the dual theory, linearity in payments ceases to be an issue.

2. A REPRESENTATION THEOREM

Let V be the set of all random variables defined on some given probability
space, with values in the unit interval. I shall assume that the underlying probabil-
ity space is “‘rich”, in the sense that all distributions with supports contained in
the unit interval can be generated from elements of V. For each v € V, define the
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decumulative distribution function (DDF for short) of v, to be denoted G,, by
G,(t)=Pr{v>1t}, 0st=<1.

G, is always nonincreasing, right-continuous, and satisfies G,(1)=0. For all
v eV, the following convenient relationship holds:

(1) J'l G,(t) dt = Ev,

where Ev stands for the expected value of v.

The values of the random variables in V will be interpreted as payments,
denominated in some monetary unit. This makes each ve V interpretable as a
gamble or a lottery which a decision maker might consider holding. Restricting
the values of random variables in V to the unit interval can be interpreted, via
the choice of a suitable measurement scale, to mean that (i) no gambles can be
considered which involve a possible loss exceeding the decision maker’s total
wealth, and (ii) no gambles exist which offer prizes exceeding some predetermined
large number.

A preference relation = is assumed to be defined on V. Let the symbols > and
~ stand for strict preference and indifference, respectively. The following axiom
suggests itself:

Axiom Al— Neutrality: Let u and v belong to V, with respective DDF’s G, and
G,. If G,=G,, then u~v.

This axiom restricts attention to preferences which are not state-dependent. It
implies, in particular, that preference among DDF’s can be defined in an unam-
biguous manner. Specifically, we may construct a preference relation (=) among
DDF’s by writing G(=)H if, and only if, there exist two elements, u and v, of
V such that G, =G, G,= H, and u=v. Under Axiom Al, the assertions u>=v
and G,(x)G, are equivalent. Our assumptions on V imply that the domain of
the relation (x) is the set of all DDF’s with supports contained in the unit
interval. More precisely, let a family of functions I" be defined by

I'={G:[0,1]~>[0, 1]| G is nonincreasing, right-continuous and
satisfies G(1) =0}.
Then, the assertion G(=)H is meaningful for every pair of functions, G and H,
in I

In order to reduce cumbersome notation, and with the reader’s indulgence, I
shall henceforth use the symbol = both for preference among random variables
and for preference among DDF’s. (In other words, the parentheses in (=) will
henceforth be dropped.)

We can now proceed to the remaining axioms:

Axiom A2—Complete weak order: = is reflexive, transitive, and connected.

Axiom A3—Continuity (with respect to L,-convergence): Let G, G', H, H',
belong to I'; assume that G > G'. Then, there exists an € >0 such that |G— H||<e¢
and |G'— H'|| <& imply H> H', where || || is the L,-norm, i.e., |m| =[|m(t)| dt.
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It should be noted that the continuity assumed in A3 is stronger than that
required for the development of standard expected utility theory. (The reason
for this will become apparent shortly.)

AxioM Ad4— Monotonicity (with respect to first-order stochastic dominance): If
G, ()= G,(t) forallt,0<t=<1, then G, = G,.

With Axioms A1-A4 in hand, one can proceed to write down an appropriate
independence axiom and obtain the result that preferences are representable by
expected utility comparisons. Specifically consider:

AxioMm ASEU—Independence: If G, G', and H belong to I and « is a real
number satisfying 0< a <1, then G = G’ implies aG+(1—a)H = aG'+(1—a)H.

For the record, I shall now state the expected utility theorem. Before doing
so, let me introduce the following notation: If x and p both lie in the unit interval,
then [x; p] will stand for a random variable that takes the values x and 0 with
probabilities p and 1— p, respectively.

THEOREM 0: A preference relation = satisfies Axioms A1-A4 and ASEU if, and
only if, there exists a continuous and nondecreasing real function ¢, defined on the
unit interval, such that, for all u and v belonging to V,

2) uz v E¢(u)= Ep(v).

Moreover, the function ¢, which is unique up to a positive affine transformation,
can be selected in such a way that, for all t satisfying 0<t=<1, ¢(t) solves the
preference equation

(3) [1; ¢(D)]1~[£;1].

ProoOF: See, e.g., Fishburn (1982, Theorem 3, p. 28). It follows readily from
Axioms A2-A4 and ASEU that the premises of Fishburn’s theorem hold, with
the unit interval acting as the set of consequences and with distributions represent-
ing probability measures. The conclusion, therefore, is that a function ¢ satisfying
(2) exists, uniquely up to a positive affine transformation and, moreover, that
equation (3) provides the construction of ¢. That ¢ is continuous and nondecreas-
ing follows directly from A3 and A4, respectively, in conjunction with (3). Finally,
the fact that the converse also holds is established by straightforward verification.

Q.E.D.

The dual theory of choice under risk is obtained when the independence axiom
of expected utility theory (Axiom A5SEU) is taken and, so to speak, “laid on its
side.” Instead of independence being postulated for convex combinations which
are formed along the probability axis, it will now be postulated for convex
combinations which are formed along the payment axis. The best way to do this
is to consider appropriately defined inverses of distribution functions.
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Let Ge 1", so that G is the DDF of some ve V. Now define a set-valued
function, G, by writing, for 0<1t<1,

G(1) ={x|G(t)<x< G(t-)}

where G(t—) =lim,_,,., G(s) for t>0,and G(0—) =1. Gis simply the set-valued
function which “fills up” the range of G, to make it coincide with the unit interval.
The values of G are closed and for each p, 0<p=<1, there exists some ¢ such
that pe G(t) Using G we may now proceed to define the (generalized) inverse
of G, to be denoted G™', by writing

(4) G™'(p)=min {t|pe G(1)}.

