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A definition of uncertainty or ambiguity aversion is proposed. It is argued that the definition 
is well-suited to modelling within the Savage (as opposed to Anscombe and Aumann) domain of 
acts. The defined property of uncertainty aversion has intuitive empirical content, behaves well 
in specific models of preference (multiple-priors and Choquet expected utility) and is tractable. 
Tractability is established through use of a novel notion of differentiability for utility functions, 
called eventwise differentiability. 

1. INTRODUCTION 

1.1. Objectives 

The concepts of risk and risk aversion are cornerstones of a broad range of models in 
economics and finance. In contrast, relatively little attention is paid in formal models to 
the phenomenon of uncertainty that is arguably more prevalent than risk. The distinction 
between them is roughly that risk refers to situations where the perceived likelihoods of 
events of interest can be represented by probabilities, whereas uncertainty refers to situ- 
ations where the information available to the decision-maker is too imprecise to be sum- 
marized by a probability measure. Thus the terms "vagueness" or "ambiguity" can serve 
as close substitutes. Ellsberg, in his famous experiment, has demonstrated that such a 
distinction is meaningful empirically, but it cannot be accommodated within the subjective 
expected utility (SEU) model. 

Perhaps because this latter model has been so dominant, our formal understanding 
of uncertainty and uncertainty aversion is poor. There exists a definition of uncertainty 
aversion, due to Schmeidler (1989), for the special setting of Anscombe-Aumann (AA) 
horse-race/roulette wheel acts. Though it has been transported and widely adopted in 
models employing the Savage domain of acts, I feel that it is both less appealing and less 
useful in such contexts. Because the Savage domain is typically more appropriate and also 
more widely used in descriptive modelling, this suggests the need for an alternative defi- 
nition of uncertainty aversion that is more suited to applications in a Savage domain. 
Providing such a definition is the objective of this paper. 

Uncertainty aversion is defined for a large class of preferences. This is done for the 
obvious reason that a satisfactory understanding of uncertainty aversion can be achieved 
only if its meaning does not rely on preference axioms that are auxiliary rather than 
germane to the issue. On the other hand, Choquet expected utility (CEU) theory (Schme- 
idler (1989)) and its close relative, the multiple-priors model (Gilboa and Schmeidler 
(1989)), provide important examples for understanding the nature of our definition, as 
they are the most widely used and studied theories of preference that can accommodate 
Ellsberg-type behaviour. Recall that risk aversion has been defined and characterized for 

579 



580 REVIEW OF ECONOMIC STUDIES 

general preferences, including those that lie outside the expected utility class (see Yaari 
(1969) and Chew and Mao (1995), for example). 

There is a separate technical or methodological contribution of the paper. After the 
formulation and initial examination of the definition of uncertainty aversion, subsequent 
analysis is facilitated by assuming eventwise differentiability of utility. The role of event- 
wise differentiability may be described roughly as follows: The notion of uncertainty aver- 
sion leads to concern with the "local probabilistic beliefs" implicit in an arbitrary 
preference order or utility function. These beliefs represent the decision-maker's underly- 
ing "mean" or "ambiguity-free" likelihood assessments for events. In general, they need 
not be unique. But they are unique if utility is eventwise differentiable (given suitable 
additional conditions). Further perspective is provided by recalling the role of differen- 
tiability in decision theory under risk, where utility functions are defined on cumulative 
distribution functions. Much as calculus is a powerful tool, Machina (1982) has shown 
that differential methods are useful in decision theory under risk. He employs Frechet 
differentiability; others have shown that Gateaux differentiability suffices for many pur- 
poses (Chew et al. (1987)). In the present context of decision making under uncertainty, 
where utility functions are defined over acts, the preceding two notions of differentiability 
are not useful for the task of uncovering implicit local beliefs. On the other hand, event- 
wise differentiability "works". Because local probabilistic beliefs are likely to be useful 
more broadly, so it seems will the notion of eventwise differentiability. It must be acknow- 
ledged, however, that eventwise differentiability has close relatives in the literature, namely 
in Rosenmuller (1972) and Machina (1992).' The differences from this paper and the 
value-added here are clarified later (Appendix C). It seems accurate to say that this paper 
adds to the demonstration in Machina (1992) that differential techniques are useful also 
for analysis of decision-making under uncertainty. 

The paper proceeds as follows: The Schmeidler definition of uncertainty aversion is 
examined first. This is accompanied by examples that motivate the search for an alterna- 
tive definition. Then, because the parallel with the well understood theory of risk aversion 
is bound to be helpful, relevant aspects of that theory are reviewed. A new definition of 
uncertainty aversion is formulated in the remainder of Section 2 and some attractive 
properties are described in Section 3. In particular, uncertainty aversion is shown to have 
intuitive empirical content and to admit simple characterizations within the CEU and 
multiple-priors models. The notion of "eventwise derivative" and the analysis of uncer- 
tainty aversion given eventwise differentiability follow in Section 4. It is shown that event- 
wise differentiability of utility simplifies the task of checking whether the corresponding 
preference order is uncertainty averse and thus enhances the tractability of the proposed 
definition. Section 5 concludes with remarks on the significance of the choice between the 
domain of Savage acts vs. the larger Anscombe-Aumann domain of horse-race/roulette- 
wheel acts. This difference in domains is central to understanding the relation between 
this paper and Schmeidler (1989). 

Two important limitations of the analysis should be acknowledged at the start. First, 
uncertainty aversion is defined relative to an exogenously specified collection of events si. 

Events in 5/ are thought of as unambiguous or uncertainty-free. They play a role here 
parallel to that played by constant (or risk-free) acts in the standard analysis of risk 
aversion. However, whether or not an event is ambiguous is naturally viewed as subjective 
or derived from preference. Accordingly, it seems desirable to define uncertainty aversion 

1. After a version of this paper was completed, I learned of a revision of Machina (1992), dated 1997, 
that is even more closely related. 
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relative to the collection of subjectively unambiguous events. Unfortunately, such a for- 
mulation is beyond the scope of this paper.2 In defence of the exogenous specification of 
the collection X, observe that Schmeidler (1989) relies on a comparable specification 
through the presence of objective lotteries in the Anscombe-Aumann domain. In addition, 
it seems likely that given any future success in endogenizing ambiguity, the present analy- 
sis of uncertainty aversion relative to a given collection _v will be useful. 

The other limitation concerns the limited success in this paper in achieving the ulti- 
mate objective of deriving the behavioural consequences of uncertainty aversion. The focus 
here is on the definition of uncertainty aversion. Some behavioural implications are derived 
but much is left for future work. In particular, applications to standard economic contexts, 
such as asset pricing or games, are beyond the scope of the paper. However, the import- 
ance of the groundwork laid here for future applications merits emphasis an essential 
precondition for understanding the behavioural consequences of uncertainty aversion is 
that the latter term have a precise and intuitively satisfactory meaning. Admittedly, there 
have been several papers in the literature claiming to have derived consequences of uncer- 
tainty aversion for strategic behaviour and also for asset pricing. To varying degrees these 
studies either adopt the Schmeidler definition of uncertainty aversion or they do not rely 
on a precise definition. In the latter case, they adopt a model of preference that has been 
developed in order to accommodate an intuitive notion of uncertainty aversion and inter- 
pret the implications of this preference specification as due to uncertainty aversion. (This 
author is partly responsible for such an exercise (Epstein and Wang (1995)); there are 
other examples in the literature.) There is an obvious logical flaw in such a procedure and 
the claims made (or the interpretations proposed) are unsupportable without a satisfactory 
definition of uncertainty aversion. 

1.2. The current definition of uncertainty aversion 

In order to motivate the paper further, consider briefly Schmeidler's definition of uncer- 
tainty aversion. See Section 5 for a more complete description and for a discussion of the 
importance of the choice between the Anscombe-Aumann domain (as in Schmeidler 
(1989)) and the Savage domain (as in this paper). 

Fix a state space (S, 1), where I is an algebra, and an outcome set %Denote by J 
the Savage domain, that is, the set of all finite-ranged (simple) and measurable acts e from 
(S, I) into ,%?' Choice behaviour relative to Y is the object of study. Accordingly, postu- 
late a preference order > and a representing utility function U defined on X 

Schmeidler's definition of uncertainty aversion has been used primarily in the context 
of Choquet expected utility theory, according to which uncertain prospects are evaluated 
by a utility function having the following form 

U (e) = u(e)dv, eE (1.1) 

Here, u: X -, Xl is a vNM utility index, v is a capacity (or non-additive probability) 
on X, integration is in the sense of Choquet and other details will be provided later.3 For 
such a preference order, uncertainty aversion in the sense of Schmeidler is equivalent to 
convexity of the capacity v, that is, to the property whereby 

v(AuB)+ v(AnB)>v(A)+ v(B), (1.2) 
2. Zhang (1997) is the first paper to propose a definition of ambiguity that is derived from preference, but 

his definition is problematic. An improved definition is the subject of current research by this author and Zhang. 
3. See Section 3.2 for the definition of Choquet integration. 
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for all measurable events A and B. Additivity is a special case that characterizes uncer- 
tainty neutrality (suitably defined). 

However, Ellsberg's single-urn experiment illustrates the weak connection between 
convexity of the capacity and behaviour that is intuitively uncertainty averse.4 The urn is 
represented by the state space S = {R, B, G}, where the symbols represent the possible 
colours, red, blue and green of a ball drawn at random from an urn. The information 
provided the decision-maker is that the urn contains 30 red balls and 90 balls in total. 
Thus, while he knows that there are 60 balls that are either blue or green, the relative 
proportions of each are not given. Let > be the decision-maker's preference over bets on 
events Ec S. Typical choices in such a situation correspond to the following rankings of 
events5 

{R}>{B} -{G}, {B, G}>{R, B} -{R, G}. (1.3) 

The intuition for these rankings is well known and is based on the fact that {R} and {B, G} 
have objective probabilities, while the other events are "ambiguous", or have "ambiguous 
probabilities". Thus these rankings correspond to an intuitive notion of uncertainty or 
ambiguity aversion. 

Next suppose that the decision-maker has CEU preferences with capacity v. Then 
convexity is neither necessary nor sufficient for the above rankings. For example, if v(R) = 
8/24, v(B) = v(G) = 7/24 and v({B, G}) = 13/24, v({R, G}) = v({R, B}) = 1/2, then (1.3) 
is implied but v is not convex. For the fact that convexity is not sufficient, observe that 
convexity does not even exclude the "opposite" rankings that intuitively reflect an affinity 
for ambiguity. (Let v(R) = 1/12, v(B) = v(G) = 1/6, v({B, G}) = 1/3, v({R, G})= 
v({R, B}) = 1/2.) 

An additional example, taken from Zhang (1997), will reinforce the above and also 
illustrate a key feature of the analysis to follow. An urn contains 100 balls in total, with 
colour composition R, B, W, and G, such that R + B = 50 = G + B. Thus S = {R, B, G, W} 
and the collection _w'= {0, S, {B, G}, {R, W}, {B, R}, {G, W}}} contains the events that 
are intuitively unambiguous. It is natural to suppose that the decision-maker would use 
the probability measure p on Q5/ where p assigns probability 1/2 to each binary event. 
For other subsets of S, she might use the capacity p* defined by6 

p (E) = sup {p(B): BcE, Be<}, EcS. 

