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A Multivariate Technique for Multiply Imputing Missing Values
Using a Sequence of Regression Models
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Abstract

This article describes and evaluates a procedure for imputing missing values for a relatively complex data structure when the
data are missing at random. The imputations are obtained by fitting a sequence of regression models and drawing values
from the corresponding predictive distributions. The types of regression models used are linear, logistic, Poisson,
generalized logit or a mixture of these depending on the type of variable being imputed. Two additional common features in
the imputation process are incorporated: restriction to a relevant subpopulation for some variables and logical bounds or
constraints for the imputed values. The restrictions involve subsetting the sample individuals that satisfy certain criteria
while fitting the regression models. The bounds involve drawing values from a truncated predictive distribution. The
development of this method was partly motivated by the analysis of two data sets which are used as illustrations. The
sequential regression procedure is applied to perform multiple imputation analysis for the two applied problems. The
sampling properties of inferences from multiply imputed data sets created using the sequential regression method are

evaluated through simulated data sets.

Key Words: Item nonresponse; Missing at random; Multiple imputation; Nonignorable missing mechanism;
Regression; Sampling properties and simulations.

1. Introduction

Incomplete data is a pervasive problem faced by most
applied researchers. Several methods have been, and
continue to be, developed to draw inferences from data sets
with missing values (Little and Rubin 1987). The multiple
imputation framework suggested by Rubin (1978, 1987a,
1996) is an attractive option if a data set is to be used by
multiple researchers with differing levels of statistical
expertise. This approach involves imputing several plausible
sets of missing values in the incomplete data set resulting in
several completed data sets. Each completed data set is
analyzed separately, say by fitting a particular regression
model. The resulting inferences — point estimates and the
covariance matrices — are then combined using the formula
given in Rubin (1987a, Chapter 3) and refinements thereof
(Li, Raghunathan and Rubin 1991; Li, Meng, Raghunathan
and Rubin 1991; Meng and Rubin 1992; and Barnard 1995).

Imputation based approaches for handling missing data,
in general, are quite useful in practice because once the
missing values have been imputed, existing complete-data
software can be used to analyze the data. Since software
development for complete data analysis is keeping pace
with the introduction of new statistical methods, applied
researchers without knowledge of particular missing data
techniques or resources to generate their own code for
implementing new missing data procedures will be able to
fit finely tuned substantive models for a specific problem at

hand. An added advantage of the multiple imputation
approach is that by repeatedly applying the complete data
software, one can obtain valid point and interval estimates
under a fairly general set of conditions (Rubin 1987a).
Several researchers (see, for example, the list of references
in Rubin 1996) have applied this technique under a variety
of settings and have demonstrated, through analysis of
simulated and actual data sets, the appropriateness of this
approach. Alternatives such as single imputation with an
appropriate variance estimation procedure, for example,
modified Jackknife Repeated Replication Technique (Rao
and Shao 1992) also have this advantage. The imputation
approach described in this paper can also be used to create
single imputation with an alternative variance estimation
procedure.

The development of imputation methods from varying
perspectives has a long history (Madow, Nisselson, Olkin
and Rubin 1983). A theoretically appealing framework for
developing imputation methods is the Bayesian approach.
This approach specifies an explicit model for variables with
missing values, conditional on the fully observed variables
and some unknown parameters, a prior distribution for the
unknown parameters, and a model for the missing data
mechanism, which does not need to be specified under an
ignorable missing data mechanism (Rubin 1976). This
explicit model then generates a posterior predictive distri-
bution of the missing values conditional on the observed
values. The imputations are draws from this posterior pre-
dictive distribution. Several computer programs and
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algorithms are available for imputing missing values under
multivariate normality (Rubin and Schafer 1990), the
multivariate ¢ distribution (Liu 1995), and several variations
of the general location model (Schafer 1997; Raghunathan
and Grizzle 1995; and Raghunathan and Siscovick 1996).
The latter model can handle the joint distribution of
categorical and continuous variables and was first proposed
by Olkin and Tate (1961), and used by Little and Schluchter
(1985) explicitly for missing data problems. An important
property of these approaches is that they are fully condi-
tional on all the observed information. Several simulation
studies (for example, Raghunathan and Grizzle 1995) indi-
cate that the inferences drawn from such imputed data have
desirable sampling properties.

Survey data sets often consist of large numbers of
variables which have a variety of distributional forms.
Typically, such data sets have hundreds of variables, some
continuous, others counts, many dichotomous or poly-
tomous, and even some semi-continuous or limited
dependent variables. Moreover, the distributions of the
continuous variables alone may involve normal, lognormal,
and other distributions. Postulating a full Bayesian model
can be very difficult in this situation. Furthermore, survey
data commonly have two additional features that make the
modeling process even more complex. First, certain
restrictions are imperative. For example, the variable
“Number of Years Since Quit Smoking” is defined only for
former smokers; hence, the imputation process for this
variable should be restricted only to former smokers.
Restrictions also arise due to skip patterns in the question-
naire. For example, certain questions about income from a
second job are asked only when the respondent indicates
that he/she has a second job. The imputation of such
variables has to be handled in a hierarchical manner.

Second, there are certain logical or consistency bounds
for the missing values that must be incorporated in the
imputation process. Such interrelationships among the
variables make the model specification difficult. For
instance, “Years of Smoking” is restricted to current or past
smokers and the imputed values must be less than Age — x
years, where x may be chosen based on certain other
characteristics, such as evidence of smoking as a teen-ager.
For a former smoker, x also includes years since smoking
ceased. Another example of bounds is discussed in
Heeringa, Little and Raghunathan (1997). They address
imputation of bracketed response questions in which a
respondent is unable or unwilling to provide an exact
response (e.g., income and assets), but does define the
bounds within which the imputed values must lie.

