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THE PROBABILITY WEIGHTING FUNCTION 

A probabiliy l~.eigIzrizrirlg firilcrioil l ~ . ( p )  is a prominent feature of several non-expected 
utility theories. including prospect theory and rank-dependent models. Empirical esti- 
mates indicate that n.(p) is regressive (first IL.(P) > p .  then ~ v ( p )  < p ) ,  s-shaped (first 
concave, then convex). and asymmetrical (intersecting the diagonal at about 1/31, The 
paper states axioms for several M/(JI) forms, including the compound invariant, i d p )  = 

exp{-{-lnpIn). 0 < a < I, which is regressive. s-shaped, and with an invariant fixed 
point and infection point at I /e  = .37. 

KEYIVORDS:Expected utility theory, non-expected utility theory, prospect theory. Allais 
paradox. 

THE COMMON-RATIO EFFECT (Allais (1953)) refers to the observation that the 
more risky of two simple prospects becomes relatively more attractive when the 
probability of winning is reduced by equal proportion in both prospects. Thus a 
person who prefers a sure gain of $100,000 over a coin toss for $300,000 or 
nothing, might also prefer a one-in-a-million lottery ticket for $300,000 over a 
two-in-a-million lottery ticket for $100,000. This contradicts expected utility but 
not common sense: There is a world of difference between certainty and a 50-50 
shot; the difference between one or two chances in a million is negligible. The 
example has all the force and simplicity of classical arguments for nonlinear 
utility, where the utility interval from, say $10 and $20, is taken as self-evidently 
greater than the utility interval from $1,000,010 and $1,000,020. Both arguments 
appeal directly to our intuitions about numbers. A major point of difference is 
that the money argument involves a constant money interval and the probability 
argument a constant probability ratio. A minor difference is that in the money 
domain a constant interval has less impact as the numbers get larger, while in 
the probability domain a constant ratio has less impact as the numbers get 
smallei.. 

Putting the two demonstrations side by side like this raises an interesting 
question, namely, whether an account of nonlinearity-in-probabilities can be 
somehow adapted from classical utility theory (modulo a log transformation, 
converting statements about probability ratios into statements about utility 
intervals). Indeed, in their seminal paper on prospect theory, Kahneman and 
Tversky (1979) explained the common-ratio effect by means of a nonlinear 
transformation of probabilities into "decision weights," p -t w(p), with log(w) 

' I would like to acknowledge the invaluable critical effort of Peter Wakker. as well as the many 
suggestions by anonymous referees at Ecoi1or?7errica.R. Duncan Luce, George Wu. and the late 
Amos Tversky. to whom this paper is dedicated. 
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eq 3.5, gains data (T&K, 1992) 

---- eq 3.5, loss data (T&K, 1992) 

. . . . . . . eq 3.6, (T&F, 1994) 

eq 3.5, (W&G, 1996) 

-compound invariance, eq. 3.1 

FIGURE1.-The compound invariant form (solid line) and several empirical probability weighting 
functions. Estimates of the one-parameter equation (3.5) are taken from Tversky and Kahneman 
(1992) and Wu and Gonzalez (1996a); estimates of the hvo-parameter equation (3.6) are taken from 
Tversky and Fox (1994). 

convex in log(p). They called such functions subproporfional. However, they also 
listed other compelling expected utility violations that required additional, 
apparently unrelated restrictions on w(p). 

My objective in this paper is to derive the observed properties of probability 
weighting from preference axioms, relying on the common-ratio effect as the 
basic building block. A fair summary of current knowledge about w(p) is 
displayed in Figure 1, where the dotted and dashed lines reproduce several 
recent empirical estimates. Unlike utility functions, which are characterized by a 
single property-concavity, here we encounter functions that are: 

regressice-intersecting the diagonal from above, 
asymmetric-with fixed point at about 1/3, 
s-shaped-concave on an initial interval and convex beyond that, 
reflectirse-assigning equal weight to a given loss-probability as to a given 

gain-probability. 
Each of these four properties has a distinctive impact on risk attitudes, and, to 

complicate matters, each one is independent of subproportionality. The first 
property, regressiveness, generates the important "four-fold pattern of risk 
attitudes, which is risk-seeking for small-probability gains and large-probability 
losses, and risk-aversion for small-probability losses and large-probability gains 
(Tversky and Kahneman (1992)). This is because the overweighting of small 
probabilities, below the fixed point of the regressive function, enhances the 
attraction of small-p gains (e.g., lottery tickets) and the aversion to small-p 
losses (e.g., rare accidents), while the underweighting of larger probabilities, 
above the fixed point, diminishes the attraction of larger-p gains and the 
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aversion to larger-p losses. The asymmetrical depression of the fixed point below 
p = .5 further reduces the weight of uncertain relative to certain outcomes, and 
so tends to increase risk-aversion for gains and (by reflection) risk-seeking for 
losses. The s-shape property "fits naturally" with regressiveness, but is logically 
independent-one could have a function that is regressive but not s-shaped, 
and vice versa. An s-shape implies that changes in probability have less impact 
as one moves away from the boundaqi of the probability interval, making, for 
instance, an initial sweepstakes ticket seem more valuable than any additional 
ones.2 

Proposition 1, given in Section 3 of this paper, axiomatizes a subproportional 
function, w(p) = exp( -( -In p)"), 0 < a < 1, that satisfies all four target prop- 
erties, and that has an invariant fixed point and inflection point at p = l / e  = .37. 
This form, shown by the solid line in Figure 1, is the weighting function 
counterpart to the power utility function, u(x) =x". I derive also a more general 
form, w(p) = exp( -p (  - In p)"), which is not constrained to the l/e fixed point 
value. Such "compound invariant" functions are simple to estimate, and provide 
a consistent ordering of individuals across several categories of expected-utility 
violations (because a s:naller a-parameter value in: exp( -p(  - In p)"), implies a 
more subproportional, more regressive, and a more s-shaped function). In 
Section 4.1, I show how Pratt-Arrow analysis can be used to generate other 
functional families. Section 5 discusses the complementary work by Tversky and 
Wakker (1995) and Wu and Gonzalez (1996b) on common-consequence related 
properties of the weighting function. 

2. THEORETICAL FRAMEWORK 

2.1. Cumulated Prospect Theory: Notation andAssumptioru 

The results to follow are developed in context of a sign- and rank-dependent 
representation of preferences (Starmer and Sugden (1989), Luce (1991), Luce 
and Fishburn (1991), Tversky and Kahneman (1992), Wakker and Tversky 
(1993)), defined over lotteries on a real interval. Specifically, I follow the 
notation and assumptions of Cumulated Prospect Theory or CPT, specialized for 
the domain of risk (Tversky and Kahneman (1991), Wakker and Tversky (1993)). 
Outcomes are elements, x, y, z ,  . . ., of a real interval, X = [x-,  x'], containing 
positive and negative values, x- < 0<x'. The preference relation 2 is defined 
over the set, 9,of probability distributions, P ,  Q, .. . , on X. 9' and 9- are 
the sets of distributions concentrated on the nonnegative and nonpositive parts 
of X. V(P) represents > if: P 2 Q o V(P) 2 V(Q), for any P ,  Q in 9.Prospects 
are distributions with finite support. CPT preferences are represented by a sign- 
and rank-dependent functional, V(P), with a calue f~~nction c(x) for money 

The four-fold pattern of  risk attitudes was described and documented by Tversky and Kahne- 
mall (1992). Preference conditions equivalent to concavity/convexity have been axiomatized by 
Wakker (1994). Prelec (1995), and W u  and Gonzalez (1996b), and those equivalent to reflection by 
Tversky and Wakker (1995). 
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outcomes, and two probability weightingji~nctions, w+(p )  and w-(p),  for gains 
and losses, respectively (equation (2.0), Appendix 1). Throughout the paper we 
assume the following axioms, taken with minor modifications from Wakker 
(1994): 

ASSUMPTIONAO: > satisfies axioms W1-W6 in Appendix 1, which support a 
sign- and mnk-dependent representation (equation (2.0)) with a ratio scale ~ ' ( x ) ,  
continuo~~sand strictly increasing, and urzique w ( p ) ,  w+(p) ,  continuous on (0, l), 
strictly increasing, and satisfiing ~ ' ( 0 )  = w -(0) = 0, ~ ' ( 1 )  = w -(1) = 1. 

Only three types of prospects matter in this paper: Certain prospects, (x, I), 
abbreviated as (x); simple prospects with one nonzero outcome (0,1 -p ;  x,p),  
abbreviated as (x, p); binav prospects with two nonzero outcomes of the same 
sign (0 , l  -p - q;  x ,p ;  y, q), 0 < 1x1< yl, abbreviated as (x, p;y, q). Hence the 
only parts of the representation that we need to be concerned with are 

Equation (2.2) shows the accounting assumptions of sign- and rank-dependence. 
The binary prospect ( x ,p ;  y, q) may be interpreted as "a 'p + q' chance of 
gaining [losing] at least r(x) and a 'q' chance of gaining [losing] an extra 
~ ' ( y )- ~ ( x ) . ' '  The extension of this idea to more complex prospects is then 
straightforward (equation (2.0) in Appendix 1). A pure rank-dependent model 
arises if: w-(p)  = 1 -w+(l  -p). 

Because the separable equation for simple prospects (2.1) is common to 
several models of risky choice (e.g., Kahneman and Tversky (1979), Quiggin 
(1982), Yaari (1987), Rubinstein (1988), Luce (1988, 199111, those results that 
involve only simple prospects will be highlighted by the following assumption: 

ASSUMPTIONAl :  The restriction of > to simple prospects has a separable 
representation (2.1) with c(x), and w+(p )  satisfiing the conditions in 
Assunzption AO. 

I will omit the superscripts where the distinction between losses and gains is 
not at issue. 
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The mandatoqi axioms in A0 will be supplemented at various points with one 
or more optional conditions, which can be selectively "turned on" to further 
constrain a particular model. The first of these conditions is boundary continu- 
ity: 

BOUNDARY For any y >x > 0 or. 0 >x >y there exist p ,  g E (0 ,1)CONTINUITY: 
such that ( x )  > 01,p )  and ( x )  < ( y ,  q ) .  

This axiom, adapted from Wakker (1994), combines four conditions that 
ensure continuity at p = 0 and p = 1 for gains and losses. 

The next condition states that common-ratio violations will be observed at all 
probabilities. 

SUBPROPORTIONALITY:For any 0 < A < 1, p # g, ( x ,  p )  - (y,  g )  implies: 
( y ,  Aq) > ( x ,  Ap) i f y  > x  > 0 ,  and ( y ,  Aq) < ( x ,  Ap)  if 0 > x  > y .  

The term "subproportionality" abbreviates the more correct "strict subpro- 
portionality in probabilities on every nondegenerate interval.""eak subpropor-
tionality holds if the preferences in the definitions are weak. The function w ( p )  
is [weakly] subproportional if p > q ,  0 < A < 1, implies: w ( p ) w ( A q )> 
[ 2 lw(q)w(Ap) .  

