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Abstract

This paper describes a decision process under which it is rational to
prefer a lottery with known probabilities to a gimilar ambiguous lottery where
the decision maker does not know the exact values of the probabilities (the
"Ellsberg paradox"). This is done by modelling an ambiguous lottery as a two-
stage lottery, by assuming the independence axiom without the reduction of
compound lotteries axiom, and by using the Anticipated Utility (rather than
the Expected Utility) functional. This paper also gives conditions under
which a less ambiguous lottery is preferred to a more ambiguous one and
presents some comparative statics analysis, as well as some interpersonal
comparisons. Finally, the connection between risk averion and ambiguity
aversion and between the Ellsberg paradox and other non—-expected utility
phenomena are discussed, and it is proved that within the Anticipated Utility
framework, risk aversion and ambiguity aversion are almost identical. This is
in contrast with other theories, where ambiguity (or uncertainty) and risk are

treated as different concepts.



1. Introduction

The Ellsberg paradox has puzzled economists and psychologists since its
presentation about twenty-five years ago (Ellsberg (1961)). The traditional
analysis of decision making under unceftainty assumed that the decision
maker's preferences on prizes (represented by his cardinal utility function),
together with his belief relation on events (represented by his subjective
probability function) uniquely define his preferences on lotteries (Ramsey
(1931), von Neumann and Morgenstern (1947), Savage (1954)). Non—-Expected
Utility theories such as Prospect Theory (Kahneman and Tversky (1979)),
Machina's functional (1982), Chew's Weighted Utility (1983), and Anticipated
Utility Theory (Quiggin (1982), Yaari (1984), Segal (1984)) also assume that a
lottery is fully characterized by its possible prizes and their corresponding
probabilities. Fllsberg's problems suggested situations needing more

information. Consider the following problems.

Problem 1: Urn I contains 100 balls, either red (R) or black (B), with
unknown numbers of each. Urn IT contains 50 red balls and S0 black balls. In
lottery Ci one ball is drawn at random out of urn i, {4 = I or II, and the
player receives $100 if the color is C, C = R or B, Ellsberg predicted, and
it was confirmed later by others (Becker and Brownson (1964) , MacCrimmon
(1965) , MacCrimmon and Larsson (1979)), that most people are indifferent to

the choice between Ry and By and also to the choice between Ryt and

Brys but they prefer Ryy to Ry and By to By These preferences seem to
contradict themselves, as the equivalence of R, and B; implies that the
decision maker believes the probabilities of both colors to be -%, but the
preferences of Ry1 to Ry and of Bry to By suggest that the probabili-

ties of RI and BI are both less than -%.



Problem 2: An urn contains 90 balls, of which 30 are red (R). The other 60
are either black (B) or yellow (Y), but of unknown numbers of each. One
ball will be drawn at random from this urn., Consider the following four
lotteries.
Ay: Receive $100 if R, otherwise nothing.
A9t Recelve $100 if B, otherwise nothing.
By: Receive $100 if R or Y, otherwise nothing.
By: Receive $100 if B or Y, otherwise nothing.

Ellsberg predicted that most people will prefer A) to A, but B, to
B;. Empirical evidence gathered by Slovik and Tversky (1975) and MacCrimmon

and Larsson (1979) supports this prediction. Ellsberg claimed that such

behavior necessarily contradicts Savage's Sure Thing Principle.

Sure Thing Principle: Let f, f', g, and g' be lotteries and let S be an
event, If on § f=g and f' =g', and on ~S (not S) f = f' and

g=1¢g8"', then f is preferred to f' 1if and only if g is preferred to g'

(Savage (1954)).

The common response to Problem 2 contradicts this axiom. To see this,

let Ss=RUB, f = A, f'=A,, g=3%8, and g' =B, (see Table 1).

30 60

R B Y
A 100 0 0
A, 0 100 0
B, 100 0 100
B, 0 100 100

Table 1



Problem 2 presents behavioral patterns inconsistent with the Sure Thing
Principle, but these patterns also seem to contradict a more fundamental

decision rule known as First Order Stochastic Dominance.

First Order Stochastic Dominance: Let FA(x) be the probability of winning
not more than x in lottery A. If for every x, Fp(x) < FB(x), then

lottery A 1is (weakly) preferred to lottery B.

By this axiom, if x 1s a desired outcome, then the lottery (x,S;0,~S)
(i.e., x 1if S happens, otherwise nothing) is preferred to the lottery
(x,T;0,~T) if and only if the (subjective) probability of S is greater than
that of T. 1In Problem 2, P(R) =-%, P(BUY) = %u Choosing A; over A,
implies that 3 = P(R) > P(B), hence P(RUY) = 1 - B(B) > % = p(BUY).

Preferring B, to B, thus contradicts the First Order Stochastic Dominance
axiom.

FOSD 1is probably the most acceptable axiom in analyzing decision makers
behavior under uncertainty. Some theories, such as Machina (1982), Quiggin
(1982), Chew (1983), Yaari (1984), and Segal (1984), do not accept the Sure
Thing Principle, but they all accept the First Order Stochastic Dominance
axiom. The Ellsberg paradox thus challenges not only Expected Utility Theory,
but every other theory of rational behavior under uncertainty in which probabi-
lities are additive. (For models with nonadditive probabilities, see Fishburn
(1983), Schmeidler (1984), Einhorn and Hogarth (1985), and Section 9 below.)

Ambiguous probabilities (i.e., situations where decision makers do not
know the exact values of the probabilities) has some clear economic relevance.
In some insurance problems, decision makers are less informed than the
insurance companies, hence, even if the insurance company regards each policy

as a well-defined lottery, consumers may regard the same insurance policies as



ambiguous lotteries. For example, the same car insurance policy may be
considered by the insurance company as the lottery "pay $10,000 with probabil-
ity 0.05, otherwise nothing,” while the insurant considers it as “"receive
$10,000 if I go into an accident, otherwise nothing,” where the probability of
the event "going into an accident”™ 1is between 0 and 0.l. Moreover, even well-
defined probabilities may become ambiguous over time (see Einhorn and Hogarth
(1984)). Other situations where ambiguity of the probabilities may play a
significant role occur in search problems or in optimal investment problems.
In all these cases, decision makers have some information about the objective
probabilities, but they do not know their exact values.

This paper suggests that the ambiguous lottery (x,5;0,~S) (ambiguous in
the sense that the decision maker does not know the probability of $) should
be considered a two-stage lottery, where the first, imaginary, stage is over
the possible values of the probability of S. Denote the outcome of this
first lottery by 5 and its mean value by B. (In Problem 1, p = %; in
Problem 2-A2, p = %; and in Problem 2-A3, p = %u) For this imaginary lot-
tery it is assumed that the decision maker considers the urn of unknown
composition as though sampled from a set of urns. The outcome of this stage
depends on the decision maker's beliefs concerning this sampling process. In
the second stage, the decision maker participates in the lottery (x,ﬁ;o,l—ﬁ)
ylelding x with probabhility 5 and 0 with probability 1—5. 0f course,
the decision maker does not know the exact value of 5, the probability of
the event S, but it is agssumed that he has a (subjective) probability dis-
tribution over its possible values. Consider the following example.

Suppose that in Problem 1-I he chose R. He may assume that the
probability that the number of red balls is 30 (B = %6) equals the probabil-

ity that the number of black balls is 30 (p = %a), and that these two
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5 while the probability of an even distribution

The expected value of this distribution of 5, denoted by

probabilities equal
~ 1 3

(p=3 1is +.

E, is '%. This distribution is symmetric around its mean, as is reasonable

to assune in this problem. TIf the decision maker uses the Reduction of

Compound Lotteries Axiom, namely, if he calculates the simple probabilities of

winning the various prizes by multiplying the corresponding probabilities,

then this lottery immediately reduces to the simple lottery (100;%;05%)’

which is the same as the lottery in Problem 1-II. It is therefore an essent-

ial assumption of the approach developed in this paper that the decision maker

does not use this reduction assumption. An immediate consequence of this

obgservation is that this approach cannot make use of Expected Utility Theory,
as this theory necessarily assumes the Reduction of Compound Lotteries Axiom.

