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I. INTRODUCTION 

This paper attempts to answer the question: When is a random 
variable Y “more variable” than another random variable X? 

Intuition and tradition suggest at least four plausible-and apparently 
different-answers to this question. These are: 

1. Y is Equal to X Plus Noise 

If we simply add some uncorrelated noise to a random variable, (T.v.), 
the new r.v. should be riskier1 than the original. More formally, suppose Y 
and X are related as follows: 

y,x+z, (1.i) 

where “=” means “has the same distribution as” and Z is a r.v. with the 
propertydthat 

E(Z j X) = 0 for all X.2 (l.ii) 

* The research described in this paper was carried out under grants from the National 
Science Foundation and the Ford Foundation. 

r Throughout this paper we shall use the terms more variable, riskier, and more 
uncertain synonomously. 

s David Wallace suggested that we investigate this concept of greater riskiness. 
Arthur Goldberger has pointed out to us that (l.ii) is stronger than lack of correlation 
as earlier versions of this paper stated. 
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226 ROTHSCHILD AND STIGLITZ 

That is, Y is equal to X plus a disturbance term (noise.) If X and Y are 
discrete r.v.‘s, condition (1) has another natural interpretation. Suppose X 
is a lottery ticket which pays off ai with probability pi ; Zp, = 1. Then, 
Y is a lottery ticket which pays bi with probability pi where bi is either a 
payoff of ai or a lottery ticket whose expected value is ai . Note that 
condition (I) implies that X and Y have the same mean. 

2. Every Risk Averter Preji?rs X to Y 

In the theory of expected utility maximization, a risk averter is defined 
as a person with a concave utility function. If Xand Y have the same mean, 
but every risk averter prefers X to Y, i.e., if 

EU(X) > EU(Y) for all concave U 

then surely it is reasonable to say that X is less risky than Y.3 

(2) 

3. Y Has More Weight in the Tails Than X 

If X and Y have density functions,f and g, and if g was obtained fromf 
by taking some of the probability weight from the center off and adding it 
to each tail off in such a way as to leave the mean unchanged, then it 
seems reasonable to say that Y is more uncertain than X. 

4. Y Has a Greater Variance Than X 

Comparisons of riskiness or uncertainty are commonly restricted to 
comparisons of variance, largely because of the long history of the use of 
the variance as a measure of dispersion in statistical theory. 

The major result of this paper is that the first three approaches lead to 
a single definition of greater riskiness, different from that of the fourth 
approach. We shall demonstrate the equivalence as follows. In Section II, 
it is shown that the third approach leads to a characterization of increasing 
uncertainty in terms of the indefinite integrals of differences of cumulative 
distribution functions (c.d.f.‘s). In Section III it is shown that this indefinite 
integral induces a partial ordering on the set of distribution functions 
which is equivalent to the partial ordering induced by the first two 
approaches. 

In Section IV we show that this concept of increasing risk is not 
equivalent to that implied by equating the risk of X with the variance of X. 
This suggests to us that our concepts lead to a better definition of 
increasing risk than the standard one. 

It is of course impossible to prove that one definition is better than 

3 It might be argued that we should limit our discussion to increasing concave 
functions. Imposing this restriction would gain nothing and would destroy the symmetry 
of some of the results. For example, since U(X) = Xand U(X) = --Xare both concave 
functions, condition (2) implies that X and Y have the same mean. 
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another. This fact is not a license for agnosticism or the suspension of 
judgment. Although there seems to us no question but that our definition 
is more consistent with the natural meaning of increasing risk than the 
variance definition, definitions are chosen for their usefulness as well as 
their consistency. As Tobin has argued, critics of the mean variance 
approach “owe us more than demonstrations that it rests on restrictive 
assumptions. They need to show us how a more general and less vulnerable 
approach will yield the kind of comparative static results that economists 
are interested in [8].” In the sequel to this paper we show how our 
definition may be applied to economic and statistical problems. 

