
Vector Autoregressions
A vector autoregressive (VAR) is simply an autoregressive process for a vector of

variables.

Let us define Wt 
xt
yt

, a matrix A2X2 and  t 
1t

2t

Then a VAR(1) may be written as

Wt  AWt1   t

or

xt  a11xt1  a12yt1  1t

yt  a21xt1  a22yt1  2t

where

E t  0, E ts  
 t  s   , c c  0, c  0
0 otherwise

VAR(p)

Wt  A1Wt1  A2Wt2  ...  ApWtp   t

or

I  A1L  A2L2  ...  ApLpWt   t

The VAR is covariance stationary if all the values of L satisfying
|I  A1L  A2L2  ...  ApLp|  0 lie outside the unit circle footnote .

The Autocovariance Matrix
For a covariance stationary n dimensional vector process we may define the

autocovariance function for a VAR in a way similar to the univariate case

k (nxn)  EWtWtk
  where kij  covWi,t,Wj,tk

Using the above two variables VAR we get the following

k (nxn)  EWtWtk
  

Extxtk Extytk
Eytxtk Eytytk

Contrary to the univariate case k  k , instead the correct relationship is k  k. This
can be easily understood looking at the simple bivariate case where there is no reason why
Extyt1 should be equal to Ext1yt.
Proof
i) Leading the vector k times we obtain



k (nxn)  EWtkWt


ii) Taking transposes
k (nxn)
  EWtWtk

   k
In terms of our two variables example

k (nxn) 
Extxtk Extytk
Eytxtk Eytytk

;

k (nxn) 
Extxtk Eytxtk
Extytk Eytytk

;

k (nxn) 
Extxtk Extytk
Eytxtk Eytytk

.
The Companion Form

Notice that a VAR(p) may always be re-written as a VAR(1) by defining a vector Ht such
that

Ht  FHt1  t

where

Ht 

xt
yt
.
xti
yti

.
xtp1

ytp1

, F 

A1 A2 | Ap

I22 0 | 0
I22

0 0 I22 0
| I 0

and t 

1t

2t

.
0
0
0
0

Then, the VAR in the Companion form can be expressed in the following way



Ht  FHt1  t Ett 
Q t  s
0 otherwise

where

Q(np x np) 

 0 0 ... 0
0 .
. .
0 0 ... 0

Notice also that the following relationships hold:
EHtHt  FEHt1Ht1

 F   Q
or

  FF   Q where   EHtHt.
where

 

0 1 ... p1

1
 0 p2

p1
 p2

 0

and p is the autocovariance of the original process.

If the process is covariance stationary, then the unconditional variance can be calculated
simply using vec operators, i.e.,

vec  vecFF   vecQ  F  Fvec  vecQ,

(Since vecABC  C  AvecB)

Then the unconditional variance can be obtained as

vec  Inp2  F  F1vecQ.

(NB F  F has no unit eigen values since the eigen values of F  F are of the form ji , and
we knew that all |i|  1)



Notice as well that the jth autocovariance function of H (denoted  j) can be found by
post-multiplying by Htj and taking expectations.

EHtHtj   FEHt1Htj   EtHtj 

Thus
k  Fk1 for k  1,2, ...

or
k  Fk.

The kth autocovariance k of the original processWt is given by the n first rows and n
columns of k  Fk1:

k  A1k1  A2k2  ....  Apkp k  p,p  1,p  2, .......

Maximum likelihood Estimation.
The Conditional likelihood for a vector autoregression.

Let Wt denote an (n1) vector containing the values that n variables take at time t. Wt is
assumed to follow a pth order gaussian VAR.

Wt  A1Wt1  A2Wt2  .......  ApWtp   t  t~N0,,

where both  and Ai are nn matrices of parameters.
Suppose that we observe these variables for T  p time periods. The approach is to

condition on the first p observations (Wp1, ...W0 ) and to base the estimation on the last T
observations (WT, ......W1).

fwT,wT1,wT2...w1|w0,...,wTp1WT,WT1,WT2....W1|W0, .,Wp1;

and maximize with respect to , where  is a vector that contains the elements of
A1,A2,A3, ....Ap and .

Then

Wt|Wt1,Wt2, ...Wp1~NA1Wt1  A2Wt2  .......  ApWtpn1,nn

It will be convenient to stack the p lags in a vector xt, .

xt 

nx1

Wt1

nx1

Wt2

.

nx1

Wtp

np1

and let  denote the following nnp matrix ;

  A1,A2,A3, ....Apnnp.
Then the conditional mean is xt .