The third and final optional axiom is new to the literature, and has the effect 
of rendering a subproportional w ( p )  diagonally concace, which is to say, concave 
where it is overweighting and convex where it is underweighting. Empirically 
estimated weighting functions have approximately satisfied this requirement. 

The relevant preference axiom involves mixtures of a binary prospect 
( x ,  p ;  y ,  q )  with the sure-thing middle outcome ( x ) , in cases where this outcome 
also happens to be the certainty equivalent for the binary prospect, ( x )-
( x , p ;  y ,  q )  Informally, diagonal concavity of the weighting function precludes 
preferences where a person might like (i.e., dislike) mixtures of ( x , p ;  y ,  q )  with 
( x ) ,  but at the same time dislike (i.e., like) local mixtures of ( x , p ;  y, q )  with 
other binary prospects near ( x ,  p ;  y, q) .  

To state the axiom requires some more notation. Let A + [ s ,  r ]  = { ( x ,  p;  y ,  q)10 
< x < y ,  s ~ q ,  and A- [ s , r l= I (x ,p ;y ,g ) ly<x<O,  p + q < r ) ,p + q ~ r )  s ~ q ,  
i.e., the sets of binary prospects where the probability of the extreme outcome is 
at least s and the probability of the zero outcome at least 1 - r. Preferences are 
quasiconr~ex[resp. quasiconcar~e]on A + [ s ,  r ]  if P - Q implies: Q >_ p P  + (1  -
p ) Q  [resp. Q < pP + (1  - p ) Q ]  for any three P ,  Q ,  and pP + (1  - p)Q in 
A+[s , r ] ,and similarly for A - [ s ,  r ] .  Preferences are certuinly-equirsalent (or  
CE)-quasiconcex [resp. CE-quasiconcace] on  A + [ s ,  r ]  if P - Q implies: Q >_ p P  

"ram a formal standpoint, this definition is unecessarily strong. Most results go through with 
weak subproportionality and at least one strict common ratio violation. 
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+ (1 - ,u)Q [resp. Q < ,UP+ (1 - ,u)Q] for any certain outcome Q, and for any 
P and ,UP+ (1 - ,u)Q in A+[s,r] ,  and similarly for A-[s,r].  (Note that Q E 
A+[s, r], d [ s ,  r], unless s = 0, r = 1. In that case, however, CE-quasiconvexity is 
subsumed by quasiconvexity. Strict means strict preference unless P = Q. 

Proposition 6, proved in Appendix 3, states that the following preference 
axiom is equivalent to the diagonal concavity of the probability weighting 
function: 

DIAGONAL There is no nondegenerate interr'al [s, r ]  sz~clz that 2 isCONCAVITY: 
quasiconcex and strictly CE-quasiconca~le on d + [ s ,I.] or d-[ s, I.], nor quasicon- 
cace and strictly CE-quasiconcex on A+[s, r ]  or AP[s, r 1. 

What might constitute a violation of the diagonal concavity axiom? Here is an 
example. Consider a prospect (10p,$100K) consisting of 10 lottery tickets 
(p-chances) for a $100K sweepstakes, with each ticket tradable for a 10% 
chance at a "consolation prize" of $50. Imagine a person who is: 

(i) not willing to exchange one ticket for a 10% chance of $50. 
(ii) willing to exchange twotickets for a 20% chance of $50. 
(iii) not willing to exchange -all 10 tickets for $50. 
(i) and (ii) indicate quasiconvexity, or probabilistic risk-aversion, as 

(.2, $50; 8p, $loOK) > (lop, $loOK) > (.I, $50; 9p, $loOK). (ii) and (iii) indicate 
CE-quasiconcavity, as (iii) implies that CE > $50, and so from (ii) we have: 
(.2, CE; 8p, $loOK) > (.2,50; 8p, $loOK) > (lop, $1000K) > (CE). Although intu-
itions about probabilistic risk may not be robust, nevertheless the preference 
pattern (i)-(iii) is faintly implausible. A person who is willing to trade some-but 
not all-of the lottery tickets for a better chance at a "consolation prize," 
should, in some sense, derive a greater marginal benefit from trading the first 
rather than the second ticket. 

3. COMPOUND INVARIANCE 

3.1. Compound In~ariance 

Expressed in the indifference mode, an example of a common-ratio violation 
is a pair of judgments like the following: 

($10,000 for sure) - (1/2 chance of $30,000), 
(Schema 1) 

(1/2 chance of $10,000) - (1/6 chance of $30,000), 

which show that certainty is to a coin toss as a coin toss is to a die roll, or, 
w(l)/w(1/2) = w(1/2)/w(1/6). What might this pattern indicate about other 
judgments? 

In this section I consider the implications of a particularly simple extrapola- 
tion of Schema 1. The idea is to require that common ratio violations be 
preserved under probability compounding, as might take place in situations 
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where ultimate success requires one or more indcpcndent successes in a row. 
Suppose that, starting with Schema 1, we could find a dollar value x that 
generates a second schema: 

($x for sure) - (1/4 chance of $30,000). 
(Schema 2) 

(1/4 chance of $x) - (1/36 chancc of $30,000). 

The person in Schema 1 is indifferent between $10.00 and tossing a coin for 
$30,000, and is also indifferent between tossing a coin for $10,000 and rolling a 
die for $30,000. The assumption states that requiring two (or N )  successive wins, 
either on coin toss or die roll, will preserve thc common ratio violation 
structure, after adjusting the dollar outcomes. (This would be true for expected 
utility preferences, except that the die in the example nould have to have four 
sides, rather than six). More generally, we have the following definition. 

DEFINITION if for any outcomes x, y, x', y'1: 2 exhibits compo~lnd in~~arz'ance 

EX, probabilities q, p,  r ,  s E [0, 11, and compounding integer iV 2 1: 


If (x, p )  - ( y ,  q)  and (x, r )  - ( y ,s) ,  then (x ' , pN)  - ( y ' ,q '  ) implies (x', r"")-
(y', s '1. 

In combination with the assumptions of Section 2, compound invariallcc yields 
a weighting function that meets the requirements stated in the introduction to 
the paper. 

PROPOSITI~N1: (A) Let > be a preference i.elatioiz on 9 sati~hzngAO, 
diagonal concuciv, subpr~oportionality and compo~rnd inuariance. Then the weight- 
ing of probab~lities in the representation of 2 is characterized by a uniq~le i'alue 
a,O < a < 1. such tlzut forallp,  0 < p  < 1: 

(B) If > satisfies A0 or A l ,  srrbproportzonali~ and compozrnd in1 ariance, then 
the weighting f~lrzctions are cl~aracteiized by a ,  0 < a < 1, and P', P- > 0: 

(C) If > sutisfies A0 or A l ,  and conzpound inr'ariance, then the weiglzting 
functions are as in (3.2) witlz a ,  P+,  P > 0. The special case, a = 1 ,  yields the 
power funct~orzs: 

(D) If > ~atlsfiesA0 or A l ,  and ~f coinpo~lnd ini ariance holds for probabilities 
in the open zntercal (O,1), t11ert tlze weiglztingfi4nction~ for p < 1 are charncterized 
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by: a: p ' ,  p >  0, and 0 < y i , y - 5  1: 

I will refer to (3.1)-(3.4) as the compound inrlal-iant or CI-family of functions. 
Because the limit of any CI form as p + 0,  is zero, the functions (3.1)-(3.4) are 
all continuous on [ O ,  I ) ,  and continuously differentiable on ( 0 , l ) .  If compound 
invariance holds for all probabilities. as it does on (3.1)-(3.3), the continuity 
extends to the entire interval [0,1]. Boundary continuity is not invoked in the 
proposition: it is rather a consequence of compound invariance. Note that (3.1) 
requires a full sign- and rank-dependent representation (AO);the other forms 
only presuppose a separable representation for simple prospects ( A l l .  

3.2. Expected Utility Plus One Parameter 

Thc axioms behind Propo\ition 1 A  define a highly constrained thcory, adding 
one degree of freedom to EU. For any allowed value of the a-parameter, 
probability weighting is regressive and s-shaped. The common loss-gain weight- 
ing function is intrinsically asymmetric, with a fixed point and inflection point at 
p = l / e  = .37. This particular "signature property" of (3.1) is displayed in the 
left panel of Figure 2, which traces (3.1)for dittcrcnt a .  The derivative of w ( p )  
at l / e  equals a ,  hence thc a-value is also the numerical lower bound for ~ ' ( p ) .  
This also means that we can visually infer a by the slope of the function at the 
inflection point. As a + 1 ,  probability weighting approximates the linear, ex- 
pected utility case. As a + 0, w ( p )  approximatcs a step function, flat every- 
where except near the endpoints of the probability interval. 

0 
p over different orders of magnitudelo-" 

FIGURE2.-The function: w i p )  = expi -(- In p)"). plotted for different a (left panel) and for 
small probabilities with a = .65 (right panel). 
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The a-parameter remains a comprehensive index of nonlinear weighting in 
the more general CI form, equation (3.2). If two functions in (3.2) are parame- 
terized by ( a i ,  Pi) and if a,  < a, ,  it then follows that w,  is: (a) more subpropor- 
tional. (b) more s-shaped, and (c) more regressive than w,:in the usual sense 
that the composition, wI{w; I}, is itself a subproportional, s-shaped, and regres- 
sive function. These comparative statements derive from the fact that 
w,{w,'} is also CI with a = cz,/a2. The p-parameter in (3.2) is a "net" index of 
convexity in that increasing p increases the convexity of the function without 
affecting subproportionality. The y-parameter, which appears only in (3.41, is an 
index of the weight of sure outcomes ( p  = 1) relative to uncertain ones ( p  < 11, 
holding constant subproportionality and convexity on [O, 1). 

The behavior of a CI function near zero is perhaps its most interesting 
feature, both theoretically and for practical applications. The right panel of 
Figure 2 traces out the CI form ( a  = .65, p = 1) over four orders of magnitude, 
ranging from one chance in a thousand (top segment) to one chance in a million 
(bottom segment). The vertical axis in the figure is probability weight; the 
horizontal axis is the probability interval for one order of magnitude, [0, lo-" I, 
with n = 3, 4, 5 , or 6. 

In the picture we see how the CI accommodates three intuitions about the 
decision impact of small chances. First, the weight of ever smaller chances tends 
to zero (continuity). Second, the slope tends to infinity at zero, giving a 
qualitative character to the transition from impossibility to possibility. Third, the 
graph becomes relatirely flattcr at smaller probabilities, capturing the feeling 
that, e.g., two chances in a million are really no different from one chance in a 
million. Formally. one can show that for any p ,q ,  the limit as h + 0 of 
w(hp)/w(hq) equals 1, and that probability weights approximate a step function 
at zero. At the level of preferences, this means that for very small chances the 
money dimension overrides the probability dimension: for any (x, p )  and ( y ,q )  
where x < y ,  there exists a h > 0 such that the prospect with the highcr-prize is 
preferred, ( y , hq) > (x, hp). 