Before we begin it will be well to establish certain notational conven- 
tions. Throughout this paper X and Y will be r.v.‘s with c.d.f.‘s, F and G, 
respectively. When they exist, we shall write the density functions of F 
and G as f and g. In general we shall adhere to the convention that F is less 
risky than G. 

At present our results apply only to c.d.f.‘s whose points of increase lie 
in a bounded interval, and we shall for convenience take that interval 
to be [0, 11, that is F(0) = G(0) = 0 and F(1) = G(1) = 1. The extension 
(and modification) of the results to c.d.f.‘s defined on the whole real line 
is an open question whose resolution requires the solution of a host of 
delicate convergence problems of little economic interest. H(x, z) is the 
joint distribution function of the r.v.‘s Xand 2 defined on [0, I] x [- 1, 11, 
the Cartesian product of {O, l] and [ - 1, I]. We shall use S to refer to the 
difference of G and F and let T be its indefinite integral, that is, 
S(x) = G(x) - F(x) and T(y) = si S(x) dx. 

II. THE INTEGRAL CONDITIONS 

In this section we give a geometrically motivated definition of what it 
means for one r.v. to have more weight in the tails than another (Sub- 
sections 1 and 2). A definition of “greater risk” should be transitive. An 
examination of the consequence of this requirement leads to a more 
general definition which, although less intuitive, is analytically more 
convenient (Subsections 3 and 4). 

1. Mean Preserving Spreads: Densities 

Let s(x) be a step function defined by 

for a<x<a+t 
for a+d<x<a+d+t 
for b<x<b+t (3.i) 
for b+e<x<b+e+t 

642/Z/3-2 
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where 
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o<a<a+t<a+d<a+d+t 

<b<b+t<b+e<b+e+t<l 

and 
pe = ard. 

(3.ii) 

(3.iii) 

X 

FIGURE 1 

* 

s 64 
0.f d o+J~t b bet 

a att bte btett 

I; 

FIGURE 2 

FIGURE 3 
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Such a function is pictured in Fig. 2. It is easy to verify that $ s(x) dx = 
J; xs(x) dx = 0. Th us if f is a density function and if g = f + s, then 
Jig(x) dx = Jif(x) dx + Ji s(x) dx = 1 and Ji xg(x) dx = jt xv(x) + 
s(x)) dx = $ xi(x) dx. It follows then that if g(x) > 0 for all x, g is a 
density function4 with the same mean asf. Adding a function like s to f 
shifts probability weight from the center to the tails. See Figs. 1 and 3. 
We shall call a function which satisfies conditions (3) a mean preserving 
spread (MPS) and iff and g are densities and g --fis a MPS we shall say 
that g differs from/by a single MPS. 

2. Mean Preserving Spreads: Discrete Distributions 

We may define a similar concept for the difference between discrete 
distributions. Let F and G be the c.d.f.‘s of the discrete r.v.‘s X and Y. 
We can describe X and Y completely as follows: 

Pr(X = SJ = 3i and Pr(Y =riJ =ji, 

where xii5 = xi ti = 1, and {Si} is an increasing sequence of real 
numbers bounded by 0 and 1. Supposefi = jt for all but four i, say il , iz , 
I~, and i4 where ik < ik+l . 

h =3$ I 
To avoid double subscripts let ak = LiiK, 

and g, = ii,, and define 

Then if 
Yk = gk -fk 

y1 = -yz 3 0 and y4 = -y3 3 0, 

Y has more weight in the tails than X and if 

4 

c akyk = O, 
b=l 

(4.i) 

(4.ii) 

the means of X and Y will be the same. See Fig. 4. If two discrete r.v.‘s X 
and Y attribute the same weight to all but four points and if their 
differences satisfy conditions (4) we shall say that Y differs from X by a 
single MPS. 