The fact that the capacity of any E is computed by means of an inner approximation by 
unambiguous events seems to capture a form of aversion to ambiguity. However, p* is 
not convex because 

1 = p* ({B, G}) +p* ({B, R}) >p* ({B, G, R}) +p* ({B}) = 1/2. 

Finally, observe that the collection -w is not an algebra, because it is not closed with 
respect to intersections. Each of {R, B} and { G, B} is unambiguous, but {B} is ambiguous, 
showing that an algebra is not the appropriate mathematical structure for modelling col- 
lections of unambiguous events. This important insight is due to Zhang (1997). He further 

4. As explained in Section 5, the examples to follow raise questions about the widespread use that has 
been made of Schmeidler's definition rather than about the definition itself. Section 3.4 describes the performance 
of this paper's definition of uncertainty aversion in the Ellsbergian setting. 

5. In terms of acts, {R}>-{B} means IR>lB and so on. For CEU, a decision-maker always prefers to bet 
on the event having the larger capacity. 

6. p* is an inner measure, as defined and discussed further in Section 3.3. 
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proposes an alternative structure, called a A-system, that is adopted below (see Section 
2.2). 

2. AVERSION TO RISK AND UNCERTAINTY 

2.1 Risk aversion 

Recall first some aspects of the received theory of risk aversion. This will provide some 
perspective for the analysis of uncertainty aversion. In addition, it will become apparent 
that if a distinction between risk and uncertainty is desired, then the theory of risk aver- 
sion must be modified. 

Because a subjective approach to risk aversion is the relevant one, adapt Yaari's 
(1969) analysis, which applies to the primitives (S, 1), A c 3N and >, a preference over 
the set of acts 7 

Turn first to "comparative risk aversion". Say that > 2 is more risk averse than >' if 
for every act e and outcome x, 

x > I (>')e ==> X >2(>2 )e. (2.1) 

The two acts that are being compared here differ in that the variable outcomes prescribed 
by e are replaced by the single outcome x. The intuition for this definition is clear given 
the identification of constant acts with the absence of risk or perfect certainty. 

To define absolute (rather than comparative) risk aversion, it is necessary to adopt a 
"normalization" for risk neutrality. Note that this normalization is exogenous to the 
model. The standard normalization is the "expected value function", that is, risk neutral 
orders >"'' are those satisfying 

e >rn e' X * e(s)dm(s) ln J e'(s)dm(s), (2.2) 

for some probability measure m on (S, 1), where the RN-valued integrals are interpreted 
as constant acts and accordingly are ranked by >rn. This leads to the following definition 
of risk aversion: Say that > is risk averse if there exists a risk neutral order > rn such that 
> is more risk averse than >Zr. Risk loving and risk neutrality can be defined in the 
obvious ways. 

In the subjective expected utility framework, this notion of risk aversion is the famil- 
iar one characterized by concavity of the vNM index, with the required m being the 
subjective beliefs or prior. By examining the implications of risk aversion for choice 
between binary acts, Yaari (1969) argues that this interpretation for m extends to more 
general preferences. 

Three points from this review merit emphasis. First, the definition of comparative 
risk aversion requires an a priori definition for the absence of risk. Observe that the identi- 
fication of risklessness with constant acts is not tautological. For example, Karni (1983) 
argues that in a state-dependent expected utility model "risklessness" may very well corre- 
spond to acts that are not constant. Thus the choice of how to model risklessness is a 
substantive normalization that precedes the definition of "more risk averse". 

Second, the definition of risk aversion requires further an a priori definition of risk 
neutrality. 

The final point is perhaps less evident or familiar. Consider rankings of the sort used 
in (2.1) to define "more risk averse". A decision-maker may prefer the constant act 
because she dislikes variable outcomes even when they are realized on events that are 
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understood well enough to be assigned probabilities (risk aversion). Alternatively, the 
reason for the indicated preference may be that the variable outcomes occur on events 
that are ambiguous and because she dislikes ambiguity or uncertainty. Thus it seems more 
appropriate to describe (2.1) as revealing that >:2 iS "more risk and uncertainty averse 
than >% " with no attempt being made at a distinction. However, the importance of the 
distinction between these two underlying reasons seems self-evident; it is reflected also in 
recent concern with formal models of "Knightian uncertainty" and decision theories that 
accommodate the Ellsberg (as opposed to Allais) Paradox. The second possibility above 
can be excluded, and thus a distinction made, by assuming that the decision-maker is 
indifferent to uncertainty or, put another way, by assuming that there is no uncertainty (all 
events are assigned probabilities). But these are extreme assumptions that are contradicted 
in Ellsberg-type situations. This paper identifies and focuses upon the uncertainty aversion 
component implicit in the comparisons (2.1) and, to a limited extent, achieves a separation 
between risk aversion and uncertainty aversion. 

2.2. Uncertainty aversion 

Once again, consider orders > on i , where for the rest of the paper the outcome set 
i? is arbitrary rather than Euclidean. The objective now is to formulate intuitive notions 
of comparative and absolute uncertainty aversion. 

Turn first to comparative uncertainty aversion. It is clear intuitively and also from 
the discussion of risk aversion that one can proceed only given a prior specification of the 
"absence of uncertainty". This specification takes the form of an exogenous family s.cl 
of "unambiguous" events. 

Assume throughout the following intuitive requirements for c': It contains S and 

Ac E implies that AccE ,5; 

A1, A2e C- s/and AI r A2 = 0 imply that A1 uA2e r. 

Zhang (1997) argues that these properties are natural for a collection of unambiguous 
events and, following (Billingsley (1986), p. 36), calls such collections A-systems. Intuit- 
ively, if an event being unambiguous means that it can be assigned a probability by the 
decision-maker, then the sum of the individual probabilities is naturally assigned to a 
disjoint union, while the complementary probability is naturally assigned to the comp- 
lementary event. As demonstrated earlier, it is not intuitive to require that v be closed 
with respect to nondisjoint unions or intersections, that is, that i;/ be an algebra. Denote 
by J7 "a the set of sv-measurable acts, also called unambiguous acts. 

The following definition parallels the earlier one for comparative risk aversion. Given 
two orderings, say that >2 is more uncertainty averse than >1 if for every unambiguous 
act h and every act e in Y, 

h >'(>-)e =* h >2(>2)e. (2.3) 

There is no loss of generality in supposing that the acts h and e deliver the identical 
outcomes. The difference between the acts lies in the nature of the events where these 
outcomes are delivered (some of these events may be empty). For h, the typical outcome 
x is delivered on the unambiguous event h-'(x), while it occurs on an ambiguous event 
given e. Then whenever the greater ambiguity inherent in e leads >1 to prefer h, the more 
ambiguity averse >2 will also prefer h. This interpretation relies on the assumption that 
each event in _V is unambiguous and thus is (weakly) less ambiguous than any Ee 1. 
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Fix an order >. To define absolute (rather than comparative) uncertainty aversion 
for >, it is necessary to adopt a "normalization" for uncertainty neutrality. As in the case 
of risk, a natural though exogenous normalization exists, namely that preference is based 
on probabilities in the sense of being probabilistically sophisticated as defined in Machina 
and Schmeidler (1992). The functional form of representing utility functions reveals clearly 
the sense in which preference is based on probabilities. The components of that functional 
form are a probability measure m on the state space (S, 1) and a functional 
W. A(?? ) - X, where A(2 , ) denotes the set of all simple (finite support) probability 
measures on the outcome set .- Using m, any act e induces such a probability distribution 
Pn,e. Probabilistic sophistication requires that e be evaluated only through the distri- 
bution over outcomes Tn,e that it induces. More precisely, utility has the form 

UPs(e)= W(T',,ie), ee7. (2.4) 

Following Machina and Schmeidler (1992, p. 754), assume also that W is strictly increas- 
ing in the sense of first-order stochastic dominance, suitably defined.7 Denote any such 
order by >PS. A decision-maker with >P` assigns probabilities to all events and in this way 
transforms any act into a lottery, or pure risk. Such exclusive reliance on probabilities is, 
in particular, inconsistent with the typical "uncertainty averse" behaviour exhibited in 
Ellsberg-type experiments. Thus it is both intuitive and consistent with common practice 
to identify probabilistic sophistication with uncertainty neutrality. Think of m and W as 
the "beliefs" (or probability measure) and "risk preferences" underlying s 

This normalization leads to the following definition: Say that > is uncertainty averse 
if there exists a probabilistically sophisticated order Ps such that > is more uncertainty 
averse than >Ps. In other words, under the conditions stated in (2.3), 

h >Ps(>Ps)e =* h > (>)e. (2.5) 

The intuition is similar to that for (2.3). 
It is immediate that > and >Ps agree on unambiguous acts. Further, >P" is indifferent 

to uncertainty and thus views all acts as being risky only. Therefore, interpret (2.5) as 
stating that >Ps is a "risk preference component" of >. The indefinite article is needed 
for two reasons first because all definitions depend on the exogenously specified collec- 
tion s1. and second, because Ps need not be unique even given ;. Subject to these same 
qualifications, the probability measure underlying >Ps is naturally interpreted as "mean" 
or "uncertainty-free" beliefs underlying >. The formal analysis below does not depend 
on these interpretations. 

It might be useful to adapt familiar terminology and refer to >Ps satisfying (2.5) as 
constituting a support for > at h. Then uncertainty aversion for > means that there exists 
a single order >Ps that supports > at every unambiguous act. A parallel requirement in 
consumer theory is that there exist a single price vector that supports the indifference 
curve at each consumption bundle on the 450 line. (This parallel is developed further in 
Section 3.4 and via Theorem 4.2(c).) 

7. Write y > x if receiving outcome y with probability 1 is weakly preferable, according to Up', to receiving 
x for sure. T' first-order stochastically dominates T if for all outcomes .y, 'P'({xe -/: y>_ x/)- {x E/: y_x}). 
Thus the partial order depends on the utility function UPS, but that causes no difficulties. See Machina and 
Schmeidler (1992), for further details. 

8. Subjective expected utility is the special case of (2.4) with W(TQ) = f, u(x)d'P(x). But more general risk 
preferences W are admitted, subject only to the noted monotonicity restriction. In particular, probabilistically 
sophisticated preference can rationalize behaviour such as that exhibited in the Allais Paradox. It follows that 
uncertainty aversion, as defined shortly, is concerned with Ellsberg-type, and not, Allais-type, behaviour. 
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Turn next to uncertainty loving and uncertainty neutrality. For the definition of the 
former, reverse the inequalities in (2.5). That is, say that > is uncertainty loving if there 
exists a probabilistically sophisticated order >PS such that, under the conditions stated in 
(2.3), 

h<Ps(<Ps)e =X h<(<)e. (2.6) 

The conjunction of uncertainty aversion and uncertainty loving is called uncertainty 
neutrality. 