The goal of this paper is to propose and evaluate a
general purpose multivariate imputation procedure that can
handle a relatively complex data structure where explicit full
multivariate models cannot be easily formulated but the
imputed values for each individual are fully conditional on
all the values observed for that individual. The approach is
to consider imputation on a variable by variable basis but to
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condition on all observed variables. The basic strategy
creates imputations through a sequence of multiple
regressions, varying the type of regression model by the
type of variable being imputed. Covariates include all other
variables observed or imputed for that individual. The
imputations are defined as draws from the posterior
predictive distribution specified by the regression model
with a flat or non-informative prior distribution for the
parameters in the regression model. The sequence of
imputing missing values can be continued in a cyclical
manner, each time overwriting previously drawn values,
building interdependence among imputed values and
exploiting the correlational structure among covariates. To
generate multiple imputations, the same procedure can be
applied with different random starting seeds or taking every
P™ imputed set of values in the cycles mentioned above.

The variables in the data set are assumed to be of the
following five types: (1) continuous, (2) binary, (3) catego-
rical (polytomous with more than two categories), (4)
counts and (5) mixed (a continuous variable with a non-zero
probability mass at zero). Computationally, binary and
categorical variables can be treated identically, but distin-
guishing them helps in conceptual understanding and in the
description of the basic algorithm. We also assume that the
population is essentially infinite, the sample is a simple
random sample and the missing data mechanism is
ignorable (Rubin 1976). The use of multiple imputation in a
complex design setting has, as yet, not been fully
investigated and is beyond the scope of the current paper.

In this paper we describe the sequential regression
multivariate imputation (SRMI) approach in section 2 and
evaluate two applications of the approach in sections 3 and
4. In the first application, it is difficult to postulate a joint
multivariate distribution because of the complex systematic
relationship between the variables and restrictions. In the
second application, a general location model can be used to
create multiple imputations (Olkin and Tate 1961; and Little
and Schluchter 1985). Hence, we compare multiple imputa-
tion inferences resulting from the SRMI approach to those
resulting from a joint multivariate model. The results of a
simulation study investigating the sampling properties of
imputed data inferences are presented in section 5, and a
concluding discussion with directions for future research are
given in section 6.

2. Imputation Method

For a sample of size n, let X denote a nx p design or
predictor matrix containing all the variables with no missing
values. X consists of continuous, binary, count or mixed
variables, and appropriate dummy variables representing
categorical variables. In addition, X may also consist of a
column of ones to model an intercept parameter, offset
variables, and certain design variables. Let 1,Y,,....Y,
denote & variables with missing values, ordered, without
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loss of generality, by the amount of missing values, from
least to most. The pattern need not be monotone. (In a
monotone pattern of missing data, Y, is observed only for a
subset of subjects on whom Y, is observed, Y, is observed
only for a subset of those on whom Y, is observed and so
on.)

For model based imputations, the joint conditional
density of V], Y,, ..., ¥, given X can be factored as

f, Y, . Y, |X, 0,0, ..0,)=
LN X, 0) L (G |X, Y, 6,)...
L IX Y Yy Y 0) (D)

where S J=L2, .., k are the conditional density
functions and 0, is a vector of parameters in the conditional
distribution (e.g., regression coefficients and dispersion
parameters). In the sample survey context this can be
viewed as a superpopulation model. We model each
conditional density through an appropriate regression model
with unknown parameters, 0, and draw from the
corresponding predictive distribution of the missing values
given the observed values. We assume that the prior
distribution for the parameters 6=(6,, 0,, ..., 6,) 1is
7(0) oc 1 (diffuse relative to the likelihood). However, the
method can easily be modified for specified proper prior
distributions.

Each conditional regression is based on one of the
following models:

1. A normal linear regression model on a suitable scale
(for example, a Box-Cox power transformation may
be used to achieve normality) if Y, is continuous;

2. Alogistic regression model if Y; is binary;

3. A polytomous or generalized logit regression model
if ¥, categorical;

4. A Poisson loglinear model if Y, is a count variable;
and

5. A two-stage model where zero-non zero status is
imputed using logistic regression, and conditional
on non-zero status, a normal linear regression model
is used to impute non-zero values, if ¥, is mixed.

Each imputation consists of ¢ “rounds”. Start round 1 by
regressing the variable with the fewest number of missing
values, ¥, on X, imputing the missing values under the
appropriate regression model. Assuming a flat prior for the
regression coefficients, the imputations, for the missing
values in Y] are the draws from the corresponding posterior
predictive distribution (See Appendix A for a detailed
discussion about drawing values for various regression
models.) Then update X by appending ¥, appropriately (for
example, dummy variables, if it is categorical) and move on
to the next variable, Y,, with the next fewest missing
values. Repeat the imputation process using updated X as
predictors until all the variables have been imputed. That is,
Y, is regressed on U = X; ¥, is regressed on U = (X, Y;)
where Y, has imputed values; Y, is regressed on
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U=(X,Y,Y,) where Y and Y, have imputed values;
and so on.

The imputation process is then repeated in rounds 2
through ¢, modifying the predictor set to include all Y
variables except the one used as the dependent variable.
Thus, regress ¥, on X and 1,, ¥, ..., ¥;; regress ¥, on X
and ¥, ¥, ..., ¥,; and so on. Repeated cycles continue for
a prespecified number of rounds, or until stable imputed
values occur.

The procedure outlined above needs modification to
incorporate restrictions and bounds. The restrictions are
handled by fitting the models to an appropriate subset of
individuals. For example, a Poisson regression model could
be applied to impute any missing values for the variable
“Number of Pregnancies.” The imputation will be restricted
to women in the sample. As a covariate, though, this
variable may be treated differently when imputing subse-
quent variables. For instance, certain dummy variables may
be created based on this variable, which hare then appended
to the matrix U before proceeding with the imputation of the
next variable.

