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Abstract

We present a definition of increasing uncertainty, in which an elementary increase in the

uncertainty of any act corresponds to the addition of an delementary betT that increases consumption

by a fixed amount in (relatively) dgoodT states and decreases consumption by a fixed (and possibly

different) amount in (relatively) dbadT states. This definition naturally gives rise to a dual definition

of comparative aversion to uncertainty. We characterize this definition for a popular class of

generalized models of choice under uncertainty.
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1. Introduction

Most formal analysis of economic decisions under uncertainty has relied on concepts of

subjective probability. Significant advances in the discussion of preferences in the absence

of well-defined subjective probabilities, and in understanding the relationship between

preferences and subjective probabilities, have been made by Schmeidler (1989), Machina
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and Schmeidler (1992), Epstein (1999), Epstein and Zhang (2001) and Ghirardato and

Marinacci (2002).

The analysis of economic decisions in the absence of well-defined subjective

probabilities has often been referred to in terms of the distinction of Knight (1921)

between risk and uncertainty. However, Knight’s discussion of the role of insurance

companies and the Law of Large Numbers makes it clear that his conception of risk was

confined to cases where objective probabilities can be defined in frequentist terms and

where risk can effectively be eliminated through pooling and spreading. All other cases,

including those where individuals possess personal subjective probabilities, were

effectively classed by Knight as involving uncertainty. The distinction now commonly

drawn between driskT and duncertaintyT could not be developed properly until the

formulation of well-defined notions of subjective probability by de Finetti (1937) and

Savage (1954).

The first writer to clearly identify cases where preferences were inconsistent with

first-order stochastic dominance, relative to any possible probability distribution, was

Ellsberg (1961) who distinguished between risk (subjective probabilities satisfying the

Savage axioms) and ambiguity, leaving uncertainty as a comprehensive term. Therefore,

consistent with the usage of Savage and Ellsberg and with usage in the general

economics literature, we will use the term uncertainty to encompass all decisions

involving nontrivial state-contingent outcome vectors, whether or not the preferences

and beliefs associated with these decisions can be characterized by well-defined

subjective probabilities. Events for which subjective probabilities are (respectively, are

not) well-defined will be referred to as dunambiguousT (respectively, dambiguousT) and
problems involving acts measurable with respect to unambiguous events will be said to

involve driskT. Our usage is consistent with Ghirardato and Marinacci (2002) and Epstein

and Zhang (2001).

Epstein and Zhang (2001) provide a rigorous definition of ambiguous and

unambiguous events, and lay the basis for an analysis of preferences under uncertainty

including both risk and ambiguity.1 In light of this, the definition proposed by Epstein

(1999) for a comparative ambiguity aversion relation over preference relations can now be

stated in a solely preference-based and functional-form-free manner. However, questions

of when one act is more uncertain or more ambiguous than another are not addressed in

these analyses, except in the polar case where one act is ambiguous and the other is

unambiguous. Ghirardato and Marinacci (2002) propose a definition of comparative

uncertainty aversion: one preference relation is more uncertainty averse than another, if

whenever the latter relation expresses a weak preference for a constant act (that is, one that

will yield the same outcome no matter what state of the world will obtain) over another

act, then so must the former relation. They do not consider, however, the question of when
1To the best of our knowledge, the only other definitions based solely on preferences are those provided by Sarin

and Wakker (1998), Nehring (1999, 2001), Ghirardato and Marinacci (2002) and Ghirardato et al. (2004). In other

papers such as Gilboa and Schmeidler (1994), Mukerji (1997) and Ryan (2002), the analysis focuses on a class of

preference relations that admit a specific functional form. The criteria for what constitutes an ambiguous or

unambiguous event are then defined in terms of a property or properties of the specific functional form

representation that each of these preference relations admits.
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one act is more uncertain than another except in the polar case where one of the acts yields

a certain outcome.

By contrast, the concept of an increase in risk, and the economic consequences of

increases in risk, have been analyzed extensively, beginning with the work of Hadar and

Russell (1969), Hanoch and Levy (1969) and Rothschild and Stiglitz (1970). These

authors independently derived and characterized the second-order stochastic dominance

condition (in terms of mean-preserving spreads), under which all risk-averse expected

utility maximizers will prefer one probability distribution to another. Quiggin (1993)

introduced an alternative notion of monotone (mean-preserving) increase in risk, defined

in terms of comonotonic random variables instead of mean-preserving spreads.

Landsberger and Meilijson (1994) pointed out that this notion of increase in risk

coincides with the Bickel and Lehmann (1976) notion of dispersion of random variables

with equal means. Yaari (1969) argued that because any lottery is, by definition, a

dmean-preserving spreadT of its mean, the weakest notion of risk aversion simply

requires that the mean of a lottery for sure is weakly preferred to the lottery itself.

Subsequent studies examined a wide range of generalizations of these stochastic

dominance conditions, typically associated with more restrictive conditions on utility

functions. Other papers that have extensively analyzed the concept of increasing risk in

the context of generalized expected utility models include Chew et al. (1987),

Chateauneuf et al. (1997), Grant et al. (1992), Quiggin (1993) and Safra and Zilcha

(1989).

Most concepts of increasing risk that have been considered in the literature are

inherently dependent on the existence of well-defined subjective probabilities. This is

obviously true of mean-preserving increases in risk because the mean depends on

probabilities. Even notions such as that of a compensated increase in risk (Diamond and

Stiglitz, 1974), which do not depend on mean values, incorporate probabilities in their

definitions. Yet, the intuitive concept of an increase in the uncertainty of a prospect does

not seem to depend crucially on probabilities. To take a simple example, doubling the

stakes of a bet surely increases the uncertainty associated with that bet, regardless of

whether the parties have well-defined and common subjective probabilities regarding the

event that is the subject of the bet.

The main object of this paper is to examine concepts of increasing uncertainty that are

independent of any notion of subjective probabilities. A natural starting point is to

consider whether existing concepts of delementary mean-preserving increases in riskT, such
as monotone spreads and Dalton transfers, yield useful results when reference to

probability distributions and means is dropped. We show that the monotone spread

concept is robust to this generalization, but that concepts based on Dalton transfers,

including the Rothschild–Stiglitz definition of increasing risk, have no content in the

absence of well-defined probabilities. More precisely, the transitive closure of the analog

of the Rothschild–Stiglitz definition turns out to be the trivial total ordering that includes

every ordered pair of acts.

Any definition of increasing uncertainty naturally gives rise to a dual definition of

comparative aversion to uncertainty. We characterize this definition for a popular class of

generalized models of choice under uncertainty.

Proofs of the results, unless otherwise stated, appear in the Appendix.
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2. Preliminaries

Setup and Notation. Denote by S ¼ f N ; s; N g a set of states and E ¼ N ; A; B N ; E; Nf g
the set of events which is a given r-field on S. We take the set of outcomes to be the set of

nonnegative real numbers, or dconsumption levelsT. An act is a (measurable) real-valued

and bounded function f :SYRþ. Let f Sð Þ ¼ f sð ÞjsaSf g be the outcome set associated

with the act f, that is, the range of f. Let F ¼ N ; f ; g; h; Nf g denote the set of acts on S;
and let F 0 denote the set of simple acts on S; that is, those with finite outcome sets. We

will abuse notation and use x to denote both the outcome x in Rþ and the constant act with

f Sð Þ ¼ xf g.
The following notation to describe an act will be convenient. For an event E in E,

and any two acts f and g in F , let fEg be the act which gives, for each state s, the

outcome f(s) if s is in E and the outcome g(s) if s is in the complement of E (denoted

S n E).
In general, for any finite partition P: ¼ A1; N ; An

� �
of S and any list of n acts (h1, . . .,

hn), let h1
A1h

2
A2 N hn	1

An	1h
n be the act that yields hi(s) if s is in Ai.