Instead of Fxpected Utility Theory, I use here Anticipated Utility Theory
(first suggested by Quiggin (1982), but see also Yaari (1984) and Segal (1984,
1985)), which has proved itself useful in unravelling some well known para-
doxes, as the Allais paradox and the common ratio effect (see Section 5
below). It should be emphasized that modelling the Ellsberg paradox as a two
stage lottery does not depend on Anticipated Utility Theory, but on the
existence of a theory which does not necessarily satisfy the Reduction of
Compound Lotteries Axiom. Other theories, like Machina's functional (1982) or
Chew's Weighted Utility (1983) may also be used. HoweQer, the detailed
results of this paper depend on the Anticipated Utility Functional.

The assumption that decision makers do not satisfy the Reduction of
Compound Lotteries Axiom is not straightforward. de Finetti (1937) proved
that disobeying this axiom makes the decision maker vulnerable to Dutch books,
i.e., he may find himself willing to pay a certain positive amount of money,

without moving from his initial position., (For this claim see also Freedman



and Purves (1969) and Yaari (1985b). See also the exchange of ideas about
"probabilities of probabilities” in Marschak (1975)). However, this argument
holds only if the second stage of the compound lottery is conducted right
after the first stage, (but, in this case one can hardly regard the lottery as
a real two-stage lottery). On the other hand, if sufficiently long time
passes between the two stages of the lottery, then there is no reason to make
this reduction assumption (see, for example, Kreps and Porteos (1978)).
Indeed, empirical evidence show that decision makers do not necessarily obey
this axiom (see Kahneman and Tversky (1979), Snowball and Brown (1979), and
especially Ronen (1971) where the two stages of the compbund lottery are
separated). It is my belief that decision makers consider the Ellsberg urn as
a real two-stage lottery, in which the first, imaginary, stage and the second,
real, stage are clearly distinguishable. Therefore, they do not feel them—
selves obliged to obey the Reduction of Compound Lotteries Axiom, in the same
way they do not obey it when the two stages are separated by a sufficiently
long period of time.

Ambiguous lotteries appear to be riskier than "clear" lotteries where the
probabilities are well-defined, and are known to the decision maker. In the
numerical example concerning Problem 1-I, S is a random variable with

expectation hence a risk-averse decision maker will prefer the “"certain"

1
E:
Py

probability to the random probability with expected value '%. This argu-

2
ment, although intuitive, should not be used in this way, because the Expected
Utility definition of risk aversion deals with uncertain prizes and not with

uncertain probabilities. Therefore, one cannot use the traditional concept of
risk aversion, which is equivalent to the assumption of diminishing marginal.

utility of wealth, to determine that known probabilities are preferred to ran-

dom probabilities, although one may define a new, independent concept of risk



aversion for such situations., Indeed, most writers in this area, including
Ellsberg himself, suggested a distinction between ambiguity (or uncertainty)
and risk. One of the aims of this paper is to show that (at least within the
Anticipated Utility framework) there is no real difference between these
concepts.,

The concept of risk aversion was extended to Anticipated Utility Theory
in several recent works (Yaari (1985a), Chew, Karni, and Safra (1985)). One
of the aims of this paper is to show that in the Anticipated Utility frame-
work, the conditions for risk aversion and for dislikeness of ambiguity are
almost the same. In other words, in the Anticipated Utility model, risk
aversion and ambiguity aversion are two sides of the same coin, and the
rejection of the Ellsberg urn does not require a new concept of ambiguity
aversion, as was suggested by Ellsberg himself, nor a new concept of risk
aversion, as suggested in the preceding paragraph. Moreover, the same condi-
tions on the Anticipated Utility functional are needed to solve the Ellsberg
paradox and some other paradoxes, as the Allais paradox and the common ratio
effect. This subject is discussed in Section 5 below.

The rest of the paper is organized as follows. Section 2 describes
Anticipated Utility Theory (Quiggin (1982), Yaari (1984), Segal (1984)) with
two-stage lotteries (Segal (1984)). 1In Section 3 I calculate the value of an

ambiguous lottery by using the value functions of Section 2. Section 4 dis-

cusses conditions under which the clear lottery (x,B;O,l—B) is preferred to
the ambiguous lottery (x,S;0,~S). Section 6 presents the order “more
ambiguous than,” and conditions under which a less ambiguous lottery is
preferred to a more ambiguous one. Section 7 shows some comparative statics
analysis, and Section 8 compares the behavior of two decision makers who

differ only in their decision-weights function (this function is defined in



Section 2). Section 9 completes the paper with a short survey of the relevant

literature.

2. Anticipated Utility and the Independence Axiom

This section briefly describes Anticipated Utility Theory for one- and
two-stage lotteries. Let L; be the family of all the bounded random
varibles over R. For every A € Ll’ define the cumulative distribution
function F, by F,(x) = Pr(A < x). Let At = inf {x: FA(x) = 1} and let

A = sup {x: FA(X) =0}.

Let Li be the set of all the elements of L; for which the range of
Fy, 1s finite. Elements of Li, called prospects, are denoted by vectors of

the form (xl,pl;...;xn,pn), where 3] € eoe € X and Zpi =1, Such a
vector represents a lottery yielding Xy dollars with probability Py, 1=

1,0ee,0. Obviously, if A = (xl,pl;...;xn,pn), then

e O

F (x) =
A 3

[
]
v
]

On L1 assume the existence of a complete and transitive binary
relation, %. A~B iff AXB and B XA, and A>B iff A% B but not
B :A. The function V: L1 + R represents the relation » 1if for every

AB e L A>B 1ff V(A) > V(B). The most famous example for such a

1’
representation is the expected utility functional, given by

(2.1) v(a) = [7 u(x)dF, ()

On L;, this function is reduced to

(202) V(xl ,pl;...;xn,pn) = Zpiu(xi)



This theory, despite its simplicity and its normative appeal, fails to explain
some well known evidence, as the Allais paradox or the common ratio effect
(Allais (1953), MacCrimmon and Larsson_(1979). For a presentation of these -
phenomena see Section 5 below). In recent years several alternatives have
emerged to Expected Utility Theory (Kahneman and Tversky (1979), Machina
(1982), Chew (1983)). Quiggin (1982) suggested the following generalization
of (2.1)-(2.2), called Anticipated Utility
+ +

(2.3) V(A) = w(a) + 2w (0 £(1-F,(x))ax = [A W(x)dE(1-F, (x))

A A
where the decision-weights function f: [0,1] + [0,1] satisfies £(0) = 0

and £(1) = 1.! on L* (2.3) takes one of the following equivalent forms

1
n-1 n n
(2.8)  V(xp,pp30003%,,0,) = ulx )E(p) + 151 u(xi)[f(jfi Py - f(j=f+1 Pyl =
n n
(2.5) u(x,) + 152 lulx)) - u(xi_l)]f(jfi pj)

Hereafter assume that u(0) = 0. Note that when f 1is linear, (2.3)-(2.5)
are reduced to the Expected Utility functional (2.1)-(2.2).

To illustrate the difference between Expected Utility Theory and
Anticipated Utility Theory consider Figure 1. The lottery A can be
represented either by the graph of the function FA’ or by the set A° =
{(x,p) e R x {0,1]: FA(x) <p <« 1}. Both theories agree that the value of the

lottery A 1is the measure of the set A®, which is a product measure of two

1Quiggin suggested some additional restrictions on this function,
obtained from his axioms (e.g., f@%) ='%)- Segal (1985) shows that some
empirical evidence suggests a (strictly) convex f, hence fC%) <'%- For a

discussion of the properties of the function f see Section 5 below.
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measures, one on the prizes' axis, the other on the probabilities' axis. By
Expected Utility the measure on the probabilities is the Lebesgues' measure,
while Anticipated Utility Theory allows for more general measures (by this
theory, the measure of the segment [p,q] 1is £(q)-£(p)). Expected Utility
Theory thus becomes a special case of Anticipated utility Theory.
Equivalently to Expected Utility Theory, one may assume a general measure

on the probabilities, and a linear measure on the prizes. This dual approach

1s discussed by Yaari (1984).