The picture at the other cndpoint is almost, but not quite the same. w(p )  is 
unboundcdly convex at p = 1, by the Pratt-Arrow measure (wl'/w'), and the 
slope. dw/dp, again tends to infinity. However, probabilities near p = 1 are not 
relatively indistinguishable in the same sense as are probabilities near p = 0, 
because the limit as h + 0 of: (1 -w(hp))/(l -w(hq)), p # q, docs not ap- 
proach 1. 

3.3. Eridence on the Locatzon of the Fixed and Inflection Points 

The main theoretical advantage of the onc-parameter form (3.1) over the 
two-parameter form (3.2) is the stability of the fixed and inflection point across 
different levels of nonlinearity. The exact location of this point is perhaps less 
important, provided the l / e  value is not too far off the mark. We can make a 
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rough assessment of the l / e  prediction using published estimates of functional 
forms that do not have an invariant fixed point. Something like this is attempted 
in Figure 1, where the solid line traces equation (3.1) ( a= .65), against estimates 
of 

The four functions in the figure are remarkably close.4 The fixed points inferred 
from Tversky and Kahneman's (1992) estimates of (3.5) are pO= .34 for gains 
and pO= .38 for losses. The estimate for equation (3.6) is pO= .30 (Tversky and 
Fox (1994)). Wu and Gonzalez (1996a, p. 1686) report pO= .39 as the pooled 
fixed point estimate, with equation (3.5). Camerer and Ho (1994) conducted a 
maximum likelihood estimate of (3.5) for nine previously published data sets. 
The mean fixed point value using their nine separate estimates is pO= .35, with 
standard error of .04, which is again close to the conjectured value of .37. 

These parametric estimates are not conclusive, relying as they do on possibly 
incorrect functional forms for w(p) and for money value. Fully nonparametric 
evidence on the location of the inflection point (rather than the fixed point) has 
been collected in a recent study by Wu and Gonzalez (1996a). They constructed 
p-indexed ladders of "common-consequence7' choice pairs, such that preference 
for the less risky prospect in a pair increases with the local slope of w(p) near 
p ,  and is therefore minimized near the inflection point of w(p). The estimate of 
the inflection point is valid independent of assumptions about money value. 
Across the five ladders in the study, the point of minimal preference occurred at 
p-values of p = .37, p = .40, p = .32, p = .15, and p = .35, leading them to 
conclude that the weighting function, "is concave up to p - .40 and convex 
beyond that probability." 

3.4. Application to the Four-fold Pattern of Risk Attitudes 

A concise, global characterization of subproportional CI functions is that they 
are regressive not only with respect to the diagonal line, but also with respect to 
the entire family of increasing power functions. In other words, the subpropor- 
tional CI intersects from above every increasing power function, p <  f i  > 0, I 
will call such functions strongly reg1*essice.-' 

This bears directly on risk-attitudes, at least in the elementary setting where 
the choice is between a risky simple prospect and a sure thing. Here one 

~ ~ u a t i o n s(3.5) and (3.6) are not subproportional at small probabilities, however. 
.' Formally, w(p) is strongly regressive if: Vc > 0. 3pT t ( 0 , l ) such that p t (0 ,p,*) =. w ( p )  > p c ,  

and p t ( p : ,  1)=. w ( p )  < p C .  
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typically observes a risk-seeking for small-p gains and larger-p losses, and a 
risk-aversion for small-p losses and larger-p gains (i.e., the "four-fold pattern" of 
Tversky and Kahneman (1992)). In a sign- and rank-dependent model with a 
linear value function, regressive weighting alone would be a sufficient explana- 
tion of the pattern. However, if value is not linear, then probability nonlinearity 
must somehow dominate money nonlinearity for the pattern to hold. For 
example, to explain risk-seeking behavior with respect to longshot lottery tickets, 
the overweighting of the small chance of winning would have to dominate the 
concavity of the value function, which works against risk-seeking. 

Such dominance arises in representations that combine CI probability weight- 
ing with power functions for money value: 

The relative certainty equivalent for a simple prospect is then itself a CI 
function of probability, as ( c )- (x, p )  implies c"' =xui exp{ -P'( -In p)"), 
or6 

Risk attitude is established by comparing the certainty equivalent and the 
expected value of the prospect, px. Substituting from (3.7), we find that the risky 
prospect (x,p )  will be preferred to the EV whenever 

(for gains, x > 0): c >px- exp{-(p+/a ' ) ( - lnp)"} > p ,  
(3.8) 

(for losses, x < 0): c >px - exp(- ( Pp /a -> ( - l n  p)"} <P.  

For gains, the risky prospect will be preferred at probabilities where the CI 
expression in (3.8) is overweighting, while for losses it will be preferred where 
the CI is undenveighting. Because any CI form with cw < 1 is regressive, 
ovenveighting small probabilities and underweighting larger ones, this confirms 
the four-fold pattern. Notably, it confirms the pattern independent of the 
exponent of the value function, i.e., independent of whether the functions are 
concave or convex; the value exponents only affect the sizes of the risk-seeking 
regions. The nonlinearity of weighting functions overrides the nonlinearity of 
the value functions, in this particular case. 

"he combination of equation (3.1) and a power value function can be estimated with OLS, 
because the plot of relotire certainty equivalents. c/s, against p is linear in double-log coordinates. 
From (3.71, with P = 1,we have 
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3.5. The Coinpounding Factor and s-subproportionality 

Having considered one axiom, compound invariance, one might ask whether 
this is an anomalous special case or whether there are less restrictive axioms, 
conveying similar properties on w ( p )  without forcing a particular parametric 
form. A possibility that immediately comes to mind-the class of all subpropor- 
tional preferences-is clearly too broad, containing functions that are neither 
regressive nor s-shaped. 

A more productive generalization takes its cue from a specific numerical 
implication of CI. By computation with equation (3.2),one can show that there 
exists a compounding factor, p, such that for any probability p,  

( X I  - ( y , p )  implies ( x , p )  - ( y , p  P = 2'1" 
i.e., w ( ~ ) '= w(pP)  for p = 21 /a .The CI function in Figure 1, with a = .65, 
yields a compounding factor value of p = 2.9. In this case, it would take 
(approximately) a cubing of probabilities to produce a squaring of probability 
weights. Of course p =  2 is the only value consistent with expected utility 
preferences. For subproportional preferences, p > 2, but the exact value of p 
will depend on the probability in the definitional schema, ( x )- ( y ,  p )  & ( x ,  p )  -
( Y ,  p 

The condition I now state requires that there exist a minimal value s < 0 such 
that at any base probability level, the compounding factor differs from 2 by at 
least s: 

DEFINITION 2 is E-subproportional if subproportional and if 2: We say that 
there exists an E > 0 such that for all 0 < x  < y ,  and probabilities, 0 < p  < 1, 
( x )- ( y ,P )  implies ( x ,p )  < ( y ,P ~ + ' ) ,and for all y <x < 0 ,  ( x )- ( y ,  p )  implies 
(x,p )  > ( y ,  p2+ 6) .  

Compound invariant preferences satisfy the definition for any 2 < 2 + E < 2 ' / " ,  
provided a < 1. 

PROPOSITION2: Let 2 be a preference relation on 9satisjjing A 0  or Al, and 
E-subproportionality. Then the weighting function of probabilities in the representa- 
tion of 2 is strongly regressiue. 

Although Definition 2 makes much weaker demands on the preference 
relation than Definition 1, it still implies a weighting function whose global 
shape and boundary nonlinearities are qualitatively similar to the CI form. In 
particular, the approximation to a step function at zero, shown in Figure 2, 
would also be a property of any strongly regressive weighting function. 

4.PRATT-ARROW CLASSIFICATION OF SUBPROPORTIONAL FUNCTIONS 

In utility theory, the basic functional forms are introduced as hypotheses 
about how risk aversion depends on wealth. Thus the exponential and power 
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functions for u(x) define the hypotheses that absolute or proportional risk-aver- 
sion is invariant with respect to absolute or proportional changes in wealth. 
Stating these hypotheses requires, in turn, a precise definition of greater or 
lesser risk aversion, one that permits comparison of two utility functions, or of 
the same function before and after a given transformation (Pratt (1964)). 

The situation with probability weight is similar. A general theory of functional 
forms for w(p) should begin with a definition of greater or lesser divergence 
from the linear norm. In Section 5, I will discuss proposals by Tversky and 
Wakker (1995) and Wu and Gonzalez (1996b) that take the Allais common-con- 
sequence effect as the effective measure of nonlinearity. In this section, how- 
ever, I look at comparative nonlinearity in the context of common-ratio viola- 
tions, i.e., of subproportional weighting functions. For simplicity, I consider only 
positive outcome prospects. 

Comparing two preference relations, we use the following definition. 

DEFINITION3: is at least as subproportional as k2 on 9Tif for any 
probabilities p > 1. 2 q > s, and outcomes 0 <x <y, 0 <x' <y', (x, p) -,(y, q) ,  
(x, 1.1-,(y, s), and (x', p )  -, (y', q )  implies (x', r )  < ,(y', s). 

Kahneman and Tversky (1979) pointed out that subproportionality implies 
convexity of the weighting function in log-log coordinates, which is to say, 
convexity of the w-function,' 

Indeed, the ordering of preference relations by subproportionality is the same as 
the ordering of the w-functions by convexity: 

PROPOSITION3: Assume that 2, and 2, are two preference relations on 9' 
satisfiing A0 or A1 and boz~nrEnry continuity, with weighting fi~nctions, w,(p) and 
w2(p), representing 2, and 2, , respecticely. Then, conditions A ,  B, and C are 
eqzlicalent : 

(A) 2, is at  least as sz~bproportional as k2; 
(B) w ,(w, {z)) is a weakly subpr-oportional fi~nctiotz of z; 
(C) w,( w; '{z)) is a convex f~rnction of z, with o,(ln p )  = In w,(p). 

Proposition 3 offers a general recipe for generating subproportional weighting 
functions. Taking any increasing, strictly concave "utility function," u(t), t 2 0, 
we can reflect u(t) into the negative domain, w(t) = -LL(- t), and create a 
weighting function, w(p) = exp( o(ln p)), that is subproportional and continuous 

' Tversky and Wakker (1995) derive a result similar to 3AB but for subadditivity. rather than 
subproportionality. 
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on (0,1).8 As a practical matter, if we were only interested in empirical 
estimation we could borrow such forms and compare w(p) = exp( -u( - In p ) )  
against data. However, in utility theory the forms are justified by intuitions 
about how the risk-premium might depend on wealth. In the probability domain, 
the formal counterpart to a risk-premium has little significance. To engage our 
intuition we have to go directly to the axioms that support particular functional 
forms. I illustrate this with three examples. 