Note that G~', like G, belongs to I' and that, for all GeI, (G')'=G.
Furthermore, if G and H belongto I" and || || stands for L,-norm, then |G — H|| =
|G™'—H™'||. Of course, if G is invertible, then G™' is just the usual inverse
function of G.

A mixture operation for DDF’s may now be defined as follows: If G and H
belong to I and if 0<a <1, then aG H (1 —a)H is the member of I" given by

(5) aGE(1-a)H=(aG +(1—-a)H )™\

If J=aGHE (1-a)H, for some 0<a <1, then I shall say that J is a harmonic
convex combination of G and H. With the operation B, the set I" of all DDF’s
becomes a mixture space, in the sense of Herstein and Milnor (1953).

Returning to the preference relation =, we are now in a position to state the
axiom that gives rise to the dual theory of choice under risk:

Ax1oM A5—Dual Independence: If G, G' and H belong to I" and « is a real
number satisfying 0<a <1, then G= G’ implies cGH(1-a)H=aG'BH(1—a)H.

The economic significance of this axiom will be discussed in Section 3, below.
The following representation theorem is now available:

THEOREM 1: A preference relation x satisfies Axioms A1-AS if, and only if,
there exists a continuous and nondecreasing real function f, defined on the unit
interval, such that, for all u and v belonging to V,

(6) uzov & Ilf(Gu(t))_dtBJ F(Gy(1)) dt.

Moreover, the function f, which is unique up to a positive affine transformation, can
be selected in such a way that, for all p satisfying 0<p <1, f(p) solves the preference
equation

(7 [1; p1~[f(p); 1].
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ProoF: Define a binary relation =* on the family I of DDF’s, as follows:
Gx=*H if ,andonlyif, G '=H™,
for all G and H in I Clearly, if u and v are random variables in V, then
uzv © G,'z*G;.

Checking Axioms A2-A4, we find that they hold for X if, and only if, they hold
for =*. Furthermore, = satisfies A5 if, and only if, =* satisfies ASEU. Hence,
from Theorem 0, it follows that > satiefies A1-A5 if, and only if, =* has the
appropriate expected utility representation. In other words, = satisfies A1-AS5 if,
and only if, there exists a continuous and nondecreasing function f, defined on
the unit interval, such that

1 1

f(p) dG;'(p)B—j f(p) dG.'(p)

uzov & —J
0

0

is true for all ¥ and v in V. Let G be any member of I. Then, the equation

—L f(p)dG™'(p) =I F(G(1)) dt

0
holds, by introducing the change of variable p = G(t), and this proves the first
part of the theorem. Now, applying the second part of Theorem 0 to =*, we find
that f can be selected so as to satisfy the preference equation

(8) G 1o ~* Gipn

for 0<p <1. Note, however, that if G is the DDF of [x; p] then G™' is the DDF
of [ p, x]. Therefore, a rewriting of (8) in terms of the original preference relation,
=, produces (7). This completes the proof of the theorem. Q.E.D.

Let v belong to V, with DDF G,, and let U(v) be defined by

9 U(v)=J'f(Gv(t))dt,

with f defined in (7). Theorem 1 tells us that the function U is a utility on V,
when preferences satisfy A1-AS5. The hypothesis of the Dual Theory is that agents
will choose among random variables so as to maximize U. This is in analogy
(and in contrast) with the hypothesis of expected utility theory, which is that
agents choose among random variables so as to maximize the function W, given
by

1

(10) W(v) = E¢(v) = —J (1) dG, (1),

0o

with ¢ defined in (3). Note, incidentally, that (10) can be rewritten in a manner
that makes the analogy with (9) stand out more clearly. Specifically we have

W(v)= L é(G;'(p)) dp.
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Let = satisfy A1-A5, and let f be defined by (7). The phrase “f represents ="
will be used as convenient shorthand for the much longer phrase “the function
U, derived from f in (9), is a utility representing =.”

The utility U of the dual theory has two noteworthy properties: First, U assigns
to each random variable its certainty equivalent. In other words, if v belongs to
V, then U(v) is equal to that sum of money which, when received with certainty,
is considered by the agent equally as good as v. The second important property
of U is linearity in payments: When the values of a random variable are subjected
to some fixed positive affine transformation, the corresponding value of U under-
goes the same transformation. The following propositions provide a precise
statement of these properties.

ProposITION 1: Under Axioms Al1-AS5, the relationship
11 v~[U(v); 1]
holds for every ve V.

Proor: It follows from (9) that U([x; 1]) = x for all x, 0<x < 1. In particular,
U([U(v); 1])= U(v) and, by Theorem 1, [U(v); 1]~ v, as was to be shown.
Q.E.D.

REMARK: In expected utility theory, the following dual to Proposition 1 exists:
Let = satisfy A1-A4 and A5SEU, and let ¢ and W be defined by (3) and (10),
respectively. Then, v ~[1; W(v)] is true for every ve V.

PrOPOSITION 2: Let v belong to V and let a and b be two real numbers, with
a>0. Define a function av + b by writing (av+ b)(s) = av(s) + b for each state-of-
nature s, and assume that 0< av(s)+b<1 for all s. Then, U(av+b)=aU(v)+b.