Letc be a binary relation over F , representing the individual’s preferences. Letd and ~

correspond to strict preference and indifference, respectively.

Given c, for any act f in F , we define the dat least as good as fT set as the set

cf ¼ gaF :gcff g.
An event E is deemed null for the preference relation c, if, for all f and g in F , fEg~g.

We say a sequence of acts fn converges in the limit to f in the topology induced by the

sup-norm, written fnYf, if, limnYl supsaS jfn sð Þ 	 f sð Þj ¼ 0.

The only maintained assumptions we make on this preference relation is that it is a

continuous preference ordering and satisfies a weak form of monotonicity.

Axiom 1. The preference relation c is a continuous weak order: that is, it is transitive and

complete and, for any of sequences of acts hfni and hgni, such that fnYf and gnYg, if

fncgn for all n, then fcg.

The following monotonicity axiom, weaker than what is usually assumed, is sufficient

for our purposes.

Axiom 2. The preference relation c is monotonic. That is, if for any pair of acts, f and g in

F , f(s)zg(s)+e, with eN0, for all s in X, then f dg.

We can prove that any preference relation c on F satisfying the axioms above may be

characterized by a unique certainty equivalent of the form

m fð Þ ¼ sup xaRþ:fcxg:f

2.1. An elementary increase in uncertainty

Under what circumstances may we view one act as being more uncertain than another?

Given a probability measure exogeneously defined over the state space, it seems

uncontroversial to denote any act as more risky than the constant act which yields the

mean outcome of that act (evaluated according to that probability distribution) in every
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state. Other statistical partial orderings, such as second-order stochastic dominance or the

Rothschild–Stiglitz definition of more risky, can also be invoked. However, in the absence

of exogeneously given probabilities, it seems more natural to build up a dmore-uncertain-

thanT partial ordering over acts by considering the simplest operation that can be

performed on an act that unequivocally increases the uncertainty associated with that act.

The most elementary operation that we believe unequivocally increases the uncertainty

associated with an act is one that involves adding an delementary betT to that act. The

addition of an elementary bet increases consumption by a fixed amount in the (relatively)

dgoodT states and decreases consumption by a fixed (and possibly different) amount in the

(relatively) dbadT states. We refer to the addition of such a comonotonic elementary bet as

an elementary increase in uncertainty.

Definition 1. Fix a pair of acts f ; gaF . The act g represents an elementary increase in

uncertainty of the act f, denoted gUf if there exists a pair of positive numbers a and b, and
an event EþaE S; t

� �
such that: (i) for all s in E +, g(s)	f(s)=a; (ii) for all s in S n Eþ,

f(s)	g(s)=b; and (iii) sup f sð Þ:saS n Eþf gV inf f sð Þ:saEþf g.

Correspondingly, we define a notion of comparative uncertainty aversion:

Definition 2. Fix cand ĉ. The preference relation c is at least as uncertainty averse at f

as ĉ if for any gUf, f ĉ g implies f cg. The preference relation c is everywhere at least as

uncertainty averse as ĉ if for all f, c is as least as uncertainty averse at f as ĉ.

Notice that, in the definition of an elementary increase in uncertainty, there is no

control made for bmean effectsQ as is usually the case for standard definitions in the

context of exogeneously specified risk. This is because, from the underlying primitives,

there is no way to define independently of preferences what is the mean of a

elementary bet. Different individuals will find different elementary bets favorable or

unfavorable depending on the context in which they take place (that is, the dbaseT act to
which it is added) and their underlying preferences (which embody their subjective

assessment about the relative likelihood of different events obtaining.) In this context, if

we see that whenever one individual finds unacceptable an elementary bet that has

positive payoff in good states and negative payoffs in bad states then so does the other

individual, then we refer to the latter as at least as uncertainty averse as the former. So,

for example, if c is at least as uncertainty averse as ĉ, then 100A50ĉ1000A49 requires

100A50c1000A49. That is, if ĉ with base contingent wealth 100A50 finds the

elementary bet (on the event A) of 900A(	1) unacceptable, then so should c. On

the other hand, if ĉ finds the bet acceptable, then c may or may not find it

acceptable because the definition is silent (at least directly) on the preference going

one way or the other.

We can still define, however, a notion of revealed uncertainty neutrality. The

underlying idea is that, if an individual reveals a willingness to accept an elementary

bet added to a particular base act, then, if she is uncertainty neutral, she should be willing

to accept that same elementary bet added to any act.

Definition 3. Fix c. The preference relation c exhibits uncertainty neutrality if for any

gUf, gcf implies gVcf V for any gV, f Vsatisfying gV	f V=g	f.
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Correspondingly, we define a notion of uncertainty aversion:

Definition 4. Fix c. The preference relation c is uncertainty averse if there exists a

preference relation ĉ, for which c is everywhere at least as uncertainty averse as ĉ
and ĉ exhibits uncertainty neutrality.

It is straightforward to see that uncertainty neutrality implies that, loosely speaking, the

set of acceptable bets from a given act is the same no matter which act one starts with. If

the state space is finite, then the only preference map over state-contingent wealth which

satisfies this property is one in which the indifference sets are parallel hyperplanes and an

analogous property holds for infinite state spaces. Intuitively, this means that uncertainty

neutrality is equivalent to saying that the preference relation admits a subjective expected

value representation. Formally, we have:

Proposition 1. The preference relation c exhibits uncertainty neutrality if and only if it

admits a subjective expected value representation. That is, there exists a probability

measure p defined over E, such that

fcgZ

Z
s

f sð ÞÞp dsð Þz
Z
s

g sð ÞÞp dsð Þ:

Hence, a preference relation c is deemed uncertainty averse if it is more uncertainty

averse than some subjective expected value maximizer.

In the next section, we shall explore the implications of this definition both for

sequences of bets and for particular classes of preferences.
3. Increases in uncertainty and uncertainty aversion

Our first observation about the definition of an elementary increase in uncertainty is

that, no matter what assessment an individual attaches to any event (that may

incorporate his or her belief and/or decision weight), an elementary increase in the

uncertainty of a given act f always reduces consumption in the worst event and increases

consumption in the best event. Furthermore, if gUf, then g, f and the function g	f are

pairwise comonotonic functions. That is, for every pair of states s; taS,

g sð Þ 	 g tð Þð Þ f sð Þ 	 f tð Þð Þz0

g sð Þ 	 f sð Þ 	 g tð Þ þ f tð Þð Þ f sð Þ 	 f tð Þð Þz0

g sð Þ 	 g tð Þð Þ g sð Þ 	 f sð Þ 	 g tð Þ þ f tð Þð Þz0:

As nothing in the above inequalities require the differences in question to be simple, we

shall adopt these inequalities to define the more uncertain relation between any pair of

acts.

Definition 5. Fix a pair of acts f ; gaF . The act g is more uncertain than the act f, denoted

gŪf, if there exists a real-valued function h on S, comonotonic with f such that sup hN0,

inf hb0 and g=f+h.
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Our main result in this section is that the relation Ū is simply the transitive continuous

closure of the relation U.

Proposition 2. Fix a pair of acts f ; gaF . If gŪf, then there exist sequences of simple

acts, h fni and hgni, such that fnYf and gnYg , and, for each n, there exists a finite

sequence of simple acts hhnmi
Mn

m¼1, such that h1
n=fn, hMn

n =gn and hm+1
n Uhm

n , m=1,. . .

Mn	1.

The following is an immediate corollary of Proposition 2.

Corollary 1. Fix c and ĉ. The preference relation c is everywhere at least as uncertainty

averse as ĉ, if and only if,

f ĉg implies fcg for all gU
P
f :

Also, we obtain

Corollary 2. Any act f is more uncertain than its certainty equivalent m(f).