P

h-i

Zp,

n-i h
Figure 1

Let Lf = {(Al,plg...;Am,pm); Zpi =1, PysesesPy >0, Al,...,A.m € Lf}.
Elements of Ly, called two-stage lotteries, are denoted by X, Y, etc. A
lottery X ¢ Lg yields a ticket to lottery A; with probability Py, 1=
l,...,m¢ More specifically, at time t the decision maker faces the lottery
(l,pl;...;m,pm). Upon winning the number 1, he participates at time ty >
t in the lottery Aj. It is assumed that the decision maker's discount rate

for future income is 1. Thus, once he knows that he won a certain amount of

money, the actual time at which he receives this prize does not make any
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difference to him,
Let tQ be a complete and transitive preference relation on Ly The

decision maker is time neutral, thus Li naturally becomes isomorphic to a

subspace of L%, where (xl,pl;...;xn,pn) and
((x1,1),py50003(x,,1) ,p,)
are equally attractive. The subscript 2 1s therefore omitted and the
preference relation over one- and two-stage lotteries is denoted by t. A
similar discussion holds for mixed lotteries, where the set of prizes is
%
RULl.

This last discussion is relevant for lotteries of the form

((xl »1) ’pl; ...;(Xn,l) ,pn)

only. So far nothing restricts the decision maker in comparing other

lotteries in L; with lotteries in Ll' The following two axioms deal with

such comparisons.

2.1. Reduction of Compound Lotteries Axiom (RCLA): If the decision maker is

indifferent to the resolution timing of the uncertainty, then he may assume

both stages to be conducted at time t. Thus, a two~stage lottery is reduced

to a simple one-stage lottery. Formally, let Ay = (xi,pi;...;x: ,pi ),
i 1
i= l,ooo,m-
(2.6) (ApsPyseeesAy,pp) ™
(xl 1 -xl 1, <™ m " m )
1:p1p1’°"’ nl’plpn130'°9 l’pmpl""’ nmspmpnm

2.2. Independence Axiom (TA): The relation t on LE induces several

relations on LI. The independence axiom assumes that these relations

coincide and are equal to 4 on Li. Formally,
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(2.7) (Al,pl;...;B,pi;...;Am,pm) t (Al,pl;...;C,pi;...;Am,pm) <=>B % C.

(2.1)-(2.2) are the only continuous functions satisfying both (2.6) and
(2.7). Anticipated Utility is compatible with RCLA or TA. Some empirical
evidence concerning two-stage lotterieé suggest that decislon makers accept
TA, but not necessarily RCLA. Consider the following p;oblems, taken from
Kahneman and Tversky (1979).

(a) Choose between

A (3000,1) and A, = (0,0.2;4000,0.8)

(b) Choose between

By (0,0.75;3000,0,25) and B, = (0,0.2;4000,0.8)

(¢) Choose between

X (O,O.75;A1,0.25) and X, = (0,0.75;A2,0.25)

By IA, X; %X, 1ff A XA, while by RCLA X; %X, iff B, % B,.
Kahneman and Tversky found that most people prefer A1 to A2, 32 to Bl,
and X, to XZ. For other empirical evidence proving that decision makers do
not obey RCLA see Ronen (1971) and Snowball and Brown (1979).

Let CE(A) be the certainty equivalence of A, given implicitly by

(CE(A),1) ~A. If > satisfies IA, then
(2.8) (A;spyseve3Ag,Py) ~ (CE(A;)p;3+403CE(A) ,p)

If 3 can be represented by the Anticipated Utility Function of (2.4)-
(2.5), then CE(A) = u-l(V(A)). let (Al,pl;...;Am,pm) € L§ and assume,
without loss of generality, that CE(A;) < ... < CE(Am). (2.8) thus implies

that
(2 -9) (Al ,pl; cese ;Am,Pm) ~> (u.l (V(Al)) ,pl; L) -;U—I(V(Am)) ,Pm)

(2.9) holds of course for Expected Utility Theory, being a special case of

Anticipated Utility Theory. If t, satisfies TA and can be represented by
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(2.2) (the expected utility functional), then by (2.9)

n

(2.10) ( T o motoy
. V(A ,py5eee3A ,p) = £ p.V(A,) = L I p,p,u(x))
1P bwoPw) = EOPV(A) = B PRE L I

On the other hand, 1f » satisfies IA and can be represented by (2.4)-(2.5)

(the anticipated utility functional), then by (2.9)

m m
(2.11) V(A ,Py3eee3A ,p) = V(A) + I [V(A,) - V(A, DIfC £ p,) =
1271 APy vty 1 11775 2 P
nl nl
1 1 1 1
u(x]) + kfz [u(x,) - U(xk‘l)]f(gfk p) +
m "y il -
1 1 1 1
T o{u(x;) + & lu(x)) - u(x, DNIEC T p)) -
1=2 17 k=2 k el gk *
-1 f4-1 m
w™h - I luee™h -G IDISCT pih} sz b,

k=2 L=k j=1

This formula can be extended for cases where the two stage lottery is a
nondiscreet distribution over lotteries, as in the case in the next section.
From now on I assume that the decision maker 1is an Anticipated Utility

maximizer, that is, his value function is given by (2.3)-(2.5).

3. The Value of an Ambiguous Lottery

This section discusses how decision makers evaluate ambiguous lotteries,
that is, lotteries in which they do not know the exact values of the probabil-
ities. Suppose that a decision maker participates in the lottery (x,$8;0,~S),
where x > 0. In this lottery he will get x dollars if S happens and O
otherwise. TIf he knows that the probability of S equals P, then by (2.4)
the value of this lottery is u(x)f(p) (as before, u(0) = 0). Suppose,
however, that the decision maker does not know the exact probability of S,

but rather has some beliefs on the possible values of this probability. These
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beliefs may be discrete, in which case P*(p) denotes the probability that the
probability of S 1is p, or they may be nondiscrete, in which case F*(p)
denotes the probability that the probability of S 1is not greater than p. It
is assumed that when confronted with the ambiguous lottery (x,S8;0,~S), the
decision maker considers it a two-stage lottery. The first stage is over the
random variable p (with distribution function F*) and its outcome is
denoted by 5. In the second stage, the decision maker participates in the
lottery (x,ﬁ;O,l—S). For example, if F* 1is discrete and P* 1is given by
P*(p-£) = P*(p+E) = a, P*(p) = 1 - 2a, then the two-stage representation of

the ambiguous lottery (x,S;0,~S) is as shown in Figure 2.