4.2. Compound Incariance as the "Constant-Relatice" Benchmark 

The first example, we have already encountered in Section 3. The w-function 
for the CI form, equation (3.2), is w(ln p )  = -P( - In p)", which has constant- 
relative Pratt-Arrow convexity, (-In p )o" /o l  = a.  I now restate the compound 
invariance axiom as follows. For any preference relation, 2 ,  define the com- 
pounded preferences, 2", as 

Compound invariance is just the claim that 2" and 2 are equally subpropor- 
tional, in the sense of Definition 3. Actual preferences might systematically 
deviate from invariance in one of two directions. If 2'' is observed to be more 
subproportional than 2 , i.e., if common-ratio violations are more common after 
compounding, then preferences exhibit increasing-relatke subproportionality (or 
IRS). The other possibility would correspond to the decr-easing-r-elatiue or DRS 
class. 

4.3. Conditional Incariance 

A second Pratt-Arrow benchmark, "constant-absolute" subproportionality, 
also flows from a simple property of preference. Let us return to the schema at 
the start of Section 3: 

($10,000 for sure) - (1/2 chance of $30,000), 
(Schema 1) 

(1/2 chance of $10,000) - (1/6 chance of $30,000), 

and require now that common ratio violations be preserved under the propor- 
tional reduction of probabilities, as might correspond to a scenario where 
ultimate success is made conditional on some other independent event. The idea 
is that starting with Schema 1 and a conditional probability (e.g., 1/2) we can 
find a dollar value x that generates a second schema: 

(1/2 chance of $x) - (1/4 chance of $30,000), 
(Schema 3) 

(1/4 chance of $x) - (1/12 chance of $30,000). 

More generally, we have the following definition. 

%e\e functional forms may be generated by taking advantage of the fact that if w,(p) and w?(p) 
are subproportional, then so are the functions wl(p)w,(p). w1(w2(p)), and max(w,(p). w?(p)}. 
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DEFINITION 2 exhibits conditional invariance if for any outcomes x, y, x', 4: 
y' E X ,  probabilities q, p ,  r ,  s E [O, 11, and "conditional probability" A, 0 < h < 1: 

If ( ~ , p )  - (y, q) and (x, 1-1- (y. s), then (x', hp) - (y', hq) implies (x', hr) -
(y', As). 

Actual preferences can systematically diverge from the axiom in two direc- 
tions. Let 2, denote the "conditional" preferences, (x, p )  2,(y, q) if (x, hp)  2 
(y, hq). Then 2 exhibits increasirzg-absolute subproportionality or IAS if 2, is 
as subproportional as 2 , and decreasing-absolute subproportionality or DAS if 2 
is as subproportional as 2, . The functions implied by the invariant, constant- 
absolute case are given below: 

PROPOSITION4: (A) Let 2 be a preference relation on 9' satisfying A0 or A1 
and conditional inzwiance. Then the weighting function forp  > 0 in the representa- 
tion of 2 is either an exponential-power filnction, 

(4.2) w(p )  = expi :- -(1 - p a )  , a + 0, P > 0, 

or a power function, 

(B) If 2 satisfies A0 or A l ,  and conditional incariarzce holds for probabilities in 
the open interr'al (0, I), then the weightingfiinction for 0 < p  < 1 is yw(p), where 
0 < y 5 1 and w(p) is either (4.2) or (4.3). 

(C) If 2 satisfies A0 or A l ,  and conditional incariarzce, then the axiorns: 
subproportionality and bounda~y continuity, are inconsistent. 

The exponential-power function is subproportional for a > 0. However, a 
sufficiently small P can render it concave and overweighting on (0, I), hence 
regressiveness and s-shape are not generic properties in the sense that they are 
with CI. A more important difference is noted in part C of the proposition. 
Equation (4.2) has a positive limit as p + 0, which creates discontinuous 
weighting at zero (the other possibility, (4.3), is not subproportional). Going 
beyond this specific example, any w(p) function whose w-function, equation 
(4.1), has a finite lower bound as In p + -x will be discontinuous at zero. In 
particular, w-functions that exhibit increasing absolute convexity in the direction 
of smaller probabilities will be b ~ u n d e d . ~  Therefore, of the three possibilities: 
decreasing-, increasing-, or constant-absolute, only the decreasing case can 
accommodate subproportionality and continuity at p = 0. 

There is no clear argument in favor of increasing vs. decreasing relative 
subproportionality as a more likely departure from the constant case-at least 
nothing like the continuity argument favoring the decreasing absolute case. It is 

This follows from standard utility theoi-y results (Pratt (1964, Theorems 1 and 8)).  The CI 
function is decreasing-absolute. constant-relative. 
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perhaps interesting that among functions that are diagonally concave, continu- 
ous on [O, 11, and twice differentiable on (0, I), there exists a connection between 
the location of the fixed point and the direction of relative subproportionality. 
Specifically, a diagonally concave IRS function cannot have an interior fixed 
point above l/e,  and a diagonally concave DRS function cannot have one below 
l / e  (Prelec (1995)). 

4.4. Projection Invariance 

Our final example illustrates a DAS-IRS function. Let us return again to 
Schema 1 and observe that (r ,  s)  are related to the first pair ( p ,  q) by the factors 
1/2 and 1/3: r = (1/2)p, s = (1/3)q. In other words, the smaller value in the 
initial pair q = 1/2, has to be reduced by a greater factor than the larger value, 
p = 1. Suppose that starting with Schema 1, we could then generate a new 
indifference judgment by multiplying the left and right side chances by 1/2 and 
1/3: 

In the general case, we have the following definition 

DEFINITION5: 2 exhibits projection incariance if for any outcomes x, y EX, 
and probabilities q, p ,  r ,  s E [O, 11: (x, p )  - (y, q )  and (x, rp) - (y, sq) imply 
(x, r'p) - (y, s'q). 

The axiom is the simplest of the three invariances because it involves two 
outcomes, x and y, and three preference judgments, instead of the four out- 
comes and four preference judgments required to disconfirm Definitions 1 or 4. 

PROPOSITION be a preference relation on 9' satisjjing A0 or A1 5: (A) Let 2 
and projection inrariance. Then 2 is weakly subproportional, and w(p) is either a 
power futzction, (3.3), or a hyperbolic logarithm, 

(B) If 2 satisfies A0 or A l ,  and projection inr~atiance holds for probabilities in 
the open interr~al (0,1), then the weighting function for p < 1 is y w(p), where 
0 < y 5 1 and w(p) is either (4.4) or (4.3). 

Equation (4.4) is regressive, diagonally concave if: ( a  + P )  - P ln(cr + P )  = 1, 
cr + P 2 1. Under this constraint, the fixed point falls within the interval 
(1/e2, l/e). This is proved in Appendix 2, after the derivation of (4.4). 
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As noted in 5A, weak subproportionality is an implication of projection 
invariance. This is a bit surprising, because, on the face of it, Definition 5 does 
not preclude a supr-aproportional common-ratio violation, which would be 
diagnosed by the pattern p > q and r < s. However, the axiom has no solutions 
that might accommodate such a combination of probabilities. Regarding the 
other "essential" properties, the hyperbolic-log is typically regressive and s-
shaped, but, just like the exponential power function, equation (4.21, it becomes 
concave and ovenveighting when f i  is very small. This failure of generic 
regressiveness and s-shape again highlights the special qualities of the CI form. 

5. COMPOUND INVARIANCE AND THE ALLAIS COMMON-CONSEQUENCE EFFECT 

In addition to the common-ratio effect, the 1953 article by Allais contained a 
second class of counterexamples of which the following "certainty effect7' is 
perhaps the most famous: 

(11% chance of $1,000,000) < (10% chance of $5,000,000), 
(Schema 4) 10% chance of $5,000,000 

(S170007000for sure) > 89% chance of $1,000,000 

The second pair of prospects are derived from the first pair by adding a 
"common-consequence" to both sides, in this case a .89 probability of $1M. In a 
rank-dependent representation, Schema 4 leads to the inequality: w(1) -w(.99) 
> w(.ll)  -w(.10), showing that, in the domain of gains, the marginal impact of 
the worst centile is greater than that of the 11th best centile. Many such 
common-consequence examples have been studied. For instance, the following 
schema (Prelec (1990)): 

(2% chance of $20,000) > (1% chance of $30,000), 
(Schema 5) 

(34% chance of $20,000) < 1% chance of $30,000 
32% chance of $20,000 

generates an inequality in the interior of the probability interval: 14.02) - 14.01) 
> ~ 4 . 3 4 )-w(.33). The generic difference between common-consequence and 
common-ratio schemas is that the former tell us about the ordering of intervals, 
w(p + A )  -w(p) versus w(q + A) -w(q), while the latter tell us about the 
ordering of ratios, w(dp)/w(p) versus w(dq)/w(q). 

Is the ordering of intervals, as related by common-consequence violations, 
consistent with the ordering of ratios, as revealed by common-ratio violations of 
expected utility? Fortunately, the answer to this question appears to be Yes. The 
implications of common-consequence violations for w(p) have been explained 
in recent papers by Tversky and Wakker (1995) and Wu and Gonzalez (1996a, b). 
Tversky and Wakker show that the generalization of the classic Schema 4, and a 
"dual7' common-consequence effect, is equivalent to s~~badditicity of the weight- 
ing function, which holds if there exist boundary constants E and E' 2 0 such 
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that 

w ( q ) > w ( p + q ) - w ( p ) ,  p i - q 1 1 - ~ 2 1 ,
(Subadditivity) 

1 - w ( 1 - q ) 2 w ( p + q ) - w ( p ) ,  p 2 s 1 2 0 .  

Tversky and Wakker observe that "violations of subadditivity are rare." The 
results of Wu and Gonzalez (1996b) are in the same spirit. They show that more 
general classes of common-consequence schemas are equivalent to w(p) being 
concave or convex on an interval. Schema 5, for instance, supports concavity on 
the interior interval (.01,.34). Both papers provide comparative propositions 
showing that greater subadditivity (Tversky and Wakker (1995)) or concavity/ 
convexity (Wu and Gonzalez (1996b)) is equivalent to more common-conse-
quence violations "of the right kind." 

A subproportional CI function is subadditive, as is any strongly regressive 
function.") The compound invariance assumption is thus compatible with most, 
if not all, current evidence on common-consequence violations of expected 
utility. Furthermore, within the family of compound invariant preference rela- 
tions, the ordering of relations by more common-ratio violations (in the sense of 
Definition 3) coincides with their ordering by more common-consequence viola- 
tions (in the sense of conditions (6.3) and (6.4) in Tversky and Wakker (1995)). 
This is because a CI form with a smaller a is both more subproportional and 
more subadditive. 