Corollary 3. If c is everywhere at least as uncertainty averse as ĉ, then for any f

m fð ÞVm̂m fð Þ:

From Corollary 3, it follows that if c is everywhere at least as uncertainty averse as ĉ,

then c is more uncertainty averse than ĉ in the weaker sense of the following definition

proposed by Ghirardato and Marinacci (2002): the preference relation c is more (weakly)

uncertainty averse than ĉ, if, for any act f and any constant act x,

xĉ fZxc f and xd̂fZxd f :

Ghirardato and Marinacci argue that their definition only relies upon the weakest

prejudgement about what constitutes an unambiguous act, namely one that yields a given

outcome for certain. Our definition encompasses this but goes further. Our rationale is that,

adding to an act, a comonotonic simple bet should be considered by construction to have

increased its uncertainty. Hence, the natural definition for comparative uncertainty is the

stronger one we propose, in which a comonotonic simple bet being viewed unfavorably by

an individual should entail that it is viewed unfavorably by any other individual who is

more uncertainty averse.

Epstein (1999) proposed a definition of comparative ambiguity aversion that explicitly

controlled for drisk aversionT. He did this by assuming that there was a rich set of

exogeneously defined dunambiguous eventsT AoE, that was closed under complementa-

tion and union. Any act that was measurable with respect to A was deemed an

unambiguous act. The preference relation c is more ambiguity averse than ĉ , if, for every

unambiguous act h and every act f,

hĉcfZhc f and hd̂dfZhd f :

Adopting the purely behavioral definition of Epstein and Zhang (2001) for an

unambiguous event allows the outside analyst to compare two preference relations

according to Epstein’s definition, without having to assume a priori which events are
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ambiguous or unambiguous.2 We do not deny the usefulness of such an isolation of

ambiguity aversion from risk aversion where it can be achieved. However, in

circumstances where such a separation is not feasible, we believe there are useful insights

and economic implications that can be drawn when comparisons according to the dtotalT
uncertainty aversion are made according to our definition of relative aversion to the

addition of simple comonotonic bets.

3.1. Special cases

The definitions of comparative uncertainty, and of comparative uncertainty-aversion,

presented above, do not depend on any specific features of the form of representation

that a family of preference relations may or may not admit. It is of interest, however, to

consider the case when preferences may be represented by some specific model, to

characterize the relationship dc is everywhere at least as uncertainty averse as ĉT in

terms of the parameters of that model, and, where appropriate, to compare that

characterization to existing results on comparative risk aversion. We begin by

demonstrating that the usual characterization of comparative risk aversion for subjective

expected utility (SEU) is consistent with our definition. More substantively, we analyze

the cases of disappointment aversion (Gul, 1991) and of Choquet Expected Utility

(CEU) preferences (Schmeidler, 1989), incorporating such important special cases as

Rank-Dependent Expected Utility (RDEU) under risk (Quiggin, 1993), and the dual

model of Yaari (1987).

3.1.1. Subjective expected utility

Let us consider the case when c and ĉ satisfy the assumptions of Savage’s theory of

subjective expected utility (SEU). That is, assume both preference relations can be

represented by certainty equivalent functionals m, m̂ of the form

m fð Þ ¼ u	1

Z
s

u f sð Þð Þp dsð Þ
�
and m̂m fð Þ ¼ ûu	1

Z
s

ûu f sð Þð Þp̂p dsð Þ
�
;

��

where p and p̂ are countably-additive and convex-ranged probability measures defined

over E, and u and û are von Neumann–Morgenstern utility functions defined over X.

The same set of necessary and sufficient conditions that are required for one preference

relation to be at least as risk averse (in the sense of Rothschild and Stiglitz, 1970) as

another are also necessary and sufficient for one to be at least as uncertainty averse as

another.

Proposition 3. Suppose c and ĉ both admit SEU certainty equivalent representations

m(.) and m̂(.), with associated probability measure and utility function pairs, (p,u) and
(p̂,û), respectively. Then, c is everywhere at least as uncertainty averse as ĉ if and only if

p(A)=p̃(A) for all AaE, and u is a concave transform of û.
2Epstein and Zhang (2001) define an event T to be unambiguous if (a) for all disjoint subevents, A; BoS n T ,
acts h, and outcomes x*, x, z, zV, xA*xBzThcxAxB*zTh implies xA*xBzTV hcxAxB*zTV h and (b) the condition

obtained if T is everywhere replaced by S n T in (a) is also satisfied. Otherwise, T is ambiguous.
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That is, under SEU, bmore uncertainty averseQ reduces to bcommon beliefs and more

risk averseQ. An immediate corollary of Proposition 3 is that a necessary and sufficient

condition for an SEU-maximizer to be averse to monotone mean-preserving spreads, that

is, he is more uncertainty averse than the subjective expected value maximizer with

probability distribution p, is that his utility function is concave. And, without requiring

any other restrictions, we know that his preference relation would agree with the partial

ordering of second-order stochastic dominance (or equivalently, he is averse to all mean-

preserving spreads). These results are not surprising because it is well-known that, under

the expected utility model for decision making under risk (with exogenously specified

probabilities), a decision maker is risk-averse in the weakest sense of always (weakly)

preferring the mean of a lottery for sure to the lottery itself if and only if his utility index is

concave. Such a coincidence of conditions necessary and sufficient for these three distinct

notions of risk aversion (and their uncertainty analogs) does not hold in general for non-

EU models of decision making under risk and non-SEU models of decision making under

uncertainty. This point is illustrated by the following examples.

3.1.2. Disappointment aversion

Disappointment aversion (Gul, 1991) is the most widely used non-EU model displaying

the bbetweenness propertyQ (see Chew, 1983; Dekel, 1986). In the context of the Savage

framework, a subjective disappointment aversion (SDA) functional representation, V( f)

may be implicitly defined by the equation

X
xaRþ

u x; f 	1 xð Þ; V fð Þ
�
¼ 0;

�

where

u x; E; vð Þ ¼ l Eð Þ 1	 bð Þ u xð Þ 	 vð Þ if u xð Þzv

l Eð Þ u xð Þ 	 vð Þ if u xð Þbv ;

	

and where l(.) is a probability measure defined on E, u(.) is an increasing (utility) index

and bb1.

Notice that SEU is the special case in which b=0. Gul implicitly assumes common

subjective beliefs (that is p=p̂).
Gul (1991, Theorem 5, p. 676) shows that, if bzb̂and u is a concave transformation of

û, then c is at least as risk averse (in the Yaari sense) as ĉ, that is, m( f )Vm̂( f ) for every f.

It is straightforward to find counter-examples demonstrating that the converse does not

hold.

As was the case for SEU, the same set of necessary and sufficient conditions that

are required for one SDA preference relation to be at least as risk averse (in the sense

of Rothschild and Stiglitz, 1970) as another are also necessary and sufficient for one

SDA preference relation to be at least as uncertainty averse as another. To obtain a

characterization of the necessary and sufficient conditions for comparative risk

aversion in the sense of Rothschild and Stiglitz, it is useful to define the following

property.



S. Grant, J. Quiggin / Mathematical Social Sciences 49 (2005) 117–141126
Definition 6 (Unboundedness). For any act f, outcome c and non-null event E, there exists

an outcome d sufficiently large that

m fEdð Þzc:

For the class of unbounded SDA preferences, we can show the following equivalences

hold.

Proposition 4. Suppose c and ĉ both satisfy Unboundedness and admit subjective

disappointment-aversion representations characterized by the two probability measures,

utility function and disappointment parameter triples, (p,u,b) and (p̂, û, b̂), respectively.
Then, assuming c and ĉ are distinct, the following three statements are equivalent:

(1) c is everywhere at least as uncertainty averse as ĉ;

(2) c is at least as risk averse (in the Rothschild-Stiglitz sense) as ĉ;

(3) p(A)=p̂(A) for all AaE, u is a concave transform of û, bzb̂=0.

