
SWITCHING REGIME ESTIMATION.(CONTINUATION)

Specification Tests.
Hamilton (1990) proposes many alternative specification tests to evaluate

the Markov Switching Model. In this notes we will only focus on specification
tests based on the properties of the standardized residuals.
To construct these residuals we first proceed to calculate the conditional

expectation of yt given information at time t− 1.

E(yt|It−1) = α0 + α1E(xt|It−1) + φ1(yt−1 − α1E(xt−1|It−1)− α0)

+...+ φm(yt−m − α1E(xt−m|It−1)− α0),

where E(xt−m|It−1) = P (xt−m = 1|It−1). for m > 0. and

E(xt|It−1) = (1− q)
(2− p− q) + (P (xt−1|It−1)−

(1− q)
(2− p− q))(p+ q − 1) for m = 0.

(Notice that we assume that the public does not observe the state and there-
fore we substitute xt−1 by P (xt−1|It−1)).
Also note that the probabilities P (xt−m|It−1), form > 1, are called ”smooth-

ing probabilities” and can easily be calculated from the ”filtering probabilities”
i.e. when 0 ≤ m ≤ 1. Then the residuals are just εt = yt −E(yt|It−1).

To compute the standardized residuals we need to calculate the conditional
standard deviation.

We proceed in (3) steps

(1) First make use of the autoregressive representation of the Markov process

xt = (1− q) + (−1 + p+ q)xt−1 + ζ2,t

For this process the error, conditional on xt−1 = 1, can be characterized
as

ζ2,t = (1− p) with probability p
−p with probability 1− p

and conditional on xt−1 = 0.

ζ2,t = −(1− q) with probability q
q with probability 1− q
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2) Calculate the variance of the error term, ζ2,t , conditional on the state at
t− 1.

E(ζ22,t|xt−1 = 1) = (1− p)2p+ p2(1− p) = p(1− p)
E(ζ22,t|xt−1 = 0) = (1− q)2q + q2(1− q) = q(1− q)

3) Calculate the conditional variance (conditional on It−1 = {yt−1, ...y0})
We start by calculating the state dependent variance σ2xt as a function of

the Markov switching parameters.
Conditional on xt−1 = 1, the switching variance can be written as:

σ2xt = E(σ
2
xt |xt−1 = 1) + V (µxt |xt−1 = 1)

where

a)

E(σ2xt |xt−1 = 1) = (E(σxt ||xt−1 = 1))2 + V ar((σxt |xt−1 = 1))
(since σxt is a random variable) and

V ar((σxt |xt−1 = 1)) = E(σ2xt |xt−1 = 1)− (E(σxt |xt−1 = 1))2

Then using that

(iia)

(E(σxt |xt−1 = 1))2 = (w0 + w1E(xt|xt−1 = 1)2 = (w0 + w1p)2

V ar((σxt |xt−1 = 1)) = V ar(w0 + w1xt|xt−1 = 1) = w21p(1− p).

V (µxt |xt−1 = 1) = E{(µxt −E(µxt))2|xt−1 = 1}
= E{(α0 + α1xt −E(α0 + α1xt))

2|xt−1 = 1}
= α21{E(xt −E(xt))2|xt−1 = 1} = α21p(1− p)

Collecting all these terms we can see that

σ2xt = (w0 + w1p)
2 + w21p(1− p) + α21p(1− p)

We can obtain a similar formulae for the variance conditional on xt−1 = 0.

σ2xt = E(σ
2
xt |xt−1 = 0) + V (µxt |xt−1 = 0)
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and doing the same transformations for state 0 we obtain

σ2xt = (w0 + w1(1− q))2 + w21q(1− q) + α21q(1− q).

Clearly the state is not observed at time t − 1 but we can use the filtered
probabilities to make an inference of the unobserved state. Then the conditional
variance (on information on time t− 1) is

σ2t = ((w0 + w1p)
2 + w21p(1− p) + α21p(1− p))P (xt−1 = 1|It−1)

+ ((w0 + w1(1− q))2 + w21q(1− q) + α21q(1− q))(1− P (xt−1 = 1|It−1)).