The coherence of the two Allais paradoxes within the CI framework illus- 
trates a more general proposition. If common-ratio violations exceed some 
&-minimum (as in Definition 21, then the slope of w(p) at zero and one is 
unbounded (Proposition 2). These endpoint nonlinearities are independently 
confirmed by the certainty effect and by the four-fold pattern of risk attitudes. 
This does not mean that one behavioral paradox is primary and the others 
derivative. What it suggests, instead, is that the form of the probability weighting 
function is overdetermined by the empirical evidence, with more than one road 
leading to the same end. 

Sloan School of Management, E56-320, Massachusetts Instit~lte of Technology, 
Carnblz'dge,MA, U.S.A. 

12.liirzusci.ipt receii.ei1 Augrrst, 1995; firla1 recisioil raceii3ed August, 1997. 

I 0  To  prove that any strongly regressive function, including the CI, is subadditive, let p" equal the 
fixed point of the f~~nct ion ,  pa = w ( p 0). and pick p + q  < p o .  Then w ( p  + q )  > p  + q ,  and w ( p  + q )  
= ( p  + gIC,for some c < 1. It follows from g <I) + q  and strong regressivity that w ( q )  > q' = ( q / ( p  
+ q ) ) ' ( p+ g)' = ( q / ( p  +(I))' w ( p  + q ) ,  as w ( p  + q )  = ( p  + q)'.  But c < 1 then indicates that 
( q / ( p  + g))' > q / ( p  + q ) ,  or ~ ( q )> ( q / ( p  + q ) ) w ( p+ q ) ,  and, by the same token, that w(p)> 
( p / ( p  + q ) ) w ( p+ q ) ,  proving: ~ ( p )+ w ( q )> w ( p  + g ) ,  for boundary constant pa.A similar argu- 
ment shows that the second line in the definition of subadditivity holds as well. This proves the 
formal claim. Tversky and Wakker also indicate that the boundary constants E ,  E' ought to be small, 
which cannot be derived from strong regressiveness alone. However. the special CI form, equation 
(3.11, does imply small E,  E ' .  
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APPENDIX 1: REPRESENTATIONAL ASSU~IPTIONS 

This appendix collects axioms from Wakker (19941, which together with the results in Wakker and 
Tversky (1993) are sufficient for the sign- and rank-dependent representation. Let 2 denote a 
preference relation on the set, 2,of probability distributions, P, Q.. . . , on X = [,Y-, s C ] ,  with 
s - <  0 < x C .  Prospects are distributions with finite support. The following five axioms are assumed to 
hold on 9 without restriction: 

W3. CERTAINTY-EQ~IVALEIUT For ill1 P t1ier.e ex-ists ctrl s sitclz tlziit (x)- PCONDITIOY: 

W4. C O N T I I U ~ I T Y  IN PROBABILITIES: ( y . p )  > (x) ,  0 < p  < I ,  tlzeri there exist q,  i.If s~lc11 thcit 
q < p  < r.. (y, q )  > (XI, and (J., there exist q, i. rcrclz illatr ) > (.XI. If (y,  p )  < (XI, 0 < p  < 1, then 
q < p  <I. ,  ( y ,q )  < (.XI aild ( ) , ; I . )< ( X I .  

Now define S(k, /I), 0 5 ic 5 11, as the set of all k nonpositive and (n - k )  no~lnegative rank-ordered 
11-tuples from X , S ( k . n ) = { ( x  ,,...,.Y , , ) E X "  :.x, s . . .  ss,sOss,_,s . . .  s s , , ) .  

W5, SIMPLE-COIUTIIUUITY: For. ilizy probnbi/ih i'ector ( p , ,  .. . ,p,,) tlze preference l~lcitiorz indctced 011 

ecich S(k,  11) is corltinuolls. 

The central (and final) axiom is trade-off consistency, restricted to prospects that are sign- and 
rank-order compatible. Let ( s ,  p,: x _ i ,  p _ i )  indicate a prospect wit11 outcome s of rank "i" singled 
out. and let 9 ( k ,  11, p )  denote the set of all rigrl- ilrid rank-order conil~atihle prospects that have a 
p-chance of yielding a negative outcome: .P(k ,  11, p )  = {(.*.,,p , ; .. . ,x,,,p,,) : (.r,,.. .,r,,)E S(k, 11) and: 
p ,  + ,., +!IA =p) .  

W6. TRADEOFF COSSISTESCY:There do not exist eight prospects, (I,p,:a - i ,  p - i),  i.u, p i ;  b - i ,  p - i),  
( x ' , l ~ ! ; a - ~ , p - ~ ) ,( y J , p , :  b - i , p - i ) .  ( ~ ' , q ~ : c - ~ , q - ~ ) ,  ( , ~ . q ] ; c - ~ , q - ~ ) ,i ~ . ' , q ] ; d - ~ , q - ~ ) ,  cirzd 
(y,  4,; d - j ,  q -j), scrclz tilot the first fozlr. iznd the secorid focir belorzg to tlze saiiie sigrz- aiirl i.ilnk-oi.der 

cornl~atible set, arzd that: 

The necessity of this condition is straightforward to check. Because the first four prospects are 
sign- and rank-order compatible, the terms involving p , , a  - i , b  - i ,  and p - i  will cancel out after 
applying (2.11, yielding: L,(X) - c(y)  2 ~ ' ( x ' )- i ,(yJ). Because the second four prospects are also sign- 
and rank-order compatible, the terms involving ql, c j , d  j ,  and q will also cancel out, yielding 
the contradictory ordering, i,(x) - i , ( ~ . )< i (XI)- i , iyf) .  

In view of Observations 8.1 and 8.4 of Wakker and Tversky (1993), assumptions W1-W6 conform 
to the requirements of their Theorem 6.3, which ensures a CPT representation with unique, 
nondecreasing weighting fiinctions. satisfying lz~(0) = 0, w(1) = 1, and a ratlo scale value function. 
(Theorem 6.3 of Wakker and Tversky (1993) gives a representation for uncertainty; in the presence 
of W2 it extends to the case of risk, as shown by Wakker (1990)). A prospect P = (x,, p , ;  . . .; a , , ,  p,,),  
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x, I... I x ,50 IX,+, < ... s s , , .  would be evaluated as: 

Distributions are handled by the nat~lral contin~lous generalization of (2.0). Considering only the 
restriction of > to nonnegative and nonpositive prospects, Theorem 12 of Wakker (1994) proves 
that W1-W6 imply, first, that w + ( p )  I&,-( p )  are strictly increasing on [O, 11 and continuous on (0, I), 
and second, that if W4 is augmented by boundaq continuity then they are also continuous at p = 0 
or 11 = 1, respectively. 

APPENDIX 2: PROOFS OF PROPOSITIOSS1-5 

PROOFOF PROPOSITION1: 1 prove the four parts of Proposition 1 in reverse order, D. C, B, and 
A. Proposition 6, which is invoked in the proof of part A. is proved in Appendix 3. 

PROOFOF PROPOSITIOS1D (Gains): The proof is based on a functional equation in Aczel (1966. 
Theorem 2, p. 1531, which gives the only solution to 

for p. constant, 0 < p. < 1, and i., t , , t2 positive, as 

with A # 0, C i0. 
To  prove Proposition 1. I show that compound invariance gives rise to (Al.1) with h(t) = 

In(w(exp(-t))). Once (A1.1) is established. ~ r ( p )  is derived by inserting the solutions in (A.1.2). 
solving for w, and refining the constants so that the representational assumptions in A0 are satisfied. 
Specifically, these assumptions would be violated if w(p)  is nonincreasing at some p ,  or if w(p) = 0 
for p # 0, or if ~ v ( p )  is unbounded on (0, l) .  

PROOF: I first show that compound invariance holds for any rational exponent, not just integers. 
Define [ (p ,  r, q, i.) = ~v(p)rt,(.s)- 1v(q)~,(i.).Pick any p ,  q, i.,s such that [ ( p ,s, y,i.) = 0, and choose 
positive outcomes .x.y such that. L ' ( x ) / L ' ( ~ )  ri~(q)/w(p) n:(s)/~v(r) (such s ,  y exist because 1.  is= = 

a continuous ratio scale). From r i~(p) i , ( r )  = lv (q)~ ' (y)and w(r.)i.(s) = w(s)i(),), we have (.x, p )  -
01,  q )  and (s, i.) - (y,  s). For any integer A', pick outcomes x',y', such that c'(s ')/i.(y1)= 

w ( q ~ " ) / ~ ( ~ ~ " ) ,or (B,p ''1 - (y,  q."). Compound invariance then implies that (x', r. ') - (y ' ,s.'), or 
M;(I..')L,(X')= w(s.')L~(J,'). Cancelling i ' (a ' )  and i,(y') from = w(q.')i~(y')M J ( ~ ' ) ~ . ( X ' )  and 
~ ( i . . ')i.(xi) = ll ,(sh )c,(yJ), yields W(~." )W(S." )  - w(q" )w(i..') or [ (p" ,  s.", q ', r. ') = 0. Hence, for 
any probabilities, p ,  q,  r ,  s ,  and any integer A', [ (p ,  s, q,  1.1 = 0 implies [(p.', s.', q.', i..' ) = 0. Be- 
cause [ is strictly monotonic in each argument it follows, also, that [ (p ,  r, q, i.) > 0 implies 
[(p.", s.', q.', i..' ) > 0 (if not, and [(p.', s.", q ', I..' ) < 0, then by decreasing the first two arguments 
and/or increasing the second two one could bring about [ (p ' ,  st, q', r ' )  = 0 while 

", sf.' ,qf.', rl.' < [(p.', s.', q.'. r. ') I0). Likewise [ (p ,  s ,  q, r.)  < 0 implies [(p.', s.', q.', I..' 1 < 
0. Consequently, [ (p ,  s, q,  i.) = 0 if and only if [(p.', s.', q.', r.' ) = 0. Therefore, [ (p ,  s, q,  1.1 = 0 also 
implies sl/.' ', ql/.\ ,  = 0, as as [(p."/.', r.lf/.' .zf / .v, .\i/ 2' ) = 0, for any positive 

integers, I\[, N. This shows that for any positive rational, h = N/I\[, (a,p )  - 0 . .  q), (.x, r )  - (y, s), 
and (x ' ,p"  - iy',  q"l imply (x',I.'') - 0;'. s"l. 
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Now pick any pair of positive reals t , . t2 ,  and any rational h > 0. Define probabilities p, q, r., and 
outcomes I,y, x', y', such that 