Notice, in particular, that statement 3 of Proposition 4 implies that comparisons of

uncertainty aversion and, hence, comparisons of risk aversion in the Rothschild–Stiglitz

sense are only possible when one of the preference relations is SEU. This result does not

depend on the existence of ambiguous events, and may therefore be seen as a limitation of

SDA as a model of choice under risk.

3.1.3. Choquet expected utility

The other main direction for generalizing subjective expected utility has been the so-

called brank-dependent theoriesQ of which Choquet Expected Utility (CEU) is the most

widely applied. Associated with a CEU representation is an increasing utility index u:XYR

and a capacity, m, where a capacity is a function m:EY 0; 1�½ satisfying (i) for all A,B in

E :m Að ÞVm Bð Þ, (ii) for any m (t )=0; and (iii) m Sð Þ ¼ 1. For such a CEU-maximizer, f cg if

and only ifZ l

	l
m s:u f sð Þð Þzwf gð Þ 	 m s:u g sð Þð Þzwf gð Þ�dwz0:½ ð1Þ

In the context of decision making under risk, where preferences are defined over

lotteries, Chateauneuf et al. (2005) provide a complete characterization for a Rank-

Dependent Expected Utility (RDEU) maximizer to be averse to all monotone mean

preserving increases in risk. To adapt their result to the subjectively uncertain act-

framework, fix a pair of CEU maximizers (u,m) and (û,m̂). We shall assume throughout that

both u and û are continuous and increasing. Furthermore, analogous to the nonatomic

subjective beliefs for the case of subjective expected utility, we shall also assume that both

capacities m and r̂ are convex-valued, that is, for every wa(0,1), there exist events A and

B, for which m(A)=m̂ (B)=w. Let

P m;m̂mð Þ ¼ inf
Eae:0bm̂m Eð Þb1;0bm Eð Þf g

1	 m Eð Þð Þ=m Eð Þ
1	 m̂m Eð Þð Þ=m̂m Eð Þ
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denote the index of relative pessimism of the capacity m over the capacity m̂. We shall say

the capacity m is relatively pessimistic compared to the capacity m̂ if the latter is majorized

by the former, that is, m(E)Vm̂(E), for all EaE, or equivalently, P m;m̂mð Þz1. Let

G u;ûuð Þ ¼ sup
x1bx2Vx3bx4

½u x4ð Þ 	 u x3ð Þ�= ûu x4ð Þ 	 ûu x3ð Þ½ �
u x2ð Þ 	 u x1ð Þ½ �= ûu x2ð Þ 	 ûu x1ð Þ�½

denote the index of relative greediness of the utility function u over the utility function û.

This index satisfies G(u,û)z1 and will equal 1 if u is a monotonic concave transformation

of û. When u and û are differentiable, it is the supremal value of uV(x)ûV( y)/[uV( y)ûV(x)]
taken over xzy.

Relying heavily on the Chateauneuf et al. (2005, Theorem 1) characterization result, we

obtain the following characterization.3

Proposition 5. A CEU maximizer, (u,m), is at least as uncertainty averse as another CEU
maximizer, (û,m̂) if and only if her index of relative pessimism exceeds her index of relative

greediness: P(m,m̂)zG(u,û).

One implication of this result is that a CEU maximizer with a nonconcave utility index

can be more uncertainty averse than a Yaari–CEU maximizer (that is, a CEU maximizer

with a linear utility function). We just require the degree of dpessimismT embodied in his

capacity (and measured by the ratio (1	m(E))/m(E)) to be strong enough to outweigh any

region of nondiminishing marginal utility. Again, this accords with similar results derived

in the context of decision making under risk for RDEU maximizers. Thus, we obtain the

following characterization for an uncertainty-averse CEU maximizer.

Corollary 4. A CEU maximizer, (u,m), is uncertainty averse if and only if there exists a

probability measure p, for which

inf
Eae:0bm̂m Eð Þb1f g

1	 m Eð Þð Þ=m Eð Þ
1	 p Eð Þð Þ=p Eð Þz sup

x1bx2Vx3bx4

½uðx4Þ 	 uðx3Þ�=½x4 	 x3�
½uðx2Þ 	 uðx1Þ�=½x2 	 x1� :
3.1.4. Biseparable preferences

All the families of preferences considered so far are themselves special cases of the

class of preferences Ghirardato and Marinacci (2001) dub biseparable. Essentially this is

the class of preference relations whose restriction to the set of acts that are measurable with

respect to a two-element partition of the state space admits a CEU representation. That is,

c is biseparable if there exists an increasing utility index v:XYR and a capacity, q, such
that for any A;Bð ÞaE � E and any w; x; y; zð ÞaR4, such that wzx and yzz,

wAxcyBzZq Að Þv wð Þ þ 1	 q Að Þ½ �v xð Þzq Bð Þv yð Þ þ 1	 q Bð Þ½ �v zð Þ:
3A model that is closely related to CEU is cumulative prospect theory (CPT). It is more general as it allows for

reference dependence. Utility is defined on deviations from a dstatus quoT outcome and the capacity exhibits dsign
dependenceT, depending on whether the best outcome on an event is better or worse than the status quo. However,

modulo the necessary adjustments for reference dependence, analogous results to the ones we derive for the CEU

model hold for CPT.
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As Ghirardato and Marinacci observed, this is the most general model achieving a

separation of dcardinalT state-independent utility and a unique representation of beliefs.

Not only does it encompass SEU, SDA and CEU but Gilboa and Schmeidler’s (1989)

dmaxmin expected utilityT (or dmultiple priorsT) model is included in this class. In the

multiple prior model, the preference relation admits a representation consisting of an

increasing utility function u and a convex set of dpriorT probability distributions P, so

that

fcgZmin
paP

Z
s

u f sð Þð Þp dsð Þzmin
paP

Z
s

u g sð Þð Þp dsð Þ:

Clearly, setting v(x):=u(x) and q(E)=minpaPp(E) yields the biseparable representation.

Now because the proof of the necessity part of Proposition 5 in the Appendix only

utilizes acts that are measurable with respect to some two-element partition of the state

space, we have, as an immediate corollary of Proposition 5, the following:

Corollary 5. A necessary conditon for one preference relation c that admits a biseparable

representation (v,q), where q is convex-valued and u is continuous and increasing, to be at

least as uncertainty averse as another preference relation ĉ that admits a biseparable

representation (v̂,q̂), where q̂ is convex-valued and v̂ is continuous and increasing, is that

P(q,q̂)zG(v,v̂).

Whether this is also sufficient for the various subclasses of biseparable preferences is an

open question. In particular, we do not know whether it is sufficient for the multiple priors

model. It is sufficient for SEU. The condition entails that P(p,p̂)=1, and moreover, that

p(E)=p̂(E) for every event E. Hence, G(u,û)=1, which, recall, implies that u is a concave

transformation of û. It is not sufficient for SDA. As we saw, sufficiency required that at

least one of the two preference relations was SEU.

3.1.5. Subjectively ambiguous and unambiguous events

A further particularly interesting application of Proposition 5 is in the context of

Epstein and Zhang’s (2001) model of a CEU maximizer, (u,m), for whom, just from the

behavioral implications of the preference relation, an outside analyst is able to classify

each event as being either dambiguousT or dunambiguousT for that preference relation. Let
EUA

m oE denote the set of unambiguous events for (u,m). The set of axioms that they

impose on the preference relation guarantees that the set of dunambiguousT events is rich
enough so that dbeliefsT over these events can be represented by a countably additive,

convex-valued probability measure p:EUAY 0;1½ �. Moreover, for each AaEUA,

m(A)=/(p(A)) for some strictly increasing and onto map /:[0,1]Y[0,1]. Hence, for any

(measurable) finite partition, (A1, . . ., An), and for all acts of the form f ¼ x1
A1x

2
A2 Nxn	1

An	1x
n

for which x1z. . .zxn, the certainty equivalent function m( f) for the CEU maximizer,

(u,m), is defined by:

m fð Þ ¼ u	1
Xn
i¼1

u xi
� �

m [i
j¼1 A

j

 �

	 u xi
� �

m [i	1
j¼1 A

j

 �
 � !