3. The Integral Conditions 

If two densities g and f differ by a single MPS, s, the difference of the 
corresponding c.d.f.‘s G and F will be the indefinite integral of s. That is, 

4 That is, iffb) > 01 for a + d -c x < a + d f t andf(x) z p for b < x -c b + t. 
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s = g -f implies S = G - F where S(x) = Jg s(u) du. S, which is drawn 
in Fig. 5, has several interesting properties. The last two of these ((6) and 
(7) below) will play a crucial role in this paper, and we will refer to them 
as the integral conditions. First S(0) = S(1) = 0. Second, there is a z such 
that 

S(x) 3 0 if x < z and S(x) < 0 if x > z. (5) 

\L 

FIGURE 4 
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FIGURE 5 

Thirdly, if T(y) = Ji S(x) dx then 

T(l) = 0 

since T(1) = $ S(x) dx = x??(x)]: - $ x$(x) dx = 0. 

(6) 
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Finally, conditions (5) and (6) together imply that 

T(Y) 3 0, O<y<l. (7) 

If G and F are discrete distributions differing by a single MPS and if 
S = G - F then S satisfies (5), (6), and (7). See Fig. 6. 

FIGURE 6 

4. Implications of Transitivity 

The concept of a MPS is the beginning, but only the beginning, of a 
definition of greater variability. To complete it we need to explore the 
implications of transitivity. That is, for our definition to be reasonable it 
should be the case that if 1, is riskier than X, which is in turn riskier 
than X, , then X1 is riskier than X, . Thus, if X and Y are the r.v.‘s with 
c.d.f.‘s F and G, we need to find a criterion for deciding whether G could 
have been obtained from F by a sequence of MPS’s. We demonstrate in 
this section that the criterion is contained in conditions (6) and (7) above.5 

We will proceed by first stating precisely in Theorem l(a) the obvious 
fact that if G is obtained from F by a sequence of MPS’s, then G - F 
satisfies the integral conditions ((6) and (7)). Theorem l(b) is roughly the 
converse of that statement: That is, we show that if G - F satisfies the 
integral conditions, G could have been obtained from F to any desired 
degree of approximation by a sequence of MPS’s. 

THEOREM l(a). If (a) there is a sequence of c.d.f.‘s {F,} converging 
(weakly) to G, (written F, --+ G)6 and (b) F, difsers from F,-l by a 
single MPS, (which implies F, = Fnel + S, = F,, + Cyz, Si , where 
F, = F, and where each Si satisfies (6) and (7)), then G = F + CT=, Si = 
F + S and S satisfies (6) and (7). 

The proof, which is obvious, is omitted. 

6 Condition (5) could not be part of such a criterion for it is easy to construct examples 
of c.d.f’s which differ by two MPS’s such that their difference does not satisfy (5). 

6 Let E(u) = s: u(x) dG(x) and E,(U) = s: u(x) dF,(x). Then F, --t G if and only if 
E,(u) --f E(U) for all continuous u on [0, 11. See [3, p. 2431. 
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THEOREM l(b). If G - F satisfies the integral conditions (6) and (7), 
then there exist sequences F,, and G, , F, --+ F, G, + G, such that for each n, 
G, could have been obtainedfrom F, by a finite number of MPS’s. 

The proof is an immediate consequence of the following two lemmas: 
the first proves the theorem for step functions with a finite number of steps; 
and the second states that F and G may be approximated arbitrarily 
closely by step functions which satisfy the integral conditions. 

LEMMA 1. If X and Y are discrete r.v.‘s whose c.d.f.‘s F and G have a 
finite number of points of increase, and if S = G - F satisfies (6) and (7), 
then there exist c.d.f.‘s, F0 ,.,., F,, such that F, = F, F,, = G, and Fi difers 
from Fi-1 by a single MPS. 

Proof. Sis a step function with a finite number of steps. Let I1 = (a, , az) 
be the first positive step of S. If I1 does not exist, S(x) = 0 implying that 
F = G and the lemma is trivally true. Let I2 = (a3 , a.& be the first negative 
step of S(x). By (7), a3 < a3 . Let y1 be the value of S(x) on I1 and --yz be 
the value of S(x) on I, . 