Using this notation, we can write the conditional distribution of Wt as
Wt|Wt1,Wt2, ...Wp1~Nxt,

fwt|wt1,wt2...w1,w0,...,wp1wt|wt1,wt2....w1,w0, ..,wp1;

 2n/2|1|.5 exp1/2Wt  xt 1Wt  xt

The joint density conditional on the first p observations can be written as

fwT,wT1,wT2...w1|w0,...,wTp1wT,wT1,wT2....w1|w0, .,wp1;


t1

T

fwt|wt1,wt2...,wp1wt|wt1,wt2....,wp1;

and taking logs,

L 
t1

T

logfwt|wt1,wt2...,wp1wt|wt1,wt2....,wp1;

 Tn/2log2  T/2log|1|  1/2
t1

T

Wt  xt 1Wt  xt

It turns out to be (for a proof see textbook) that the maximum likelihood estimator is

   
t1

T

Wtxt
t1

T

xtxt1

where the j column is just

 j (1np)  
t1

T

Wjtxt
t1

T

xtxt1

The Maximum likelihood estimator of 
We can now ”concentrate” the likelihood using the previous results to find the MLE

estimator of  (evaluated at the estimate of ).

L,   Tn/2log2  T/2log|1|  1/2
t1

T

 t1 t

taking the derivative with respect to 1

L, /1  T/2log|1|/1  1/2
t1

T

 t1 t/1

and using the following results from matrix algebra: x Ax/A  xx  and log|A|/A  A 1

,we can differentiate the concentrated likelihood with respect to 1



L, /1  T/2  1/2
t1

T

 t t.

Equating this expression to zero we obtain the MLE of the variance-covariance matrix.

   1/T
t1

T

 t t

A very important result is that the row i, column i of  is given by  i2  1/T t1
T  it2

which is just the average squared residual from a regression of a variable of the VAR on the p
lags of all variables. Analogously the row i column j of   is given by  ij2  1/T t1

T  it jt
which is the average product of the OLS residual for variable i and the OLS residual foe
variable j. Therefore I can use OLS results to construct both  and  .

How to choose the order of a VAR
The results of any test that we carry out using a VAR crucially depend on identifying

correctly the order of that VAR. An easy way to attempt to identify the order of a VAR is to
perform likelihood ratio tests. To do this turns out to be computationally very simple since the
test can be constructed using OLS results.

Consider the likelihood function at is Maximum value of a VAR with p0 lags, denoted

L0 ,   Tn/2log2  T/2log| 0
1|  1/2

t1

T

 t 0
1 t.

Consider now the last term of this equation,
1/2 t1

T  t 0
1 t (a scalar)  TR1/2 t1

T  t 0
1 t  1/2TR t1

T  0
1 t t

(since
TRA.B  TRB.A

 1/2TR 0
1T 0  T/2TRI  nT/2.

(since  0   t1
T  t t/T )

then

L0 ,   Tn/2log2  T/2log| 0
1|  nT/2

If we want to test the Hypothesis that the VAR has p lags against p0 lags we calculate the
likelihood for the VAR with p1 lags (p1  p0 )

L1 ,   Tn/2log2  T/2log| 1
1|  nT/2

and compute the likelihood ratio which is
2L1 ,   L0 ,   Tlog | 1

1|  log | 0
1| which is distributed under the Null 2 with

degrees of freedom equal to the number of restrictions imposed under H0, n2p1  p0.
Sims (1980) proposed a modification of the likelihood ratio test to take into account small

sample bias



T  klog | 1
1|  log | 0

1|

where k  np1  number of parameters estimated per equation.
Goodness of fit Criteria

The goodness of fit criteria are measures of how good a model is relative to others. They
reflect a balance between the model’s goodness of fit and the complexity of the model.

Typically, we want to minimize a scalar measure such as

Cp  2maxlogL  number of freely estimated parameters

For Gaussian models, the maximized log-likelihood is proportional to
T/2log|| (since |1|  1/|| )

Hence, we choose p to minimize:

Cp  Tlog||  n2p

AIC   2 (Akaike information criterion)
SBC   logT (Scharz Bayesian criterion)
HQ   2loglogT (Hannan-Quin criterion)

Alternatively the Akaike’s prediction error (FPE) criterion chooses p so that to minimize
the expected one -step ahead squared forecast error:

FPE   T  np  1
T  np  1 

n||

AIC and FPE are not consistent, so that asymptotically they overestimate p with positive
probability. SBC and HQ are consistent in the sense that p  p.

Asymptotic Distribution of 
The maximum likelihood estimates of  and  will give consistent estimates of the

population parameters. Standard errors for  can be based on the usual OLS formulas.
Let  T  vec T denote the nk1 vector of coefficients resulting from OLS regressions of

each of the elements ofWt on xt
Then

T  T  LN0,  Q1

where Q  Extxt.
This establishes that the standard OLS t and F statistics applied to the coefficients of any

single equation in the VAR are asymptotically valid.

T  iT  iLN0, i2Q1

where i2  E it2.