:
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Furthermore, if for each i=1, . . ., n, AiaEUA, then f is an unambiguous act and

m fð Þ ¼ u	1
Xn
i¼1

u xi
� �

/ p [i
j¼1 A

j

 �
 �

	 u xi
� �

/ p [i	1
j¼1 A

j
�
 �
 �
 !

:

If we take another such CEU maximizer (u,m̂), for whom EUA
m̂ ¼ E (that is, every event

is unambiguous for this individual) and m̂(A)=m(A) for every AaEUA
m , then, by

construction, the two CEU maximizers, (u,m) and (u,m̂), agree over any pair of acts that

are measurable with respect to EUA
m . Furthermore, because every event is unambiguous for

(u,m̂), this CEU-maximizer is probabilistically sophisticated in the sense of Machina and

Schmeidler (1992), and so corresponds to Epstein’s (1999) notion of an ambiguity neutral

preference relation. Thus, there exists a countably additive, convex-valued probability

measure, p̂, that extends p to E. That is, for any EaE, m̂(E)=/(p̂(E)), and for any

(measurable) finite partition, (A1, . . ., An), and for all acts of the form f ¼ x1
A1x

2
A2 N xn	1

An	1x
n

for which x1z. . .zxn, the certainty equivalent function, m̂( f) for the CEU maximizer,

(u,m̂), is defined by:

m̂m fð Þ ¼ u	1
Xn
i¼1

u xi
� �

m̂m [i
j¼1 A

j

 �

	 u xi
� �

m̂m [i
j¼1 A

j	1

 �
 � !

¼ u	1
Xn
i¼1

u xi
� �

/ p̂p [i
j¼1 A

j

 �
 �

	 u x i
� �

/ p̂p [i
j¼1 A

j	1

 �
 �
 � !

:

According to Epstein’s (1999) definition, (u,m) is ambiguity averse if for any pair of

acts f and h, such that h is measurable with respect to EUA
m ,

m̂m hð Þzm̂m fð Þ implies m hð Þzm fð Þ:

Epstein and Zhang (2001) show that (u,m) is ambiguity averse if and only if

p̂p Eð Þz/	1 m Eð Þð Þ for all EaE:

The following corollary to Proposition 5 establishes the connection of our definition of

bmore uncertainty averseQ to Epstein’s (1999) definition of bambiguity averseQ.

Corollary 6. Let c and ĉ be preference relations corresponding to the CEU-maximizers

(u,m) and (u,m̂) defined above. Then (u,m) is ambiguity averse in the sense of Epstein

(1999), if and only if c is more uncertainty averse than ĉ.

From Corollary 6, we can conclude that a CEU-maximizer is ambiguity averse in the

sense of Epstein (1999), if and only if there is a probabilistically sophisticated CEU-

maximizer, such that: (a) the two preference relations agree over the set of unambiguous

acts and that (b) the former is more uncertainty averse than the latter.
4. Alternative notions of elementary increases in risk and uncertainty

The definition of an elementary increase in uncertainty presented above is the simplest

possible. As we have shown, its transitive closure is a monotone spread. This result also
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holds under risk (see Quiggin, 1993). There is, however, a wide range of alternative

notions of increasing risk. Chateauneuf et al. (2004b) gave a summary, and their

discussion suggests a systematic procedure for generating various classes of increases in

risk as the transitive closure of appropriate notions of an elementary increase in risk. In

addition to monotone spreads, Chateauneuf et al. consider the Rothschild–Stiglitz mean-

preserving riskier ordering and two intermediate orderings, referred to as left-monotone

and right-monotone increases in risk.

In the case of risk, these intermediate orderings can be generated as transitive closures

of elementary increases in risk based on the following notion of three-event ordered

partitions of the state space.

Definition 7. Fix an act f. The N-event partition {E1, . . ., EN} of S is ordered with respect

to f if for all n=1, . . ., N	1

sup f sð Þ:saEnf gV inf f sð Þ:saEn	1
� �

:

Definition 8. An act g is a elementary left-increase in uncertainty on f if there exist

numbers a and b and a three-event partition {E1, E2, E3} that is ordered with respect to f

and g, such that

g sð Þ ¼
f sð Þ 	 b saE1

f sð Þ þ a saE2

f sð Þ saE3

:

8<
:

Definition 9. An act g is a elementary right-increase in uncertainty on f if there exist

numbers a and b and a three-event partition {E1, E2, E3} that is ordered with respect to f

and g, such that

g sð Þ ¼
f sð Þ saE1

f sð Þ 	 b saE2

f sð Þ þ a saE3

:

8<
:

Definition 10. An act g is a monotone increase in uncertainty on f if there exist numbers a
and b and a 3-event partition {E1, E2, E3} that is ordered with respect to f such that

g sð Þ ¼
f sð Þ 	 b saE1

f sð Þ saE2

f sð Þ þ a saE3

:

8<
:

As the terminology suggests, if g is a monotone increase in uncertainty on f, then g is

more uncertain than f in the sense of Definition 5. Indeed, for any cbmin(a, b), we can

generate a monotone increase in uncertainty from the sequence of elementary increases in

uncertainty, h1=f, h2(s)=f(s)	b+c, saE1, h2(s)=f(s)+c, saE2[E3, h3=g, that is

h3(s)=h2(s)	c, saE1[E2, h2(s)=h3(s)+a	c, saE3.

Using the results of Chateauneuf et al. (2004b, Lemma 2, p11), it is straightforward to

show that, if we assume known probabilities, and add the requirement that g has the same
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expected value as f, the transitive closure of the class of elementary left-(respectively,

right-)increases in uncertainty on f is the class of acts that are ranked left-(respectively,

right-)monotone more riskier than f. Also observe that an elementary increase in

uncertainty satisfies each of the Definitions 8–10 with the dunchangedT event being empty.

Now consider potential notions of elementary increases in uncertainty of an act with

respect to a four-event ordered partition. The only elementary operation that is (i)

measurable with respect to a four-event partition, (ii) does not include an increase on Ei

and a reduction in Ej, for all jNi, and (iii) cannot be generated by a finite sequence of any

of the elementary increases considered above, is the following:

Definition 11. An act g is an elementary conditional increase in uncertainty on f if there

exist numbers a and b and a four-event partition {E1, E2, E3, E4} that is ordered with

respect to f and g, such that

g sð Þ ¼
f sð Þ saE1

f sð Þ 	 b saE2

f sð Þ þ a saE3

f sð Þ saE4

8>><
>>:

Observe that elementary, elementary-left and elementary-right increases in uncertainty

are all special cases of elementary conditional increase in uncertainty. Moreover, if we

assume known probabilities, and add the requirement E[ g]=E[ f], the transitive closure of

the relation dg is derived from f by an elementary conditional-increase in uncertainty’ is

the relation dg is mean-preserving riskier than f T in the sense of Rothschild–Stiglitz.

Our main result in this section is that no such relationship applies under uncertainty. In

fact, if we suppose that the state space is sufficiently rich, in the sense that there are no

batomsQ in the state space, then it follows that the transitive closure is the trivial total

ordering, which includes every ordered pair of acts. That is, suppose we require, in

addition to the other maintained assumptions that the preference relation satisfies Savage’s

postulate of small-event continuity, namely:

Definition 12. The relation c exhibits small event continuity if for any pair of acts f dg,

and any outcome x, there exists a finite partition of the state space {E1, . . ., EN} such that

then we obtain: xEn f dg and f dxEng for every n=1, . . ., N.

Proposition 6. Suppose c exhibits small event continuity. The transitive closure of the

relation dg is derived from f by an elementary conditional-increase in uncertaintyT is the
full relation R in which, for all pairs of act f and g, gRf and fRg.