Consider another example, “Years Smoking Cigarettes,”
where the sample would be restricted to current or past
smokers. If there is no evidence of smoking as a teenager,
“Years Smoking Cigarettes” for a current smoker should
satisfy the bound (0, Age - 18). If there is some indication of
smoking as a teenager then the range may be restricted to,
say (0, Age - 12). For a past smoker these ranges will be (0,
Age - 18 — YRSQUIT) and (0, Age - 12 — YRSQUIT)
respectively, where YRSQUIT is the years since the indivi-
dual quit smoking. The appropriate regression model for
this variable is a truncated version of the normal linear
regression model (possibly on a transformed scale). The
parameters, the regression coefficients and the residual
variance need to be drawn from the corresponding posterior
distributions. The imputations are then drawn from the
corresponding truncated normal distribution conditional on
the drawn value of the parameters.

It is difficult to draw values of parameters directly from
their posterior distribution with truncated normal likeli-
hoods. However, it can be easily computed for a given
parameter value. The Sampling-Importance-Resampling
(SIR) algorithm (Rubin 1987b, Raghunathan and Rubin
1988) can be used to draw from the actual posterior
distribution. First, draw several trial parameter values from
the posterior distribution without applying the bounds
(untruncated normal linear regression model). Second,
attach an importance ratio to each trial value, defined as the
ratio of the actual posterior density with bounds to the trial
density (the posterior density without bounds), both
evaluated at the drawn value. Finally, resample a single
parameter value with probability proportional to the
importance ratios. This method requires careful monitoring
of the distribution of importance ratios (Gelman, Carlin,
Stern and Rubin 1995).

Statistics Canada, Catalogue No. 12-001



88 Raghunathan et al.: A Multivariate Technique for Multiply Imputing Missing Values

The bounds can also be applied to polytomous
variables. For instance, suppose that a variable Y can take
one of k values, but the observed data suggests that the
missing value for a particular subject can either be j or /.
The contribution to the likelihood from this subject
corresponds to the conditional binomial distribution. The
draws in the multinomial step (see Appendix A) are made
from the conditional distribution for these two categories.
That is, the imputed value is j with probabilities
Sq = P /(F; + P.) and / with probability 1- S e

At the completlon of the initial round of imputations, the
first complete data set with no missing values is available.
The factorization in Equation (1) defines a joint conditional
distribution of Y, ¥,, ..., ¥;, given X. If the pattern of
missing data is monotone, the imputations in the first round
are approximate draws from the joint posterior predictive
density of the missing values given the observed values.
Note that the draws from the logistic, polytomous, and
count variables are from large sample approximations of the
posterior density of the regression coefficients. It is possible
to improve upon these approximations by using, for
example, the SIR algorithm or another rejection algorithm
in each subsequent round.

When the pattern of missing data is not monotone, one
can develop a Gibbs sampling algorithm (Geman and
Geman 1984; Gelfand and Smith 1990) corresponding to
Model (1). For example, conditional on the drawn values of
the parameters 6,, 0;, ..., 0, and the missing values drawn
in the first round, the second round would draw values of
0, from the appropriate conditional posterior density which
is proportional to the first term in Equation (1). Next draw
the missing values in ¥, conditional on this drawn value of
the parameter 6,, all other observed or imputed values for
that subject and other parameters, 0,, 0,, ..., 6, in the
model. That is, the missing values in Y; at round (z+1)
need to be drawn from the conditional density,
e(t+1) 0. y®©

fj* (Yj |6Y+1)’ YI(HI)’ > YD Tl ey)’ Y;c(t)’ X)a (2)
computed based on the joint distribution in (1), where ¥,”
is the imputed or observed values for variable Y, at round ¢.
Though this is conceptually possible, it is difficult even to
compute this density in most practical settings with restric-
tions, bounds, and the types of variables being considered.
Our proposal is to draw missing values in Y; at round
(t+1) from a predictive distribution corresponding to

conditional density,

g (Y |Y(t+1) Y(H—l) Y(t+1) Y(t)
FAST A LSRR S

-1 j+1"' 5

79, X,0,), ()

where the conditional density g; is specified by one of the
regression models described earlier that depends upon the
variable type for Y, and ¢, is the unknown regression
parameters with diffuse prior. That is, the new imputed
values for a variable are conditional on the previously
imputed values of other variables, and the newly imputed
values of variables that preceded the currently imputed
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variable. This proposal may be viewed as an approximation
to an actual Gibbs sampling where the conditional density
(2) is approximated by the conditional density (3). Further-
more, this approximation can be improved by considering
the SIR or some other rejection type algorithm if the condi-
tional density in (2) can be computed up to a constant.

There are some other particular cases where this approxi-
mation is equivalent to drawing values from a posterior
predictive distribution under a fully parametric model. For
example, if all the variables are continuous and each condi-
tional regression model is a normal linear regression model
with constant variance, then the algorithm converges to a
joint predictive distribution under a multivariate normal
distribution with an improper prior for the mean and the
covariance matrix.

It is theoretically possible that a sequence of draws based
on densities in (3) may not converge to a stationary
distribution, because these conditional densities may not be
compatible with any multivariate joint conditional distri-
bution of Y, 7Y, ..., Y, given X (Gelman and Speed 1993).
Our empirical investigations using several practical data sets
have not identified, so far, any such anomalies. In several
large data sets, we find the conditional densities (2) and (3)
to be quite similar. As discussed in sections 4 and 5, the
draws from this approach are comparable to those based on
an explicit Bayesian model.