Either 

da2 - 4 2 da4 - 4 (8) 

or 

Aa2 - al> < Aa4 - 6). (9) 

If (8) holds, let &, = a, . There is an dz satisfying a, < riz < a2 such that 

74% - al) = Y&G - 6). (10) 

If (9) holds, let ri, = a2 ; then there is an Z4 satisfying a, < 8, < a4 such 
that (10) holds. Define S,(X) by 

for a, < x < ci, 
S,(x) = -;; for a3 < x < ri, 

0 otherwise. 

Then if Fl = F,, + S, , Fl differs from F by a single MPS and Su) = G - Fl 
satisfies (6) and (7). 

We use this technique to construct S, from S(l) and define Fz by 
Fz = Fl + S, . Because S is a step function with a finite number of steps, 
the process terminates after a finite number of iterations. 

LEMMA 2. Let F and G be c.d$‘s defined on [0, 11. Let T(y) = 
.f: (G(x) - F(x)) dx. If 

T(Y) 3 0, O<Y<l, (6) 
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and 
T(1) = 0 (7) 

then, for each n, there exists F,, and G, , c.d.f.‘s of discrete r.v.‘s with ajinite 
number of points of increase, such that if 

and 

then’ 

II G, - G II = j; I G,W - W4 dx, 

IlFn--I;ll+llG---II <; (11) 

and if T,(y) = Jt (G,(x) - Fn(x)) dx then 

T?%(Y) 2 0 (12) 

and 

T,(l) = 0. (13) 

Proof. We prove this by constructing Ii, and G, for fixed n. For 
i = l,..., n let Ii = ((i - 1)/n, i/n). Let fi = F(i/n) and define F,, by 
F;,(x) = fd for x E Ii (see Fig. 7). Since F is monotonic F,(x) > F(x). It 
follows also from monotonicity that jl F, - F Ij < l/n. If pn(x) is any step 
function constant on each Ii such that I’n(x) E F(Zi) for x E 1i then 
II p,, -F, ij < l/n and 

llfln-Fll ~lI~n-~nII+ll~n-Fll G;. 

FIGURE 7 

’ Condition (11) implies weak convergence. See [3, p. 2431. 
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Similarly if G,(x) is a step function such that x E Ii implies G,(x) E G(I,) 
then 11 G, - G 11 < 2/n. 

For every i there exist fi E F(1J and gi E G(&) such that (gi -&)/n = 
sli (G(x) - F(x)) dx. LetpJx) = fi and G,(x) = g, , x E Ii . We now show 
that @n and G, satisfy (1 l), (12), and (13). We have already shown that (11) 
is satisfied. Observe that 

pn(l) = s’ (c;‘,(x) - &(x)) dx 
0 

= 
s 

’ (G(x) - F(x)) dx = T(1) = 0, 
0 

so that (13) is satisfied. It remains to show that pR( y) > 0. If y = j/n 
for j = 0, I,..., n, then Pn(y) = T(j/n) > 0 so we need only examine the 
case where y = j/n + o1,O < 01 < l/n. Then, ~Jx) = T(j/n) + a(gi -h). 
If gi > f; both terms of the sum are positive. If gi < fj then 

This completes the proof except for a technical detail. Neither-r’, nor G;, 
are necessarily c.d.f.‘s. We remedy this by defining F,(x) = p%(x) for 
x E (0, 1) and F,(O) = 0 and F,(l) = 1. G, is defined similarly and if I’, 
and G, satisfy (1 l), (12) and (13) so do Fn and G, . 

III. PARTIAL ORDERINGS OF DISTRIBUTION FUNCTIONS 

A definition of greater uncertainty is, or should be, a definition of a 
partial ordering on a set of distribution functions. In this section we 
formally define the three partial orderings corresponding to the first three 
concepts of increasing risk set out in Section I and prove their equivalence. 

1. Partial Orderings 

A partial ordering G2, on a set is a binary, transitive, reflexive and 
antisymmetric? relation. The set over which our partial orderings are 
defined is the set of distribution functions on [0, I]. We shall use F <‘p G 

* A relation <= is antisymmetric if A <o B and B <9 A implies A = B. 
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interchangeably with X GP Y where F and G are the c.d.f.3 of the T.v.3 
X and Y. 