2.3. A degree of separation 

Consider the question of a separation between attitudes towards uncertainty and attitudes 
towards risk. Suppose that > is uncertainty averse with support >'J5. Because > and >PS 

agree on the set yua of unambiguous acts, > is probabilistically sophisticated there. Thus, 
treating the probability measure underlying >Ps as objective, one may adopt the standard 
notion of risk aversion (or loving) for objective lotteries (see Machina (1982), for example) 
in order to give precise meaning to the statement that > is risk averse (or loving). In the 
same way, such risk attitudes are well defined if > is uncertainty loving. That a degree of 
separation between risk and uncertainty attitudes has been achieved is reflected in the fact 
that all four logically possible combinations of risk and uncertainty attitudes are admiss- 
ible. On the other hand, the separation is partial: If >1 is more uncertainty averse than 
>2, then these two preference orders must agree on _Tua and thus embody the same risk 
aversion. 

As emphasized earlier, the meaning of uncertainty aversion depends on the exogen- 
ously specified _V. That specification also bears on the distinction between risk aversion 
and uncertainty aversion. The suggestion just expressed is that the risk attitude of an order 
> is embodied in the ranking it induces on iTila, while the attitude towards uncertainty is 
reflected in the way in which > relates arbitrary acts e with unambiguous acts h as in 
(2.3). Thus if the modeller specifies that _ = {0, S}, and hence that Yu7 contains only 
constant acts, then she is assuming that the decision-maker is not facing any meaningful 
risk. Accordingly, the modeller is led to interpret comparisons of the form (2.1) as 
reflecting (comparative) uncertainty aversion exclusively. At the other extreme, if the 
modeller specifies that _V = X, and hence that all acts in _5 are unambiguous, then she is 
assuming that the decision-maker faces only risk, which leads to the interpretation of (2.1) 
as reflecting (comparative) risk aversion exclusively. More generally, the specification of 
v reflects the modeller's prior view of the decision-maker's perception of his 
environment. 

3. IS THE DEFINITION ATTRACTIVE? 

3.1. Some attractive properties 

The definition of uncertainty aversion has been based on the a priori identification of 
uncertainty neutrality (defined informally) with probabilistic sophistication. Therefore, 
internal consistency of the approach should deliver this identification as a formal result. 
On the other hand, because attitudes towards uncertainty have been defined relative to a 
given XV, such a result cannot be expected unless it is assumed that _v is "large". Suppose, 
therefore, that _v is rich: There exist x*>x* such that for every EcE in X and A in _v 
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satisfying 

(x*, A; x*, Ac) -(x*, E; x*, EC), 

there exists A in XV, A cA such that 

(x*, A; x,Ac) -(x* ; X*, EC) 

A corresponding notion of richness is valid for the roulette-wheel lotteries in the 
Anscombe-Aumann framework adopted by Schmeidler (1989).9 

The next theorem (proved in Appendix A) establishes the internal consistency of our 
approach. 

Theorem 3.1. If > is probabilistically sophisticated, then it is uncertainty neutral. The 
converse is true if vW is rich. 

The potential usefulness of the notion of uncertainty aversion depends on being able 
to check for the existence of a probabilistically sophisticated order supporting a given >. 
This concern with tractability motivates the later analysis of eventwise differentiability. 
Anticipating that analysis, consider here the narrower question "does there exist >P that 
both supports > and has underlying beliefs represented by the given probability measure 
m on X? On its own, the question may seem to be of limited interest. But once eventwise 
differentiability delivers m, its answer completes a procedure for checking for uncertainty 
aversion. 

Lemma 3.2. Let >P support > in the sense of (2.5) and have underlying probability 
measure mn on E. Then: 

(i) For anay two unambiguous acts h and h', if T',,h first-order stochastically dominates 
T1,l,h', then U(h) _ U(h'). 

(ii) For all acts e and unambiguous acts h, 

Tm,e= TP,1, U(e) U(h). 

The converse is true if m. satisfies: For each unambiguous A and 0 < r < mA, there exists 
unambiguous BcA with nB = r. 

The added assumption for m is satisfied if S = SI x S2, unambiguous events are 
measurable subsets of SI and the marginal of m on SI is convex-ranged in the usual sense. 
The role of the assumption is to ensure that, using the notation surrounding (2.4), 

{TP,h , : hE u = A(. ? ). 

3.2. Multiple-priors and CEU utilities 

The two most widely used generalizations of subjective expected utility theory are CEU 
and the multiple-priors model. In this subsection, uncertainty aversion is examined in the 
context of these models. 

9. It merits emphasis that richness of A is needed only for some results below; for example, for the necessity 
parts of Theorem 3.1 and Lemma 3.4. Richness is not used to describe conditions that are sufficient for uncer- 
tainty aversion (or neutrality). In particular, the approach and definitions of this paper are potentially useful 
even if v = {0, S}. 
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Say that > is a multiple-priors preference order if it is represented by a utility function 
UmP of the form 

UmP(e) = min u(e)dm, (3.1) 
mr=P S 

for some set P of probability measures on (S, X) and some vNM index u: 2 Ml. 
Given a class X/, it is natural to model the unambiguous nature of events in v by 
supposing that all measures in P are identical when restricted to iV; that is, 

mA = m'A for all m and m' in P and A in -X. (3.2) 

These two restrictions on > imply uncertainty aversion, because > is more uncertainty 
averse than the expected utility order >P with vNM index u and any probability measure 
m in P. More precisely, the following intuitive result is valid: 

Theorem 3.3. Any multiple-priors order satisfying (3.2) is uncertainty averse. 

Proof. Let Ps denote an expected utility order with vNM index u and any 
probability measure m in P. Then h>Pse I f u(h)dm ? f u(e)dm =X UmP(h)= f u(h)dm _ 

f u(e)dm _ UmP(e). || 

A commonly studied special case of the multiple-priors model is a Choquet expected 
utility order with convex capacity v. Then (3.1) applies with 

P = core(v) = {m: m()?_ v(-) onX}. 

Thus convexity of the capacity implies uncertainty aversion given (3.2). 
Focus more closely on the CEU model, with particular emphasis on the connection 

between uncertainty aversion and convexity of the capacity. The next result translates 
Lemma 3.2 into the present setting, thus providing necessary and sufficient conditions for 
uncertainty aversion combined with a prespecified supporting probability measure m. For 
necessity, an added assumption is adopted. Say that a capacity v is convex-ranged if for 
all events E1 cE2 and v(EI) < r < v(E2), there exists E, E1 cEcE2, such that v(E) = r. This 
terminology applies in particular if v is additive, where it is standard.10 For axiomatiza- 
tions of CEU that deliver a convex-ranged capacity, see Gilboa (1987, p. 73) and Sarin 
and Wakker (1992, Proposition A.3). Savage's axiomatization of expected utility delivers 
a convex-ranged probability measure. 

Use the notation U'u to refer to utility functions defined by (1.1), where the vNM 
index u: 2 o> satisfies 

u(52) has nonempty interior in 9'. 

For those unfamiliar with Choquet integration, observe that for simple acts it yields 

Ucu(e) = X7L7 
[u(x,)-u(xi+ 

1 )]v(U1 Ej) + u(x.), (3.3) 

where the outcomes are ranked as x?x2> . x, and the act e has e(xi) = Ei, i = 1, . . . , n. 

10. See Rao and Rao (1983). Given countable additivity, convex-ranged is equivalent to non-atomicity. 
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Lemma 3.4. Let U"U be a CEU utility function with capacity v. 

(a) The following conditions are sufficient for UCeU to be uncertainty averse with 
supporting UPS having m as underlying probability measure: There exists a bijection 
g: [0,1]-[0,1] such that 

me core(g (v)); and (3.4) 

m( ) =- k ( W-)) on i. (3.5) 

(b) Suppose that v is convex-ranged and that v is rich. Then the conditions in (a) are 
necessary in order that Ucu be uncertainty averse with supporting UP' having m as underlying 
probability measure. 

(c) Finally, in each of the preceding parts, the supporting utility UPS can be taken to be 
an expected utility function if and only if in addition g is the identity function, that is, 

m=von / and m_von Y. (3.6) 

See Appendix A for a proof. The supporting utility function UPS that is provided by 
the proof of (a) has the form (2.4), where the risk preference functiotial W is 

W(T) = u(x)d(g. )(x), 

a member of the rank-dependent expected utility class (Chew et al. (1987)). 
Observe first that attitudes towards uncertainty do not depend on properties of the 

vNM index u. More surprising is that given m, the conditions on v described in (a) are 
ordinal invariants, that is, if v satisfies them, then so does (p(v) for any monotonic trans- 
formation (. In other words, v and g satisfy these conditions if and only if q(v) and 8 = 
p(g) do. Consequently, under the regularity conditions in the lemma, the CEU utility 
function f u(e)dv is uncertainty averse if and only if the same is true for f u(e)dp(v). The 
fact that uncertainty aversion is determined by ordinal properties of the capacity makes it 
perfectly clear that uncertainty aversion has little to do with convexity, a cardinal 
property. 

Thus far, only parts (a) and (b) of the lemma have been used. Focus now on (c), 
characterizing conditions under which Uu is "more uncertainty averse than some 
expected utility order with probability measure m." Because the CEU utility functions 
studied by Schmeidler are defined on horse-race/roulette-wheels and conform with 
expected utility on the objective roulette-wheels, this latter comparison may be more rel- 
evant than uncertainty aversion per se for understanding the connection with convexity. 
The lemma delivers the requirement that v be additive on -/ and that it admit an exten- 
sion to a measure lying in its core. It is well known that convexity of v is sufficient for 
nonemptiness of the core, but that seems to be the extent of the link with uncertainty 
aversion. The final example in Section 1.2, as completed in the next subsection, shows 
that Uceu may be more uncertainty averse than some expected utility order even though 
its capacity is not convex. 

To summarize, there appears to be no logical connection in the Savage framework 
between uncertainty aversion and convexity. Convexity does not imply uncertainty aver- 
sion, unless added conditions such as (3.2) are imposed. Furthermore, convexity is not 
necessary even for the stricter notion "more uncertainty averse than some expected utility 
order" that seems closer to Schmeidler's notion. This is not to say that convexity and the 
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associated multiple-priors functional structure that it delivers are not useful hypotheses. 
Rather, the point is to object to the widely adopted behavioural interpretation of 
convexity as uncertainty aversion. 

3.3. Inner measures 

Zhang (1997) argues that rather than convex capacities, it is capacities that are inner 
measures that model uncertainty aversion. These capacities are defined as follows: Let p 
be a probability measure on s; its existence reflects the unambiguous nature of events in 
-V. Then the corresponding inner measure p* is the capacity given by 

p* (E) =sup {p(B): BcE, Be_2}, Es S. 

The fact that the capacity of any E is computed by means of an inner approximation by 
unambiguous events seems to capture a form of aversion to ambiguity. Zhang provides 
axioms for preference that are consistent with this intuition and that deliver the subclass 
of CEU preferences having an inner measure as the capacity v. 