3. Effect of Smoking on Primary Cardiac Arrest

In our first illustration, the SRMI approach is applied to a
case-control study examining the relationship between
cigarette smoking and the incidence of primary cardiac
arrest (Siscovick, Raghunathan, King, Weinmann,
Wicklund, Albright, Bovbjerg, Arbogast, Kushi, Cobb,
Copass, Psaty, Retzlaff, Childs and Knopp 1995). In this
study it is difficult to formulate an explicit model which
captures the full complexity of the data. The case subjects
were all King County, Washington residents who had out-
of-hospital primary cardiac arrests between 1988 and 1994.
The case subjects were identified through a review of
paramedic incident reports. Control subjects were selected
by random digit dialing from King County and matched to
case subjects on gender and age (within seven years). To be
eligible, subjects (case and control) were required to be
between 25 and 74 years of age, married, and free of
clinically-diagnosed heart disease or some other life-
threatening conditions such as cancer, liver disease, lung
disease, or end-stage renal disease.

Because primary cardiac arrest has a case-fatality rate
greater than 80%, the eligibility criterion of marriage was
included so that information regarding risk factor exposure
(i.e., smoker status, years smoked) could be ascertained
from surrogate respondents (i.e., spouses). Among control
and surviving cases subjects, both subject and surrogate
were interviewed to gather exposure data. The control and
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the surviving cases subjects were interviewed mainly to
study the reliability of measurements from their surrogates.
Among the variables considered in this paper, there were
practically no differences in the measurements obtained
from the subjects and their surrogates for control or case
subjects.

Table 1 gives the means, standard deviations, and percent
missing values for key variables by case-control status. The
exposure variables are indicator variables for Former
Smoker (X;), Current Smoker ()X,) and Years Smoked
(X;). The confounding variables considered are Age, Body
Mass Index (BMI) (BMI=Weight [in Kg]/Heightz[in
Meters]), and the binary variables Female and Education
(High School Graduate). The substantive model of interest
is the logistic regression model,

log[Pr(C =1)/Pr(C =0)] = oy + o, X| + o, X, + o, X, X

+ o, X, X, + asAge +a,BMI

+ o,Female + o Education,
where C is an indicator of cardiac arrest. Preliminary

investigations indicated that linear terms for Age and BMI,
are appropriate.

Table 1
Means and Proportions (in %) for Key Variables and
Percent Missing

Variable Control (n =551) Cases (n =347)
% Missing  Mean (SD) % Missing Mean (SD)
Age 0.0 584 (10.4) 0.0 594 (9.9
BMI 8.2 258 (4.1 2.6 264 (4.6)
Years Smoked 16.8 24.8 (14.7) 5.4 31.7 (13.8)
Proportion Proportion
Female 0.0 23.2 0.0 19.9
> High School 0.0 76.8 0.0 61.9
Smoking Status
Never Smoked 0.0 47.2 0.0 27.3
Former Smoker 0.0 42.1 0.0 38.2
Current Smoker 0.0 10.7 0.0 34.5

There are no missing values for the variables Age,
Female, Education, Smoking Status (.X;, X,), and C. Thus,
for purposes of imputation, define X =(1, Age, Female
Education, X, X,,C). Log (BMI), having the fewest
missing values, was regressed first on X through a normal
linear regression model. Residual diagnostics indicated a
log-transform improved the normality of residuals.

Next, Years Smoked was regressed on U = (X, log
(BMI)). For this variable the sample was restricted to
current and former smokers. Moreover, imputed values for
Years Smoked were bounded by AGE-18, unless a
respondent reported that they smoked in school
(SCHSMK), and then they were bounded by AGE-12. For
former smokers, imputed values were also bounded by how
long ago the respondent had quit smoking (YRSQUIT).
Thus, imputed values for former smokers who did not
smoke in school were bounded by AGE-18-YRSQUIT,
while imputed values for former smokers that did smoke in
school were bounded by AGE-12-YRSQUIT. Some
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subjects (5%) had missing values on the two auxiliary items
(SCHSMK, YRSQUIT) which were imputed prior to
defining the upper bounds of Years Smoked. The inherent
structure of this data set makes it difficult to develop
explicitly a joint distribution of the variables with missing
values conditional on the completed observed variables.
SRMI is thus an appealing approach to handle for this type
of data.

In imputing the missing values, we performed 1,000
rounds for each of 25 different starting random seeds
resulting in M=25 imputations. The logistic regression
model was fit to each imputed data set to obtain maximum
likelihood estimates of the regression coefficients and
asymptotic covariance matrices.

We used the standard multiple imputation variance
formula (Rubin 1987a, Chapter 3) to compute the multiply
imputed estimate of the regression coefficients and the
covariance matrix. Briefly, suppose that &) is the estimate
of the vector of regression coefficients o in the logistic
model, and V" its covariance matrix, based on imputed
data set /. The multiply imputed estimate of o is

M
A ~ (1
Oy = E a /M
=1
and its covariance matrix is

M +1

M
V=2 VM + B,

=1

where

(@ = Gy ) (6 = ) /(M 1.

M=

B, =

~
Il

The number of imputations is larger than what is usually
recommended. We performed 25 imputations with different
random seeds to assess whether the Gibbs style rounds lead
us to a region of the imputed values that is very different
from the observed data. Graphical displays of the imputed
and observed values indicated that none of the imputations
in the 25,000 rounds were incompatible with the observed
data distribution.