2. Definition of GI 

Following the discussion of the last section we define a partial ordering 
<I as follows: F <I G if and only if G - F satisfies the integral conditions 
(6) and (7). 

LEMMA 3. <I is a partial ordering. 

Proof. It is immediate that Gr is transitive and reflexive. We need only 
demonstrate antisymmetry. Assume F & G and G <I F. Define S, and S, 
as follows: 

S,=G-F and S2 = F - G. 

Thus S1 + S, = 0. Furthermore, if T,(y) = si Si(x) dx, then Ti( y) > 0, 
since F <I G and G <I F. Since 0 = si (S,(x) + S,(x)) dx = T,(y) + 
T,(y) = 0 and r,(u) 3 0, T&) = 0. We shall prove this implies that 
S,(x) = 0 a.e. (almost everywhere), or F(x) = G(x) a.e. This will prove 
the lemma.s 

Since S,(x) is of bounded variation (it is the difference of two monotonic 
functions) its discontinuities form a set of measure zero. Let us call this 
set N. Define 

&(x> = g,, 
for x E N 

otherwise. 

Then Joy S,(x) dx = Ji S,(x) dx = T,(y). Suppose there is an 2 such that 
S,(a) # 0, say S,(i) > 0. Then S,(x) > 0 for x E (2 - E, 4 + E) for 
some E > 0 (since $(x) is continuous at 2). Then, T,(x - .z) < T,(x + E). 
This contradiction completes the proof. 

3. Definition of <, 

We define the partial ordering <, corresponding to the idea that X is 
less risky than Y if every risk averter prefers X to Y as follows. F <, G 
if and only if for every bounded concave function U, $ U(x) dF(x) >, 
Ji U(x) dG(x). It is immediate that <, is transitive and reflexive. That <, 
is antisymmetric is an immediate consequence of Theorem 2 below. 

4. Dejinition of <, 

Corresponding to the notion that X is less risky than Y if Y has the 
same distribution as X plus some noise is the partial ordering <, which 

B We shall follow the convention of considering two distribution functions to be 
equal if they differ only on a set of measure zero. 
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we now define. F ,(, G if and only if there exists a joint distribution 
function 22(x, z) of the r.v.‘s X and 2 defined on [0, l] x [--I, I] such 
that if 

J(Y) = Pr(X + 2 d Y), 
then 

F(x) = W, I>, O<x<l, 

‘3~) = J(Y), O<Y,<l, 
and 

A??(2 1 x = x) = 0 for all x. (14) 

The equivalent definition in terms of r.v.‘s follows: X <, Y if there 
exists an r.v. 2 satisfying (14) such that 

y=$x+z. (15) 

It is important to realize that (15) does not mean that Y = X + 2. 
For the special case where X and Y are discrete distributions concen- 

trated at a finite number of points, the relation 6, can be given a useful 
and tractable characterization. Without loss of generality assume that X 
and Y are concentrated at the points a, , a2 ,..., a,, . Then the c.d.f.‘s of 
X and Y are determined by the numbers 

and 

fa = Pr(X = ai) 

gi = Pr(Y = ai). 

Then X <a Y if and only if there exist n2 numbers cij 3 0 such that 

Tcij = 1, i = l,..., n, (1’5) 

and 

~ctj(aj - ai) = 0, i= I,..., n, (14’) 

gj = c ficii 3 j = I,..., n. (15’) 
* 

To see that this is so, define an r.v. 2 conditional on X as follows, 

C$j = Pr(Z = Clj - Ui ] X = ai). 