Thus, there is no nontrivial analog under uncertainty for the Rothschild–Stiglitz notion

of an increase in risk.
5. Conclusion

Most economic analysis of choice under uncertainty, and particularly of increases

in uncertainty, has been based on the assumption that decision-makers have well-
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defined subjective probabilities. On the other hand, the fundamental result of the

literature, the proof of existence of equilibrium in state-contingent markets derived by

Arrow and Debreu (1954), does not require decision-makers to possess subjective

probabilities or to satisfy the postulates of any model specific to problems involving

uncertainty.

In this paper, we have shown that some, but not all, of the concepts that have been

used in the case of known probabilities can be extended to the more general and realistic

case of unknown probabilities. Broadly speaking, concepts that are most naturally

expressed in state-continent terms, such as statewise dominance and monotone spreads,

are robust. Concepts that are most naturally expressed in terms of probabilities or

cumulative probability distributions, such as notions of stochastic dominance, are

unlikely to be robust.
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Appendix

Proof of Proposition 2. We first establish the following lemmas.

Lemma 1. If for any pair of simple acts g and f, any pair of positive real numbers, a and b,
and any three element partition of S, (E	1, E0, E1), we have

g sð Þ 	 f sð Þ ¼
a if saE1

0 if saE0

	 b if saE	1

8<
:

then there exists a simple act h for which gUh and hUf .

Proof. If aNb/2, then define

h sð Þ ¼
f sð Þ þ a 	 b=2 if saE1

f sð Þ 	 b=2 if saE0

f sð Þ 	 b=2 if saE	1:

8<
:

Notice that

g sð Þ 	 h sð Þ ¼
	

b=2 if saE1 [ E0

	 b=2 if saE	1
and

h sð Þ 	 f sð Þ ¼ a 	 b=2 if saE1

	 b=2 if saE0 [ E	1
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as required. If aVb/2, then define

h sð Þ ¼
f sð Þ þ a=2 if saE1

f sð Þ þ a=2 if saE0

f sð Þ 	 b þ a=2 if saE	1:

8<
:

Now we have

g sð Þ 	 h sð Þ ¼
	

a=2 if saE1

	 a=2 if saE0 [ E	1
and

h sð Þ 	 f sð Þ ¼ a=2 if saE1 [ E0

	 b þ a=2 if saE	1: 5

	

Lemma 2. If for any pair of simple acts f and g, gŪf, then there exists a finite sequence of

simple acts hhmim=1M such that h1=f, hM=g and hm+1Uhm, m=1, . . ., M	1.

Proof. From the definition of gŪf, it follows that g	f is pairwise comonotonic with both g

and f. Let [E	J, . . ., E1, E0, E1, . . ., EI] be the coarsest partition of S for which g	f is

measurable and with the labelling monotonically ordered, that is, for any iNj, and any

saEi and sVaEj, g(s)	f (s)Ng(sV)	f (sV). Moreover, assume that for any ib0, and any

saEi, g(s)	f (s)b0; for any iN0 and any saEi, g(s)	f (s)N0; and for any saE0, g(s)=f (s)

E0 may be empty, but because inf saSg sð Þbinf saS f sð Þ and supsaSg sð ÞNsupsaS f sð Þ, it

follows that Iz1 and Jz1. For each i=	J, . . ., 0, . . ., I, and some siaEi, set

di:=g(si)	f (si). By construction, we have

d	jbd	Jþ1b N bd	1bd0 ¼ 0bd1b N bdI :

Let h1:=f. Define

h3 sð Þ ¼
f sð Þ þ d1 if saE1 [ E2 [ N [ EI

f sð Þ if saE0

f sð Þ þ d	1 if saE	1 [ E	2 [ N [ E	J:

8<
:

For i=2, . . ., min{I,J}	1, define

h2iþ1 sð Þ ¼
h2i	1 sð Þ þ di 	 di	1 if saEi [ N [ EI

h2i	1 sð Þ if saE	iþ1 [ N [ E0 [ N [ Ei	1

h2i	1 sð Þ þ d	i 	 d	iþ1 if saE	i [ N [ E	J:

8<
:

IzJ, then for i=J, . . ., I, define

h2iþ1 sð Þ ¼
h2i	1 sð Þ þ di 	 di	1 if saEi [ N [ EI

h2i	1 sð Þ if saE	Jþ1[ N [E0 [ N [ Ei	1

h2i	1 sð Þ þ d	J 	 d	Jþ1Þ= I 	 J þ 1ð Þ if saE	J :ð

8<
:

Notice, in this case h2I+1=g.

If, however, Ib J, then for i=I, . . ., J, define

h2iþ1 sð Þ ¼
h2i	1 sð Þ þ ðdI 	 dI	1Þ= J 	 I þ 1ð Þ if saEI

h2i	1 sð Þ if saE	iþ1 [ N [E0[ N [EI	1

h2i	1 sð Þ þ d	i 	 d	iþ1 if saE	i [ N [E	J

8<
:

and now h2J+1=g.
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For each i=1, . . ., max{I,J}, it follows from Lemma 1 that there exists a simple act h2i
for which h2i+1Uh2i and h2iUh2i	1. Hence, we have

g ¼ h2max I ; Jf gþ1Uh2max I ; Jf gU N Uh1 ¼ f

as required. 5

We are now in a position to prove the proposition. Let fn and hn be the usual uniform

simple approximations from below of f and h; for n large enough sup hnN0 and inf hnb0.

Moreover, as noted in Chateauneuf et al. (1997), f and h comonotonic implies that fn and

hn are comonotonic, and, therefore, the result follows from Lemma 2. 5

Proof of Proposition 3. Sufficiency is obvious. For necessity of the equality of p and p̂,
consider choices in a neighborhood of a constant act x. For any real-valued function

d:SYR and sufficiently small eN0, the certainty equivalent of the act x+ed (in the

neighborhood of x) under m is approximately

xþ e
Z
s

d sð Þp dsð Þ

and, similarly for m̂, the certainty equivalent is

xþ e
Z
s

d sð Þp̂p dsð Þ:

If p(E)Np̃(E) for some EoS then

p Eð Þ
1	 p Eð Þ N

p̂p Eð Þ
1	 p̂p Eð Þ 	 d

1	 p Eð Þð Þ 1	 p̂p Eð Þð Þ

for some dN0. Thus, if we take

d sð Þ ¼ 1	 p̂p Eð Þ 	 d if saE

	 p̂p Eð Þ 	 d if sgE;

	

then, for any eN0, we have

e
Z
s

d sð Þp dsð ÞN0Ne
Z
s

d sð Þp̂p dsð Þ

and x+edŪx. So, for sufficiently small eN0, it follows from continuity and monotonicity of

c and ĉ , that x d̂ ðxþ edÞ but xþ edð Þdx.

To demonstrate the necessity of u being a concave transformation of û, suppose the

contrary, that is, u is not a concave transform of ũ. Then, there must exist utility levels v1,

v2 and v3 in the range of û, and k in (0,1), such that

kv1 þ 1	 kð Þv3 ¼ v2

kuBûu	1 v1Þ þ 1	 kð ÞuBûu	1 v3ÞuBûu	1 v2Þ:ð
��

Because p is nonatomic, there exists an event EoS for which p(E)=k. So consider the act
f:=û	1 (v1)Eû

	1(v3) and the constant act x:=û
	1(v2). By construction, we have fŪx, xĉf and

f dx. 5
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Proof of Proposition 4.

Proof. (3)Z (2)Z (1) is straightforward.

Hence, we need only prove (1)Z (3). The proof is in two parts. We first show that (1)

requires p(A)=p̃(A) for all AaE, u is a concave transform of û, and then that (1) requires

bNb̂=0.

Part 1.