Table 2, the complete-case analysis, gives the point esti-
mates and their standard errors based on subjects with all
variables observed. A total of 103 subjects (11.5%) had
missing values in one or more predictors. A complete-case
analysis, which is generally valid only when the data are
missing completely at random was performed after deleting
these 103 subjects (See Column 2, Table 2). Logistic
regression analyses with a missing data indicator as the
dependent variable and a number of completely observed
variables as predictors indicated that the data are not
missing completely at random. One may expect, therefore,
that the complete case estimates and standard errors are
biased.
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Table 2
Point Estimates (Standard Errors) of Logistic Regression Coefficients for Model of Primary Cardiac Arrest for Complete Cases,
SRMI Methods 1* and 2**

Predictor Variables Complete Case SRMI
(n=795) Method 1 (n =898) Method 2 (n = 898)
Estimate (SE) Estimate (SE) Estimate (SE)

Intercept -2.922 (0.791) -2.610 (0.757) -2.348 (0.627)
Age 0.015 (0.009) 0.015 (0.009) 0.014 (0.008)
Female -0.007 (0.203) -0.115 (0.189) -0.119 (0.177)
Education -0.448 (0.173) -0.467 (0.166) -0.444 (0.133)
BMI 0.056 (0.018) 0.049 (0.013) 0.055 (0.009)
Current Smoker 1.693 (0.569) 2.001 (0.543) 1.998 (0.448)
Former Smoker 0.003 (0.284) -0.029 (0.262) -0.011 (0.223)
Current Smoker X Yrs Smoked -0.003 (0.015) -0.008 (0.013) -0.005 (0.011)
Former Smoker x Yrs Smoked 0.019 (0.009) 0.014 (0.009) 0.014 (0.009)

* Method 1 — Imputation restricted to model variables

**  Method 2 — Imputation includes model and auxiliary variables

Table 2, SRMI Method 1, gives estimates and their
standard errors for SRMI using only the variables in the
substantive model. These estimates are quite similar to the
complete-case analysis estimates. The multiple imputation
standard errors are smaller due to additional subjects with
imputed data. There are modest changes in the relationship
between smoking and primary cardiac arrest. The complete-
case analysis indicates a statistically significant relationship
between years smoked and primary cardiac arrest for former
smokers, while no such association is indicated in the
analysis of multiply imputed data.

One of the advantages of the multiple imputation
approach is that the imputation process can use additional
variables not in the substantive analysis. Such situations
arise when a common research database with many
variables is used by different researchers, each using a
subset of the variables. The imputation may be carried out
for the entire database, where prediction for missing values
in each variable borrows strength from all other variables in
the data set. Such imputations have been shown to improve
efficiency compared to those based only on variables in the
particular substantive model (Raghunathan and Siscovick
1996).

Table 2, SRMI Method 2, provides multiple imputation
estimates and their standard errors obtained when the entire
data set was imputed using 50 additional variables. These
included dietary indicators, physiological measures, socio-
economic status, and behavioural variables. The point
estimates are modestly different for all the variables. The
standard errors, though, are considerably smaller when
compared to the multiple imputation approach using only
variables in the substantive model (SRMI, Method 1). This
is not surprising because many of the additional variables
such as blood pressure, cholesterol counts, alcohol con-
sumption, and physical activity were highly predictive of
BMI and smoking related variables.
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4. Parental Psychological Disorders
and Child Development

A second illustration examines the effects of parental
psychological disorders on several measures of childhood
development. Little and Schuchter (1985) analyzed the data
using a general location model to obtain maximum likeli-
hood estimates of the parameters of the joint distribution.
This general location model was employed to create
multiple imputations using Markov Chain Monte Carlo
methods (Schafer 1997), producing fully Bayesian model-
based multiply imputed data sets. We also created multiple
imputations using the SRMI procedure.

The study data consists of 69 families with two children
each. Each family was classified into one of the three risk
categories: (1) Normal Risk — no parental psychiatric
disorders; (2) Moderate Risk — one parent diagnosed with a
psychiatric illness or a chronic physical illness; and (3) High
Risk — one parent diagnosed with schizophrenia or an
affective mental disorder. There are three primary depen-
dent variables of interest: Y, number of psychiatric
symptoms (dichotomized as high/low) for child ¢;Y,,, the
standardized reading scores for child ¢; and Y, the
standardized verbal comprehension score for child c.

We consider three models in investigating the impact of
parental psychological disorders on childhood development.
The first is a mixed effects logistic regression model:

IOgit[Pr(Ylic = 1)] = Bo + B1U1,‘ + BzUz,' + Y

where Y. =1 if child ¢ in family i is classified as having a
high number of symptoms and 0 otherwise; U, =1 if
family i is classified as a moderate risk group and 0
otherwise; U,;, =1 if family i is classified as a high risk
group and O otherwise; and y, are random effects assumed
to be identically and independently distributed normal
random variables with mean 0 and variance (pi. This
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random effect accounts for intraclass correlation between
the two children within the same family. With complete
data, this model may be fit by maximizing the numerically
integrated likelihood function of (B,, B;, B, (pi) using the
Newton-Raphson algorithm and the Gaussian quadrature
method for the numerical integration of the likelihood
function. These types of models can be easily fit with
complete data, but are difficult to fit with missing data.

The second and third regression models relate the child’s
reading and verbal scores, respectively, to risk group after
adjusting for the number of symptoms (¥;). An investi-
gation of the residuals after a few preliminary rounds or
reading and verbal score imputations indicated a log scale
was appropriate. Thus, denoting Y,,, and Y, as the
logarithm of the reading and verbal scores, respectively, for
child ¢ in family i, we posited the following mixed effects
regression model,

Y =0y +o,Uy; +a,Uy + 05,

lic

+9, +€,.

where §, and €, are mutually independent normal random
variables with mean 0 and variances o; and . respec-
tively. Again, with no missing data in the covariates, the
maximum likelihood estimates of the unknown parameters
can be readily obtained using, for example, the PROC
MIXED procedure in SAS.