I .=  exp(-t,), 


q = w-'(,/-), implying ~ ( q ) '= ~ V ( ~ I ) W ( I . ) ,  


Correct q exists because w is continuous, strictly increasing on (0, l) .  Correct x, y, s',y' exist by 
continuity of ~ ( x )  and the fact that i,(0) = O .  Jointly w(p)w(r.) = w(q)' and i , (s) / i , (y)  = w(q)/w(p) 
imply (x,  11) - (y, q), and (x. q )  -01,I . ) ,  while i,(xO/i ( y J )  = w(q"/w(p" implies (I!,p" - (y', qh) .  
Invoking compound invariance we extend to (a',  q" - (y1,r."), i.e., r(s')/c.().') = W(I."/M;(~"), 
which combines with i.(x')/r(y') = w(q"/w(p" to show that r ~ ( ~ " ) w I . "  = i~.(q"". This proves 
that M ; ( ~ ) W ( I . )  = ~ ( q ) '  implies w(p")w(r." = w(q"'?, or, letting h(t) = I11 w(exp(- t)), i.e., 1 d p )  = 

exp(lz(-In p)), that h(-In P) + h(-ln I.) = 211(-In q )  implies h(-A I11 p )  + h(-h I11 r )  = 

2 h (  h In q )  Solving for -In q and -h In q, 

From the first line of (A1.3). we have: -h In q = Ah-'{.jh( - In p )  + . jh(  - In r . ) ) ,  which we may set 
equal to the bottom line of (A1.3) to produce 

after substituting for t , , t2. Both sides of the equality are continuous in A, as h(t) = In w(exp(-t)), 
with w(p) continuous, strictly increasing 011 (0, I), and A, t , ,  and t2 strictly positive. Because the 
equality holds for every positive rational A, it follows, by taking limits of both sides, that it holds also 
for any positive real A. Hence h(t) = In w(e-') satisfies the functional equation (Al.1). The first 
solution lz(t) =AtC + B yields w(p) = exp(A(- In p ) C  + B), A ,  C # 0. Monotollicity implies that 
AC < 0. The case A > 0, C < O is unbounded. The case A < 0, C > 0 is given in (3.41, with u = C, 
P =  A ,  y = e  xp(B). The normalization w(1) = 1, constrains: y 5 1. The second solution, h (p)  = 

A In t + B, yields w(p) = eB(-ln p I A ,  which is unbounded for A < 0 and decreasing for A > 0. 

PROOFOF PROPOSITIOS1D (Gains and Losses): To prove that w ' ( p )  and 1t,-(p) have the same 
value of the a-parameter, note that compound invariance allows us to reflect a common-ratio 
schema from the positive into the negative domain, and vice versa. Therefore, (-1-1- ( y , p )  and 
(x,p )  - (y. q )  also implies (2) - (PV,p )  iff ( z ,p )  - (PV, differs from the q), even if the sign of ~ & P V  
sign of x&y. Because the probabilities in each schema uniquely determine the value of the a 
parameter-and these probabilities are the same-the value of a must be the same in both w + ( p )  
and w-(p).  The remaining parameters, P ,  y are not determined by preferences over simple 
prospects; hence they may be distinct in the gains and loss part of the representation. 

1C, 1B, 1A: Direct computation with (3.4) shows compound 
invariance with p = 1 is only possible for y = 1, proving 1C (take (I)- (y, q), (x, q )  - (y,  s), 
(x ' )  - (y', q2),  x + y ,  and show that (sf,q 2 )- (x', s') fails unless y = 1). Subproportionality implies 
that (4111 p )  = In w(p)  is strictly convex (viz. Proposition 3) which can only be satisfied for a < 1, 

PROOFOF PROPOSITIONS that 
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proving 1B. By Proposition 6, diagonal concavity precludes ~ ( p )strictly ovem~eighting and convex 
on any nondegenerate interval. For the twice differentiable equation (3.21, this means that the fixed 
and inflection points coincide. Computation with (3.2) sho\vs that this forces ,8 = 1 in equation (3.21, 
proving 1A. 

PKOOFOF PKOPOSITIO~~ denote an 2: I only prove the proposition for the case of gains. Let 
e-subproportional weighting function and wp a power function, wp = p  p. The proof involves 
establishing two claims. The first claim is that P V ~can cross wp at nlost once: the second claim is that 
iv, must cross rib trt leirst once. 

Consider the functions (d and 9,defined by 

co is the graph of w(p) in log-coordinates, and $ the graph in double-log coordinates. Because w(p) 
is continuous, strictly increasing on ( O . l ) ,  it follows that to(ln 11) is continuous. strictly increasing on 
the negative reals, and that & ( - I n ( l n  p)) is continuous. strictly increasing on the entire real line. 
If po is a fixed point of MI, then I11 po is a fixed point of to, and -In( - In po  ) is a fixed point of I//. 
Note also that the $-graph of a power function is a linear function with slope equal to one: 

To prove the first claim. of at most one intersection. I show that subproportional preferences imply 
that the slope of iii, on any nondegenerate interval is strictly less than one. By Proposition 3, 
subproportional preferences indicate that the w-function is convex. i.e.. that for any probabilities 

q < P >  

o 1 1 p  l n p
>-

w,(lnq) l n q  

(Recall that subproportionality is defined as "strict on any nondegenerate subinten,al," hence w is 
strictly convex on any subinten,al.) Because w,(ln p )  = - e x p (  cii,( - In( - In p))). from (A2.1), this 
means that 

exp(-c'i,(-In(-Inp))) In p I n p>--=-
e x - I - 1 - 1  q In q -In q ' 

01. that - $z( - In( - In p)) + I/J~(- In( -111 q)) > I n (  In p )  - In( - In q). i.e., dlp(- In( - 111 p)) -
I - 1 - 1  q < - In( - I11 p )  - ( - ln( - In q)), or 

for any -In(- In p )  > -Ill( I n  q). Therefore, the slope of iii, on any nondegenerate interval is 
strictly less than one. Because ci!, has slope exactly equal to one (A2.21, the two graphs can intersect 
at most once, with I / J ~  intersection ci!, from above. 

To prove the second claim, of at least one intersection, I define, 

where the value of e is taken from I / J~ ,  and N is any integer, positive or negative. I then show that 
the difference. I//;' - dlii', has no upper bound as A' + -m, nor lower bound as A' + + m. 
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The preference conditions given by c-subproportionality, (1)- (y,  p )  * (x,p )  < (?,P' r ) ,  indi-
cate that ,,(.\-)= i.v(p)l,(y)=, w(p)i , (x)< ~v(p"")i,(y), i.e., 

1 - ( n l n 1 )  > - ( ( I ' ) (fro111 A4.1). 

= - & , . ( - I n ( - I n p ) l n ( 2  + c)). 

In particular, for -In( - In p )  = N hl(2 + c ) ,this implies 

for any integer N.  By induction, we have. 

die" ' -$F<NIn2,  f o r X r l ,  
(A2.4) 

$2- 11i: > A' I11 2, for A' 5 - 1. 

(The second line can also be read as 112- dl;' < (-Ar)ln 2, for N 2 - 1.) 
The difference between cji, and dlo can IIOW be expressecl as the sum of three terms: 

l;iev - d, .v ( [ I,i6'? - Illt1 (11 + ( I,!!; - ) + (dl; 

-- ( - I - f 2 + e + ! - t i )  (from A2.2) 

For positivc N, we substitute for di: - I/,,"from the top line of (A2.3) to obtain the incqualitj 

Because e > O and (1/,0 - d$ is a constant. the difference, $2- (1%". nus st be negative for sufficiently 
large N. For negative :V, we substitute for 11,) it?- from the bottom line of (42.3) to obtain the 
inequality. 

showing that the difference, di;' - cis'. must be positive for suLficicntly large N.  Conscqucntly, the 
two graphs have at least one intersection. As we have previously shown that I,/J~ and 119can intersect 
at most once. this proves that there i s  a unique intersection point. with the 8-s~~bproportional 
function intersecting the power function from above. 

PROOFOF PROPOSITION =3-(C) (A): Assunle that (A) is lalse, and that we have probabilities 
p >r.2q > s, and outcomes x <y.  x' <y', such that (x, -Z (v,  g), (x, r . )  - 2  (y , s), and (s', p )  -, 
(yt ,q) .  but (1'.r . )  >, (y', 7). Applying the separable formula to each relation and cancelling i , ( x )and 
L . ( J ) ,we arrive at w,(p)/w2(r.) = w2(q)/w2(.r) ,  and ~: ,(p)/w,(r . )< w,(q)/wl(s). In terms of w-func-
tions, $(In p )  = In I L , ( ~ ) ,  r . ) )  = exp(wl(ln q))/exp( wz(ln s)), andthis implies exp(coz(ln p))/exp(cd,(ln 
exp(co,(ln p))/cxp(w,(ln r.)) < exp(co,(ln q))/exp(cd,(ln r)), or col(ln p )  - w,(ln r . )  = (02(111q )  -
w2(ln s), and ~0,(111p )  - w,(ln r . )  < w,(ln (1) - w,(ln 7). Consequently, 

) $;-
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which, in view of In p > In r. r In q > In r ,  contradicts the claim (B) that w, is a convex transforma- 
tion of w2. 

TO prove, (A) =,(C), pick any O < s < r. 5 q < p  s 1. such that 

Substituting co(ln p )  = 111 tr(p), we call rewrite this as 

Because each r , , ( , x )  is a continuous ratio scale ~+iith r(0) 0,we can also choose x < y ,  x' i),'.= such 
that 

(A3.3) implies w ~ ( ~ I ) I , ~ ( . Y )  = w2(q)v2(j)  or ( x , ~ ) )  - ?  (y, q) ,  (A3.4) implies ~v,(p)u,(x ' )  = wl(q)i,,(y') 
or (x', (3)  -, (y',  q), while (A3.2) and (A3.3) jointly imply ~ i~~(r . ) i . , (x )  w,(s)I.~(L.) (.x, 1.).= or (y, S) - 2  

Because 2, exhibits more common-ration violalions than 2, , it follows that (y'; s )  2: (x',r ) ,  i.e.. 
M : , ( S ) I , ~ ( ~ ' )2 t ~ ~ ( r . ) i . ~ ( . ~ ' ) ,or t ~zJ,(I . ) /M',(~) .  with (A3.3)I ~ ~ ( J ~ ' ) / L ~ , ( . Y ' )  Cornbilling this inequality 
yields ~ ~ ~ ( ~ ~ ) / t v ~ ( q )  or exp w,(ln p)/exp w,(ln q )  2 exp w,(ln r)/cxp wl(ln s), or2 w,(r.)/w,(s), 
w,(ln p )  - co,(In q )2 co,(ln r . )  - w,(ln 5 ) .  In view of (A3.11, this shows that for any nonpositive 
In p > In q r In r.> In s ,  the equality w2(ln p )  - co2(ln q )  = w2(ln r.) - w,(ln s)  implies eo,(ln p )  -
w,(ln q)  2 col(ln r.) - co,(ln s), which proves that w, is a convex transform of (02 011 t 5 0. 