Figure 2

Let x > 0, For each p, 1let y(p) = CE(x,p;0,1-p) = u—l(u(x)f(p)).
For every 0 <y < x, let p(y) be defined implicitly by (x,p(y);0,1-p(y))
~(y,1) and explicitly by p(y) = f-l(ﬁ%ﬁ%). Let F* be a distribution
function over the possible values of the probability of S in the lottery

(x,8;0,~8). If the decision maker considers this ambiguous lottery as a two-
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stage lottery, then the probability that the certainty-equivalence of
(x,5;0,~8) 1is not greater than y 1is given by G(y) = F*(f-l(ﬁ%i%)). Let

o and PB* be the minimal and the maximal possible values of the probability
of S, that is, o* = sup {p: F*(p) = O} and B* = inf {p: F*(p) = l}. By

(2.3), the value of the ambiguous lottery (x,S;0,~S) equals

-1
u()E(ar) + [0 TUOVEEDT ooy e16(y))ay =
u T ux) £(a*) )

-1
(3.1) u(x) £(ar) + [0 [W0£(EH)] u' () EC1-Ph(£ R ) yay
u L utx) £(at) ]

Substitute z = f_l(ﬁéi%) into (3.1) and obtain
(3.2) w()EC*) + ulx) [BF £1(2) £(1-F*(2))dz
a*

Integrating (3.2) by parts yields
p*
(3.3) u(x) [T £(z)f' (1-F*(z))F*' (z)dz
ok

If the range of F* is finite such that the possible probabilities of S are

ok = Py € eae P, = B*, then by (2.3) the value of the ambiguous lottery

(x,8;0,~8) 1is

m ) m
(3.4) WO Ep) + w0 T (Kpy) = Kpy DIEC T P(5))

If f(z) = z, that is, if Anticipated Utility Theory reduces to Expected

Utility Theory, then

a(x) [B* E(2) £ (1-F*(2))F*' (2)dz =
o*

u(x) [B¥ zF*'(2)dz = Pu(x)
e
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where 5 1s the expected value of the distribution function F*, 1In this
case, (x,p;0,1-p) and (x,8;0,~8) are equally attractive,

Consider now the case where x < 0. Let f(p) =1 - f(1-p). By (2.2)
the value of the lottery (x,p;0,1-p) 1s u(x)E(p) (as before, u(0) = 0).
In the same way as before, it can be proved that the value of the ambiguous

lottery (x,S;0,~S) equals

_1 -
aF(er) + [0 POVHDT gy 0m T %D )y -
u L u(x)ECEr) ]

(3.5) w()F ) + uw(x) [ B (2)E(1-F*(2))dz =
ok
(3.6) a(x) [ H)F (1-FH(2)) P (2)dz
ot

If x <0 and F* is discrete, then (3.5) reduces to
m m

(3.7) uw(x)E(p,) + u(x) T [E(p,) - E(p,_)IEC T P*(p,)).
1 ioo 1 S A 1

4. Ambiguous vs, Nonambiguous lLotteries

In this section I present the main result of this paper, that under
several conditions, a nonambiguous lottery is preferred to an ambiguous one.
Let F* be a distribution function over the possible values of the probabil-
ity of S 1in the lottery (x,S;0,~S). Denote the mean of F* by p.
Consider first the situation where the decision maker's beliefs, as
represented by F*, are symmetric aropnd B. That is, for every &,

F*(p+E) + F*(p-£) = 1. 1In such a case, the decision maker believes that the
probability of § being higher than p + £ is equally probable to 1ts being
less than p - &. This assumption looks plausible in the Ellsberg paradox
(Problems 1 and 2). In Problem 1, for example, the decision maker does not

know the number of red and black balls in the urn, hence the combination of 1
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red balls and 100 - {1 black balls should seem as probable to him as the
combination of 100 - 1 red balls and 1 black balls.

Theorem 4.2 presents conditions under which a nonambiguous lottery is
preferred to an ambiguous one. For the proof of this theorem I need the

following definition and Lemma,

Definition: The elasticity of a (differentiable) function g: R + R is given

xg' (x)
by g(x)

Lemma 4.1: The elasticity of the anticipated utility decision-weights

function f 1s nondecreasing iff £(p)f(q) < f(pq).

Proof: All proofs appear in the Appendix.

Theorem 4.2: Let F* be a distribution function over the possible values of
the probability of S in the ambiguous lottery (x,5;0,~S). Assume that F*
is symmetric around p., If f 1is convex, if its elasticity is nondecreasing,
and if the elasticity of f is nonincreasing, then (X,B;O,l-ﬁ) is preferred

to (x,S;0,~8).

Remarks: Increasing elasticity of f does not imply decreasing elasticity of

f. For example, the elasticity of f£(p) = 1 - Y1-p 1is increasing while the

elasticity of f(p) = /p 1s constant. f(p) = ee:i and f(p) = pt, t> 1,
satisfy all the conditions of Theorem 4.2. For the connection between the
elasticity of f and the common ratio effect, see Segal (1984). For discus-
sion of the convexity of £, see Yaari (1984, 1985a), Chew, Karni, and Safra
(1985), and Segal (1984). (See also Section 5 below.)

Theorem 4.2 does not hold for every convex function f. Let f be as

follows:
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0.99p p < 0.999
£(p) =
10.99p - 9.99 p » 0.999

= 0.999 and V(1,S;0,~S)

ol

and let P*(1) = P*(0.998) =~%. In this case,
= 0.994u(1) > 0.989u(1) = v(1,0.999;0,0.001). f d1s not a strictly convex
function, but one can easily find a strictly convex function f based on this
example for which Theorem 4.2 does not hold.

Consider now the case where F* 1is nonsymmetric.

Theorem 4.,3: Tet F* be a distribution function over the possible values of
the probability of S in the ambiguous lottery (x,S;O,;S), denote its mean
value by 5, and let f be convex and twice differentiable.

(a) x> 0: If %; is nonincreasing and if the elasticity of f 1is

nondecreasing, then (x,B;O,l—B) is preferred to (x,8;0,~S).
(b) x<0: If g— 1s nondecreasing and if the elasticity of f is
f'
nonincreasing, then (x,p;0,1-p) 1is preferred to (x,5;0,~S).

Remarks: Nondecreasing elasticity does not imply that %7 is nonincreasing.
10

p_
Let £(p) = p2, g(p) = :_11, h(p) = Big——. These are convex functions with
nondecreasing elasticities, but ' is decreasing, -gr is constant, and -ET

is first increasing, then decreasing.

Theorem 4.3-a does not hold for every convex function £ such that its

elasticity is nondecreasing. Let f(p) = Bigig and let P*(0.49) = %%,
PH(1) = % In this case, p = 0.5 and V(1,5;0,~8) = 0.2528u(1) >
0.2505u(1) = v(1,0.5;0,0.5).

%; is decreasing 1iff ;% is decreasing. The only functions f for
which -%; is nonincreasing an %% is nondecreasing are f£(p) ='§§§il.

Recall, however, that the conditions of Theorem 4.3 are sufficient, but not
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necessary ones. One may be ambiguity averse even if his decision-weights

function f does not satisfy all the conditions of Theorem 4.3. TFor -%7 as
a measure of risk aversion, see Yaari (1985a) and Chew, Karni, and Safra
(198s5) .

For certain distribution functions and for certain decision-weights
functions (which do not satisfy the conditions of Theorem 4.3), one may be
ambiguity averse for x > 0 and an ambiguity lover for x < 0. Llet f£(x) =
1 - cos(;—x-), P*(0.2) = 0.25, P*(1) = 0.75, p = 0.8, V(1,S;0,~8) =
0.636u(1) < 0.691u(l) = v(1,0.8;0,0.2). On the other hand, V(-1,S;0,~S) =
0.947u(~-1) > 0.951u(~1) = v(-1,0.8;0,0.2).

Ellsberg suggested that in Problems 1 and 2 most people prefer the clear

lotteries to the ambiguous ones. However, there exist situations where most

people prefer the ambiguous options. Consider the following problem.

Problem 3: Urn I contains 1000 balls numbered from 1 to 1000. Urn II
contains 1000 balls labeled by integers between 1 and 1000 (inclusive), but
you do not know the exact composition of this urn. At lottery i, 1 = I,II,
one ball is to be drawn at random out of urn i. 1If its number lies in the
set N {1,...,1000}, the player receives $1000. Ellsberg predicted that if
#iN 1is small enough, most people will prefer II to I. (See Becker and

Brownson (1964, footnote 4).)

I now present an example consistent with all the predictions of Problems
1-3 above. Tlet

0.1lp p < 0.001

f(p) =
1111p 1
1110 1110

p » 0.001
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Problem 1: The decision maker's beliefs concerning urn I are given by
P*(25R) = P*(75R) = 0.5. V(RI) = V(Bi) = 0,49932u(100) < 0.49955u(100) =

V(RII) = V(BII) -2

Problem 2: The decision maker's beliefs concerning this urn are given by
P*(20B) = P*(40B) = 0.5. V(Al) = 0.33273u(100) > 0.33263u(100) = V(AZ).