Then (16) states that this equation in fact defines a r.v. while (14’) and (15’) 
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are the analoges of (14) and (15). These conditions can be written in matrix 
form: 

Ca = a, (14”) 

g =fC, (15”) 

Ce = e, (16”) 

where e = (l,..., 1) is the vector composed entirely of 1’s. Iff’,f”, and f3 
are vectors defining the c.d.f.‘s of the discrete r.v.‘s x1, X2, and X3, 
(fie = Pr(Xk = a,)), and if X1 <, X2 and X2 <, X3 then there exist 
matrices Cl and C2 such that Cla = C2a = a; Cle = C2e = e, while 
f 2 = f lC1 and f 3 = f 2C2. Let C* = C1C2. Then f 3 = flC* and 
C*a = C1C2a = Cla = a and similarly C*e = e. We have proved 

LEMMA 4. If X1, X2, and X3 are concentrated at a jinite number of 
points, then x1 <, X2 <, X3 implies x1 <a X3. 

5. Equivalence of &, <, , <, 

We now state and prove the major result of this paper. 

THEOREM 2. The following statements are equivalent: 

(A) F <, G; 

(B) F GIG; 

CC> F <a G. 

Proof. The proof consists of demonstrating the chain of implications 
(C) G- (A) 3 (B) - (C). Throughout the proof we adhere to the notational 
conventions introduced at the end of Section I. 

(a) XG, Y*XG Y. 

By hypothesis there is an r.v. 2 such that Y 7 X + 2 and E(Z 1 X) = 0. 
For every fixed X and concave U we have, upon taking expectations with 
respect to 2, by Jensen’s inequality 

E,U(X + 2) < U(E(X + 2)) = U(X). 

Taking expectations with respect to X, 

J%J-J(X + 2) < EUO 
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or 
EU(Y) < EU(X). 

(b) F <, G =+- F c& G.l” 

If S = G - F then F <, G implies ji U(x) dS(X) < 0 for all concave U. 
Since the identity function and its negative are both concave we have that 
Ji x &(x) < 0 and J-i (-x) dS(x) < 0 so that Ji x B(x) = 0. Integrating 
by parts we find that T(1) = 0. It remains to show that T(y) > 0 for all 
y E [0, 11. For fixed y, let b,(x) = Max(y - X, 0). Then --b,(x) is concave 
and 0 < $ b,(x) dS(x) = Jx ( y - X) &7(x) = y,S(y) - ji x &7(x). Inte- 
grating the last term by parts we find that 

- Jr x L%(x) = 4(x)]: + J: S(x) dx 

= -Yw + W). 

Thus, T(y) = 1; b,(x) dS(x) > 0. 

(c) F&G*F,<,G. 

We prove this implication first for the case where F and G are discrete 
r.v.‘s which differ by a single MPS. Using the notation of Section 11.2, 
let F and G attribute the same probability weight to all but four points 
a, -c a2 < a3 < a, . Let Pr(X = ak) = fk and Pr(Y = ak) = g, . If 
yk = gk -fk ) then 

y1 = -y2 3 0, y4 = -y3 3 0 (4.i) 

and 
4 

2 ykak = o (4.ii) 
7c=1 

are the conditions that G differs from F by a single MPS. To prove that 
F <, G we need only show the existence of Cij 3 0 (i, j = 1, 2, 3, 4) 
satisfying (14’), (15’), and (16). Consider, 

(17) 

lo We are indebted to David Wallace for the present simplified form of the proof. 
For continuously differentiable U, the reverse implication may be proved simply by 
integration by parts. 
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It is easy to verify that the cij defined by (17) do satisfy (16) and (14’). 
Thus if we define Z, as before, by 

Cij = Pr(Z = aj - Ui 1 X = Ui) 

then Z is a random variable, conditional on X, satisfying E(Z 1 X) = 0. 
It remains to establish (15’) or that Y 7 X + Z. Consider Y1 = X + Z. 
Y1 is a discrete r.v. which, since E(Z) = 0, has the same mean as Y. It can 
differ from Y only if it attributes different probability weight to the 
points a, , a2 , a3 , a4 . But, 

Pr(Yl = az) = Pr(X = az) .Pr(Z = 0 1 X = a.J 

=fz -2 = g, = Pr(Y = a,). 