It is interesting to ask whether CEU preferences with inner measures are uncertainty 
averse in the formal sense of this paper. The answer is "sometimes" as described in the 
next lemma. 

Lemma 3.5. Let UCeu(*) f u( )dp*, where p* is the inner measure generated as above 
from the probability measure p on _V. 

(a) Ifp admits an extension to a probability measure on Y, then Uu is more uncertainty 
averse than the expected utility function f u( )dp. 

(b) Adopt the auxiliary assumptions in Lemma 3.4(b). If U'u is uncertainty averse, 
then p admits an extension from v to a measure on all of S. 

Proof. (a) p* and p coincide on X. For every BcE, p(B) -p(E). Therefore, 
p* (E) p(E). From the formula (3.3) for the Choquet integral, conclude that for all acts 
e and unambiguous acts h, 

u(h)dp* = u(h)dp and { u(e)dp* 4. u(e)dp. 

(b) By Lemma 3.4 and its proof, p =pp* = g(m) on -v and m(sv) = [0, 1]. Therefore, 
g must be the identity function. Again by the previous lemma, m lies in core(p*), implying 
that m _p* = p on _/. Because v is closed with respect to complements, conclude that 
m =p on v and hence that m is the asserted extension of p. I 

Both directions in the lemma are of interest. In general, a probability measure on the 
X-system -v need not admit an extension to the algebra Y.L Therefore, (b) shows that the 
intuition surrounding "inner approximation" is flawed or incomplete, demonstrating the 
importance of a formal definition of uncertainty aversion. Part (a) provides a class of 
examples of Choquet expected utility functions that are more uncertainty averse than 

11. Massimo Marinacci provided the following example: Let S be the set of integers {1,...,6} and v 
the A-system {0, S} u IA5, Ai: 1 ; i f 3}, where As = I1, 2, 3}, A2 = {3, 4, 5} and A3 = 31, 5, 6}. Define p on _v as 
the unique probability measure satisfying p(Ai) = 1/6 for all i. If p has an extension to the power set, then 
P(UiAi) = 1 > 1/2 = lip(Ai). However, the reverse inequality must obtain for any probability measure. 
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some expected utility order. These can be used to show that even if this stricter notion of 
(more) uncertainty averse is adopted, the capacity p, need not be convex. For instance, 
the last example in Section 1.2 satisfies the conditions in (a) the required extension is the 
equally likely (counting) probability measure on the power set. Thus preference is uncer- 
tainty averse, even though p, is not convex. 

3.4. Bets, beliefs and uncertainty aversion 

This section examines some implications of uncertainty aversion for the ranking of binary 
acts. Because the ranking of bets reveals the decision-maker's underlying beliefs or likeli- 
hoods, these implications clarify the meaning of uncertainty aversion and help to demon- 
strate its intuitive empirical content. The generic binary act is denoted xEy, indicating 
that x is obtained if E is realized and y otherwise. 

Let > be uncertainty averse with probabilistically sophisticated order >P satisfying 
(2.5). Apply the latter to binary acts, to obtain the following relation: For all unambiguous 
A, events E and outcomes xi and x2, 

xIAx2 
>-Ps(>PJ)xSExE 

xIAx2 > (>)xIEx2. 

Proceed to transform this relation into a more illuminating form. 
Exclude the uninteresting case x -x2 and assume that 

x1>x2. 

Then xIEx2 can be viewed as a bet on the event E. As noted earlier, Ps necessarily agrees 
with the given > in the ranking of unambiguous acts and hence also constant acts or 
outcomes, so xI >PS1x2. Let m be the subjective probability measure on the state space 
(S, 1) that underlies Ps. Then the monotonicity property inherent in probabilistic sophis- 
tication implies that 

x,AX2 >Ps(>Ps)x,EX2< ? m(A I) >_ ( > )m(Ei 

Conclude that uncertainty aversion implies the existence of a probability measure m such 
that: For all A, E, xi and x2 as above, 

m(A) >_ ( > )m(E) X= x IAX2 >1 N>XIEX2. 

One final rewriting is useful. Define, for the given pair x >x2, 

v(E) = U(x1Fx2). 

Then, 

mA _ ( > )mE = vA _ ( > )vE, (3.7) 

which is the sought-after implication of uncertainty aversion.'2 
In the special case of CEU (1.1), with vNM index satisfying u(x1) = 1 and u(x2) = 0, 

v defined as above coincides with the capacity in the CEU functional form. Even when 
CEU is not assumed, (suppose that v is monotone with respect to set inclusion and) refer 
to v as a capacity. The interpretation is that v represents > numerically over bets on 

12. This condition is necessary for uncertainty aversion but not sufficient, even if there are only two 
possible outcomes. That is because by taking h in (2.5) to be a constant act, one concludes that an uncertainty 
averse order > assigns a lower certainty equivalent to any act than does the supporting order >PS. In contrast, 
(3.7) contains information only on the ranking of bets and not on their certainty equivalents. (I am assuming 
here that certainty equivalents exist.) 
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varions events with the given stakes xl and x2, or alternatively, that it represents numeri- 
cally the likelihood relation underlying preference >. From this perspective, only the 
ordinal properties of v are significant."3 An implication of (3.7) is that v and m must be 
ordinally equivalent on . (though not on 1). 

In other words, uncertainty aversion implies the existence of a probability measure 
m that supports {Eel: v(E) > v(A)} at each unambiguous A, where support is in a sense 
analogous to the usual meaning, except that the usual linear supporting function defined 
on a linear space is replaced by an additive function defined on an algebra. Think of the 
measure m as describing the (not necessarily unique) "mean ambiguity-free likelihoods" 
implicit in v and >. This interpretation and the "support" analogy are pursued and devel- 
oped further in Section 4.3 under the assumption that preference is eventwise 
differentiable. 

In a similar fashion, one can show that uncertainty loving implies the existence of a 
probability measure q on (S, X) such that 

q(A) ?5( < )q(E) => v(A) ?5( < )v(E), (3.8) 

for every Ee E and A e s/. The conjunction of (3.7) and (3.8) imply, under a mild 
additional assumption, that v is ordinally equivalent to a probability measure (see Lemma 
A.1), which is one step in the proof of Theorem 3.1. 

Because choice between bets provides much of the experimental evidence regarding 
nonindifference to uncertainty, the implication (3.7) is convenient for demonstrating the 
intuitive empirical content of uncertainty aversion. The Ellsberg urn discussed in the Intro- 
duction provides the natural vehicle. Consider again the typical choices in (1.3). In order 
to relate these rankings to the formal definition of uncertainty aversion, adopt the natural 
specification 

jv= {0, S, {R}, {B, G}}. 

Given this specification, it is easy to see that these rankings imply uncertainty aversion 
the measure m assigning 1/3 probability to each colour is a support in the sense of (3.7). 

Equally revealing is that the notion of uncertainty aversion excludes behaviour that 
is interpreted intuitively as reflecting an affinity for ambiguity. 14 To see this, suppose that 
the decision-maker's rankings are changed by reversing the strict preference ">" to "<". 
These new rankings contradict uncertainty aversion: Let m be a support as in the impli- 
cation (3.7) of uncertainty aversion and take A ={B, G}. Then {B, G}c<{R, B} implies 
that m({B, G}) < m({R, B}). Because m is additive, conclude that m(G) < m(R). But then 
uncertainty aversion applied to the unambiguous event {R} implies that {JR} > { G}, 
contrary to the hypothesis. 

Though a general formal result seems unachievable, there is an informal sense in 
which these results seem to be valid much more broadly than the specific Ellsberg experi- 
ment considered. Typically when choices are viewed as paradoxical relative to probabilist- 
ically sophisticated preferences, there is a natural probability measure on the state space 
that is "contradicted" by observed choices. This seems close to saying precisely that the 
measure is a support. 

13. These ordinal properties are independent of the particular pair of outcomes satisfying x?-x2 if (and 
only if) > satisfies Savage's axiom P4: For any events A and B and outcomes xI>-x2 and YI>Y2, xIAx2>xIBx2 
implies that y,Ay2 ky,BY2. 

14. Alternatively, we could show that the rankings in (1.3) are inconsistent with the implication (3.8) of 
uncertainty loving. 
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Another revealing implication of uncertainty aversion is readily derived from (3.7). 
Notation that is useful here and below is, given A, write an arbitrary event E in the form 

E=A+F-G, whereF=E\AandG=A\E. (3.9) 

Henceforth, E+ F denotes both EuuF and the assumption that the sets are disjoint. Simi- 
larly, implicit in the notation E - G is that GcE. Now let m be the supporting measure 
delivered by uncertainty aversion. Then for any unambiguous A' and A, if FcA'nmAC and 
GCAcAr-A 

A'-F+G>A'= A+F-G=A, (3.10) 

because the first ranking implies (by the support property at A') that mF?-mG and this 
implies the second ranking (by the support property at A).15 In particular, taking A'= AC, 

Ac-F+ G>AcnA +F- G!A, (3.11) 

for all FcAC and GcA. The interpretation is that if F seems small relative to G when (as 
at A') one is contemplating subtracting F and adding G, then it also seems small when 
(as at A) one is contemplating adding F and subtracting G. This is reminiscent of the 
familiar inequality between the compensating and equivalent variations for an economic 
change, or the property of diminishing marginal rate of substitution. A closer connection 
between uncertainty aversion and such familiar notions from consumer theory is possible 
if eventwise differentiability of preference is assumed, as in the next section. 

4. DIFFERENTIABLE UTILITIES 

Tractability in applying the notion of uncertainty aversion raises the following question: 
Is there a procedure for deriving from > all probabilistically sophisticated orders 
satisfying (2.5), or for deriving from v all candidate supporting measures m satisfying 
(3.7)? Such a procedure is essential for the hypothesis of uncertainty aversion to be verifi- 
able. For example, within CEU, Lemma 3.4 describes the probability measures that can 
serve as supports. However, to apply the description, one must be able to compute the 
cores of the capacity v and of monotonic transformations of v, while even the core of v 
alone is typically not easily computed from v. 

In order to address the question of tractability, this section introduces the notion of 
eventwise differentiability of preference. Much as within expected utility theory (where 
outcomes lie in some X;'V), differentiability of the vNM index simplifies the task of check- 
ing for concavity and hence risk aversion, eventwise differentiability simplifies the task of 
checking for uncertainty aversion. That is because such differentiability permits the candi- 
date supporting measures to be derived via convenient calculations of the sort familiar 
from calculus. Further, conditions are provided that deliver a unique supporting measure 
from the eventwise derivative of utility. When combined with Lemmas 3.2 and 3.4, this 
provides a practicable characterization of uncertainty aversion. 