V(A3) = 0.66627u(100) < 0.66637u(100) = V(A,).

Problem 3: Let #N = 1. The decision maker's beliefs concerning this urn are
given by P*(0) = 0.9, P*(0.01) = 0.1, p = 0.001. V(I) = 0.0001u(1000) <

0.0009u(1000) = V(II).

Ambiguous lotteries and two-stage lotteries were compared in experiments
done by Yates and Zakowski (1976). Consider the following problems. (In all
cases, the decision maker decides upon his color first,)

G : An urn contains 5 blue balls and 5 red balls, one ball is drawn at
random. If its color matches that chosen, the player receives $1.

G': An urn contains 11 balls, numbered from 0 to 10. One ball is drawn at
random. If its number is 1, then 1 blue balls and 10-i red balls
are put in a second urn from which one ball is drawn at random. If its
color matches that chosen, the pléyer receives $1,

G”": An urn contains 10 balls, blue and red, but of unknown composition. One
ball is drawn at random. If its color matches that chosen, the player

receives $1,

27he numbers are relatively close. However, the aim of this example is
to prove the existence of such a function, and not to describe real
preferences.
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78% of the subjects preferred G to G" and 68% preferred G' to -3
The first preference agrees with Theorem 4.2. It also seems reasonable to
assume that the number of subjects who prefer G to G" exceeds the number
of those who prefer G' to G". The following example shows G' preferred
to G".

The distribution function in G' 1is given by P*(%BD = %iy i=0,.00,
10. Let Q* be the decision maker's distribution function in G", where
*O) = ) =57, *P = =3, dp = =) = gee
£(p) = p>. The value of G' 1s 0.16818u(1), while the value of G" is

only 0,16785u(1l).

5. The Ellsberg Paradox and Other Non-Expected Utility Phenomena

In this section I discuss the connection between the Ellsberg paradox and
the concept of risk aversion, as well as its connection to some other
paradoxes in Expected Utility Theory.

Rigk aversion suggests that decision makers always prefer a certain
prize X, to a random variable x with expected value Xoe It 1is well known
that in the Expected Utility framework, this condition is equivalent to the
assumption that the utility function u 1is concave, Machina (1982) exteaded
this concept for his functional, and Chew, Karni, and Safra (1985) recently
gave similar conditions for Anticipated Utility Theory. According to their
work, the Anticipated Utility functional (2.3)-(2.5) represents risk aversion
behavior if and only 1f u is concave and f convex (see also Yaari

(1985a)) .

3537;, preferred G to G'. Other experiments show, however, that
decision makers prefer a one-stage lottery to a two-stage lottery with the

same winning probabilities (see Kahneman and Tversky (1979)).
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The connection between the convexity of f and risk aversion becomes
apparent when applying Anticipated Utility Theory to the Allais paradox

(Allais (1953)). Consider the following four lotteries.

o>
o
H

(0,0.89;1000000,0.11)

(0,0.9;5000000,0.1)

>
LA
]

™
ot
i

= (1000000,1)

(0,0.01;1000000,0.89; 5000000,0.1)

[+
N
1]

Allais found that most people prefer A, to A1 but B, to BZ’ although by

Expected Utility Theory A bA iff B? t B Similar results were reported

2 1 1°
by Kahneman and Tversky (1979) and by MacCrimmon and Larsson (1979) who
repeated this experiment for various values of prizes and probabilities. The

general form of the Allais paradox involves the following lotteries:

At = (0,1-p;x,p)

A; = (0,1-q5v,q)
B} = (0,1-p-r;x,pt+r)
B = (0,1-q-r;x,r;y,q)

where 0 < x<y, p> q. By Expected Utility Theory, A; > Ai iff B% & Bi,

while empirical evidence shows that if A; ~'Ai,

proved that such behavior is consistent with Anticipated Utility Theory iff f

then Bi > B;. Segal (1985)

is convex. Similarly, the probabilistic insurance phenomenon (Kahneman and
Tversky (1979)) is resolved within the Anticipated Utiiity framework given
that f 1is convex (Segal (1986)).

In the Ellsberg urn there is only one possible prize, hence the shape of
the utility function is not relevant for this discussion, but the importance
of the convexity of f becomes clear from Theorems 4.2 and 4.3. To
illustrate this, consider Problem 1 of the Introduction, and assume P*C%) =

P*Q%) =-%. By (3.4), the value of the ambiguous lottery (x,S;0,~S) is
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1 1
() + 16D - EPIEP = (P - D] + £Ded), white vixd0d) -

1
fGE). Let fé%) = a. If f 1s concave, then f(%) >-2, and fé%) >-l§g,

hence V(x,S;0,~S8) > a = V(x;%;o;%), in contradiction to the common attitude
towards this problem.

The second condition of Theorem 4.2, concerning the elasticity of f,
has direct relevance to another phenomenon, called the common ratio effect

(MacCrimmon and Larsson (1979)). Consider the following lotteries.

C,(p) = (0,1-p;x,p)

Cz(p) = (0 ,1—0.8p;5x,0.8p) .

By Expected Utility Theory, C;(p) % C2(p) <=> Cl(q) h_CZ(q), but MacCrimmon
and Larsson found that if Cl(p) ~ Cz(p) and q > p, then Cl(q) )-Cz(q).
Segal (1985) proved that such behavior is consistent with Anticipated Utility
Theory 1f and only if the elasticity of f 1is increasing. Thus, 1if an
Anticipated Utility maximizer behaves according to the Allais paradox and the

common ratio effect, then he will usually also reject the Ellsberg urn,

6. Increasing Ambiguity

In Section 4, I compared some ambiguity with none. In this section I
discuss degrees of ambiguity. The function F* reprsents the decision
maker's ambiguity concerning the probability of the event S in the lottery
(x,5;0,~8). Therefore, in order to rank degrees of ambiguity, one should
define an order on the set of the distribution functions F*, For example,
Rothschild and Stiglitz (1970) defined the order "more variable than” between
distribution functions, while Jones and Ostroy (1984), in addition to creating
their own definition, gave a justification for a restricted version of this

order, called "star-shaped spreading of beliefs," as follows.
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Definition: Let F* and G* be two distribution functions on [0,1] and
let T(y) = fy [6*(x) - F*(x)]dx. G* is more variable than F* (G* > F*)

0
iff T(1) = 0 and for every 0 <y <1, T(y) » 0.

Definition: Let F* and G* be two distribution functions on [0,1]. G*
is more ambiguous than F* (G* >A F*) 1ff G* is a star-shaped spreading
of F*, that is,

(a) P* and G* have the same mean value 5;

(b) G*(p) » F*(p) for p <p and G*(p) < F(p) for p > p.

Both >I and >A are transitive but not complete. Obviously, >A

>I’ but > > Note that T(1) = 0 implies that F* and G* have the

I A®

same mean value (see Rothschild and Stiglitz (1970)).

As proved in Theorem 4.2, a clear lottery is preferred to an ambiguous
one. One is thus tempted to assume that if G* is more ambiguous than F*,
then the value of the lottery (x,S;0,~S) under F* 1is greater than its
value under G*. This supposition does not generally hold true, as demon-
strated by the following example.

Let PE,a(S—g) = Pz,a(5+§) = a, PE’G(B) = 1 - 2a. Obviously, PE',a
N P%,a iff &' > & Let x> 0 and assume without loss of generality
that u(x) = 1. The value of the lottery (x,S;0,~S) under PE,a is
h(E,a) = £(p-£) + [£(p) - £(p-&)1£f(1-a) + [£(P+E) - £(p)1f(a). Differentiat-

ing h with respect to £ yields

55 h(E,0 = =[1 = E(1-a)]€ (3-D) + £ (3+D).