Similarly, Pr(Yl = a,) = Pr(Y = u3). Then Y and Y1 can differ in the 
assignment of probability weight in at most two points. But Pr( Y = a,) > 
Pr( Y1 = ul) implies Pr( Y1 = al) > Pr( Y = u4) which in turn implies that 
E(Y1) > E(Y), a contradiction. Thus, Y = Y1 = X + Z. 

Lemmas 1 and 4 allow us to extend this gesult tdo all discrete distributions 
with a finite number of points of increase. We use Theorem l(b) to extend 
it to all c.d.f.‘s. If F <I G, there exists sequences {F,} and {G,} of discrete 
distributions with a finite number of points of increase such that F, + F 
and G, + G and F, <I G, . We have just shown F, 6, G, . Let X, and 
Y, be the r.v.‘s with distributions Fm and G, . There is for each n an 
H,(x, z), the joint distribution function of the r.v.‘s X, and Z, , such that 
if J,(y) = Pr(X, + Z, < y), then 

JAYI = Gnb), (18) 
F,(x) = KG, 11, (19) 

and 
E(X, 1 Z,) = 0. (20) 

Since H, is a discrete distribution function Eq. (20) can be phrased as 

11 ss u(x)z dH,(x, z) = 0 
0 -1 

(21) 

for all continuous functions u defined on [0, 11. Since H, is stochastically 
bounded, the sequence {H,} has a subsequence {Ha,} which converges to 
a distribution functionll H(x, z) of the r.v.‘s X and Z. Since H,,(x, 1) = 
F,(x) --f F, H,,(x, 1) -F. Similarly, J,, + G. Let 

+9z d&(x, 4. 

I1 See [3, pp. 247, 2611. 
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By the definition of weak convergence M,,, ---f Jt Jil U(X)Z dH(x, z). But 
(M,,} is a sequence all of whose terms are 0 and it must therefore converge 
to 0. Therefore $ J?l U(X)Z dH(x, z) = 0, which implies E(Z / X) = 0. 
This completes the proof. 

6. Further Remarks 

We conclude this section with two remarks about these orderings. 

A. Partial versus Complete Orderings. In the previous subsection, 
we established that > ,a , br, and 2, define equivalent partial orderings 
over distributions with the same mean. It should be emphasized that these 
orderings are only partial, that is, if F and G have the same mean but 
&WI - G(x)) dx = ( ) h T y c anges sign, F and G cannot be ordered. 
But this means in turn that there always exist two concave functions, U, 
and U, , such that $ U, dF(x) > $ dG(x) while $ U, dF(x) < Jo U, dG(x); 
that is, there is some risk averse individual who prefers F to G and another 
who prefers G to F. On the other hand, the ordering 2” associated with 
the mean-variance analysis (X GV Y if EX = EY and EX2 < EY2) is 
a complete ordering, i.e., if X and Y have the same mean, either X GV Y 
or X bv X.12 

B. Concavity. We have already noted that if U is concave, X <I Y 
implies EU(X) < EU(Y). Similarly, given any differentiable function U 
which over the interval [0, l] is neither concave nor convex, then there 
exist distribution functions F, G, and H, F >1 G a1 H, such that 
$ U(x) dF < $ U(x) dG, but $ U(x) dG > $ U(x) dH. 

In short, >I defines the set of all concave functions: A function U is 
concave if and only if X <I Y implies EU(X) < EU(Y). 

I2 Another way of making this point is to observe that >V is stronger than >I 
because many distributions which can be ordered with respect to > y  cannot be ordered 
with respect to a1. Clearly there exist weaker as well as stronger orderings than >r. 
One such weaker ordering, to which we drew attention in earlier versions of this paper, 
is the following. A r.v. X which is a mixture between a r.v. Y and a sure thing with 
the same mean-a random variable concentrated at the point E(Y)-is surely leas risky 
than Y itself. We could use this notion to define a partial ordering >M. It is obvious 
that znn implies >I since the difference between Xand Ysatisfies the integral conditions. 
It is also clear that >M is a very weak ordering in the sense that very few r.v.‘s can be 
ordered by >M . In fact if P is the sure thing concentrated at E(Y) than it can be shown 
that Y 2~2’ i f f  X 4 aY + (1 -a) P for 0 < a < 1. This indicates that >M is 
not a particularly interesting partial ordering. We are indebted to an anonymous referee 
for pointing out the deficiencies of >M. 
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IV. MEAN-VARIANCE ANALYSIS 