15. A slight strengthening of (3.10) is valid. Suppose that 

A' - F'?+ G' A' all i, 

for some partitions F= IF' and G = XG'. Only the trivial partitions were admitted above. Then additivity of the 
supporting measure implies as above that mnF-mG and hence that A + F- G A. 
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4.1. Definition of eventwise differentiability 

The standard representation of an act, used above, is as a measurable map from states 
into outcomes. Let e: Sot be such an act. An alternative representation of this act is 
by means of the inverse correspondence e-1, denoted by e'. Thus e: - ;X, where e(x) 
denotes the event E on which the act assumes the outcome x. For notational simplicity, 
it is convenient to write e rather than e' and to leave it to the context to make clear whether 
e denotes a mapping from states into consequences or alternatively from outcomes into 
events. 

Henceforth, when examining the decision-maker's ranking of a pair of acts, view 
those acts as assigning a common set of outcomes to different events. This perspective is 
"dual" to the more common one, where distinct acts are viewed as assigning different 
outcomes to common events. These two perspectives are mathematically equally valid; 
the choice between them is a matter of convenience. The latter is well suited to the study 
of risk aversion (attitudes towards variability in outcomes) and, it is argued here, the 
former is well suited to the study of uncertainty aversion. The intuition is that uncertainty 
or ambiguity stems from events and that aversion to uncertainty reflects attitudes towards 
changes in those events. 

Because acts are simple, 

{xe%e:e(x)?0} is finite. (4.1) 

In addition, 

{e(x): xe , e(x) ? 0} partitions S. (4.2) 

The set of acts J may be identified with the set of all maps satisfying these two con- 
ditions. In particular, Y cY? where the latter is defined as the set of all maps from % 
into I satisfying (4.1). 

Let U: X .-* be a utility function from > and define the "eventwise derivative of 
U". Because utility is defined on a subset of St' it is convenient to define derivatives first 
for functions (D that are defined on all of t Continue to refer to elements eEl as acts 
even when they are not elements of JT. 

The following structure for Y.'is useful. Define the operations "u", "n" and "comp- 
lementation" (e i-- ec) on X'co-ordinatewise; for example, 

(e uf)(x) _ e(x)uf(x), for all xe iT. 

Say that e andf are disjoint if e(x)n f(x) 0 for all x, abbreviated e n f = 0. In that case, 
denote the above union by e +f. The notation e'\e and e'Ae indicates set difference and 
symmetric difference applied outcome by outcome. Similar meaning is given to gce. 

Say that {fj}n= I partitions f if {fj(x)} partitions f(x) for each x. Define the refine- 
ment partial ordering of partitions in the obvious way. Given an actf, {{f"},A b. 
denotes the net of all finite partitions off, where X < i' if and only if the partition corre- 
sponding to A' refines the partition corresponding to A. 

A real-valued function g on Y`'is called additive if it is additive across disjoint acts. 
Refer to such a function as a (signed) measure even though that terminology is usually 
reserved for functions defined on algebras, while X'is not an algebra.'6 Expected utility 
functions, U(e) = 1_ u(x)p(e(x)), are additive and hence measures in this terminology. The 

16. In particular, I' is not the product algebra on S' induced by ?. However, Y' is a ring, that is, it is 
closed with respect to unions and differences. 
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properties of boundedness and convex-rangedness for a measure , on L' can be defined 
in the natural way (see Appendix B). 

Define differentiability for a function D: E' - v'. In order to better understand the 
essence of the definition, some readers may wish to focus on the special case where the 
doihain of F is E. Then each act e is simply an event E. One can think of D as a capacity 
and of 3F (; E) as its derivative at E. 

Definition 4.1. F is (eventwise) differentiable at e e ' if there exists a bounded and 
convex-ranged measure 3F(; e) on L', such that: For allfcec and gce, 

F.=I D (e +fiX - gjX) - 4?(e) - 63F(fP,; e) ? 3F(gJ; e)| -h 0. (4.3) 

Any utility function U is defined on the proper subset 7 of E '. Define YU(; e) as 
above, with the exception that the perturbations fjI and gjX are restricted so that 
e +f i A - g jXA lies in . Say that U is eventwise differentiable if the derivative exists at each 
e in iT. 

(To clarify the notation, suppose that e is an act in 7- that assumes the outcomes xi 
and x2 on E and Ec respectively. Letf assume (only) these outcomes on events FcFC and 
GcE, while g assumes (only) xl and x2 on G and F respectively. Then f and g lie in E', 
fceC, gce and e+f-g is the act in J7 that yields xi on E+F-G and x2 on its com- 
plement. Further if {FJIx} and { Gi} are partitions of F and G and if fiX and giX are 
defined in fashion paralleling the definitions given for f and g, then {fi,X} and {g JX } are 
partitions of f and g that enter into the definition of 3 U(; e).) 

The suggested interpretation is that 8 U(; e) represents the "mean" or "uncertainty 
free" assessment of acts implicit in utility, as viewed from the perspective of the act e. It 
may help to recall that in the theory of expected utility over objective lotteries or risk, if 
the vNM index is differentiable, then utility is linear to the first order and hence preference 
is risk neutral for small gambles. The suggested parallel here is that a differentiable utility 
is additive (rather than linear) and uncertainty neutral (rather than risk neutral) to the 
"first-order". 

Before applying eventwise differentiability to the analysis of uncertainty aversion, the 
next section provides some examples. See Appendix C for some technical aspects of event- 
wise differentiability, for a stronger form of differentiability (similar to that in Machina 
(1992)) and for a brief comparison with Rosenmuller (1972), which inspired the above 
definition. 

4.2. Examples 

Turn to some examples that illustrate both differentiability and uncertainty aversion. All 
are special cases of the CEU model (3.3), though other examples are readily constructed. 
Because the discussion of differentiability dealt with functions defined on E' rather than 
just Y, rewrite the CEU functional form here using this larger domain. If the outcomes 
satisfy xI X2> .. 

>xn and the act e has e(xi) = Ei, i = 1, .. ., n, then 

Uceu(e) = I [u(x)E-u(Xi+ 1)]v(U1 Ej) + u(x,)v(U1 Ej). 

Suppose that the capacity v is eventwise differentiable with derivative 3v(; E) at E; nat- 
urally, differentiability is in the sense of the last section (with I =1). Then Uceu(. ) is 
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eventwise differentiable with derivative 

3U(e'; e) = En j [u(xi) -u(xi+ I )]6v(Ui EJ; Ul Ej) + u(x,)6v(Ul EJ; Ul Ej), (4.4) 

where e'(xi) = E,'. (This follows as in calculus from the additivity property of differen- 
tiation.) Because differentiability of utility is determined totally by that of the capacity, it 
is enough to consider examples of differentiable (and nondifferentiable) capacities. In each 
case where the capacity is differentiable, (4.4) describes the corresponding derivative of 
utility. 

The CEU case demonstrates clearly that eventwise differentiability is distinct from 
more familiar notions, such as Gateaux differentiability. It is well-known that a CEU 
utility function is not Gateaux differentiable, even if the vNM index is smooth, unless it 
is an expected utility function. In contrast, many CEU utility functions are eventwise 
differentiable, regardless of the nature of u( ). 

Verification of the formulae provided for derivatives is possible using the definition 
(4.3). Alternatively, verification of the stronger ,-differentiability (see Appendix C) is 
straightforward. (Define , by (C.2) and go = p in the first two examples, = q in the third 
example and = l*/l*(S) in the final example, where only "one-sided" derivatives exist.) 

Example (Probability measure). Let p be a convex-ranged probability measure. Then 
3p(; E) = p( ), the same measure for all E. Application of (4.4) yields 

3 U(e'; e) = 1 u(xi)pE'. 

Exanmple (Probabilistic sophistication within CEU). Let 

v = g(p), (4.5) 

where p is a convex-ranged probability measure and g: [0, 1] -[0, 1] is increasing, onto and 
continuously differentiable. The corresponding utility function lies in the rank-dependent- 
expected-utility class of functions studied in the case of risk where p is taken to be objec- 
tive. (See Chew et al. (1987) and the references therein.) Then 

6v(; E) = g'(pE)p( ) 

and 

6 U(e'; e) = I7- 1 [u(xi) - u(xi+ 1 )]g'(p(Ui E1))p(U l EJ), u(x,, + 0)- 

Example (Quadratic capacity). Let 

v(E) = p(E)q(E), 

where p and q are convex-ranged probability measures with p <<q. Then 

8v( ;E) = p(E)q( )+p( )q(E), 

a formula that is reminiscent of standard calculus.'7 
Direct verification shows that v is convex. As for uncertainty aversion, if p and q 

agree on _v7, then the probability measure on E defined by 

m( ) = 6v(; A)/6v(S; A) = [q(*) +p()]/2, 

17. More generally, a counterpart of the usual product rule of differentiation is valid for eventwise 
differentiation. 
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serves as a support in the sense of (3.7). That the implied CEU utility function is uncer- 
tainty averse in the full sense of (2.5) may be established by application of Lemma 3.4. 
Observe that v=p2 = m2 on s/, thus g(t) = t2. Then m lies in the core of (pq)112, because 
[p(*) + q( * )]2 > 4p( )q(*). The probabilistically sophisticated supporting utility function UPS 
is 

UPs(e) = u(e)dm2. 

Example (Interval beliefs). Let 1* and 1* be two non-negative, convex-ranged meas- 
ures on (S, 1), such that 

e() ?l*(.) and 0<l*(S)<l<l*(S). 

Define 1= I*(S) - 1 and 

v(E) = max {lI (E), 1*(E) - 41 (4.6) 

Then v is a convex capacity on (S, 2) and has the core 

core(v) = {peM(S,E): 1*( )-<p(+)?l *( ) on E}. 

This representation for the core provides intuition for v and the reason for its name. 
See Wasserman (1990) for details regarding this capacity and its applications in robust 
statistics. 

Because the capacity is "piecewise additive", one can easily see that though it has 
"one-sided derivatives", v is generally not eventwise differentiable at any E such that 
l* (E)?l*(E) - 4 

It follows from Theorem 3.3 and the nature of core(v) that a CEU utility Uceu with 
capacity v is uncertainty averse for any class (v such that 1 ( ) = l*() on c> \ {S}. Because 
any such class X excludes events that are "close to" S, such an cannot be rich. In 
fact, one can show using Lemma 3.4, that it is impossible for Uceu to be uncertainty averse 
relative to any rich class of unambiguous events, unless l*( )/l*(S) = 1*( )/1* (S) on X, in 
which case Uceu is probabilistically sophisticated, providing another illustration of the lack 
of a connection between uncertainty aversion and convexity. 

4.3. Uncertainty aversion under differentiability 

To begin this section, the discussion will be restricted to binary acts; that is, uncertainty 
aversion will refer to (2.6), or equivalently, to (3.7). Implications are then drawn for 
uncertainty aversion in the full sense of general acts and (2.5). 

The relevant derivative is 3v(; E), where vE- U(x,Ex2) and U need not be a CEU 
function. Assume that vE is increasing with E. Thus 3v(; E) is a non-negative measure, 
though not necessarily a probability measure. The suggested interpretation from Section 
4.1, specialized to this case, is that 3v(; E) represents the "mean" or "uncertainty-free" 
likelihoods implicit in v, as viewed from the perspective of the event E. This interpretation 
is natural given that 3v(; E) is additive over events and hence ordinally equivalent to a 
probability measure on E. 