Thc equilalence of (B) and (C) follows from thc definitions. Wcak subproportionality. w(p)w(Aq) 
-> w(q)w(Ap), for p > q , l  > h > 0, may be rendered as rv(p)/w(Ap) 2w(q)/w(Ap), i.e., w(ln p )  -
(o(ln p + In A )  2 w(ln q)  - &(In q + In A), for 0 > In p > In q,  O > In A. Hence eo(l11 p )  ii convex iff 
rr(p) is weakly subproportional. 

PROOFOF PROPOSIIIOSS4 .AND 5: Thc proofs are based on a second functional equation in Aczel 
(1966; Theorem 2.p. 1531, which gives the only solutions to 

for p constant, 0 < p < 1, and i , t,, t, positive ~s 

with A + 0, C + 0. To  prove Propositions 4 and 5, one shows that both prcference patterns give rise 
to one of these forms, specifically: 

(i) g(t)  = ln(w(exp(-t))), for conditional inv? ,rlance,' 

(ii) g(i)  = In(w-'(exp( - t)}), for projection invariance. 
Once (-44.1) is established, the corresponding ~ d p )  forms are derived by inserting the solutions in 

(A4.2), solving for I+:, and refining the constants to meet whatever other axioms apply in a particular 
case. 

PKCIOFOF 40:  AS with Proposition 1, I first prove the more general case (4B), where conditional 
invariance is assumed to hold only for probabilities in the open interval (0, I). For any positive 
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0 , t l ,  t2 ,  define probabilities A, p, q, r and outcomes x , y, I', y', such that 

= { implying w(qI2 = w ( p ) w ( r ) ,  

Correct q exists because w is continuous, strictly increasing on (0,l). Correct x , y, x ' , y' exist by 
continuity of c (x)  and the fact that c(0) = 0. 

Now, w(p)w(r)  = w(q)' and c(x)/c(y)  = w(g)/w(p) jointly imply ( x , p )  - (y,  q), and (x, q )  -
(y,  r), while e(xf)/c(y ')  = w(hq)/w(hp) implies (x',  Ap) - (y',  Aq). Invoking conditional invariance 
(Definition 4) we can extend this to (x',  hg) - (y' ,  Ar), i.e., c(x')/c(y') = w(hr)/w(Ag), which 
combines with ~ ' (x ' ) / c (y ' )  = w(hq)/w(Ap) to show that w(hp)w(hr) = ~ ( h g ) ~ .This proves that 
w(p)w(r) = w(q)' implies w(Ap)w(Ar) = w(hq)', or letting h ( p )  = ln w(p), that h ( p )  + h(r)  = 

2h(q) implies h(hp)  + h(Ar) = 2h(Aq) Solving for q and hq, 

From the first line of (A4.31, we obtain Aq = + . jh(r)), which we may set equal to the ~ h ' { . 5 h ( ~ )  
bottom line of (A4.3) to produce 

with g( t )  = h(exp(-t)), h-'{t) = exp(-g-'{t}). Hence g( t )  = In w(exp(-t)), or g ( l n  p )  = In d p ) .  
The solution, g ( 1 n  p )  = lnpv(p) = A ln p + B. yields w(p) = eBIIYA, while g(-111 p )  = 111 w(p) = 

~ e - ''"" + B = A ~ '+ B yields w ( p ) = e x p ( ~ p - '  + B). The first solution is the power function in 
(3.2). For the second solution, monotonicity implies A C  < 0. This corresponds to ~ w ( p )  where w(p) 
is given in equation (4.2) in the text, with cu = -C, P = -AC. y = exp(A + B). 

PROOFOF 4A: Direct computation with w(p), w(p)  either (4.2) or (4.31, shows that conditional 
invariance with p = 1is only possible for y= 1 (take (x)  - (x, q )  - (y,  s), (x') - (y', .jq), x i y, and 
show that (x ' ,  . j q )  - (x',  5 s )  fails unless y = 1). 

PROOFOF 4C: By 4A, conditional invariance implies ~ v ( ~ )  of the form (4.2) or (4.3). Subpropor- 
tionalitp is inconsistent with (4.3). The w-function for (4.2) is w(ln p )  = (-P/cu)(-pa), or w(t) = 

(-p/cu)(l - exp(at)), which is convex for n > 0. Hence subproportionality implies u > 0. The limit 
as 11+ 0 of equation (4.2) is then exp(- P / a )  > 0, which violates boundary continuity. 

PROOFOF 5B: I take the two parts in the order 5B, jA.  First I will slightly rephrase the statement 
of the projection illvariallce axiom. Note that in the context of our separable representation with 
continuous, strictly increasing w(p), the axiom (x, p )  - (y, q )  and (x, rp) -01,sq) * (x, r2p)  -
(J),s2g), also implies (x, p )  - (y, g )  and (x, r'p) - (y ,  s2g)* (x, rp) - (y ,  sq). Letting r '  =pr2 ,  q' = 
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sq2,  this indicates that, (x, p )  - (y, q )  and (x,  r ') - (y, 3') - (x,(r'/l-')jl-') - (jl,(s '/q)'q), i.e., 


( x , p )  - ( y , q )  and ( x , r J )  - ( y , s ' )  * (x,p5r.") - ( y , q " s f 5 ) .  


Now for ally positive L:,t,, t?, define probabilities p ,  q, r, s and outcomes x, y ,  such that 


where w, = lim{w(p)) as p -t 1. Correct x, y exist by continuity of c(x)  and the fact that ~ ' ( 0 )  = 0. 
Correct p ,  q,  r, s exist because w is a continuous, strictly increasing map of (0 , l )  onto (0, w,). To  
show that w(p)  is indeed continuous at zero, observe that projection invariance implies, in 

particular, that (x)  - (y, q )  and (x, q )  - (y,  sq) * (x,  q 2 )  - (y,  s'q), and by induction, for any integer 
N 2 1, that (x, q"') - (y, sAb).  Hence for any N, w(q ")c'(x) = w(s"q)c(y), or c(x)/c(y)  = 

w(sl~rq)/w(q"'), which indicates that the limit as N + m of w(qN)  is zero (othenvise the limit of the 
ratio, w(s'vq)/w(q"), would equal one). 

Combining lines one, three, and five in (A5.1), yields: w(p)r,(x) = w(q)c(y), i.e., (x, - (y, q); 

combining lines hvo, four, and five yields: w(r.)c(x) = w(s)c(y), i.e, (x,r . )  - (y, s). By projection 
invariance, we may infer that (x,  p ' r 5 )  - (y, q 5s.5), or 

~ ( x ) w ( p ' r5 ,  = ~ ( y ) w ( q  4sq '1 

Substituting for p ,  q, r., s, x, y, from (A5.11, 

and writing 

we substitute first for w -'{w, exp( -t)]: 

Then, taking logs, we substitute for In w(p)  from (A5.21, to obtain the basic functional equation 
(A4.1): 

As g( t )  = In w-'{w, exp(-t)), the first solution, g ( t )  = A t  + B, yields the power function: w(p)  = 

wl ~ X ~ ( B / A ) ~ - ' / ~ .  w,((ln p The second solution, g ( t )  =A&' + B, yields the log-hyperbola: w(p)  = 

-B ) / A ) + ' / ~ .  The case, B 5 0 is inconsistent with the representational assumptions. Hence B > 0 
and A < 0. By monotonicity, C < 0, yielding, 

w ( p ) = y ( l - a ~ n p ) - ~ ' " ,  a , P , y > O ,  

with a =  1/B, /3 = BC, y = ~ , ( - A / B ) ' .  The condition w(1) = 1 constrains y I1. 

PROOFOF 5A: From 5B we know that ol > 0 in (4.4). The w-function for (4.4) is w(ln p )  = 

( - p/,)ln(l - ol In p) ,  or w(t) = ( - /3/a)ln(l - a t ) ,  which is convex for ol > 0. Hence (4.4) is 



PROBABILITY WEIGHTING FUNCTION 523 

subproportional. The other solution, (4.3), is weakly subproportio~~al. Hence preferences must be 
weakly subproportional. To  show that y = 1, take ( s )  - (y, q), (.u, q )  - (y, sq), x # y, and show by 
direct computation that for either (4.4) or (4.3), the implication (x,  q 2 )  - (y , s2q)  fails unless y = 1. 

To  assess the implications of diagonal concavity, I first define the inflection point in terms of the 
w-function, w(ln p )  = In w(p), which wc can rewrite as exp( w(t)) = w(exp(t)), for ex&) = p ,  t = 

In p .  Differentiating once yields wl(t)exp(w(t)) = exp(t)wf(exp(t)). and hvice yields w1(t)'exp(w(t)) 
+ w"(t)exp(w(r)) = exp(t)wf(exp(t)) + exp(2t)wU(exp(t)). Dividing the left and right terms in the 
secoad-order equality by the left and right terms in the first-order equality, gives 

= 1 if t is an inflection point 

The o-function associated with (4.4) is w(t) = -( P/cu)ln(l + a t ) .  If to is a fixed point. then 
cut" = -p ln(l - cut" 1. If to is also an inflection point, it follows from the above expression that 
a + p = 1 - u t'. Eliminating a t o  yields the constraint ( a  + P )  - /3 In(a + P )  = 1. Letting a = a + 
p, we may writc a = ( a  ln(a) - (a - l))/ln(u), and P = (a  - l)/ln(n), with a .  p > 0 implying a > I ,  
To  compute thc lower and upper fixed point bounds, we exprcss to as 

Applying I'Hopital's rule twice yields f'(ir)/gt'(a) = -(l + a 1 ) ,  which, in the two limits. at a = 1, 
and a + +m,  equals -2  and -1, respectively. Therefore, the fixed point probability lics between 
C 2 ( =  ,141 and e l ( =  37). 

APPENDIX 3: PROOF OF PROPOSITION DIAGOUAL6, OU C O N C ~ V I T Y  

I derive here a general result on diagonally concave representations, which is needed in the proof 
of Proposition 1.As in the text, let A ' [ . r ,  r ]  = ((x,p;  y, q)lO < x  < y .  s s q, p + q 5 r ) and A-[s, r ]  = 

{(I, p ;  y, q)l y <x < 0, s sq, p + q s r), i.e., the sets of binary prospects where the probability of the 
extreme outcome is at least s and the probability of the zero outcome at least 1 -I.. I first state and 
prove the proposition for gains, and thcn briefly discuss the proposition for losses. 

PROPOSITION reliifion 011 .9+6 (Gains): Let 2 be 11 subproportionnlpr~ferei~ce sntifiii~gAO. Tlzer? 
for. any intewal [s, r], 0 < s < r < 1, the follott~ing two conditiolls c1r-c. cqui~.alerzt. 

(i) 2 is quusiconi'~,x and strictly CE-q~lnsiconcai~e A+[.s, r ]  [respectic'ely, 2 is qunsiconcac'e and on 
strictly CE-q~c~rsiconcex A+[ s, r I]; on 

(ii) w + ( p )  is corzcw and strictly o~'ci~veig!ztiizg on [s, r ]  [respectirely, coilcare and strictly ~rnder- 
weighting on [s, 1.11. 