Proor: Let G, and G,,, be the DDF’s of v and av+ b, respectively. Note
that, for every t, 0<t<1, we have

1 for0<t<av,+b,

Gapep(t)= Gv(iié) for t = avy+ b,

where v, is the infimum of the range of v. Hence,

1

U(av+b)=auo+b+.[ F(Gapep) (1)) dt

avgt+b

1 —
=avo+b+J f(GD(LL’» at.
avgt+b a
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Introducing the change of variable s = (¢ —b)/a, we get

1

U(av+b)= a[vo+J f(G,(5)) ds] +b

=aU(v)+b,

as was to be shown. Q.E.D.

COROLLARY: If the preference relation = satisfies A1-AS, then, for all u and v
belonging to V, we have

uzv & aut+bxzav+b,

provided a> 0 and provided au+ b and av+ b both belong to V. In words, under
Al-AS, agents always display constant absolute risk aversion as well as constant
relative risk aversion.

Proor: Apply Proposition 2. Q.E.D.

Note that under expected utility theory, an agent with constant absolute risk
aversion as well as constant relative risk aversion must be risk-neutral, i.e., this
agent’s preferences always rank random variables by comparing their means.
Under the dual theory, we have linearity (in the sense of Proposition 2 and its
Corollary) without risk neutrality being implied in any way. Indeed, let us see
how risk neutrality is characterized under the dual theory. It follows from (6),
in conjunction with (1), that under Axioms A1-AS5, the agent’s preference relation
Z ranks random variables by comparing their means if, and only if, the function
S representing = coincides with the identity, i.e., f(p) = p for 0<p<1. In other
words, risk neutrality is characterized in the dual theory by the function f in (7)
being the identity. But there is nothing in Theorem 1 to force f to coincide with
the identity: Any continuous and nondecreasing function f, satisfying f(0) =0
and f(1)=1 can be obtained in (7), for some preference relation = satisfying
A1-AS. In the dual theory, the agent’s attitude towards wealth—restricted as it
is—does not prejudice the agent’s attitude towards risk.

It is interesting to compare the construction of the function f in the dual theory
with the construction of the von Neumann-Morgenstern utility ¢ in expected
utility theory. Consider the preference equation

(11) [1; pI~[t;1].

We know, from (7) and (3), that f(p) is the value of ¢ that solves (11), while
¢(1) is the value of p that solves (11). It follows, therefore, that f=¢~'. Of
course, when writing f= ¢ ', we should not lose sight of the fact that only one
of the two functions, ¢ and f, can be relevant to the characterization of the
agent’s overall behavior in risky situations.
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3. THE MEANING OF DUAL INDEPENDENCE

In the foregoing section, dual independence (Axiom AS5) appeared without an
economic interpretation. My aim now is to re-state A5 in a way that will make
its economic content clear.

Consider once again the set V of random variables, on which preferences are
defined, and let (S, X, P) be the underlying probability space. (V, then, is the set
of all 3-measurable functions on S, with values in the unit interval.)

DEerFINITION: Let u and v belong to V. We say that u and v are comonotonic
if, and only if, for every s and s’ in S, the inequality

(u(s) —u(s))(v(s)—v(s) =0

is true.

This definition makes it possible to state the following axiom, directly on
preference among random variables (without going to distributions):

Axiom AS5*— Direct Dual Independence: Let u, v, and w belong to V and assume
that u, v, and w are pairwise comonotonic. Then, for every real number « satisfying
Osa<1, uzvimpliesau+(1—a)wzav+(1—a)w.

Note that here we are dealing with ordinary convex combinations of real functions
and that au+(1—a)w is not a probability mixture of u and w.

It turns out that A5 and A5™* are, in fact, equivalent:

PrROPOSITION 3: Let = be a preference relation on V, satisfying Axiom Al. Then,
= satisfies Axiom A5* if, and only if, the corresponding preference relation among
DDF’s (also denoted =) satisfies Axiom AS.

Proor: Under Axiom Al, the underlying probability space can be chosen to
suit our convenience, as long as all DDF’s in I" can be generated. Accordingly,
let (S, X, P) consist of the unit interval, the Borel sets, and Lebesgue measure.
Now let u, v, and w be pairwise comonotonic and suppose that A5 holds. We
must show that u = v implies au+(1—a)w= av+(1—a)w, where 0<a <1. By
comonotonicity, there exists a measure-preserving transformation, mapping the
unit interval onto itself which, when composed with any of the random variables
u, v, and w, rearranges it in nonincreasing order, without affecting its distribution.
Thus, without loss of generality, we may assume not only that u, v, and w are
pairwise comonotonic, but that each one of them is a nonincreasing function on
the unit interval. Moreover, having selected Lebesgue measure for the underlying
probability measure, we find that the right-continuous inverse of u, u™", is precisely
the DDF G, of u, and similarly for v and w. Therefore, the assertion that G, = G,
implies aG,H(1—a)G,, = aG, B (1-a)G, in AS reduces precisely to ux=v
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implying au+(1—a)w = av+(1—a)w. Conversely, let G, G’, and H belong to
I' and assume that A5* holds. We must show that

Gz G implies aGBH(1—-a)HzZaG'H(1—a)H, for 0sa<l.

Defining u, v, and w to be the inverses of G, G’, and H, respectively, we find
that u, v, and w are pairwise comonotonic so, by A5* uxv implies au+
(1—a)wzav+(1—a)w. This assertion, when written in terms of preference
among DDF’s, gives the desired result, and the proof is complete. Q.E.D.