3 S e g=d 3l
If f 1is convex, then 3 h(0,a) < 0, but for p = a 2> 3F h(2,2) > 0.

Similarly, p*

E. o o\ PE’G iff o' > a. Differentiating h with respect to

a yilelds
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3 - - - -
Ta h(E,0) = -[£(p) ~ £(p-E)I£'(1~a) + [£(P+E) - £(P)]1f' ()
If f 1is convex, then -%E(E,O) < 0, but <§3(§;%) > 0.

Under certain conditions G* >A P* dimplies that the value of

(x,8;0,~S) under G* 1is not greater than 1ts value under F*,

Definition: Let 0 < p< 1. H; is the uniform distribution on [0,2p] when

1
P <'§, and the uniform distribution on [2p-1,1] when P >'%-

Theorem 6.,1: Let G* and F* be symmetric around p such that H* o\
P
G* >A F*. If f 1is convex, if the elasticity of f' 1is nondecreasing, and

if the elasticity of ' is nonincreasing, then the value of the ambiguous

lottery (x,S8;0,~8) under F* is greater than its value under G*.

and f(p) = pt, t > 1, satisfy all three conditions

P_
Remarks: f£(p) = 2_11

of Theorem 5.1.
If the density function of G* is a single-peak function, i.e., .G*"(p)
>0 for p<p and G*"(p) <0 for p » p, then H* >A G*,

” p
2%7, is similar to Arrow's measure of relative

risk aversion (Arrow (1974)).

The elasticity of f',

Theorem 6.1 does not hold for > even with symmetric distribution

I’
functions (Example 1 below), nor does it hold for >A with nonsymmetric

distribution functions (Example 2 below).

Example 1: Let P*() = P*D) =, P+ =1 1o oxdp - axdD) -
11 21 15 31, 1 5 11, 5 1, _1
®*3p) = *GE = () = *(33) = 350 ¥EE) = Q*(Ig) =30 G 3

and let f(p) = p2. The mean value of P* and 0Q* 1is -%, HS 5 >A Q* >I

P*, but not Q* >A P*., The value of the ambiguous lottery (1,S;0,~S)

under P* is 0.1875u(1l), while 1its value under Q* is 0.18774u(l).
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1 3 1 1 1
Examgi;a 2: Let P*() = Pr() = 2, P*(3) = F let Q*(_i6) = Q*(%) = Q*(%)
1 1
=G =1 *@) = ';-, Q*(il) -3, Q*(% = %; and let f£(p) = p?. The

mean value of P* and Q* is -%, and HS 5 >A Q* >A P*. The value of the
ambiguous lottery (1,S5;0,~S) under P* is 0.1875u(1), while its value

under Q* 1is 0.18896u(l).

7. Changes 1in 5

Consider the ambiguous lottery (x,$;0,~8), x < 0. The decision maker
does not know the exact probability of S, but he believes that it lies
between o* and B* with a mean value of p. Let y < 0 be the insurance
premium he is willing to pay to insure himself against S. That is, (v,1)
~ (x,8;0,~8). Suppose that the decision maker's beliefs change and he now
believes that the probability of S 1is greater than he originally thought.
For example, suppose that he discovers that his car is not as safe as he
thought 1t to be, thus it is more likely to involve him in an accident. He
remains unsure of the probability of S (getting into an accident, in this
example), but there is a rightward shift in his beliefs on this probability,
represented by the distribution function F*. Obviously, he is now willing to
pay more to insure himself against S, It is not clear, however, what will
happen to the ratio between y and the expected value of the lottery
(x,5;0,~8), y/Bx. This question has been investigated by Hogarth and Kunreu-
ther (1984) by means of laboratory experiments. They found that when x < 0,
y/px 1is decreasing with 5, that is, as 5 increases, decision makers are
willing to pay relatively less to insure themselves against S. This predic-
tion agrees with some real world observations. For example, the weekly
insurance rate for rented cars exceeds %7 of an equivalent regular, annual
insurance premium, even taking into account that a rented car will likely have

a higher weekly mileage than a privately owned car. Similarly, short-term
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health insurance is relatively more expensive than long term insurance
(although these may be the result of price discrimination in the insurance
market)., Similar results appear in this section.

For the sake of simplicity, assumé that u 1is the identity function,
i.e., u(x) = x. For a discussion of Anticipated Utility Theory with linear
utility function, see Yaari (198%).

In previous sections, the function F* represented the decision maker's
beliefs on the possible values of the probability of S, but in this section,
the function F* changes with 5. A discussion of two such possible changes,

a parallel change and a proportional one, follows.

Definition: G* is obtained from F* by a positive parallel change 1f there

exists € > 0 such that for every p G*(p+e) = F*(p).

Definition: G* 1s obtained from F* by a proportional change if there

exists & > 1 such that G*(8p) = F*(p).

Let F* be symmetric on [0,2&*] and define, for € > O, Gt(p) =
F*(p~-€). Obviously, Gg is obtained from F* by a positive parallel change,

and its mean value is 5 = E* + ¢, Let y = CE(x,S;0,~S). That is, y =

X fp+§* £(z) £' (1-F*(z-p+E*))F*' (z-p+E*)dz  for x > 0, and the same with f

-+
instead of f for x < 0 (see (3.3) and (3.6)).

Theorem 7.1: Let F* be symmetric on [0,28*] such that HE* >A F*, If f

is convex, if the elasticity of f' 1{is nondecreasing, and if the elasticity

of F' 1is nonincreasing, then -%E‘_L> 0 for x>0 and —g-é:‘_L< 0 for
px

x < 0,
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Remark: Theorem 7,1 does not hold true for every F*, TLet f£f(p) = pl'5 and
let P*(0) = P*(0.99) = 0.5. For p = 0.495, < = 0.7036, while for p =

PX
0.505, <~ = 0.7014.

px

I now discuss proportional changes. Let B be the mean value of F*
and it follows that the mean value of G* 1s &p. Let o* and B* be the
minimal and the maximal possible values of the probability of S according to
F*, and let x > 0. By (3.2), the value of the ambiguous lottery
(x,5;0,~5) under G* equals

x£(6c*) + x [SB* £'(2) £(1-F*(%))dz =
Sark

xf(Sa*) + o&x fB* £'(62z) f(1-F*(z))dz
ok

If the decision maker is indifferent to the choice between (x,S;0,~S)
and (y,1), then the ratio between y and the expected value of

(x,5;0,~8) under G* 1is given by

Y- 2O 1B b 6oy £(1-F*(2))dz = ¥(6)
Spx Sp p o*

let x < 0, 1In this case,

Lo HOah) 1B () F(1-PH(2))dz = W)
8px ép p ao*

Theorem 7.2: If f 1s convex, then ¢'(8) > 0 and 7V'(8) < 0.

8. Interpersonal Comparisons

Connection between Ellsberg paradox and risk aversion is very intuitive.
As ambiguous lotteries appear to be riskier than clear lotteries, it is

natural to expect that a decision maker with a higher degree of risk aversion
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1s willing to pay less to participate in a certain ambiguous lottery. The
Arrow-Pratt measure of risk aversion is defined for the Expected Utility
functional, but the concept of risk aversion does not depend on this theory.
Yaari (1985a) suggests two possible measurements of risk aversion through the
decision-weights function £, one of which proves itself to be useful in
comparing decision makers' willingness to pay for a certain ambiguous lottery.

let (x,S5;0,~8) be an ambiguous lottery. let two decision makers have
the same beliefs and the same decision-weights function £, but assume that
they differ in their utility functions, denoted by u and v. u(0) = v(0) =
0 and, without loss of generality, wu(x) = v(x). By definition, each
decision maker is willing to pay its certainty equivalence for a lottery
(Section 2). Since both decision makers give the lottery (x,8;0,~8) the
same value, denote it by o, it follows that the first decision maker is
willing to pay more than the second one 1iff ucl(a) > v_l(a).