There were no missing values in the classification of the
risk groups, and thus we defined X =(1,U,,U,). The
variables with missing values, Y,,,Y,,,Y;,, and Y, were
imputed using normal linear regression, and the missing
values in Y, and Y, were imputed using logistic
regression. We created M =25 SRMIs, repeating the
process through 1,000 rounds and 25 different seeds. The
SRMI multiply imputed data sets were analyzed and
combined using the methods described earlier. To compare
these results with the multiply imputed inferences when the
imputations are draws from the posterior predictive distri-
bution under the general location model we created 25
imputations under a fully Bayesian model using software
developed by Schafer (1997). The point estimates and
standard errors for the three models using SRMI and Bayes
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multiple imputation approaches are presented in Table 3.
There are no real meaningful differences between the SRMI
estimates and standard errors and those resulting from the
Bayesian imputation. Children of parents in the high risk
group are approximately 7.8 [exp (2.048)] times more likely
to have a high number of symptoms than children with
parents in the normal group under the SRMI. The 95%
confidence interval for this relative risk is (3.8, 16.0). For
the moderate risk, group, the corresponding point and
interval estimates are 3.7 and (1.8, 7.8). These estimates
may be contrasted with those obtained based on the
complete-case analysis (not shown): 7.4 (2.3, 24.2) for the
high risk group, and 3.5 (1.0, 11.9) for the moderate risk
group (data not shown). Though the point estimates of the
relative risks are similar, the complete-case confidence
intervals are wider because they are based only on 60% of
the observations.

Based on the estimated regression coefficients in Table 3,
one can infer, after adjusting, for the number of symptoms,
that children in the moderate and high risk groups have
lower reading scores, by about 11 points [exp(4.654)-
exp(4.654-0.110)], when compared to the normal group. On
the other hand, the complete-case analysis estimates a score
of 16 points lower for children in the moderate risk group
than their counterparts in the normal group, and children in
the high risk group score about 19 points lower when
compared to the normal group.

The SRMI analysis of verbal scores suggests that the
children in the moderate and high risk groups score about
20 and 24 points lower, respectively, than their counterparts
in the normal group. However, the complete-case analysis
shows the moderate risk group scores lower by 36 points
and the high risk group scores lower by about 39 points
when compared to the normal group. Thus, the complete-
case estimates of the effects of parental psychological
disorders on the child’s reading and verbal scores are quite
different than those obtained by the analysis of the multiply
imputed data. This is not surprising because the data on
reading and verbal scores are not missing completely at

Table 3
Point Estimates (Standard Errors) of Regression Coefficients for Three Models of Child Development Under
SRMI and Bayesian Imputation

Predictor Variables Imp. Method Dependent Variable
Symptoms Reading Score Verbal Score
Intercept SRMI -0.678 (0.256) 4.654 (0.013) 4.873 (0.020)
Bayes -0.688 (0.257) 4.556 (0.013) 4.991 (0.021)
High Risk Group SRMI 2.048 (0.356) -0.109 (0.022) -0.191 (0.032)
Bayes 2.033 (0.350) -0.108 (0.021) -0.180 (0.033)
Moderate Risk Group SRMI 1.289 (0.366) -0.110 (0.022) -0.162 (0.033)
Bayes 1.300 (0.360) -0.109 (0.023) -0.167 (0.035)
Symptoms SRMI 0.032 (0.022) -0.083 (0.032)
Bayes 0.031 (0.019) -0.080 (0.030)
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random and are related to the risk group as well as the
number of symptoms of the child.

5. Simulation Study

The analyses described in sections 3 and 4 indicate that
sensible results can be obtained by applying the SRMI
approach to handling missing values. Nevertheless, it is
difficult to conclude based on such case studies whether or
not the approach will result in valid inferences in routine
applications. A simulation study was designed to investigate
the repeated sampling properties of inferences from imputed
data sets created with the SRMI approach. Complete data
sets were generated from hypothetical populations, and
elements deleted under an ignorable missing data
mechanism. The deleted values were imputed and
differences in summary statistics based on the imputed data
sets and the before deletion or full data sets were assessed.

More formally, the strategy:

(1) generated a complete data set which did not agree
perfectly with our multiple imputation strategy,

(2) estimated selected regression parameters,

(3) deleted certain values using an ignorable missing
data mechanism,

(4) used SRMI to multiply impute the missing
values, and

(5) obtained multiply imputed estimates for the
regression parameters estimated in step 2.

The differences in the parameter are examined across
several independent replications of this strategy.

A total of 2,500 complete data sets with three variables
(U,1,,Y,) and sample size 100 were generated using the
following models:

1. U ~Normal (0, 1);

2. Y, ~Gamma with mean p, =exp(U-1) and
variance i /5; and

3. Y, ~Gamma with mean p, =exp(-1+0.5U +
0.5) and variance /2.

The model for Y, in step 3 is the primary regression
model of interest with true regression coefficients
B, =—1,B, =B, =0.5, and dispersion parameter ¢” = 0.5.
For the complete data this model can be fixed using
statistical software packages such as GLIM or Splus.

The deletion or missing data mechanisms were as
follows:

(1) No missing values in U;

(2) the missing values in ¥, depend on U through a
logistic function logit[Pr( Y] is missing)] = 1.5 +
U, and

(3) the missing values in ¥, depend on U and Y]
through a logistic function logit[Pr(Y, is
missing)] =1.5-0.5 ¥, -0.5U.
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These missing data mechanisms generated 22% missing
data in ¥, and 29% missing data in Y,. The complete-case
analysis would have only used 48% of the data.