The foregoing proposition makes it clear that the economic interpretation of
dual independence lies in the intuitive meaning of comonotonicity. Recall that
comonotonicity is a distribution-free property, in the sense that it is invariant
under changes in the underlying probability measure. It is, in fact, an analogue
of perfect correlation for this distribution-free setting. When two random variables
are comonotonic, then it can be said that neither of them is a hedge against the
other. The variability of one is never tempered by counter-variability of the other.
(A discussion of this no-hedge condition appeared in Yaari (1969), where
comonotonic random variables were referred to as “‘bets on the same event.”’)
Suppose, for example, that u and v are random variables such that u = v. Would
this preference be retained when both u and v are mixed, half and half, with
some third random variable, say w? (Recall that we are not dealing here with a
probability mixture, but rather with a pointwise averaging of the values of the
two random variables.) If the agent whose preferences are being discussed is risk
averse, and w is a hedge against v but not against u, then this agent might well
have reason to reverse the direction of preference: i.e., the assertions u = v and
iv+3w>3u+3iw will both be true. Similarly, if the agent for whom u = v is true
is risk seeking, and w is a hedge against u but not against v, then, once again,
there will be reason for the agent to reverse the direction of preference as above.
Thus, the demand that u = v should imply au+(1—a)w=av+ (1 —a)w seems
to be justified only in the case where w is neither a hedge against u nor a hedge
against v. This is precisely what dual independence says. Actually, dual indepen-
dence is weaker, in that the conclusion is orily required to hold when u and v
themselves are not a hedge against each other: This further weakening becomes
important when the agent’s initial wealth is allowed to vary. In this paper, however,
variations in initial wealth will not be considered.

We see, in summary, that dual independence requires the direction of preference
to be retained under mixing of payments, provided hedging is not involved. Two
comments are in order at this point.

(a) Comonotonicity, i.e. the no-hedge condition, is sensitive to random vari-
ables being changed on sets of probability zero. In a recent paper, Roell (1985)
has adopted a weaker notion of comonotonicity, defined with joint distributions,
which is invariant under changes occurring on sets of probability zero. Roell then
uses this alternative definition in an axiom like AS*.

(b) Axiom AS5* is, of course, quite strong, and one could think of weakening
it in the following way: Suppose that u, v, and w are pairwise comonotonic and
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that u = v. Then, au+(1—a)w = av+(1—a)w should be required to hold only
if w is relatively a better hedge against u than against v. (Presumably, one could
try to define the relation ‘“relatively a better hedge...” using correlation
coefficients.) This condition would weaken the notion of independence, in com-
parison with A5*, while simultaneously restricting the analysis to the case of a
risk averse agent. Exploring the resulting theory would be, it seems to me, an
interesting task. Here, A5* will be maintained, with risk aversion to be treated
separately (see Section 5, below).

4. PARADOXES AND DUAL PARADOXES

Behavior which is inconsistent with expected utility theory has been observed
systematically, and often such behavior has been branded ‘““‘paradoxical.” As it
turns out, behavior which is “paradoxical” under expected utility theory is, in
many cases, entirely consistent with the dual theory. This does not mean, however,
that the dual theory is “paradox-free.”” We find, on the contrary, that for each
“paradox” of expected utility theory, one can usually construct a “‘dual paradox”
of the dual theory, by interchanging the roles of payments and probabilities.
Under these ‘“dual paradoxes,” reasonable behavior—and probably easily observ-
able behavior—is found to be inconsistent with the dual theory and to be entirely
in keeping with expected utility theory. I would like to illustrate this, using a
couple of prominent examples.

A famous “‘paradox” of expected utility theory is the so-called common ratio
effect: Dividing all the probabilities by some common divisor reverses the direction
of preference. Kahnemen and Tversky (1979), for example, have found that a
great majority of subjects prefer [0.3; 1] over [0.4; 0.8] but that an equally large
majority prefer [0.4; 0.2] over [0.3; 0.25]. (The symbol [x; p], it will be recalled,
stands for a random variable which takes the values x and 0 with probabilities
p and 1—p, respectively. Here, payments are measured in units of $10,000, so
that [0.3; 1] is the gamble that yields $3000 with certainty, etc.) This pattern,
which is obviously inconsistent with expected utility theory, is entirely in keeping
with the dual theory. Specifically, with the utility U defined in (9), we find that
U([0.3;1])=0.3, U([0.4;0.8])=(0.4)1(0.8), U([0.3;0.25])=(0.3)f(0.25) and
U([0.4; 0.2]) = (0.4) £(0.2), and these numbers will support the preference pattern
[0.3; 1]>[0.4; 0.8] and [0.4; 0.2] >[0.3; 0.25] if

3 f(0.2)
f(0'8)<4<f(0,25)'
This inequality is satisfied, for example, when f is of the form f(p)=p/(2—p),
for 0<p=<1. (This f is in fact risk averse, as we shall see in Section 5.)

Now, to get a ‘“dual paradox” for the common ratio effect, we must look for
a case where dividing all the payments by some common factor would lead to
preference reversal. In order to obtain such behavior, which would clearly be
inimical to the dual theory, we would have to gather a group of subjects, pay
each one of them $5 per hour for “Participating in an Interesting Experiment on
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Decision Making” and proceed to elicit from these subjects a pattern of responses
which is inconsistent with constant relative risk aversion. Alas, I cannot claim
to have done this. But happily I join the critics of the dual theory in saying that
such “deviant” behavior is, no doubt, quite common.

A similar state of affairs exists with Allais’ celebrated paradox (Allais (1953)).
On the one hand, the non-expected-utility preference pattern, which Allais had
found prevalent, turns out to be consistent with the dual theory. On the other
hand, examples can be found which resemble Allais’ gambles—with the roles of
payments and probabilities reversed—where one would expect to observe
behavior which is inconsistent with the dual theory while being consistent with
expected utility theory. I shall omit the details.