More interesting is the comparison of two decision makers who differ only
in their decision-weights functions. Let I and II have the same utility
function u and the same distribution function F*, and denote their

decision-weights functions by f and g respectively.

Theorem 8.1: Let x > 0. If f and g are convex, and if for every p,
f(p) > g(p), then I is willing to pay more for the lottery (x,S;0,~S) than
IT 1s willing to pay. If x < 0, I is willing to pay less to insure himself

against S than II is willing to pay.

Remark: Yaari (1985a) suggested two (different) definitions of one decision

maker (with g) as more risk averse than a second decision maker (with f):
Rl. g = hof where h 1s convex

R2. g(p) < f(p) for all p.
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As pointed out by Yaari, Rl implies R2, but R2 does not imply Rl. For
example, let f(p) = 0.25p for p < 0.5 and 1.5p - 0.5 for p » 0.5, and let
glp) = p2. For every p, g(p) < f(p), but there is no convex function h
such that g = hof., 1Indeed, if h 1is convex and if h(p) = p for p =
0,0.25,1, then h(p) = p for all p. Theorem 8.1 suggests a justification

for Yaari's second definition.

9., Some Remarks on the Literature

Problem 1 and Problem 2 of the Introduction were presented by Ellsberg in
1961 to support the claim that risk and uncertalnty are two different con-
cepts, and to prove that decision makers do not always accept Savage's Sure
Thing Principle. Ellsberg himself did not conduct any empirical research, but
his predictions were later confirmed by Becker and Brownson (1964), MacCrimmon
(1965), Slovik and Tversky (1974), Yates and Zukowski (1976) , and MacCrimmon
and larsson (1979). Besides empirical evidence, certain theoretical solutions
to this paradox were suggested. TFor these, and for discussions of the
relevance of the Ellsberg paradox, see Fellner (1961, 1963), Raiffa (1961),
Brewer (1963), Ellsberg (1963), Roberts (1963), Brewer and Fellner (1965),
Schneeweiss (1968), Smith (1969), Dreze (1974), Sherman (1974), Gardenfors and
Sahlin (1982, 1983), Fishburn (1983), Schmeidler (1984), and Einhorn and
Hogarth (1985). For review articles of these subjects, see MacCrimmon and
Larsson (1979), Schoemaker (1982), and Machina (1983).

Three recent models try to explain the Ellsberg paradox by using
nonadditive probabilities. Einhorn and Hogarth (1985) suggest that when
presented with ambiguous situations, decision makers use the expected
probability 6% in Problem 1, -% in Problem 2-A2, etc,) as an anchor, but
adjust this value according to the other possible values of the probability of

the ambiguous event. An axiomatic basis for nonadditive probabilities was
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suggested by Schmeider (1984), replacing the IA by a weaker independence
assumption,

Fishburn (1983) presented another model in which probabilities are not
additive. He proved the existence of a function p such that A 1s more
probable than B iff p(A,B) > 0 and used this function to explain the Ells-
berg paradox. 1In this model, preferences are not assumed to be transitive,
nor do they satisfy the TIA. As Fishburn proved (Theorem 3), adding these two
assumptions implies that p(A,B) = P(A) - P(B), but in such a case p fails
to explain the Ellsberg paradox.

These last three models all agree that probabilities are not necessarily
additive. This paper tried a different approach, 1in which probabilities are
additive, but not multiplicative. That is, preference relations satisfy the
IA, but not the RCLA. Except for this axiom, this model satisfies all the
usually accepted assumptions such as transitivity and First Order Stochastic
Dominance,

The idea of modelling the Ellsberg urn as a two-stage lottery, although
within the Expected Utility framework, was suggested by Gardenfors and Sahlin
(1982, 1983). In their model, the decision maker's approach towards the Ells-
berg urn consists of two stages., First, he decides what possible combinations
of balls are unlikely to happen. Then he considers the urn as an Expected
Utility maximizer, while assuming the worst out of the remaining possible
combinations. Of course, this approach does not assume a real two-stage
lottery, as an Expected Utility maximizer certainly does not consider a two-
stage lottery by this maximin rule.

This paper discussed changes in the distribution function F*, For other
discussions of increasing risk and Anticipated Utility Theory, see Quiggin

(1982), Yaari (1984, 1985a), Chew, Rarni, and Safra (1985) and Segal (1984).
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Appendix

Proof of Lemma 4.1

Let r = pq, q =-§, and A(p) = f(p)fC%). For p=r and for p=1,
f(p)£(q) = f(pg). For r< p< 1,

X X fr (X
f(p)f(p) [pf'(p) _bP f (p)

A(p) § 0 <=> 1§ o.

If the elasticity of f 4s increasing, A 1is decreasing oﬁ (r,/r) and
increasing on (/?,1), and if the elasticity of f 1is decreasing, A 1is

increasing on (r,/r) and decreasing on (YT,1), hence the lemma.

Proof of Theorem 4.2

Since F* is increasing and bounded, it is sufficient to prove the

theorem only for those functions F* which have a finite range.

Let x > 0 and let P* be a symmetric probability function on

5— E*=-I-)_ gk’.'.’ ;3— gl, 5,;4' El,o~o,§+ €k=;)+ E*. That 18, for
every 1, P*(;‘Ei) = P*(B+Ei). let & =0 and let a = %-—
P*(p < p - ), 1=1,...,k. Since u(x) > 0, the theorem holds iff
k _ _ ) ) ) .
4y T LEGE, D=EGEDIEG + o) + [E(prE)-E(rEy_DIEG - )} <

£(p) - £(p-E*)

Let g, (V) = [£(3-E,_~£(-EDIEG + ) + [£(h+E)-£(h+E, DIEG - v).

g, (V)
3y

= [£(p-,_) = EFEDIE (G + V)

(4.2)

[E(+E) - £(p+E,_DIEG -1 3 0 <>
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' .!: Py -
G (e - £(prE, )
H(Y) = —7—— z — = = K,
£'G -1 £(p-&,_;) - £(p-£;)

Since f 1s convex, it follows that H(y) 1is increasing, and H(0) <

K; < HC%). There exists therefore vy* such that (4.2) holds iff ¥y % Y. It
thus follows that if a > Y*, then the left-hand side of (4.1) increases by
setting PA(p-£,) = PA(PHE) = 0, BH(p-f, ;) = PAGR+E, ) = PH(p-E,_) +
P*(B—&i), and if a < Y*, then the left-hand side of (4.1) increases by
setting Pr(p-£, 1) = PX(p+E, 1) = 0, B*(p-£) = PH(p+E,) = PA(p-E,_) +
P*(B—Ei). By repeating this process k-1 times it follows that there exist
o and & < E* such that the value of the ambiguous lottery (x,S;0,-S)
under P** 1s greater than its value under P*, where P**(p-£) = P**(p+E)
= a and P**(p) = 1 - 2a. It is sufficient therefore to prove that for

every 0 < o <-l,

[£(p) - £(p~E)1£(1~a) + [£(p+E) - £(P)]£(a) < £(p) - £(p-E)

This inequality holds iff

(4.3) Bpr8) - £(p) 1—§§i;a)

£(p) - £(p-8)

Since f 1s convex, the right-hand side of (4.3) decreases with a, while
the left-hand side increases with £. The maximal possible value of £ 1is
p when p <-% and 1-p when p >-%- Let q¢=1-p. (4.3) thus holds if
E(2P)/E(P) < H(1)/E) for B <3 and 1f TQD/HD > HD/ED for

B >-%. By Lemma 4.1 these inequalities are satisfied if the elasticity of f
is nondecreasing and if the elasticity of f is nonincreasing.