We consider acts f with the property that there exists a neighborhood

[m( f)	2d,m( f )+2d] of m( f) that is not in the support of f. Call this Property 1.

For any f satisfying Property 1, we can partition S into disjoint events E (elation) and EV
(the complement of E) such that

f sð Þbm fð Þ 	 2d saEV

f sð ÞNm fð Þ þ 2d saE:

Hence, for any g,jg(s)jbd, we have

f sð Þ þ g sð Þbm fð Þ 	 d saEV

f sð Þ þ g sð ÞNm fð Þ þ d saE;

and hence

u mþ f þ gð Þð Þ 	 u m fð Þð Þ ¼
Z
EV

u f þ gð Þ sð Þð Þ 	 u f sð Þð Þdp

þ
Z
E

1	 bð Þ u f þ gð Þ sð Þð Þ 	 u f sð Þð Þð Þ:

Now, by Unboundedness, we can choose f satisfying Property 1 for both c and ĉ and

such that p(E) is arbitrarily small for both c and ĉ. Because the integrand in the second

term on the RHS is bounded, this term can be made arbitrarily close to zero, in particular,

smaller in absolute value than any DN0.

Suppose for some g, jg(s)jbd, we have m( f)=m( f+g). ThenZ
E V

u f þ gð Þ sð Þð Þ 	 u f sð Þð Þdp þ
Z
E

1	 bð Þ u f þ gð Þ sð Þð Þ 	 u f sð Þð Þð Þdp ¼ 0

impliesZ
S

u f þ gð Þ sð Þð Þ 	 u f sð Þð Þdp
����

����bD:

We can now apply the argument of the SEU proposition to show thatc is everywhere at least

as uncertainty averse as ĉ only if p (A)=p̃(A) for all AaE and u is a concave transform of û.

Part 2.

It is trivial that we require bzb̂. Suppose that bzb̂N0, p(A)=p̃(A) for all AaE, and u is

a concave transform of û. Then, the Gul (1991) result shows that for any non-trivial f,
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m( f )bm̂( f ). Let E, Ê be the elation events. By choosing f with a probability mass in the

interval [m( f ),m̂( f )], we can make the measure of E	Ê as large as we like relative to EV
and Ê, and choose d and dV to define the event g:

g sð Þ ¼ d saÊE

	 dV saÊEV

	

such that

1	 b̂b
� � Z

ÊE

u f þ dð Þ 	 u fð Þð Þdp
� �

	
Z
ÊEV

u fð Þ 	 u f 	 dVð Þð Þdp ¼ 0;

so that m̂( f)=m̂( f+g). Note that this can be rewritten as

1	 b̂b
� � Z

ÊE

u f þ dð Þ 	 u fð Þð Þdp
� �

	
Z
E	ÊE

u fð Þ 	 u f 	 dVð Þð Þdp

	
Z
EV

u fð Þ 	 u f 	 dVð Þð Þdp ¼ 0:

Hence, provided the measure of E	Ê is large enough,

1	 bð Þ
Z
ÊE

u f þ dð Þ 	 u fð Þð Þdp

� �
	 1	 bð Þ

Z
E	ÊE

u fð Þ 	 u f 	 dVð Þð Þdp
� �

	
Z
E V

u fð Þ 	 u f 	 dVð Þð ÞdpN0;

so that m( f+g)Nm( f) and, hence, c is not everywhere at least as uncertainty averse as

ĉ. 5.

Proof of Proposition 5. Necessity of the condition P(m,r̂)zG(u,û).

Fix EaE, such that m(E )p 0,1 and 	lbx1bx2Vx3bl. Let x4=û	1(û (x3)+

[û(x2)	û(x1)][1	m(E)]/m(E)). Consider the pair of acts f=xE
3x2 and g=xE

4x1. By

construction, g constitutes an elementary increase in uncertainty over f. Now, becauseZ l

	l
m̂m s:ûu f sð Þð Þzwf gð Þ 	 m̂m s:ûu g sð Þð Þzwf gð Þ
� �

dw

¼ 1	 m̂m Eð Þ
� �

ûu x2
�
	 ûu x1

�� �
	 m̂m Eð Þ m̂m x4

�
	 ûu x3

�� �
¼ 0

����
we have f ˜̂g. So for u;mÞð to be at least as uncertainty averse, requires fcg, or,Z l

	l
m s:u f sð Þð Þzwf gð Þ 	 m s:u g sð Þð Þzwf gð Þ�dwz0:½

This is equivalent to,

u x4ð Þ 	 u x3ð Þ½ �= u x2ð Þ 	 u x1ð Þ½ �
ûu x4ð Þ 	 ûu x3ð Þ½ �= ûuðx2½ Þ 	 ûu x1Þð � V

1	 m Eð Þ½ �=m Eð Þ
1	 m̂m Eð Þ½ �=m̂m Eð Þ : ð2Þ

Hence, a necessary condition for c to be at least as uncertainty averse as ĉ is that the

supremum of the left-hand side of (2) (which is related to G(u,û), the index of relative
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greediness of u compared to û) be less than or equal to the infimum of the right-hand side

of (2), which is P(m,r̂), the index of relative pessimism. We are almost done, except that the

supremum of the left-hand side of (2) is taken over vectors (x1, x2, x3, x4) satisfying

x1bx2b x3bx4 and also x4=û-1(û(x3)+[û(x2)	û(x1)] [1	m(E)]/m(E)), so this supremum

could, in principle, depend on m(E). But the following lemma shows that this supremum is

equal to G(u, û) and thus independent of m(E).

Lemma 3. Let u and û be continuous and increasing and let EaE, such that m (E)p0,1.
Define

XE ¼ x1; x2; x3; x4
� �

aR4 : x1bx2Vx3bx4;
ûu x4ð Þ 	 ûu x3ð Þ½ �
ûu x2ð Þ½ 	 ûu x1Þð � ¼ 1	 m Eð Þ½ �

m Eð Þ

	 �

G u;ûuð Þ Eð Þ ¼ sup
x1; x2; x3; x4ð ÞaXE

u x4ð Þ 	 u x3ð Þ½ �= u x2ð Þ 	 u x1ð Þ½ �
ûu x4ð Þ 	 ûu x3ð Þ½ �= ûu x2ð Þ 	 ûu x1Þð �½

� �
:

Proof. It has been shown earlier that G(u ,û )(E)VG(u ,û ). So it remains to show

G(u,û)(E)zG(u,û), that is, for any x1; x2; x3; x4; ÞaR4
�

such that x1bx2Vx3bx4 and any

eN0, there exists a vector ( y1, y2, y3, y4)aXE such that

u y4ð Þ 	 u y3ð Þ½ �= u y2ð Þ 	 u y1ð Þ½ �
ûu y4ð Þ 	 ûu y3ð Þ½ �= ûu y2ð Þ 	 ûu y1ð Þ½ �z

u x4ð Þ 	 u x3ð Þ½ �= u x2ð Þ 	 u x1ð Þ½ �
ûu x4ð Þ 	 ûu x3ð Þ½ �= ûu x2ð Þ½ 	 ûu x1Þð � 	 e:

Set k:=[1	m(E)]/m(E). Now, by continuity of u and û, there exists some x0a(x3,x4)

such that for every xa(x0, x4),

u xð Þ 	 u x3ð Þ½ �= u x2ð Þ 	 u x1ð Þ½ �
ûu xð Þ 	 ûu x3ð Þ½ �= ûu x2ð Þ 	 ûu x1ð Þ½ �z

u x4ð Þ 	 u x3ð Þ½ �= u x2ð Þ 	 u x1ð Þ½ �
ûu x4ð Þ 	 ûu x3ð Þ½ �= ûu x2ð Þ½ 	 ûu x1Þð � 	 e:

Divide the interval (û(x1), û(x2)) into K sub-intervals of equal length D=(û(x1), û(x2))/K

such that kDbû(x4)	û(x0). This guarantees that the sequence û(x3), û(x3)+kD, û(x3)+2kD,

