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Segal builds on Quiggin (1982). In the case of a continuous random variable, as you know, the Expected Utility Theory proposes that preferences of the individual over the lottery q are represented by 
    		(2)
Where F is the cumulative distribution function of over the possible values of . Quiggin (1982) suggested the following generalization of (2), which he called “anticipated utility”
                (3)
Where  is the maximum possible value that the random variable x can take () and  is the minimum value that the random variable x can take (). The function f is not the density function here, but the decision- weights function. It maps  and satisfies  and . The properties of this function are essential in this way of modeling ambiguity aversion as “risk aversion” in the SOP distribution. (More on these properties below). 
When f  is linear, Anticipated Utility  collapses to Expected Utility. So, Expected Utility Theory is a special case of Anticipated Utility.  According to Segal (1987), (see page 180 and Figure 1), Anticipated Utility and Expected Utility differ in the measure of probability they use. Expected Utility uses the classical “area under F(x)” (Lesbesgues’ measure), while anticipated utility uses the measure  for the segment. This is the equivalent in the continuous case to the decision weights for i = 1,…,n-1 given by and , commented above for the discrete case. (Rank dependent Utility). In anticipated utility,  ). Segal (1987) assumes the decision maker is an anticipated utility maximizer.
Building on this assumption he discusses how such an agent value ambiguous lotteries. Suppose this agent participates in a lottery that gives him  if S happens and zero otherwise. Assuming that the agent knows that the probability of S is  and that , and applying anticipated utility to this discrete case, the value of the this lottery to the individual is ). [footnoteRef:2] Now suppose that instead of knowing the probability of the event S the agent does not know this probability exactly, and has some beliefs on the possible values of this probability. If these beliefs are discrete we can write  the probability that the probability of S is p. If these beliefs are non-discrete we can write  to denote the probability that the probability of S is not greater than p.  [2:  According to anticipated utility, in the discrete case the agent maximizes ] 

The value of a lottery: It is assumed that when confronted with the ambiguous lottery , the decision maker considers a two-stage lottery.[footnoteRef:3] In the first stage the lottery is over the random variable p (with a (SOP) distribution) and the outcome is denoted . In the second stage, the decision maker participates in the lottery.  [3:  Segal writes a lottery indistinctively as  or. He uses this notation below to distinguish between an ambiguous lottery , with unknown , and a non-ambiguous lottery , with known . ] 

In the following  (the fine if inspected and found noncompliant).  For each p let us define  as the certainty equivalence of the lottery  such that, with . ( is the decision weight for the case in which For every  let  be defined implicitly by this equality. That is  is such that . More explicitly,  If the decision maker considers this ambiguous lottery   as a two-stage lottery, the probability that the certainty equivalence of this lottery is not greater than  is, the probability that p is not greater than . Calling  is the maximum possible value that the probability of S can take () and  is the minimum value that the probability of S can take (). By (3), the value of the ambiguous lottery  equals

Using, and noting that  we can obtain

Integrating by parts,


Ambiguous and non-ambiguous lotteries: The main result of Segal’s paper is that under certain conditions a non-ambiguous lottery is preferred to an ambiguous lottery. To show this, denote the mean of  by. In the spirit of Ellsberg experiment, assume the decision maker’s beliefs as represented by   are symmetric around 
I copy below Segal’s main Theorem (Theorem 4.2) and a Lemma and a Remark.
Lemma 4.1. The elasticity of the anticipated utility decision-weights function f is non-decreasing iff . 
Theorem 4.2. If  is convex, if its elasticity is non-decreasing, and if the elasticity of  is non-increasing, then  is preferred to 
Remark: Increasing elasticity of f does not imply decreasing elasticity of. 

Satisfy all conditions of Theorem 4.2.
In the case   is not symmetric around 
Theorem 4.3. Let f  be convex and twice differentiable. For : If  is non-decreasing and if the elasticity of  non-increasing, then  is preferred to . 
Remarks:
1) Non-decreasing elasticity does not imply that  is non-increasing. 
2) The conditions of Theorem 4.3 are sufficient, but not necessary ones. One may be ambiguity averse even if his decision-weights function f  does not satisfy all the conditions of Theorem 4.3.
Increasing ambiguity: Theorems 4.2 and 4.3 compare lotteries with and without ambiguity. Segal also discusses increases in the level of ambiguity. Again, there is a direct parallel with the concept of increase in risk. Segal defines an increase in ambiguity as a mean-preserving spread in the SOP distribution F*. 
A more ambiguous lottery is not always less preferable to less ambiguous lottery, though. Segal’s Theorem 6.1 gives these conditions. First, a definition.
DEFINITION: Let . is the uniform distribution on  when , and the uniform distribution on  when .
Theorem 6.1. Let  and  be symmetric around  such that  is equally or more ambiguous than , and  is equally or more ambiguous than . If f is convex, if the elasticity of f’ is non-decreasing, and if the elasticity of  is non-increasing, then the value of the ambiguous lottery  under F* is greater than it value under G*. 
REMARKS. 

Satisfy all three conditions of Theorem 6.1.
  is equally or more ambiguous than  if the density function of G* is single-peaked. 
Theorem 6.1 does not hold for non-symmetric distributions.
Changes in:
Suppose that the decision maker’s beliefs change and that he now believes that the probability of S is greater than he originally thought; there is a “right-ward” shift in F* (A first-order stochastic dominant shift). Being  , how does the ratio  changes?
In what follows assume 
Segal distinguishes between a positive parallel shift and a proportional shift. In the first one,  is obtained as a parallel shift from  if there exists  such that for every p  .   is obtained as a proportional shift from  if there exists  such that for every p  . 
Let  be symmetric on  and define, for , . Obviously   is obtained from  as a parallel change, and its mean value is . Let  the quantity  is the certainty equivalence of the ambiguous lottery. 
THEOREM 7.1.  Let  be symmetric on  and  is more or eqaully ambiguous tan F*. If f is convex, the elasticity of f’ is non-decreasing, and if the elasticity of  is non-increasing, then  for 
For proportional changes, the equivalent necessary condition is f convex. 