Proceeding now to the theory of income distribution, we find yet another
“paradox’’: Newbery (1979) has shown that there does not exist a von Neumann-
Morgenstern utility whose expected value ranks distributions (with a fixed mean)
in the same order as their Gini coefficients of equality. (The Gini coefficient of
equality is defined as twice the area under the Lorenz Curve.) Under expected
utility theory, it is “irrational” to evaluate income distributions according to the
Gini coefficient. Given the frequency with which the Gini has actually been used
for comparing income distributions, Newbery’s finding is surely as much a
paradox of expected utility theory as the common ratio effect or Allais’ gambles.
Under the dual theory, the paradox disappears. In fact, if we let the function f
of Theorem 1 be given by f(p)=p?* for 0<p =<1, we find that, for DDF’s with
a fixed integral, the ordering induced by the integral | f(G(t)) dt is precisely the
Gini equality ordering. Indeed, for mean-normalized distributions, the quantity
| (G(t))* dt is precisely the Gini equality coefficient for G. This result is due to
Dorfman (1979). Now, as might be expected, it is easy to think of a “paradox”
that would be the dual of the foregoing: Just as Gini-type measures of equality
(or of inequality) are not rationalizable under expected utility theory, so
Atkinson’s (1970) measures of equality (or of inequality) are not rationalizable
under the dual theory.

5. RISK AVERSION

How would risk aversion be characterized under the dual theory? The following
heuristic argument is meant to sound suggestive: Under expected utility theory,
preferences are represented by a von Neumann-Morgenstern utility, ¢. Under
the dual theory, preferences are represented by a function f, as per Theorem 1.
The construction of ¢ and f in the two theories (equations (3) and (7)) implies
that f= ¢ ~'. Since the concavity of ¢ is equivalent to the convexity of ¢ ' and
since, under expected utility, the concavity of ¢ characterizes risk aversion, we
should expect the convexity of f to characterize risk aversion under the dual
theory. Showing that this conclusion is indeed correct—even though f and ¢
belong to different theories—is my task in the present section.

Letting = be a preference relation on V, as before, we say that = is risk averse
if v =u+noise implies u = v: Adding noise can never be =-improving. Drawing
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on the work of Blackwell (1950) and Rothschild-Stiglitz (1970), we obtain the
following definition:

DEerFINITION: Let u and v belong to V, with DDF’s G, and G,, respectively,
and consider the inequality

T T
(12) J G,(1) dt?j G,(t) dt.

A preference relation = on V is said to be risk averse if u>v whenever (12)
holds for all T satisfying 0< T <1, with equality for T=1.

The following theorem is now available:

THEOREM 2: Consider the class of preference relations on V satisfying Axioms
A1-AS5. A preference relation = in this class is risk averse if, and only if, the function
[ representing = (see Theorem 1) is convex.

ProoF: Let = satisfy A1-AS5, and assume that = is risk averse. Take five real
numbers, x, y, p, g, r, such that 0<y<x=<1and 0sg<p<r=1, and construct
two random variables, u and v, in the following manner: u takes the values x,
y, and 0 with probabilities g, r —g, and 1—r, respectively, and v takes the values
x and 0 with probabilities p and 1—p, respectively. Assume that (p—q)x=
(r—q)y. Then, by direct calculation, (12) holds for 0< T <1, with equality for
T=1.Hence, u=v. By Theoreml,u>v < U(u)= U(v), where U is defined
in (9). Computing, one finds that U(u) = yf(r)+(x—y)f(q) and U(v)=xf(p).
The following implication

(13) (p—q)x=(r—q)y = yf(nN+(x-y)f(q)=xf(p)

has therefore been derived, for any five numbers, x, y, p, g, r satisfying0<y<x=<1
and 0< g < p<r=<1. Note that (13) is trivial when r = g, so assume r > q. Define
A, 0<A <1, by writing A =(p—q)/(r—q) and note that p= Ar+(1+A)q Now
(13) reduces to the condition that

y=xx = yf(N+x-y)f(g)=xf(Aar+(1-21)q)

must hold for all A and x in’the unit interval. For x>0, this is precisely the
statement that f is convex. Conversely, let = satisfy A1-AS and suppose that u
and v satisfy (12) for 0< T <1, with equality for T =1. Then, by a theorem of
Hardy, Littlewood, and Polya (1929, Theorem 10), the inequality

1 1
jﬂqmm»jﬂ@mwt
0 0

holds for every convex and continuous f. Checking (9), we conclude that U(u)=
U(v)—or u = v—holds whenever f is continuous and convex. Thus, if the function
f of Theorem 1 is convex, then X is risk averse, as was to be shown.  Q.E.D.
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The fact that risk aversion is characterized in the dual theory by the convexity
of f has a useful interpretation when f happens to be differentiable. Let v belong
to V, with DDF G,, and let U(v) be the utility number assigned to v under the
dual theory, i.e., U(v) =I f(G,(1)) dt. If f is differentiable, then the expression
for U(v) can be integrated by parts to obtain