Since SRMI allows us only to fit a normal linear
regression model, the imputations were carried out as
follows. Suppose that ¥; has fewer missing values, and let
Z, :(Ylk1 —1)/A, be the Box-Cox transformation of the
continuous variable. In the first round of imputations,
assume that Z, has a normal distribution with mean
a,+a U and variance o;, where A, was estimated using
the  maximum likelihood approach, and that
Z,=(¥)* =1)/%, has a normal distribution with mean
by +b,U +b,Z, and variance o, where A, was estimated
using maximum likelihood. In the subsequent rounds, U and
Z, are predictors for Z,, and U and Z, are predictors for
Z,. The estimation of a power transformation using
maximum likelihood was automated while fitting each
regression model.

For each of the 2,500 simulated data sets with missing
values, a total 250 rounds with M = 5 different random starts
were created using SRMIL. For each replicate, the resulting
M=5 imputed data sets and the full data set (before
deletion) were analyzed by fitting the Gamma model for Y,
using maximum likelihood. The multiple imputation
estimate was constructed as the average of the five imputed
data estimates. To assess the differences in the point
estimates we computed the standardized difference between
the SRMI and full data estimates,

100 x abs (SRMI estimate — Full Data Estimate)

A =
® SE (SRMI Estimate).

Table 4 gives the mean and standard deviation of A ()
for three regression coefficients f,,[;, and B, in the
model. The SRMI estimates are typically within 8% of the
full standard units. The actual coverage and the average
length of the 95% SRMI confidence intervals were
computed for the regression coefficients using the ¢
reference distribution described in Rubin (1987b). For each
simulated data set and parameter, it was determined whether
or not the true value (e.g., 3, =0.5) is contained within the
corresponding interval. The proportion of intervals
containing the true values were computed across the 2,500
replications and are provided in Table 4. For the full data
sets, the actual coverage for B,, for example, was 94.9%
and for SRMI it was 95.4. In addition the average length of
the confidence intervals were also computed. The average
width of the full data confidence interval for , was 0.91
and for SRMI the average length was 1.22. That is, the
SRMI data resulted in well calibrated intervals estimates.

The same simulation study was also used to compare the
distributional properties of imputations from SRMI and a
fully Bayesian method. For the model assumptions used to
generate complete data, we developed a Markov Chain
Monte-Carlo algorithm for drawing values from the actual
posterior predictive distribution of the missing values given
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the observed values. Each step of the draw used Metropolis-
Hastings algorithm and required considerably more compu-
tational time than the SRMI method. Therefore, only the
first 500 simulated data sets were used in this comparison.
We computed two Kolmogrove-Smimoff (KS) statistics
from each simulated data set: One comparing the imputa-
tions from the SRMI method and the actual hidden values
and the other comparing the Bayesian imputations and the
actual hidden values. There were no discernible differences
in these two statistics across the 500 simulated data sets. A
scatter plot of those 500 pairs of KS statistics showed a
narrow scatter of points around a 45 degree line.

Table 4
Means and Standard Deviations for Standardized Differences
Between SRMI Estimates and Full Data Estimates and Actual
Coverage of Nominal 95% Confidence Intervals

Regression Coefficient Std. Difference Confidence Coverage

Mean SD SRMI Full Data
Bo 8.2 2.0 96.1 95.4
B, 8.8 1.7 95.4 94.9
B, 8.0 2.2 95.3 94.7

6. Discussion

We have described and evaluated a sequential regression
multivariate imputation procedure that can be used to
impute missing values in a variety of complex data
structures involving many types of variables, restrictions,
and bounds. This procedure should be useful when the
specification of a joint distribution of all the variables with
missing values is difficult. A real advantage of the approach
is its flexibility in handling each variable on a case by case
basis. For instance, to preserve all the bivariate correlations,
all the main effect terms must be included as regressors, and
to preserve, say, three factor interactions all two factor
interactions must be included as regressors in the imputation
model. Implementation of this procedure only requires a
good random number generator and fitting routines for a
variety of multiple regression routines. A SAS based
application implementing this approach can be downloaded
from a web site (Www.isr.umich.edw src/smp/ive).

In certain instances, one can modify the algorithm to
reduce it to Gibbs sampling from the joint predictive distri-
bution of the missing values given the observed values.
However, the SRMI procedure will be more useful where an
explicit model is difficult to formulate. In both the illus-
trations and the simulation, different random starts were
used to monitor imputed values, an important aspect in
many practical applications. This is a good practice when
Gibbs sampling is used under an explicit Bayesian model
(Gelman and Rubin 1992) and should be used when the
sequential regression method discussed in this paper is used.

The simulation study described in section 5, though
limited, is favorable as far as inferences based on the SRMI
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are concerned. The imputations from SRMI and Bayes
model were comparable. The goal here, however, was to
develop an imputation approach that is finely tuned on a
variable by variable basis fully conditional on all the
observed information, rather than an explicit joint multi-
variate distribution of all the variables. Furthermore, model
sensitivity may be reduced by using a semiparametric
regression model for each conditional regression. The
Bayesian interpretation of the spline smoothing models
(Silverman 1985) can be used to draw imputed values from
the predictive distribution. Such modifications also deserve
further investigation.

For some large data sets with many variables, the SRMI
can be computationally intense. The algorithm can be modi-
fied to apply a variable selection method for each regression
in each round. We compared the inferences with and
without the variable selection on several large data sets such
as the National Health Interview Survey and the National
Medical Expenditure Survey using several hundred
variables. The descriptive inferences as well as inferences
based on linear and logistic regression models were very
similar, still further detailed investigation is needed.