Main uses of Vector Autoregressions
i Forecasting
ii Testing Hypothesis
iii Granger Causality
iv Use of Impulse Response Functions
v Use of the variance decomposition.

ii Testing Rational expectations Hypothesis
The VAR methodology is very useful to test linear rational expectations hypothesis. These

models usually impose non-linear cross equation restrictions between the parameters of the
model which are tested using a likelihood ratio test which is distributed under the Null (that
the model is correct) as a 2 distribution with degrees of freedom equal to the number of
restrictions imposed by the model.

Consider a first order bivariate VAR

xt  a11xt1  a12yt1   t
yt  a21xt1  a22yt1  t

Assume that xt is the interest rates differential, say i1t  it, and that yt is the first
difference of the logs of the spot exchange rate et  et1;

Then uncovered interest parity can be written as

xt  Etyt1.

Then if we condition on both sides of the previous equation on information available at
t  1 we get the following set of non linear restrictions.

1 0 A  0 1 A2

The above equation can be easily solved and yields the following nonlinear restrictions on
the parameters

a11  a22a21/1  a21 a12  a22
2 /1  a21

Then we simply estimate the unrestricted model and the restricted (a function of only two
parameters (and the variance-covariance)), and perform a likelihood ratio test, where
2Lu  Lr~asymptotically 2 (number of restrictions2).

iii Granger Causality
One of the key questions that can be addressed with vector autoregressions is how useful

some variables are for forecasting others.
Definition
The question investigated is whether a scalar y can help forecast another scalar x. If it

cannot, then we say that y does not Granger-cause x
Then, y fails to Granger-cause x if for all s  0 the mean squared error of a forecast of xts

based on xt,xt1, .... is the same as the MSE of a forecast of xts based on xt,xt1, .... and
yt,yt1, ..... For linear functions

MSEExts|xt,xt1, ....  MSEExts|xt,xt1, ....,yt,yt1, ....

Granger’s reason for proposing this definition was that if an event Y is the cause of another



event X, then the event Y should precede the event X.
Testing for Granger causality

Ho y does not cause x or a12  0
We just regress both the general model

i) xt  a11xt1  a12yt1  1t
and the restricted model

ii) xt  a11xt1  1t


and compare the residuals sum squares TRRS  RRS/RRS~21
(asymptotically)

Granger-Causality Tests and Forward-Looking Behaviour
Let us assume risk neutral agents such that stock prices may be written as

Pt 
i1



1/1  r iEDti|It

suppose

Dt  d  ut  ut1  t

where ut and t are independent white noise processes, then

EtDti 
d  ut for i  1
d for i  2,3, ...

The stock prices will be given by

Pt  d/r  ut/1  r

Thus for this example the stock price is a white noise and could not be forecast on the basis
of lagged prices or dividends. No series should granger cause stock prices.

Nevertheless, notice that using the stock price equation and rearranging terms, I might
express

ut1  1  rPt1  1  rd/r

Then substituting back in the Dividend process we get the following expression for
dividends

Dt  d  ut  1  rPt1  1  rd/r  t

Thus stock prices Granger cause dividends
The bivariate VAR takes the form

Pt
Dt


d/r
d/r


0 0

1  r 0
Pt1

Dt1


ut/1  r
ut  t

Hence in this model, Granger causation runs in the opposite direction from the true causation.
Dividends fail to G-C prices even though investors’ perceptions of dividends are the sole



determinant of stock prices. On the other hand, prices do ”granger-cause” dividends, even
though the market’s evaluation of the stock in reality has no effect on the dividend process.

iv The Impulse - Response Function
If a VAR is stationary it can always be written as an infinite vector moving average.

Consider the following vector infinite moving average representation ofWt

Wt 
z0



z tz ,0  I

Analogously, if we lead the above expression s periods we get

Wts 
z0



z tsz

Therefore we can easily see from the above expression (evaluated at z  s) that matrix s has
the interpretation of a dynamic multiplier

s 
Wts
 t

(dynamic multiplier or impulse response) where s ij  effect of a one unit increase in the jth
variable’s innovation at time t ( jt ) for the value of the ith variable at time t  s (Wi,ts ),
holding all other innovations at all dates constant footnote .

A simple way of finding these multipliers numerically is by simulation. To implement the
simulation set Wt  ...  Wtp  0, then set  jt  1 and all the other terms to zero, and
simulate the system

Wt  A1Wt1  A2Wt2  ...  ApWtp   t

for t, t  1, t  s, with  t1, t2, ....  0 This simulation corresponds to the J column of the
matrix s . By doing this for other values of j we get the whole matrix.

A plot of s ij , that is row i column j of s , as a function of s is called the impulse
response function. It describes the response of Wi,ts to a one time impulse inWjt with all other
variables dated t or earlier held constant.