U(U)=L 1f'(G,(1)) dF,(1),

where F, is the cumulative distribution of v. Note that f f(G,(t)) dF,(t)=1, i.e.,
{f'(G,(1))} is a system of nonnegative weights summing to 1, and recall that
[tdF,(t) is the mean of v. In U(v), a similar integral is being calculated, but
each ¢ is given a weight f'(G,(t)). In other words, U(v) is a corrected mean of
v, in which the payment level ¢ receives a weight of size f'(G,(t)). If f is convex,
then f is nondecreasing; i.e., those values of ¢ for which G,(t) is small receive
relatively low weights and those values of ¢ for which G,(t) is large receive
relatively high weights. Thus, U(v) is a corrected mean of v, in which low
payments (bad outcomes) receive relatively high weights while high payments
(good outcomes) receive relatively low weights. The agent behaves pessimistically,
as though bad outcomes are more likely than they really are and good outcomes
are less likely than they really are. It should be emphasized however, that this is
not a case where probabilities are being distorted in the agent’s perception. For
the analysis undertaken in this essay deals with how perceived risk is processed
into choice, and not with how actual risk is processed into perceived risk. This
is necessarily true in any theory that subscribes to the neutrality axiom, Al. Let
(S, X, P) be the probability space underlying the set V, over which preferences
are defined. Then, the measure P must be interpreted as the agent’s perceived
probability measure, whether it coincides with some ‘‘objective” probability
measure or not. If P were a measure that was liable to be modified (or “distorted’’)
before entering the agent’s choice process, then assuming neutrality with respect
to P would have been completely unwarranted.

Having seen how risk aversion is characterized under the dual theory, one is
led to ask about how the degree of risk aversion might be assessed, and to seek
tools for carrying out comparisons of risk aversion. These topics are taken up in
a separate paper (Yaari (1986)).

6. LIQUIDITY PREFERENCE AND COMPARATIVE STATICS

One of the hallmarks of expected utility theory is its treatment of portfolio
selection. It is therefore interesting to see how the dual theory would cope with
this classical topic. We begin by considering Tobin’s (1958) basic liquidity
preference problem.

There are two assets: A safe asset (cash) and a risky security. The rate of return
on cash is 0 and the rate of return on the risky security is 6, where 6 is a random
variable distributed on the interval [—1, a], for some a > 0. One must assume,
of course, that E6>0. A decision maker wishes to invest a fixed amount K,
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satisfying 0< K <1/(1+a), and faces the problem of dividing this amount
between cash and the risky security. Let x be the amount invested in the risky
security, 0 < x < K. Then, the decision maker’s gross return from his/her portfolio
is given by the random variable K + 6x, which belongs to the class V of the
previous sections.

Let = be the decision maker’s preference order on V, and assume that =
satisfies Axioms A1-AS of Section 2. Then, by Theorem 1, there exists a continuous
and nondecreasing real function f, satisfying the preference equation (7), such
that picking the best portfolio is equivalent to selecting an x in the interval [0, K]
so as to maximize the quantity

1

(14) ‘I’(x)=J S(Gk+ox(1)) dt,
0

where Gk ¢, is the DDF of K + 6x.

ProPoOSITION 4: The function ¥ (), defined in (14), is of the form
V(x)=K+cx, 0sx<K,

where the constant c, is given by

(15) C=J f(Go(1)) dr -1,
-1
with Gy being the DDF of 6.

Proor: Essentially the same as the proof of Proposition 2, in Section 2.
Q.E.D.

With ¥(x) being linear in x, we find the dual theory predicting plunging,
rather than diversification. Specifically, letting x* be the maximizer of ¥(x)
under 0< x < K, we find, from Proposition 4, that

(* co

0 if | f(Ge(t))dt<1,

J -

(* co

x*=<{anyvaluein[0, K] if | f(G,(t))dt=1,
-1

4

[ oo

K if | f(Ge(t)) dt>1.

o

The term ““‘plunging” must not be confused with risk seeking. Indeed, consider
a risk averse investor. Under the dual theory, the behavior of such an agent can
be described, so to speak, as waiting in the wings until the rate of return is high
enough, and then going whole hog. Under expected utility theory, on the other
hand, diversification is universal, in the sense that the amount invested in the
risky security is always positive, sometimes reaching the total available for
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investment. This point deserves to be emphasized: Under expected utility, a risk
averse investor will always put some resources into a risky security, provided its
expected rate of return is positive. I am prepared to argue that both positions—
“never stay put” in expected utility theory and “‘stay put until plunging becomes
justified” in the dual theory—are extreme. Real investment behavior probably
lies somewhere in between.

The dual theory, because of its linearity property, tends to produce corner
solutions in optimization problems. This is why we get plunging behavior in the
foregoing liquidity preference problem. However, it is easy to think of more
complex portfolio problems, where diversification and corner solutions can
coexist. Let us consider, for example, a three asset portfolio selection problem,
with a safe asset (cash) earning no return and two risky securities whose rates
of return are independent, identically distributed random variables. Under the
dual theory, a risk averse investor facing this situation will either hold his/her
assets in cash or in a diversified portfolio consisting of the two risky securities
in equal amounts. Letting 6 be the random variable describing the rate of return
on this mixed asset and letting x be the amount invested in it, we find that
Proposition 4 is applicable as it stands for the analysis of the investor’s decision
in this situation. An analysis of the general portfolio selection problem, in a dual
theory setting, appears in Rdell (1985).