Turn to the relation between differentiability and uncertainty aversion. When v is 
differentiable, analogy with calculus might suggest that the support at any event A, in the 
sense of (3.7), should be unique and given by 3v(; A), perhaps up to a scalar multiple. 
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Though the analogy with calculus is imperfect, it is nevertheless the case that, under 
additional assumptions, differentiability provides information about the set of supports. 

The principal additional assumption may be stated as follows: _'? 0= {A E 
7: v(S) > max {vA, vAC} }, the set of unambiguous events A such that A and its comp- 

lement are each strictly less likely than S. Say that v is coherent if there exists a positive 
real-valued function K defined on _V0, such that 

3v( ; A) = K(A)6v(.; AC) on X, (4.7) 

for each A in _.,3i0 Coherence is satisfied by all the differentiable examples in Section 4.2. 
By the Chain Rule for eventwise differentiability (Theorem C.1), coherence is invariant 
to suitable monotonic transformations of v and thus is an assumption about the prefer- 
ence ranking of binary acts. It is arguably an expression of the unambiguous nature of 
events in .K To see this, it may help to consider first the following addition to (3.11): 

A+F-G<A Ac-F+G>Ac. 

This is a questionable assumption because the events AC - F+ G and A + F- G are both 
ambiguous. Therefore, there is no reason to expect the perspective on the change "add F 
and subtract G" to be similar at Ac as at A. However, if F and G are both "small", then 
only mean likelihoods matter and it is reasonable that the relative mean likelihoods of F 
and G be the same from the two perspectives. In fact, such agreement seems to be an 
expression of the existence of "coherent" ambiguity-free beliefs underlying preference. 
This condition translates into the following restriction on derivatives: 

3v(F, A)-< ?v(G; A) =* 3v(F; AC)< ?v(G; AC). 

By arguments similar to those in the proof of the theorem, this implication delivers (4.7) 
under the assumptions in part (b). (Observe that the reverse implication follows from 
(3.11).) 

The following result is proven in Appendix A: 

Theorem 4.2. Let v be eventwise differentiable. 

(a) If v is uncertainty averse, then for all A E s/, FcAC and GcA, 

3v(F; AC) ?' v(G; AC) => v(A + F- G):-' v(A). (4.8) 

(b) Suppose further that X is a u-algebra and that m and each 3v(, A), A E ./0, are 
countably additive, where m is a support in the sense of (3.7). Then for each A in `i0, 

3v(F; A)m(G)?3 v(G; A)m(F) (4.9) 

and 

3v(G; AC)m(F)?358v(F; AC)m(G). (4.10) 

(c) Suppose further that -V'0 is nonempty and that v is coherent. Then the unique 
countably additive supporting probability measure m is given by m( ) = 3v(; A)/3v(S; A), 
for any A in V?. 

When division is permitted, the inequalities in (b) imply that 

3v(F; A) m(F) <v(F; AC) 

3v(G; A) m(G) 3v(G; AC) 

which suggests an interpretation as an interval bound for the "marginal rate of sub- 
stitution at any A between F and G". 



EPSTEIN UNCERTAINTY AVERSION 599 

The relation (4.8) states roughly that for each A, 3v(; AC) serves as a support at A. 
Given our earlier interpretation for the derivative, it states that if the decision-maker 
would rather bet on A+ F - G than on A when ambiguity is ignored and when mean- 
likelihoods are computed from the perspective of AC, then she would make the same choice 
also when ambiguity is considered. That is because the former event is more ambiguous 
and the decision-maker dislikes ambiguity or uncertainty. 

Finally, part (c) of the theorem describes conditions under which the parallel with 
calculus is valid the (countably additive) supporting measure is unique and given essen- 
tially by the derivative of v. Note that the support property in question here is global in 
that the same measure "works" at each unambiguous A, and not just at a single given 
A."8 This explains the need for the coherence assumption, which helps to ensure that 
3v(; A)/6v(S; A) is independent of A. 

Turn to uncertainty aversion for general nonbinary acts, that is, in the sense of (2.5). 
Lemma 3.2 characterizes uncertainty aversion for preferences or utility functions, 
assuming a given supporting measure. Theorem 4.2 delivers the uniqueness of the support- 
ing measure under the stated conditions. Combining these two results produces our most 
complete characterization of uncertainty aversion. 

Theorem 4.3. Let U be a utility function, X1>X2, v(E)_ U(x,Ex2) and suppose that 
v is eventwise differentiable. Suppose further that each 3v( , A), A E . 5:i?, is countably addi- 
tive, U./ is nonempty and v is coherent. Then (1) implies (2), where: 

(1) U is uncertainty averse with countably additive supporting probability measure. 
(2) U satisfies conditions (i) and (ii) of Lemma 3.2 with measure m given by 

m(-) = 3v(-; A)/3v(S; A), for any A inv. (4.12) 

Conversely, if 3v( ; A) is convex-ranged on / for any A in . 0 , then (2) implies (1). 

The combination of Theorem 4.2 with Lemma 3.4 delivers a comparable result for CEU 
utility functions. In particular, to verify "more uncertainty averse than some expected 
utility function" (Lemma 3.4(c)), one need only verify (3.6) for the particular measure m 
defined in (4.12), a much easier task than computing the complete core of v. 

5. CONCLUDING REMARKS 

Within the Choquet expected utility framework, convexity of the capacity has been widely 
taken to characterize uncertainty aversion. This paper has questioned the appeal of this 
characterization and has proposed an alternative. To conclude, consider further the 
relation between the two definitions and, in particular, the significance of the difference 
in the domains adopted in Schmeidler (1989) and in this paper. 

Denote by %'V the set of all finite-ranged (simple) and measurable acts e from (S, X) 
into A( 2). Then Y+ is the domain of horse-race/roulette-wheel acts used by Anscombe 
and Aumann. Each such act h involves two stages in the first, uncertainty is resolved 
through realization of the horse-race winner se S and in the second stage the risk associ- 
ated with the objective lottery h(s) is resolved. An act h that yields a degenerate lottery 

18. Even given (4.7), the supporting measure at a given single A is not unique, contrary to the intuition 
suggested by calculus. If the support property "mF-<mG =X v(A + F- G) -< vA", is satisfied by m, then it is also 
satisfied by any m' satisfying m( )-<m'(-) on r-)A' and m( )-m'( ) on r-)A. For example, let m' be the 
conditional of m given A'. 
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h(s) in the second stage for every s can be identified with a Savage act; in other words, 

Schmeidler assumes that preference > and the representing utility function U are 
defined on the larger domain W. He calls U uncertainty averse if it is quasiconcave, that 
is, if 

U(e)? U(f) =f U(axe + (1 - a)f)_ U(f), (5.1) 

for all aE [0, 1], where the mixture ae + (I - a)f is defined in the obvious way. The sug- 
gested interpretation (p. 582) is that "substituting objective mixing for subjective mixing 
makes the decision-maker better off." Within Choquet expected utility theory, expanded 
to the domain 4, U'u is uncertainty averse if and only if the corresponding capacity v 
is convex. 

Though formulated and motivated by Schmeidler within the AA framework, the 
identification of convexity of v with uncertainty aversion has been widely adopted in many 
instances where the Savage domain 6 rather than X, is the relevant one, that is, where 
choice behaviour over Y is the object of study and in which only such behaviour is 
observable to the analyst. The Ellsberg single-urn experiment provides such a setting, but 
it was shown in Section 1.2 that convexity has little to do with intuitively uncertainty 
averse behaviour in that setting. One possible reaction is to suggest that the single-urn 
experiment is special and that convexity is better suited to Ellsberg's other principal 
experiment involving two urns, one ambiguous and the other unambiguous.19 Because 
behaviour in this experiment is also prototypical of the behaviour that is to be modelled 
and because it might be unrealistic to expect a single definition of uncertainty aversion to 
perform well in all settings, good performance of the convexity definition in this setting 
might restore its appeal. Moreover, such good performance might be expected because 
the Cartesian product state space that is natural for modelling the two-urn experiment 
suggests a connection with the horse-race/roulette-wheel acts in the AA domain. Accord- 
ing to this view, the state space for the ambiguous urn "corresponds" to the horse-race 
stage of the AA acts and the state space for the unambiguous urn "corresponds" to the 
roulette-wheel component. 

In fact, the performance of the convexity definition is no better in the two-urn experi- 
ment than in the single-urn case. Rather than providing specific examples of capacities 
supporting this assertion, it may be more useful to point out why the grounds for opti- 
mism described above are unsound. In spite of the apparent correspondence between the 
AA setup and the Savage domain, with a Cartesian product state space, these are substan- 
tially different specifications because, as pointed out by Sarin and Wakker (1992), only 
the AA domain involves two-stage acts (the horse-race first and then the roulette-wheel) 
and in Schmeidler's formulation of CEU, these are evaluated in an iterative fashion. Eich- 
berger and Kelsey (1996) show that this difference leads to different conclusions about 
the connection between convexity of the capacity and attitudes towards randomization. 
For the same reason the difference in domains leads to different conclusions about the 
connection between convexity of the capacity and attitudes towards uncertainty. In par- 
ticular, convexity is not closely connected to typical behaviour in the two-urn experiment. 

While the preceding discussion has centred on examples, albeit telling examples, there 
is a general point that may be worth making explicit. The general point concerns the 

19. Each urn contains 100 balls that are either red or blue. For the ambiguous urn this is all the infor- 
mation provided. For the unambiguous urn, the decision-maker is told that there are 50 balls of each colour. 
The choice problem is whether to bet on drawing a red (or blue) ball from the ambiguous urn vs. the unambigu- 
ous one. 
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practice of transferring to the Savage domain notions, such as uncertainty aversion, that 
have been formulated and motivated in the AA framework. The difference between the 
decision-maker's attitude towards the second-stage roulette-wheel risk as opposed to the 
uncertainty inherent in the first-stage horse-race is the basis for Schmeidler's definition of 
uncertainty aversion. The upshot is that uncertainty aversion is not manifested exclusively 
or primarily through the choice of pure horse-races or acts over S. Frequently, however, 
it is the latter choice behaviour that is of primary interest to the modeller. This is the case, 
for example, in the Ellsberg experiments discussed above and is the reason for the weak 
(or non-existent) connection between convexity and intuitive behaviour in those experi- 
ments. This is not to deny that convexity may be a useful hypothesis even in a Savage 
framework nor that its interpretation as uncertainty aversion may be warranted where 
preferences over AA acts are observable, say in laboratory experiments. Accordingly, this 
is not a criticism of Schmeidler's definition within his chosen framework. It argues only 
against the common practice of interpreting convexity as uncertainty aversion outside that 
framework. (An alternative behavioural interpretation for convexity is provided in 
Wakker (1996).) 