It is also possible to use the imputation approach
discussed in this paper in conjunction with, for example, the
Jackknife Repeated Replication (JRR) technique for
variance estimation. Specifically, (1) re-impute, singly, the
missing values in each jackknife replicate SRMI; (2)
analyze the imputed replicate data set; and, finally, (3)
combine the replicate estimates to obtain the point estimate
and its covariance matrix. This approach is more compu-
tationally intensive than the multiple imputation approach.
This integrated JRR imputation approach and several of its
variations are currently under investigation.

Finally, it has been assumed that the data set arises from
a simple random sample design. However, most surveys
employ complex sample designs involving stratification,
clustering, and weighting. Further work is needed to modify
the sequential regression method to incorporate complex
design features not reflected in the X variables in expression
(1). However, even if the imputation process ignores the
complex design features, the analysis of completed data
should be design based. Though this does not provide valid
design-based inferences, it maintains the robustness under-
lying the design-based analysis to a certain degree. The
integrated JRR imputation approach discussed above may
have more appealing design-based properties in a complex
design setting,
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Appendix
Regression Models and Imputations

Dropping the subscript indexing of the variables for
brevity, the necessary steps for imputing each type of
variable are as follows:

Continuous variable: For Y (possibly transformed from the
original scale for normality), a continuous variable, build a
normal linear regression model, ¥ =UpB+e, where U is
the most recently updated predictor matrix, ¢ has a
multivariate normal distribution with mean zero and
variance c°/, and [ is an identity matrix. Suppose that
0=(B,logc) has a uniform prior distribution over the
appropriate dimensional real space. Fit this model based on
the individuals for whom Y is observed.

Let B=(U'U)'U'Y be the estimated regression
coefficient, SSE =(Y —UB)' (Y —UB) be the residual sum
of squares and df=rows(Y)—cols(U) be the residual
degrees of freedom, and T be the Cholesky decomposition
such that 77" =(U'U)". The relevant posterior distribu-
tions can be derived easily (see, for example, Gelman,
Carlin, Stern and Rubin 1995, Chapter 7), and the following
steps then provide draws from the posterior predictive
distribution of missing Y values:

1. Generate a chi-square random deviate u with df’
degrees of freedom and define 67 =SSE /u.

2. Generate a vector z=(z, z,, ..., Z,) of dimension
p=rows(B) of random normal deviates and
define B, =B+0,7z

3. Let U,,, denote the U -matrix for those with
missing Y values. The impute values are Y, =
U, B.+0,v, where v is an independent vector
of dimension rows (U,,) of random normal
deviates.

Binary Variable: When Y is a binary variable, fit a
logistic regression model relating ¥ to U (most recently
updated), logit[Pr(Y =1|U)]=UP, using individuals
with observed Y. The imputed values for Y are created
through the following steps:

1. Let B denote the maximum likelihood estimates of
B and V its asymptotic covariance matrix
(negative inverse of the observed Fisher information
matrix). Let 7 be the Cholesky decomposition of
V (that is,7T" =V). Generate a vector z of
random normal deviates of dimension rows (B).
Define B, = B+ 7=

2. Let U, denote the portion of U for which Y is
missing. Define P =[1+exp(— UmjssB*)]_l.
Generate a vector u, of dimension rows (U, ) of

uniform random numbers between 0 and 1. Impute

1 if a particular component of u is less than or

equal to the corresponding component of P. and

impute 0 otherwise.

This approach results only in approximate draws from
the posterior predictive distribution of the missing values as
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the draws of the parameter 3 are from the asymptotic
approximation of its actual posterior distribution. It is
possible to draw from the actual distribution by modifying
Step 1 wusing, for example, Sampling-Importance-
Resampling (Rubin 1987b).

Mixed Variable: For Y, a mixed variable (that is, Y either
takes the value zero or a continuous value), model the zero
values by a 0-1 indicator to distinguish between 0 and non-
zero values, and then model a normally distributed variable
for the continuous portion of the distribution conditional on
the indicator variable being equal to 1. That is, use a two
stage approach: impute a one or zero using the logistic
approach described above; and then restricting the sample to
those with non-zero values, use the continuous variable
approach described above to impute a continuous value to
replace the just imputed value of 1.

Count Variable: For Y, a count variable, fit a Poisson
regression model Y ~ Poisson(A) where logA =UP. The
imputations for missing values in Y are created using the
following steps:

1. Let B denote the maximum likelihood estimate of
B,V its covariance matrix and 7 the Cholesky
decomposition of V. Generate a vector z of
random normal deviates of dimension rows (B)
and define B, = B+ 7=

2. Let U, denote the portion of U for which Y is
missing. Define A, =exp(U,B.). Generate

independent Poisson random variables with means

as the elements of A,.

Polytomous Variable: For Y that can take % wvalues,
J=L2,.,k, let m,=Pr(Y=jU). Fit a polytomous
regression model relating Y to U where log=
(m;/m)=UB; for j=1,2,.., k—1. Under the restriction
>% m, =1, it follows that m, = (1+ X5 exp(UB;)).

Let B denote the maximum likelihood estimate of the
regression coefficients (B;, B5, ..., B;_,), ¥ be the asymptotic
covariance matrix and 7 its Cholesky decomposition.

The following steps create imputations:

1. Define B, = B+ Tz where z is a vector of random
normal deviates of dimension rows (B).

2. Let U, denote the rows of U with missing V¥
andlet B =exp{U, ;B }/{1+3%; exp(U,, B:)}
where . is the appropriate elements of . where
i=1,2,.,k—land P =1-3%, P

3. Let Ry=0,R,=%/ B and R, =1 be the
cumulative sums of the probabilities. To impute
values generate random uniform number « and take
J as the imputed category if R, | <u<R,.

Again, the imputation of mixed, count and categorical
variables are from approximate posterior predictive distri-
butions because the corresponding parameters are drawn
from their asymptotic normal approximate posterior
distributions.
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