We come now to the question of comparative statics. I shall claim that, despite
the awkwardness brought about by corner solutions, the dual theory possesses
desirable comparative statics properties. The framework, once again, will be that
of the basic, two asset, liquidity preference problem. Recall that, under the dual
theory, optimal behavior in this setting is determined by the constant c, given in
(15). Plunging is optimal if ¢>0, and holding back is optimal if ¢<0. The
constant c, therefore, acts like a measure of the agent’s propensity to invest (i.e.,
to plunge), with environmental changes that reduce c¢ tending to inhibit plunging
and environmental changes that raise c¢ tending to encourage plunging. Thus, it
would be of interest to see how changes in various parameters affect this constant.
Looking at equation (15), we note that ¢ depends, on the one hand, on the
function f representing the preference relation = and, on the other hand, on the
DDF G, describing the rate of return on the risky security. To study the effect
of a change in f, consider two functions, f; and f,, representing two preference
relations, =, and =,, respectively. Intuitively, if =, is more risk averse than =,,
then f, will lie uniformly below f,. (For a more rigorous discussion, see Yaari
(1986).) Thus, if =, is more risk averse than =,, then the corresponding respective
values of ¢ in (15), call them c, and c,, will satisfy ¢, < ¢,: Increased risk aversion
inhibits plunging, and, as we might expect, the more risk averse the population
the fewer the plungers.

Also of interest is the effect of a change in the distribution of returns on optimal
behavior. In particular, one would like to know what the effect would be of an
increase in the riskiness of the rate of return on the constant c¢. Consider two
random variables, 6, and 8,, taking values in the interval [—1, a] and satisfying
E6,= E6,>0. Suppose that 6, is riskier than 6, (i.e., 8, = 8, +noise) and let c,
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and c, be the values of the constant c in (15), for 6 = 8, and 0 = 6,, respectively.
Assume that the investor is risk averse. Then, it is easy to see that the inequality
¢, < ¢, must hold. (This can be seen either directly in (15), or by looking at the
equation ¢ = (¥ (K)— K)/ K and noting that ¥ (K) is the utility which is assigned,
under the dual theory, to the random variable (1+ 6)K. For a risk averse agent,
this utility decreases as riskiness increases.) Thus, we find that increased riskiness
inhibits plunging, when investors are risk averse. With risk averse investors, the
more risky the rate of return, the fewer the plungers. Compare this observation
with the corresponding result in expected utility theory: Under expected utility,
a risk averse investor may actually increase his/her security holding, in response
to a rise in the riskiness of the security. Increased riskiness only inhibits investment
under suitable assumptions on the third derivative of the utility function, assump-
tions that govern the relationship between the degree of risk aversion and the
level of wealth. Under the dual theory, the only property needed is risk aversion
itself.

Comparative statics without third derivative conditions is a general feature of
the dual theory. This feature comes into its own in the multivariate version of
the theory, where corner solutions no longer prevail. (See Yaari (1986) for details.)

7. MACHINA, QUIGGIN, SCHMEIDLER

The dual theory of choice under risk needs to be viewed in the light of other
non-expected-utility theories that have been proposed recently. For want of space,
I shall restrict my attention to three prominent and representative contributions,
namely those of Mark Machina, John Quiggin, and David Schmeidler. I wish to
emphasize that restricting myself in this way should by no means be construed
as belittling the various other contributions to non-expected-utility theory that
have appeared recently. I apologize also for imposing my own notation upon the
work that I am about to cite.

In a paper well on its way to becoming a milestone, Machina (1982) studies
preference among random variables in a spirit not unlike that of Section 2, above.
In particular, conditions closely resembling Axioms Al1-A4 are imposed. Like
expected utility theory and the dual theory, Machina also needs a fifth axiom,
but he rejects independence, whether “‘primal”” or “‘dual”. Instead, Machina’s
fifth condition is one that ensures existence of a Frechet-differentiable functional,
call it “‘the Machina functional” and let it be denoted M, such that u=v <&
M(G,)= M(G,) holds for all random variables u and v, with respective DDF’s
G, and G,. Machina’s fifth axiom is not stated directly on the preference relation
and, to the best of my knowledge, a general axiom on preferences guaranteeing
the existence of a suitable Machina functional has not yet been discovered.
(However, see Allen (1986).) Of course, Axiom ASEU will do it, because of the
linearity of M under expected utility. Axiom AS, on the other hand, fails to
produce a suitable Machina functional. An example of this is easily obtained,
by taking the function f that represents preferences under the dual theory to be
nondifferentiable. Recently, Chew, Karni, and Safra (1985) have shown, in fact,
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that even when f is differentiable, the functional M given by M(G) =[ f(G(¢)) dt
need not be Frechet differentiable. Strictly speaking, the dual theory falls outside
Machina’s framework. However, there does exist an extension of Machina’s work,
in which Frechet differentiability is replaced by the weaker Gateaux differentiabil-
ity. (See Chew, Karni, and Safra, op. cit.) The dual theory does fall into this
extended Machina framework, in those cases where the function f representing
preferences happens to be differentiable. Indeed, the extended Machina
framework can be used to prove a special case of our Theorem 2, namely that
if preferences satisfy A1-AS and the resulting function f is differentiable, then
risk aversion is equivalent to f being convex. The main difference between
Machina’s work and the work being presented here is, in my opinion, a difference
of intent. Machina’s aim is to construct a general tool for analyzing all non-
expected-utility theories. The aim of the dual theory, on the other hand, is to
concentrate on a specific alternative.