û(x3)+3kD, . . . has some element û(x3)+kkD in the interval (û(x0), û(x4)). Let

x=û	1(û(x3)+kkD). Because

u xð Þ 	 u x3
� �� �

= ûu xð Þ 	 ûu x3
� �� �

¼ 1=kð Þ
Xk	1

i¼0

uBûu	1 ûu x3
� �

þ iþ 1ð ÞkD
� �

	 uBûu	1 ûu x3
� �

þ ikD
� �� �

=kD;

there is a subinterval (û( y3), û( y4))=(û(x3)+ikD,û(x3)+(i+1)kD) of (û(x3), û(x4)) such

that [u( y4)	u( y3)]/[û( y4)	û( y3)]z[u(x)	u(x3)]/[û(x)	û(x3)]. Similarly, there exists a

subinterval (û( y1), û( y2))=(û(x3)+jD, û(x3)+( j+1)D) of (û(x1), û(x2)) along which

[u( y2)	u( y1)]/[û( y2)	û( y1)]z[u(x2)	u(x1)]/[û(x2)	û(x1)]. This completes the proof of

the lemma. 5
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Sufficiency of the condition P(m,m̂)zG(u,û).

Fix a pair of acts, f and g, such that gUf. In particular, suppose for some a,bN0, some

partition {E1, . . ., En} and outcomes x1V. . .Vxn:

f ¼ x1E1
x2E2

N x
j
Ej
x
jþ1
Ejþ1

N xn	1
En	1

xn and

g ¼ x1 	 b
� �2

E1
x2 	 b
� �

E2
N xS 	 b
� �

ES
xS þ1 þ a
� �

ES þ1
N xn	1 þ a
� �

En	1
xn þ aÞ:ð

Let A ¼ vn
i¼S þ1Ei:

It suffices to show that f ~̂g implies fcg.4 If f ~̂g, then

XS
i¼1

ûu xi
� �

	 ûu xi 	 b
� �� �

m̂m vn
j¼iEj


 �
	 m̂m vn

j¼iþ1Ej


 �h i

	
Xn

i¼S þ1

ûu xi þ a
� �

	 ûu xi
� �� �

m̂m vn
j¼iEj


 �
	 m̂m vn

j¼iþ1Ej


 �i
¼ 0

h

where, by convention, vn
j¼nþ1EjwF. By mean-value theorem, there exists y2a[x1,x S ] and

y3a[xS +1, xn] such that

XS
i¼1

ûu x i
� �

	 ûu x i 	 b
� �� �

m̂m vn
j¼iEj


 �
	 m̂m vn

j¼iþ1Ej


 �h i
¼ ûu y2

� �
	 ûu y2 	 b
� �� �

1	 m̂m Að Þ½ �

¼
Xn

i¼S þ1

½ûu xi þ a
� �

	 ûu xi
� �

� m̂m vn
j¼iEj


 �
	 m̂m vn

j¼iþ1Ej


 �h i
¼ ûu y3 þ a

�
	 ûu y3

�� �
m̂m Að Þ:

��
It remains to show that fcg, or equivalently, that

XS
i¼1

u xi
� �

	 u xi 	 b
� �� �

m vn
j¼iEj


 �
	 m vn

j¼iþ1Ej


 �h i

	
Xn

i¼S þ1

u xi þ a
� �

	 u xi
� �� �

m vn
j¼iEj


 �
	 m vn

j¼iþ1Ej


 �h i
z0:

Now let m and mVbe the indices satisfying

u xmÞ 	 u xm 	 bÞð �V u x i
�
	 u xi 	 b

�� �
; for i ¼ 1; N ; S

����
u xmV þ a

�
	 u xmV

�� �
z u xi þ a

�
	 u xi

�� �
; for i ¼ S ; N ;n:

����

4If f d̂g, then there exists eN0, such that for the act f V, defined by f V(s)=f(s)	e, we have f V~̂g. Hence, if f V~̂g

implies f Vd̂g, by monotonicity we have fdf Vand thus by transitivity, fdg.
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Hence,XS
i¼1

u xi
� �

	 u xi 	 b
� �� �

m vn
j¼iEj


 �
	 m vn

j¼iþ1Ej


 �h i

	
Xn

i¼S þ1

u xi þ a
� �

	 u xi
� �� �

m vn
j¼iEj


 �
	 m vn

j¼iþ1Ej


 �h i
z u xmð Þ 	 u xm 	 bð Þ½ � 1	 m Að Þ½ � 	 u xmV þ a

� �
	 u xmV
� �� �

m Að Þ

¼ u xmð Þ 	 u xmabð Þ½ � 1	 m Að Þ½ �
ûu y2ð Þ 	 ûu y2 	 bð Þ½ � 1	 m̂m Að Þ½ � 	

u xmV þ a
� �

	 u xmV
� �� �

m Að Þ
ûu y3 þ að Þ 	 ûu y3ð Þ½ �m̂m Að Þ

� �
� ûu y3 þ a

� �
	 ûu y3
� �� �

m̂m Að Þ

¼ u xmð Þ 	 u xm 	 bð Þ½ � ûu y3 þ að Þ 	 ûu y3ð Þ½ �m Að Þ
ûu y2ð Þ 	 ûu y2 	 bð Þ½ �

� 1	 m Að Þ½ �=m Að Þ
1	 m̂m Að Þ½ �=m Að Þ 	

u xmV þ a
� �

	 u xmV
� �� �

= u xmð Þ 	 u xmð Þ 	 b½ Þ�
ûu y3 þ að Þ 	 ûu y3ð Þ½ �= ûu y2ð Þ 	 ûu y2 	 bð Þ½ �

� �

z
u xmð Þ 	 u xm 	 bð Þ½ � ûu y3 þ að Þ 	 ûu y3ð Þ½ �m Að Þ

ûu y2ð Þ 	 ûu y2 	 bð Þ½ � P m;m̂mð Þ 	 G u;ûuð Þ
� �

:

But P(m,m̂)zG(u,û), and thus fcg, as required. 5

Proof of Proposition 6. Fix two comonotonic acts f and g.

We first consider the case in which the two acts exhibit a bfinite-crossingQ property in

the sense that there exists a finite partition, {E1, . . ., EK} that is ordered with respect to f

(and hence also with respect to g) and such that, for each k, either

g sð Þzf sð Þ 8saEk ðaÞ

or

g sð ÞV f sð Þ 8saEk : ðbÞ

If (a) holds on EK and (b) holds on E1, then the standard analysis under risk applies—

note that by selecting the probability distribution over states appropriately, we can always

ensure that g is more risky than f in the sense of Rothschild–Stiglitz. That is, there exists a

probability distribution l(d ) defined over E such that, for all x,Z x

0

l s:f sð ÞVyf gð Þ 	 l s : g sð ÞVyf gð Þð ÞdyV0;

and Z l

0

l s:f sð ÞVyf gð Þ 	 l s:g sð ÞVyf gð Þð Þdy ¼ 0:

Hence, as Machina and Pratt (1997) show, there exists a sequence of simple mean

preserving spreads beginning at f and ending with g.

Consider the case where (a) holds on E1 and EK (note that this includes the case when

g sð Þzf sð Þ 8s). Now consider any descending series of non-empty sets E1 ¼ A1sA2N
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such that

u
l

i¼1
Ai ¼ t ðiÞ

sup f sð Þ:saAi
�
V inf f sð Þ:saE1 n Ai

�
:

��
ðiiÞ

Small-event continuity ensures that such a series exists. Now consider acts hi such that,

for some dN0,

hi sð Þ ¼ g sð Þ saS n Ai

f sð Þ þ d saAi :

	

Then, by the argument already given, hi is in the transitive closure of the elementary

transfer relation, and hiYg. 5
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