If x < 0, then the inequality sign in (4.1) is reversed. f is concave

and in the same way as before it 1is sufficient to prove the theorem for P¥*,

Obviously (4.3) and
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£(p+E) - £(p) s 1-F(1-a)
(p) - E(p-8) f(a)

are equivalent,

Proof of Theorem 4.3

As in the proof of Theorem 4.2, it is sufficient to prove the theorem
only for those functions F* which have a finite range., Let x > 0 and
agssume without loss of generality that wu(x) = 1. Let P; € «ee < p, and

consider the following constrained maximization problem:

m m
maximize g(al,...,am) = f(pl) + I [f(pi) - f(pi_l)]f( b (ﬁ)
i=2 j=1i
subject to Zai =1
Lo py = p
O.i >0, i=1,o.o,mo
m m
let K=Ia, L=2Iqp,. Solve a and « from the constraints,
3 i 3 i1 1 2

substitute into g, and obtain

8(ag,00e5a) = £(p)) + [£(p,) = £(p,)] £(Rp,+p-p,-L) +

m m
I [f(p)) - f(p, DIfC £ a,)
1=3 i i-1 jo1 3
0% . 2 .
aa% = [f(pz) - f(pl)]f"(sz+p-p1-L)(v2-p3) + [f(p3) - f(pz)]f (RK) >0

Hence, by the second order necessary conditions for maximum it follows that
there is no inner solution to this maximization problem. By using this argum-
ent m2 times it follows that all but at most two of @ 5ees,a  are zero.
It is therefore sufficient to prove that if apy + (l—a)p2 = p,

<p < h
pl p pz’ t en
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(4.4) £(py) + [£(py) ~ £(p)1£(1-0a) < £(p).
p-ap,
Substitute into (4.4) Py = —j—5  and obtain

p-ap

(4.5) n(py) = £(p)) + [£(=2) - £(pIE(1-a) < £(5).
f 1is convex, hence
" Py 2
w(py) = £7(pI[1-£(1-0)] + £7( s (1oo? £(1-p) > 0
l1-a

Inequality (4.5) 1s satisfied for Py = p. It is therefore sufficient to
prove it for Py = 0 when 5 < 1-a and for Py = 1 when P > 1l-a. By Lemma
4.1, if the elasticity of f 1is increasing, then f(IfE)f(l-a) < f(p), hence

(4.5) is satisfied for p; = 0.

Let p, = 1. Substitute into (4.4) 5 = apy + 1 - a and obtain
o(pl) = f(pl) + [1-f(p1)]f(1—a) - f(ap1+1-a) < 0.
p(0) = p(1) = 0, hence it is sufficient to prove that p does not have local

maxima on (0,1):

af'(apl+1-a)
PP =0 B> 1= f(l-w) = —pe
1

At these critical points, p"(pl) >0 iff

f"(pl) af"(ap1+l—a)
(4.6) F(p) ~ F(amp +1-a)

P < ap, + 1 - a, and (4.6) follows from the assumptions that f 1is convex

and that ril is nonincreasing.

If x <0, the proof is similar.

Proof of Theorem 6,1 ¥

Obviously, one can replace o* and PB* in (3.2) and (3.5) by o< o*

and B> B*. let E* = inf {p: G*(p) = 0} and let x > 0. The value of the



36

ambiguous lottery (x,5;0,~S) under F* is not less than its value under

G* {ff

[P e () [E(1-F¥(2)) - £(1-G*(2))]dz » 0
p-E*

F* and G* are symmetric around 5, hence it is sufficient to prove that

for all 0 < & < &*,

(6.1) £1(pre) £UU-F*(p-E)) - F(1-G*(5-E))
£' (p-£) £(1-G*(p+E)) ~ £(1-F*(p+E))

Assume first that »p <-£. H* > G*, hence, on [p-&*,p] F*(p) < G*(p) <

2 A
- p
*?3 and on [p,p+E*] F*(p) > G*(p) » —g. Since f 1is convex, the right
2p 2p
hand side of (6.1) is greater than f'CEEE)/f'GEEE). Define
2p* 2p
o) = £€a(pre))
£' (a(p-£))

In order to prove (6.1), it is sufficient to show that I'(a) > 0. It is easy
to verify that if the elasticity of f' 1s nondecreasing, then I' > 0.
. 1In this case, on [p-E*,p] F*(p) < G*(p) < Bil:ZB, and on

2-2p
[p,p+E*] these inequalities are reversed. As before, the right—hand side of

Let B >

N

(6.1) is greater than f'(l—pts)/f'(l-ng). Let q=1- p. It is thus

2-2p 2-2p
sufficient to prove that
£ Eié
£'(q+d) | __29
?'(5-6) Ev i:é
2q

which holds if the elasticity of f 1s nonincreasing.

If x < 0, the proof is similar.
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Proof of Theorem 7.1:

Let x> 0. Yool fPFER b b (1P (P ER) ) PR (2 prER)dz =
PP g
1

% -
= IE f(z+p) £' (1-F*(z+E*) )F*' (z+E*)dz ;% L - 3:{'—, hence %_L >0 iff

p -&* px  3p px
_f:: [Pf' (2+p) = £(z+p) ] £' (1~F*(z+E*)) F*' (z+E*)dz > 0.
Since F* is symmetric around &*, it is sufficient to prove that for every
0 <z < g*,
[PE'(prz) — £(p+2)]£'(1-F*(E*+2)) + [PE'(p-2) - £(p-2)]1£' (1-F*(E*-2)) > 0.

f 1is convex, hence its elasticity is greater than 1. It is therefore

sufficient to prove that

£' (p~2z) £' (1-F*(E*~2)) > f£'(p+z) £' (1-F*(Er+z)) <=>

£' (p+z) < f:(l-F*(E*‘Z))
f'(?)—z) f (l—F*(£*+Z))

As was proved in the proof of Theorem 6.1, this inequality holds true if
Hg* >a F*,
If x < 0, the proof is similar.

Proof of Theorem 7.2

If £ 1s convex and if f£(0) = 0, then f'(p) > E%El, hence

v(5) = BEEL0) = PO \ 1 (B* e g2) £(1-FH(2))dz > 0
§p p a*

A similar proof holds for @.

Proof of Theorem 8.1

Let x > 0., In (3.2) it is assumed that f 1is differentiable. If f

is everywhere continuous and everywhere differentiable except for the points
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31,0003, € (o*,B*), then the value of the ambiguous lottery (x,S5;0,~S) is
k+1l a-e

(8.1) w(x)f(o*) + u(x) 1im I | £'(z) £(1~F*(z))dz

€+Q 1=1 ai_1+e

= = R%
where ag o* and a4l B*.
Assume without loss of generality that u(x) = 1 and let &(f) denote

the value of (x,8;0,~S) under f. Let o* < a< a+ y < B* and let

g(p) P<a
g, (P = (2etY)-g( a)]p + YE()-ag(aty)+ag(a) @ <p<adty
Y Y Y
s(p) : P>a+y

Obviously, g, Y(p) > g(p) for all p. By (8.1),
o(g, y) - o) > [T (OH-Y)Y— ) g'(2)1g(1-F*(z))dz = ¢(y)
’ o
1im ¢(Y) = 0, and ¢ is increasing with v. Indeed,

Y+0

¢'(Y) =% [g'(aty) - gSﬁ*’—w}t‘ﬂ"‘—)][f"""’ g(1-F*(z))dz - vg(1-F*(a+Y))]
[0 3

which is positive, since g 1s convex and g and F* are increasing. It
thus follows that there i1s a convex differentiable function § such that for
every p, g(p) » ga’Y(p) and o®(g) > ¥(g). By repeating this process

L%] + 1 times, one can find for every €> 0 a convex and differentiable
function fe such that for every p, g(p) < fe(p) < f(p), £(p) - fe(p) < g,
and Q(fe) > o(g). Obviously, &(f) - Q(fe) < &, hence &(£f) > #(g). Since
both decision makers have the same utility function, I is willing to pay more
than II for this lottery.

If x <0, then f > g 1implies f < g and the proof is similar.
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