The restriction of [s; 1.1 to the interior of the probability intcrval takes account of the possible 
discontinuities of lu'(p) at the endpoints. If w + ( p )  is continuous on [O, 11 then the statcrnent of 
Proposition 6 can include s = 0, r = 0. 

The proof requires two separate steps. The first step, in Lcmma 1, involves translating concavity 
or convexity of the weighting function into the language of preferences. Here I apply Wakker's 
(1994) full-interval argument to the subinterval [s, I.]. The second step involves translating over- and 
under-weighting into the language of preferences. This is donc in Lemmas 2 and 3. The key point is 
the use of CE-quasiconvexity to derive an inequality, (A6.31, that supports conclusions about the sign 
of w(p) -p.  

LEMMAI: L'irder flze assumnptions ill Propositioi~ 6;2 is quasiconc,ex [q~lnsicom?cal,e] on A+[s, 1.1 iff 
w + ( p )  is coni.e,r [ C O I I C ~ L ~ ~ ]  011 [s, I.]. 
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PROOF: If ~ t + ( p )is convex on [s, r ]  then quasiconvexity follows by direct application of the 
rank-dependent formula. Wakker (1994, Theorem 24) proves the converse for the special case of full 
probability inter-al, s = 0, r = 1,  and the main idea in his proof can be applied to any [ s ,  r ] .  Suppose 
that 2 is quasiconvex on 3 + [ s . r ] but that W + ( P )  is not convex. In that case, for some 
s s p  < q s r ,  and 0 < p <  1 ,  

If q < r ,  then because w f  is strictly increasing there is a p:' E ( q ,  r )  at which w +  has finite right 
derivative. Define prospects P = (s.q'g- j ~ :y, p ) ,  Q = (x, p" - q ;  y, q ) ,  for q <p" < q'@< r ,  with 
c(x) = vo < 1 = ~ ' ( y )adjusted so that P - Q ,  i.e., 

By quasiconvexity, P,  Q 2 pP + ( 1  - p)Q so that p V ( P )  + ( I  - p)V(Q)  2 V(pP + ( 1  - p)Q) ,  or 

which yields 

Dividing by the left and right sides of (A6.2) produces a sum of two fractions: 

that must be nomlegative for all s < p  < q <p* < q* < r.. if indeed preferences are quasiconvex on 
A + [ s ,  r ] .  By (A6.1) the first fraction is strictly negative, which means that the second fraction must 
be positive. However, as w + ( p * )has finite right derivative, the second fraction can be brought down 
to zero by drawing q-own to p". Consequently, whenever ( A 6 . l )  involves a strict subi~lterval of 
[ p , q ]we can construct a contradiction of quasiconvexity. But, if (A6.1) holds for p = s, q = r ,  it will 
also hold for some subinterval, in which case we are again able to create a quasiconvexity violation. 
Hence WF is necessarily convex. This proves Lemma 1. 

L E ~ I ~ I A2: Under the assumptions of Proposition 6, i f ' w + ( p )  is concace and underw~ighting or1 [ s ,  r ] ,  
then 2 is CE-qz~asiconuex on A+[ s, r ] .  If w+( p )  is coni,e.x and ocenveighting on [ s ,  r ] ,  then 2 is 
CE-qz~nsiconcnr'eon A + [ s ,  I .] .  If either concavity/concexity or zinder/ocerweighting is strict, then the 
relevant preference property is strict. 

PROOF: Consider a sure outcolnc Q = (s). and prospects P = ( x ,  q - p ;  y ,  p )  and p Q  + (I - p ) P  
= (s,p + ( 1  - p)(q - p ) ;  y; (1 - p)p) .  Preferences will bc CE-quasicon\~ex with respect to these 
three prospects if P -Q implies Q 2 pP + ( 1  - p)Q. which is to say, p V ( P )  + (1  - p ) V ( Q )  2 V(pP 
+ (1 - p)Q) .  Let c ( y )= 1> 1'" = C ( X )(note that r. is a ratio scale). Applying thc rank-dependent 
fornlula for binary prospects, equation (2.21, we have: 

Q - P  implies v" = (1 - 1 3 "  ) w + ( p )+ vo w + ( q ) .  
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Cancelling the (1 - co ) / L O  ratlo from both equations yields 

Lemma 2 now follows immediately. Assume w + ( p ) is concave and underweighting on [ s , r ] .By 
assumption, P and p P  + ( 1 - p ) Q  are in A + [ s ,I . ] ,  hence s < p  - p p  < q + ~ ( 1- q ) 5 r. Under-
weighting implies w + ( p )  5 p  and 1 - w+(cl)> 1 - q ,  so the left side in (A6.3) is not less than 1. 
Concavity and p 5 q imply that 

which proves the right side in (A6.3) is not greater than 1.Therefore, the inequality in (A6.3) holds, 
and preferences are CE-quasiconvex. Strict CE-quasiconvexity arises if the left side in (A6.3) is 
strictly less than one, and/or if the right side is strictly greater than one, i.e., for strict undenveight- 
ing and/or strict concavity of w + ( p )on [ s ,r.]. 

LEMMA3: Under. the ass~lmptions of Proposition 6 ,  w + ( p )  > p  [ < p ]  implies that 2 is tzor 
CE-qunsicotzi,ex [not  CE-quasiconcai.e] on uny A + [ s ,  r.] with s < p  < r.. 

PROOF: Note first that under the assumptions of Proposition 6 ,  w + ( p )  is absolutely continuous 
because subproportionality implies that the function, o(ln p )  = In w + ( p ) is convex, and therefore 
absolutely continuous. Because w +  is also strictly increasing, w + ( p )  > p  implies that there exists a 
p" near p ,  such that s <p* < r., w + ( p * )  > p * ,  and w+ has a finite, nonzero derivative at p". Now 
letting p = q  =p::: in (A6.31, CE-quasiconvexity on A + [ s , r ] implies that for all p such that: 
s s p  - p p ,  (1 + p(1 - q ) 5 r,  we will have 

Differentiability at p" with nonzero derivative implies that the right side approaches one as p -t 0; 
the left side, however, is a constant strictly less than one, as w + ( p * )  > p " .  Therefore the inequality 
reverses for sufficiently small F ,  and 2 is not CE-quasiconvex on any A + [ s ,r.] such that s < p  < I.. 

To prove Proposition 6 it is sufficient to show that for any nondegenerate interval [ s , ~ . ] ,  
quasiconvexity and strict CE-quasiconcavity of preference on A + [ s ,  r ]  is equivalent to the statement 
that w + ( ~ )is convex and strictly ovenveighting on [ s ,  r ] .  A similar argument would show that 
quasiconcavity and strict CE-quasiconvexity of preference on A + [ s ,r.] is equivalent to the statement 
that w + ( p )is concave and strictly undenveighting on [ s ,  r.]. 

PROOFOF PROPOSITION Quasiconvexity and strict CE-quasiconcavity imply that w + ( p ) is6(*): 
convex and strictly ovenveighting on [ s ,  r.]. We take the two implications in turn: 

(i) By Lemma 1, quasiconvexity implies that w + ( ~ )is convex. 
(ii) It remains to be shown that w + ( p )is strictly overweighting on [ s , r ] .I prove the contraposi- 

tive, i.e., if w + ( p )is not strictly overweighting, then either quasiconvexity or strict CE-quasiconcav- 
ity must fail. On the assumption that w + ( p )is not strictly overweighting, either w + ( p )  = p  on all of 
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[ s , r ]or w + ( p )  < p  for some p E ( 3 , ~ ) .If w + ( p )  = p ,  then it is also concave and undenveighting, 
which, by Lemma 2, implies CE-quasiconvexity, hence failure of strict CE-quasiconcavity on 
3 + [ s , r ] .If, however, w + ( p )  < p  for some p,  then by Lemma 3, preferences are not CE-quasicon- 
cave on d + [ s , r ] .Therefore, w + ( ~ )must be strictly ovenveighting on [ s ,  r ] .  

PROOF(=): w + ( ~ )convex and strictly ovenveighting on [ s ,  r ]  implies quasiconvexity and strict 
CE-quasiconcavity on A + [ s ,  r ] .  We take the hvo implications in turn: 

(i) By Lemma 1, w + ( p )  convex implies quasiconvexity on d + [ s , r ] .  
(ii) By Lemma 2, w + ( p )  convex and strictly overweighting implies strict CE-quasiconcavity on 

3 + [ s ,  r ] .  

The loss-version of Proposition 6 has a parallel statement and proof, but with reversal of 
quasiconcavity and quasiconvexity, and of CE-quasiconcavity and CE-quasiconvexity. 

PROPOSITION 2 be a subproportionalpreference relation 011 9 satistjing A0 .  Then 6 (Losses): Let 
for any interc3al [ s ,  r ] ,  0 < s < r < 1, the following nvo conditions are equicalent: 

(i) 2 is quasiconcace and strictly CE-q~~asiconc'ex L [ s ,  r ] ,  [respectively, 2 is quasiconcex and orz 
strictly CE-quasiconcac.e on L [ s ,  r ] ] ;  

(ii) w - ( p )  is concex and strictly ocenveightirlg on [ s ,  r ]  [respectively, concave and strictly zmder- 
weighting on [ s ,  r 11. 

COIVIMENTSON THE PROOF: The proof follows the same sequence in Lemmas 1-3, with parallel 
prospect-constructions. In particular, Lemma 1 for losses asserts that 2 is quasiconcave [quasicon- 
vex] on A - ( s , r )  iff w - ( p )  is convex [concave] on [ s , r ] ;Lemma 2 for losses asserts that w - ( p )  is 
concave and undenveighting on [ s ,  r ]  implies 2 is CE-quasiconcave on 3 - [ s ,  r ] ,  and w - ( p )  convex 
and ovenveighting on [ s ,  r ]  implies 2 is CE-quasiconvex on 3 - [ s ,  r ] ;  Lemma 3 for losses asserts 
that w - ( I ) )  > p  ( < p )  implies that 2 is not CE-quasiconcave [not CE-quasiconvex] on any 3 - [ s ,  1.1, 
s < p  < r. In terms of constructions, the generic positive binary prospect, P+= ( x ,  q - p ;  y ,  with 
0 < co = C ( X )  < 1 = c ( y ) ,  evaluating as V ( P + )= (1 - co ) w + ( p )  + co w + ( q ) ,  is replaced by a "re-
flected" counterpart, P-= ( x ,  q - p ;  y ,  p ) ,  with 0 > -1,' = c ( x )> - 1 = c ( y ) ,  evaluating as V ( P - )  
= - ( ( I  - co ) w - ( p )  + 1'" w - ( q ) ) .  In the proofs, statements about probabilistic risk-attitude for 
losses lead to opposite inequalities at the level of the weighting function, e.g., as in the central 
(A6.3).The flow of the argument is othenvise the same. 
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