We can also define the Interim multipliers, which are given by the accumulated responses
over m periods


j1

m

j,

and the long run multiplier which give the total accumulated effects for all future time periods:


j1



j.

The assumption that a shock in one innovation does not affect others is problematic since



E t t    a diagonal matrix . This means that a shock in one variable is likely to be
accompanied by a shock in another variable in the same period.

Since  is symmetric and positive definite, it can be expressed as   ADA , where A is a
lower triangular matrix and D is a diagonal Matrix.

Let ut  A1 t, then

Wt 
j1



j tj 
j1



jAA1 tj 
j1



jutj

where

j  jA

Eutut  EA1 t tA1   A1A1   A1ADA A1   D

The matrix D gives the variance of ujt
A plot of s as a function of s is known as an orthogonalized impulse response function.
The matrix

s 
Wts
ut

gives the consequences of an increase in Wjt by a unit impulse in ut .
In the new MA representation, it is reasonable to assume that a change in one component

of ut has no effect on the other components because the components are orthogonal.
Notice that 0

  0A  IA is lower triangular. This implies that the ordering of variables
is of importance. The ordering has to be such thatWlt is the only one with a potential
immediate impact on all other variables.W2t may have an immediate impact on the last n  2
components but not onW1t , and so on. The ordering cannot be determined with statistical
methods.

v Variance Decomposition
Consider the error in forecasting a VAR s periods ahead,

WtS  WtS|t 
j0

s1

j tsj, 0  I

The mean squared error of this s-period ahead forecast is thus

MSEWts|t    11
  22

 ...........  s1s1


Let us now consider how each of the orthogonalized disturbances u1t, ..unt contributes to this
MSE.

Write



 t  Aut  a1u1t  ....anunt,

where aj denotes the jth column of the matrix A.
Recalling that the u’s are uncorrelated, we get

  a1a1nn
 Varu1t  a2a2nn

 Varu2t  ...anannn Varunt

Substituting this in the MSE of the s period ahead forecast we get

MSEWts|t 
j1

n

Varujtajaj  1ajaj1
  2ajaj2

 ...  s1ajajs1
 

With this expression we can calculate the contribution of the jth orthogonalized innovation to
the MSE of the s-period ahead forecast.

Varujtajaj  1ajaj1
  2ajaj2

 ...  s1ajajs1
 

Again the magnitude in general depends on the ordering of the variables

Structural VAR’s
Blanchard (1989)
To introduce structural information in a VAR there are several ways to proceed. Probably

the most popular is to try to impose restrictions in the covariance matrix. For a VAR(p), there
are pp  1/2 elements in the covariance matrix of the elements of p so we might consider
models of the innovations of the form
C t  Dut where the ut’s are uncorrelated with variances 1

2, ...,p2 . Then, we can have
pp  1/2 - p unknown terms in C and D.

How exactly one would want to specify C and D is left to structural reasoning, for example
Blanchard (1989) considers the following structure

1t  eu2t  u1t
2t  c211t  u2t

Where u1t and u2t are regarded as demand and supply shocks, while 1t and 2t are output
and unemployment innovations respectively. If e  0 output just respond to demand shocks.

Blanchard and Quah (1989).
Probably the most well known approach is Blanchard and Quah (1989). They have a

bivariate system with demand and supply shocks but they do not impose the assumption that
the shocks are uncorrelated. Rather they argue that a demand shock should have a zero
long-run effect while a supply shock will not. Hence they will have

1t  a1u2t  u1t
2t  a2u1t  u2t

where the covariance of ujt need not to be zero.
To see how it works consider

Wt  A1Wt1  A2Wt2  ...  ApWtp   t

is estimated and the implied MA representation is



Wt 
z0



z tz ,0  I.

In terms of the shocks of interest, we will write  t  Aut where A is now defined as

A 
1 a1

a2 1
.

Then the moving average representation becomes,

Wt 
z0



zAutz ,0  I

But we want the long run effect of a demand shock, taken to be u1t , upon output say, W1t , to
be zero. The long run effect of u1t on W1t is just obtained by summing


z0



zA1,1  0

Let the first row ofz0
 z , be 1,2 , then the restriction is just 1  a22  0 or

a2  1/2.
Thus one parameter can be found from this restriction and other three come from the fact

that

V t  A
1

2 0
0 2

2
A , since there are three unknowns in V t to determine a1, 1

2

and 2
2. Then all that is needed is to estimate 1,2 . Now since we know that

iz0
 z  1,

iiz0
 zLi  L,

iiiz0
 zLi  I  A1L  A2L2  ...  ApLp1  AL1,

iv 1  I  A1  A2  .......  Ap1  A11, all the information that is needed for the
impulse response is obtained from the estimated parameters of the VAR.