I conclude with one last remark on the AA domain. The extension of the Savage 
domain of acts to the AA domain is useful because the inclusion of second-stage lotteries 
delivers greater analytical power or simplicity. This is the reason for their inclusion by 
Anscombe and Aumann to simplify the derivation of subjective probabilities as well 
as in the axiomatizations of the CEU and multiple-priors utility functions in Schmeidler 
(1989) and Gilboa and Schmeidler (1989) respectively. In all these cases, roulette-wheels 
are a tool whose purpose is to help in delivering the representation of utility for acts over 
S. Kreps (1988, p. 101) writes that this is sensible in a normative application but "is a 
very dicey and perhaps completely useless procedure in descriptive applications" if only 
choices between acts over S are observable. Emphasizing and elaborating this point has 
been the objective of this section. 

APPENDIX 

A. Proofs 

Proof of Lemma 3.2. UPS and U agree on .-i ". Therefore, (i) follows from (2.4) and the monotonicity 
assumed for UK That UPS supports U implies by (2.5) that for all ee . and hle XO 

W(T,, )-<5 W(vlT,,St ) =*U(e)-< U(hZ). 

This implies (ii). 
For the converse, define PS as the order represented numerically by UPS, 

Up5(e) = W(T,,,e), eE., 

where W: A(-a )o- 1 is defined by 

W(T) = U(h) for any he X ta satisfying tPni,h = P. 

Part (i) ensures that W(T) does not depend on the choice of h, making W well-defined. The assumption added 
for m ensures that this defines W on all of A( ./ ). Then UPS supports U. II 

Proof of Lemma 3.4. (b) UC"U and UPS must agree on .v ", implying that v and m are ordinally equivalent 
on .( . Because v is convex-ranged and . c/ is rich, v( (-) v(S) = [0, 1]. Conclude that m( [) [0, 1] also. Thus 
(3.5) is proven. 
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Lemma 3.2(ii) implies that for all acts e and unambiguous acts h, 

Uccu(e) =7? [u(x;) - u(xi I )]v(Ui e(xi)) + u(x,,) 

-<7T ' [u(xi)- u(x+ I )]v(U1 h(x1)) + u(x,,) = UCU(h) 

=t1 [u(x,) - u(x?+ I )]g - m(U' h(x)) + u(x1,), 

if m(e(,xj)) m(h(x;)) for all j. Because this inequality obtains for all u(x) >... > u(x1,) and these utility levels 
can be varied over an open set containing some point (u(x), . . ., u(x)), it follows that 

g(m(ui e(xi))) =g(m(UI h(.Yj))) > v(ui e(xrj)), 

for all e and h as above. Given EeC , let e(x1) E and e(x2) = EC, xi >x2. There exists unambiguous A such that 
mE = mA. Let h(x1) = A and h(x2) = AC. Then g(m(E)) > v(E) follows, proving (3.4). 

The sufficiency portion (a) can be proven by suitably reversing the preceding argument. 

Proof of Theorem 3.1. The following lemma is of independent interest because of the special significance 
of bets as a subclass of all acts. Notation from Section 3.4 is used below. 

Lemma A.1. Suppose that + is rich, with outcomes x* and x* as in the definition of richness. Let 
v(E)=- U(x*Ex*). Then the conjunction of (3.7) and (3.8) implies that v is ordinally equivalent to a probability 
measure on I (or equivalently, v satisfies (4.5)). A fortiori, the conclusion is valid if > is both uncertainty averse 
and uncertainty loving. 

Proof Let m and q be the hypothesized supports. Their defining properties imply that 

mF-mG = qqF?qG, 

for all AC.i, FcAC and GcA. But if this relation is applied to AC in place of A, noting that A'e>,, then the 
roles of F and G are reversed and one obtains 

mF> mG =* qF_ qG. 

In other words, 

mF-<mG t qF-<qG, 

for all Ae.:./, FcAC and GcA. Conclude from (3.7) and (3.8) that 

mF<mG, v(A +F-G)?vA, 

for all Ae./, FcA'' and GcA; or equivalently, that for all Ae.C.i, 

mE-<mA X vE- vA. 

In other words, every indifference curve for v containing some unambiguous event is also an indifference curve 
for m. The stated hypothesis regarding X> /ensures that every indifference curve contains some unambiguous A 
and therefore that v and in are ordinally equivalent on all of S. 11 

Complete the proof of Theorem 3.1. Denote by >PS and >PS the probabilistically sophisticated preference 
orders supporting > in the sense of (2.5) and (2.6), respectively, and having underlying probability measures m 
and q defined on S. From the proof of the lemma, 

m and q are ordinally equivalent on S. 

Claim: For each act e, there exists he >Ja such that 

e -Psh and e-Psh. 

To see this, let e =((xi, Ei)7. ). By the richness of .jy, there exists an unambiguous event HII, such that, 
x*Hix* .x*EIx*, or, in the notation of the lemma, v(HI) = v(EI). Because v and m are ordinally equivalent, 
m(HI) = m(EI) and thus also m(Hf) = m(Ef) and v(Hf) = v(Ef). Thus one can apply richness again to find a 
suitable unambiguous subset H2 of H'. Proceeding in this way, one constructs an unambiguous act 
h = ((xi, Hi)'= l) such that 

v(H1) = v(E1) and m(Hi) = m(Ei), 
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for all i. By the ordinal equivalence of m and q, 

q(Hi) = q(Ei), all i. 

The claim now follows immediately from the nature of probabilistic sophistication. 

From (2.5), > and PS agree on 9- . Similarly, > and > PS agree on J"T'. Therefore, > pS and > P0 agree 
there. From the claim, it follows that they agree on the complete set of acts Y. The support properties (2.5) 
and (2.6) thus imply that 

h> Ie,h e, for all he ' - "and e . 

In particular, every indifference curve for >m containing some unambiguous act is also an indifference curve 
for >. But the qualification can be dropped because of the claim. It follows that > and PS coincide on Y. 

Proof of Theorem 4.2. (a) Let m satisfy (3.7) at A. Show first that 

mF5mG =X 3v(F; A) :56v(G; A), (A. 1) 

for all FcAC and GcA: Fix e > 0 and let X0 be such that the expression defining 3v(; A) is less than E whenever 
X > )0o. By Lemma B. 1, there exist partitions {Fjx}x and {Gji} 17 such that 

mF mG , j - 1 ., nx, 

and X > AL, hence 

X7- j [v(A) - v(A + Fj" - GjA)] - [3v(Gj ; A) - e5v(Fix; A)] I < e. 

Because m is a support, 

v(A + Fjl" - Gj)? v(A). 

Thus20 

3v(G; A) - 3v(F; A) = X1 [3v(G'x; A)-3v(FjA; A)] >-E. 

However, E is arbitrary. This proves (A.l). 
Replace A by AC, in which case F and G reverse roles and deduce that 

mF_mG = 3v(F, AC) _ 3v(G; AC) 

or equivalently, 
6v(F, AC) <8v(G; AC) =X mF.mG. (A.2) 

Because m is a support, this yields (4.8). 
(b) Let A E _ satisfy 

S>A and S>A'. (A.3) 

Claim 1: 3v(Ac, A) > 0. If it equals zero, then 8v(A'; A) = 6v(0; A) implies, by (4.8), that A + A'<A, or 
S-A, contrary to (A.3). 

Claim 2: mA'> 0. If not, then mS5mA = 1 and (3.7) implies that S-A, contrary to (A.3). 

Claim 3: 3v(A; A') > 0 and mA > 0. Replace A by A' above. 

Claim 4: 6v(A', A') > 0. If it equals zero, then 6v(A; A')mA' = 0 by (4.9), contradicting Claim 3. 

Claim 5: For any GcA, 5v(G; A) =0 w mG = 0: Let F= A'. By Claim 1, 5v(F; A) > 0. Therefore, Lemma 
B.l implies that VX03X > A0, 3v(Fj"; A) > 0 = 5v(G; A) for all j. By (A.l), VA03)k > X0, m(Fi"') > m(G) for all j, 
and thus also mF> ,.= 1 (mG). This implies mG = 0. 

Claim 6: For any FcA', mF=0=>3v(F;A)=0: mF=0 = (by (A.1)) 8v(F;A)<5 v(G;A) for all GcA. 
Claim 4 implies 6v(G; A) > 0 if G = A. Therefore, 3v(; A) convex-ranged implies (Lemma B.l) that 3v(F; A) = 
0. 

Claim 7: m is convex-ranged: By Claim 5, m is absolutely continuous with respect to 5v(-; A) on A. The 
latter measure is convex-ranged. Therefore, m has no atoms in A. Replace A by A' and use the convex range of 
3v(; A') to deduce in a similar fashion that m has no atoms in A'. Thus m is non-atomic. Because it is also 
countably additive by hypothesis, conclude that it is convex-ranged (Rao and Rao (1983), Theorem 5.1.6). 

20. Given jlx,-yjI <E and yj,O for allj, then xj!-|xj-yjI +yj>_xj-yj , implying that zXj>-e. 
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Turn to (4.9); (4.10) may be proven similarly. Define the measures p and p on Ac x A as follows 

u=m > v(-;A), p=6v(-;A)?m. 

Claims 5 and 6 prove that p<< p. Denote by h _dp/dp the Radon-Nikodym density. (Countable additivity is 
used here.) 

Claim 8: ji{(s, t)e Ac x A: h(s, t) > I } = 0: If not, then there exist FocAC and GocA, with p(Fo x Go) > 0, 
such that 

h>l onFoxGo. 

Case 1: mFo = mGo. Integration delivers fFO fGo [h(s, t) - I]dy > 0, implying that 

3v(Fo; A)mGo - mFo6v(Go; A) > 0. 

Consequently, mFo = mGo and 6v(Fo; A) > &v(Go; A), contradicting (A.1). 

Case 2: mFo < mGo. Because m is convex-ranged (Claim 7), there exists GI cGo such that mGI = mF, and 
y(Fo x GI) > 0. Thus the argument in Case 1 can be applied. 

Case 3: mFo > mGo. Similar to Case 2. 

This proves Claim 8. Finally, for any FcAc and GcA, 6v(F; A)(mG) - (mF)3v(G; A) = FfG(h - I)d1i 
0, proving (4.9). 

(c) Though at first glance the proof may seem obvious given (4.11), some needed details are provided 
here. Let A E . Multiply through (4.9) by 3v(G; AC) to obtain that 

5v(F; A)6v(G; Ac)mG-.6v(G; A)3v(G; AC)mF, 

for all FcAC and GcA. Similarly, multiplying through (4.10) by 6v(G; A) yields 

3v(G; A)3v(G; AC)mF$5v(G; A)6v(F; AC)mG, 

for all such F and G. Conclude from coherence that 

8v(G; A)5v(G; AC)mF= 5v(G; A)3v(F; Ac)mG, (A.4) 

for all FcAC and GcA. 
Take G = A in (A.4) to deduce 

5v(F; AC) = .5v(A; Ac)m(F)/m(A), for all FcAC. (A.5) 

Next take F= AC in (A.4). If 6v(G; A) > 0, then 

8v(G; AC) = e5v(AC, AC)m(G)/m(AC), for all GcA. (A.6) 

This equation is true also if 5v(G; A) =0, because then (4.8), with F= AC, implies Sv(AC; A)m(G)= 0, which 
implies mG = 0 by Claim 1. 