. Now let me try, as best I can, briefly to summarize Quiggin’s proposal (Quiggin
(1982)) in a way that will facilitate comparison with the dual theory. The basic
approach is perceptional: Probabilities are liable to be adjusted (or distorted) in
the decision maker’s perception, before becoming an input in the decision process.
We could think of a real function A such that, if p is a probability, then h(p)
stands for how p is perceived. A modified expected utility theory can now be
constructed using what the agent perceives when facing a random variable.
Specifically, if the agent faces a random variable taking the values x,,..., x,
with probabilities p,, ..., p,, respectively, then, under such a modified theory,
the utility number assigned to the random variable would be of the form
Y. h(p:)¢(x;), with ¢ being a von Neumann-Morgernstern utility. Quiggin looks
at this representation and notes, as several others have, that under continuity
and mononicity (Axioms A3 and A4) the function 4 in the foregoing representa-
tion must coincide with the identity. He therefore offers the following more
general representation: The utility number to be assigned to a random variable
taking the values x,,..., x, with probabilities p,, ..., p,, respectively, shall be
of the form ). hi(p,, ..., p.)¢(x;), where h=(h,, ..., h,) is now an n-component
vector function, defined on the (n —1)-dimensional unit simplex. (Such a vector
function is required to exist for every positive integer n.) The decision weight
being applied to the ith value of the random variable now depends not only on
p: but on the entire vector (p,, ..., p,). Quiggin now finds that, in order for this
new representation to be consistent with A3 and A4, there must exist a real
function f, defined on the unit interval, such that

(pr- s po) =f( ZP) —f( 3 p,.).

He is therefore led to seek axioms which imply that preferences can be represented
by a utility of the form

(16) Qi sFwprsep)= ¢(x.~)[f(éipj)—f< £ 0]

j=i+1
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and he finds that a suitably weakened version of ASEU, together with suitable
versions of A2, A3, and A4 will do the trick. (The neutrality axiom, A1, whose
appropriateness in a theory of risk perception is questionable, is assumed
implicitly.) Rewriting (16) for any random variable v belonging to V, we find
preferences being represented by a utility Q of the form

(17) Q(v)=J’0 <15(t)d(f°Gv)(t)=J0 F(Gy(1)) dé(1),

where G, is the DDF of v and ¢ is a von Neumann-Morgenstern utility. Now,
when ¢ is the identity, (17) reduces to (9) and when f is the identity, (17) reduces
to (10). Quiggin’s representation theorem generalizes the representation theorems
of both expected utility theory and the dual theory.

Since Quiggin’s approach is perceptional, there is an empirical observation
that he can use. This is the observation, often noted by students of risk perception,
that a 50-50 proposition is in fact perceived by decision makers as a 50-50
proposition. The implication of this, under Quiggin’s theory, is that, when facing
50-50 propositions, agents always act like expected utility maximizers, and this
property is relied upon heavily in Quiggin’s arguments. It follows, however, from
this property that the function f in (17) must satisfy f(3)=3. This fact, in
conjunction with the recent work of Chew, Karni, and Safra (1985), implies that
all risk averse agents in Quiggin’s framework must be expected utility maximizers,
because the only convex f satisfying f(0) =0, f(3) =3, and f(1) =1 is the identity.
(Perhaps I should mention also that Quiggin’s representation theorem is incorrect
as it stands. Utility representations of the form Y x;w(p;), with w continuous and
satisfying w(p)+w(1—p)=<1 for all p, satisfy Quiggin’s axioms but they do not
agree with (17), unless w(p) = p. To fix things up, Quiggin’s Dominance Axiom
must certainly be modified, and possibly also his Independence Axiom.)

It is interesting to note that the dual theory can serve as a building block in
an alternative axiomatization of (17). The idea is related to a recent paper by
Shubik (1985). Suppose that an agent who faces a random variable v, belonging
to V, acts in the following way: First, the agent considers the payment levels
v(s), for all states-of-nature s. Each payment level, v(s), is processed by the
agent into a utility level, ¢(v(s)), where ¢ is a cardinal utility generated from
some riskless intensity-of-preference framework. (See, e.g., Shapley (1975).) Now
the agent faces the random variable ¢(v) which belongs to V, under a suitable
normalization of a bounded ¢. The axioms of the dual theory (i.e., Axioms A1-AS5
above) may now be postulated for preferences among these utility-valued random
variables. The result is a theory in which preferences among the original, money-
valued, random variables are represented by a utility of the form U (¢ ° v), where
U is defined in (9). But now we find that U(¢ ° v) = [ f(G,(t)) dé(t) for some
appropriate real function f, so (17) is obtained as a utility representation for
preferences among the money-valued random variables.

Finally, an interesting relationship between utility representations of the form
(17) and the notion of comonotonicity (see Section 3) can be seen in a recent
paper by Schmeidler (1984). Schmeidler’s concern is to show that preference
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among acts (not among random variables) can be represented, under suitable
assumptions, by an expected utility, in which expectation is taken with respect
to some nonadditive measure. (An act is a measurable real function on some
measurable space without a probability.) Following Anscombe and Aumann
(1963), Schmeidler assumes that agents can always toss coins, if they wish, thereby
obtaining “objective” probability mixtures of acts. What Anscombe and Aumann
had done was to write down an independence axiom for such mixtures which,
together with other suitable axioms, implies that preference among acts has an
expected utility representation. Schmeidler’s idea is to require this kind of
independence only for pairwise comonotonic acts. From this, together with other
standard axioms, he obtains the result that there exists a von Neumann-
Morgenstern utility ¢ and a nonadditive measure p such that uxzv &
[ #(u) du={#(v) du holds for every pair of acts, u and v. (This result has
recently been extended by Gilboa (1985) to the case where uncertainty is totally
subjective; i.e., “objectively” mixed acts are not necessarily available.) Now let
us return to (17) and recall that the preference relation being treated there is
over random variables, with some underlying probability measure, P. Defining a
nonadditive measure u by u =f o P, we find preferences being represented pre-
cisely by Schmeidler’s utility, | ¢(v) du. Note that Schmeidler’s independence
axiom deals with probability mixtures of comonotonic functions, whereas the
independence axiom of the dual theory (Axiom AS5*) deals with pointwise
mixtures of the values of comonotonic functions.
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