The method most frequently used for comparing uncertain prospects 
has been mean-variance analysis. It is easy to show that such comparisons 
may lead to unjustified conclusions. For instance, if Xand Y have the same 
mean, X may have a lower variance and yet Y will be preferred to X by 
some risk averse individuals. To see this, all we need observe is that, 
although F <, G * F 2” G (since variance is a convex function), F Zv G 
does not imply F 3, G. Indeed by arguments closely analogous to those 
used earlier, it can be shown that a function U is quadratic if and only if 
X av Y implies EU(X) > EU(Y). An immediate consequence of this is 
that if U(X) is any nonquadratic concave function, then there exists random 
variables Xi , i = 1, 2, 3, all with the same mean such that EX12 < EXz2 
but EX22 > EXs2 while EU(X,) < EU(&) < EU(X,), i.e., the ranking by 
variance and the ranking by expected utility are different. 

Tobin has conjectured that mean-variance analysis may be appropriate 
if theclassof distributions-and thus the class of changes indistributions- 
is restricted. This is true but the restrictions required are, as far as is 
presently known, very severe. Tobin’s proof is-as he implicitly recognizes 
(in [7, pp. 20-21])-valid only for distributions which differ only by 
“location parameters.” (See [3, p. 1441 for a discussion of this classical 
concept.) That is, Tobin is only willing to consider changes in distributions 
from F to G if there exist a and b (a > 0) such that F(x) = G(ax + b). 
Such changes amount only to a change in the centering of the distribution 
and a uniform shrinking or stretching of the distribution-equivalent to 
a change in units. 

There has been some needless confusion along these lines about the 
concept of a two parameter family of distribution functions. It is unde- 
niable that all distributions which differ only by location parameters form 
a two parameter family. In general, what is meant by a “two parameter 
family”? To us a two parameter family of distributions would seem to be 
any set of distributions such that one member of the set would be picked 
out be selecting two parameters. As Tobin has put it, it is “one such that 
it is necessary to know just two numbers in order to describe the whole 
distribution.” Technically that is, a two parameter family is a mapping 
from E2 into the space of distribution functions.13 It is clear that for this 
broad definition of two parameter family, Tobin’s conjecture cannot 
possibly hold, for nothing restricts the range of this mapping. 

Other definitions of two parameter family are of course possible. They 
involve essentially restrictions to “nice” mappings from E2 to the space of 

Is Or some subset of E2; we might restrict one or both of our parameters to be 
nonnegative. 
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distribution functions, e.g., a family of distributions with an explicit 
algebraic form containing only two parameters which can vary. It is easy, 
however, to construct examples where if the variance, G, changes with the 
mean, TV, held constant, aT(y)/W changes sign, where T( y, 02, ,u) = 
si F(x, u2, p); that is, there exist individuals with concave utility functions 
who are better off with an increase in variance.14 

I* Consider, for instance, the family of distributions defined as follows: (a, c > 0). 
(In this example, for expositional clarity we have abandoned our usual convention of 
defining distributions over [0, 11) 

‘0 

F(x;a,c) = 

i 

for x < 1 - 0.25/a 
ax + 0.25 - a for 1 - 0.25/a < x < 1 + (2~ - 0.5)/c - a) 
cx + 0.75 - 3c for 1 + (2c - O.~)/(C - a) < x G 3 + 0.25/c 
1 for x > 3 + 0.25/c 

Two members of the family with the same mean but different variances are depicted 
in Fig. 8(a). They clearly do not satisfy condition (7). The density functions are illustrated 
in Fig. 8(b). 
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