Substitute the expressions for o5v(F; AC) and o5v(G; AC) into (A.4) and set F= AC and G = A to derive 

5v(AC; AC)/m(AC) = 5v(A; AC)/m(A) - a(A) > 0. 

Thus 

v(. Ac) =t a(A)m(-) on 1rnAC 

A a(A)m( ) on InA. 

By additivity, it follows that 8v(; Ac) = a(A)m( ) on all of S. Thus 8v(; A) = r(A)a(A)m(-), completing the 
proof. II 

B. Additive Functions on 1" 

Some details are provided for such functions, as defined in Section 4.1. 
For any additive p, p(0) = 0 and 

p(e) = Xp. (e(x)), (B.1) 

where Px is the marginal measure on > defined by px(E) = the -measure of the act that assigns E to the outcome 
x and the empty set to every other outcome. 
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Apply to each marginal the standard notions and results for finitely additive measures on an algebra (see 
Rao and Rao (1983)). In this way, one obtains a decomposition of s, 

I= M - 

where ,u+ and g- are non-negative measures. Define 

Say that the measure yt is bounded if 

sup lIl(f) = sup {jJly(f.A) I: fE , X} <0 (B.2) 

Call the measure ,u on ' tconvex-ranged if for every e and re (0, i j(e)), there exists b, bce such that I Mi(b) = r, 
where e and b are elements of I'. 

Lemma B.1 summarizes some useful properties of convex-ranged measures on 1'. See Rao and Rao 
(1983), pp. 142-143 for comparable results for measures on an algebra. In Rao and Rao (1983), property (b) is 
referred to as strong continuity. 

Lemma B.1. Let p be a measure on I'. Then the following statements are equivalent: 

(a) p is convex-ranged. 
(b) For any actf, with corresponding net of allfinite partitions f 1, and for any ? > 0, there exists Xo 

such that 

X >Xo=jjuj(f"-)<e, forj=l,...,nx. 

(c) For any acts f, g and h _f+g, if (f ) > p (g), then there exists a partition {hjA})=l of h, such that 
p (hjA) < E and p (hj xrf) > p(hJA ng), j = l, nA - 

C. Diferentiability 

This Appendix elaborates on mathematical aspects of the definition of eventwise differentiability. Then it 
describes a stronger differentiability notion. 

The requirement of convex range for 6b(-; e) is not needed everywhere, but is built into the definition for 
ease of exposition. Though I use the tenn derivative, 35I(; e) is actually the counterpart of a differential. The 
need for a signed measure arises from the absence of any monotonicity assumptions. If 4( ) is monotone with 
respect to inclusion c, then each 64(; e) is a non-negative measure. 

The limiting condition (4.3) may seem unusual because it does not involve a difference quotient. It may 
be comforting, therefore, to observe that a comparable condition can be identified in calculus: For a function 
(p: M'-4 that is differentiable at some x in the usual sense, elementary algebraic manipulation of the 
definition of the derivative (p'(x) yields the following expression paralleling (4.3): 

xi = I [p(x + N') - q(x) -N vp(X)] Sx N,- 0. 

Further clarification is afforded as follows by comparison with Gateaux differentiability: Roughly speak- 
ing, eventwise differentiability at e states that the difference 4)(e+f-g)-4(e) can be approximated by 
bD(f; e) - b5I(g; e) for suitably "small" f and g,. where the small size of the perturbation "f- g" is in the sense 
of the fineness of the partitions as X grows. Naturally, it is important that the approximating functional 65(; e) 
is additive (a signed measure). There is an apparent parallel with Gateaux (directional) differentiability of func- 
tions defined on a linear space-"f- g" represents the "direction" of perturbation and the additive approxi- 
mation replaces the usual linear one. Note that the perturbation from e to e +f- g is perfectly general; any e' 
can be expressed (uniquely) in the form e' = e +f-g, withfcec and gce (see (3.9)). 

A natural question is "how restrictive is the assumption of eventwise differentiability?" In this connection, 
the reader may have noted that the definition is formulated for an arbitrary state space S and algebra ?. How- 
ever, eventwise differentiability is potentially interesting only in cases where these are both infinite. That is 
because if z is finite, then 4 is differentiable if and only if it is additive. 

Another question concerns the uniqueness of the derivative. The limiting condition (4.3) has at most one 
solution, that is, the derivative is unique if it exists: If p and q are two measures on I' satisfying the limiting 
property, then for each gceC, p(g) - q(g) I lp(gj |i) - q(gJA) I -AO Therefore, pig) = q(g) for all gce. Simi- 
larly, prove equality for all fcec and then apply additivity. 

Next I describe a Chain Rule for eventwise differentiability. 
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Theorem C.1. Let D: I . ' be eventwise differentiable at e and p: I(D ') %' be strictly increasing 
and continuously differentiable. Then p D is eventwise differentiable at e and 

,5((p? - )(-; e) = (p'((D(e))3o(D; e) 

Proof. Consider the sum whose convergence defines the eventwise derivative of (p .(. By the Mean Value 
Theorem, 

(p? ((e +fj,A -gji) - (pe ?(e) = (p'(zj)[D(e +P,A - giX) - (D (e)], 

for suitable real numbers zji. Therefore, it suffices to prove that 

(D (e +f,A - gjX) - ((e) |p'(zixA) - p'(ID(e))) | ?O. 

By the continuity of q', the second term converges to zero uniformly in j. Eventwise differentiability of ( implies 
that given ?, there exists 2o such that X > 2o =* 

xZ I I(D(e+i -gi)" (D(e)|< +Ej 30 |6(fi; e) - 30 (gi,"; e)| 

-< E + EJ& (| (fJ,; e) I + & I?(gi' e) ) K, 

for some K< co that is independent of i, f and g, as provided by the boundedness of the measure 3SI(; e). | 

Eventwise differentiability is inspired by Rosenmuller's (1972) notion, but there are differences. Rosen- 
muller deals with convex capacities defined on ;, rather than with utility functions defined on acts. Even within 
that framework, his formulation differs from (4.3) and relies on the assumed convexity. Moreover, he restricts 
attention to "one-sided" derivatives, that is, where the inner perturbation g is identically empty (producing an 
outer derivative), or where the outer perturbation f is identically empty (producing an inner derivative). Finally, 
Rosenmuller's application is to co-operative game theory rather than to decision theory. 

A strengthening of eventwise differentiability, called ,-differentiability, is described here. The stronger 
notion is more easily interpreted, thus casting further light on eventwise differentiability, and it delivers a form 
of the Fundamental Theorem of Calculus. Machina (1992) introduces a very similar notion. Because it is new 
and still unfamiliar and because our formulation is somewhat different and arguably more transparent, a detailed 
description seems in order.2' 

To proceed, adopt as another primitive a non-negative, bounded and convex-ranged measure ,u on Y 
This measure serves the "technical role" of determining the distance between acts. To be precise, if e and e' are 
identified whenever M(eAe') = 0, then 

d(e, e') = M(eAe') (C.1) 

defines a metric on i; the assumption of convex range renders the metric space path-connected (by Volkmer 
and Weber (1983), see also Landers (1973), Lemma 4). 

One way in which such a measure can arise is from a convex-ranged probability measure Po on S. Given 
p0, define , by 

M(e) =po(e(x)). (C.2) 

Once again let (: I' - ( . Because acts e and e' are identified when M(eAe') = 0, (D is assumed to satisfy 
the condition 

p(eAe') = O (D(e u f) = ((e' u f), for all f (C.3) 

In particular, acts of p-measure 0 are assumed to be "null" with respect to (. 

Definition C.2. t is p-differentiable at eeY-'if there exists a bounded and convex-ranged measure 34(; e) 
on ", such that for all fcec and gce, 

I (D (e +f - g) - (D?(e) - 3f (f; e) + 30 (g; e) I / (f + g) -- 0 (C.4) 

as p(f+g) -0. 

21. As mentioned earlier, after a version of this paper was completed, I learned of a revision of Machina 
(1992), dated 1997, in which Machina provides a formulation very similar to that provided in this subsection. 
The connection with the more general "partitions-based" notion of eventwise differentiability, inspired by 
Rosenmuller (1972), is not observed by Machina. 
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The presence of a "difference quotient" makes the definition more familiar in appearance and permits an 
obvious interpretation. Think in particular of the case (1-/-| = 1) where the domain of D is S. It is easy to see 
that 3I(; e) is absolutely continuous with respect to , for each e. (Use additivity of the derivative and (C.3).) 

Eventwise and ,-derivatives have not been distinguished notationally because they coincide whenever both 
exist. 

Lemma C.3. If D is p-differentiable at some e in Xi, then D is also eventwise differentiable at e and the 
two derivatives coincide. 

Proof. Let 3I(; e) be the ,-derivative at e, fce' and gce. Given ? >O, there exists (by ,-differentiabi- 
lity) ?' > 0 such that 

J(D(e+f'-g')-(D(e)-3(D(f';e)+3D(g';e) l<-p(f'+ g'), (C.5) 

if jt(f' + g') <E'. By Lemma B. 1 applied to the convex-ranged ,u there exists Xo such that 

A(fjx +giX) < E/ for all X > Xo. 

Therefore, one can apply (C.5) to the acts (f', g') = (fjx,g j). Deduce that 

j I ID(e +fj,x - gi) - ID(e) - 30(fj,x; e) + 3I (g iX; e)| 

<?-Ij,"=,(f is +gis )=?cp(f+g)<-Csupp(-)- | 

A consequence is that the ,-derivative of D is independent of ,u; that is, if pi1 and A2 are two measures 
satisfying the conditions in the lemma, then they imply the identical derivatives for (. This follows from the 
uniqueness of the eventwise derivative noted earlier. Such invariance is important in light of the exogenous and 
ad hoc nature of ,. This result is evident because of the deeper perspective afforded by the notion of eventwise 
differentiability and reflects its superiority over the notion of A-differentiability. 

Finally, under a slight strengthening of ,-differentiability, one can "integrate" back to (D from its deriva- 
tives. That is, a form of the Fundamental Theorem of Calculus is valid. 

Lemma C.4. Let ( be p-differentiable and suppose that the convergence in (C.4) is uniform in e. For every 
? > O,fcec and gce, there existfinite partitionsf = lfj andg = Egi such that ? > 

(C.6) 

where _i = fi and ji= = I g 

Proof. ,-differentiability and the indicated uniform convergence imply that 

clD(e+ --' -l +f'-g') - (D(e+ J' i i-) 

- 0(f'; e + ' - _, 
) -s+ 30(g'; e+ < -- 

-A 
< 

(ft +g ) 

for any partitions Wfi} and {g i} such that p((f' + g') is sufficiently small for all j. But the latter can be ensured 
by taking the partitions { fi } and {gj } for X sufficiently large. The convex range assumption for , enters here; 

use Lemma B.i. Therefore, the triangle inequality delivers |1(e+f-g)-D(e)-13I(f';e+ v i l ) 
+ 10(g'; e+ J''-Ki I) ls i f+ eji(f+g). H 
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