Then the standardized residuals are simply, vt = εt/σt and we may conduct
standard specification tests for these residuals.

Number of States and Specification tests.

Crucial to the Hamilton methodology is to rightly identify the number of
states or regimes. This can not be done by standard econometrics techniques,
i.e. testing whether α1 and w1 are both equal to zero, since under this assump-
tion, p and q are not identified and the distribution is not standard. Hamilton
proposes to use simple specification tests as a mean of assessing whether the
estimated equation contains the right number of states. If the data has, say 3
”primitive” states, and we estimated a 2 states Markov process, then the esti-
mated model should have misspecified residuals.

Which Parameters are allowed to Switch.

In principle the Hamilton filter is general enough to allow all the parameters
to switch. Nevertheless by doing this, is easy to end with non-identified models.
A possible strategy can be to choose alternative switching parameterizations
and see which one is favored by the data.

Rational Expectations and Regime Changes.

Changes in regime have attracted the attention of economists in a number
of fields. The widespread adoption of the rational expectations hypothesis has
made this issue even more important. As is well known, according to this hy-
pothesis, expectations are forward-looking. Expected future changes in a policy
variable (e.g. the money supply) will then affect the current value of the vari-
able from which expectations have been formed (e.g. the price level or exchange
rate in a monetary model). This issue has been examined in various contexts.
For example, in the literature on speculative bubbles Blanchard (1979), Flood
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and Garber (1980) and Hamilton (1986) have shown that a bubble cannot be
distinguished from a fundamental solution with an expected change in regime.
Similarly in the literature on self-fulfilling speculative attacks, where if a suffi-
ciently large group of speculators believe that the government will change the
policy from, say, zero domestic credit expansion to inflationary finance, a col-
lapse in the exchange rate regime could then occur solely because the public
believes that the regime will change. This list of examples could clearly be
extended. Note also that the issue is important for the definition of rational
expectations: if agents do not take into account changes in regime, their ratio-
nal expectations forecasts would be consistently under or over-estimating the
projected variable.

A BIVARIATE VAR MODEL WITH REGIME-SWITCHING.

We consider a VAR process in two variables, with m lags, with the feature
that the means of each equation and the variance-covariance matrix are allowed
to switch endogenously between two possible states. The two equations that
define the VAR are influenced by the same state variable. The state is not ob-
served and has to be inferred from a filter. Therefore, we consider the following
centered bivariate autoregressive process:

S0t = Φ1S
0
t−1 + ...+ΦmS

0
t−m + ψ1D

0
t−1 + ...+ ψmD

0
t−m + (ω0 + ω1xt)νt

D0
t = ϕ1S

0
t−1 + ...+ ϕmS

0
t−m +Ω1D

0
t−1 + ...+ΩmD

0
t−m + (τ0 + τ1xt)εt

where the centered variables are defined by the two following equations:

S0t = St − α0 − α1xt

D0
t = Dt − β0 − β1xt

A prime (’) is used to denote centred variables in the remainder of the paper.
xt denotes the unobserved state of the system and takes values 0 and 1. xt
is governed by a Markov process, summarized by the probabilities: prob(xt =
0|xt−1 = 0) = q and prob(xt = 1|xt−1 = 1) = p. Substituting the centered vari-
ables into the VAR and rearranging terms, we obtain the following expression
for St and Dt .

St = α0(1− Φ1 − .− Φm) + β0(−ψ1 − .− ψm)

+Φ1St−1 + .+ΦmSt−m + ψ1Dt−1 + .+ ψmDt−m
+α1(xt − Φ1xt−1 − .− Φmxt−m)
+β1(−ψ1xt−1 − .− ψmxt−m) + (ω0 + ω1xt)νt
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Dt = α0(−ϕ1 − .− ϕm) + β0(1− Ω1 − .− Ωm)
+ϕ1St−1 + .+ ϕmSt−m +Ω1Dt−1 + .+ΩmDt−m
+α1(−ϕ1xt−1 − .− ϕmxt−m)
+β1(xt − Ω1xt−1 − .− Ωmxt−m) + (τ0 + τ1xt)εt

The errors νt, εt are assumed to be independent of all xt−j . j ≥ 0.
The estimation of models where the states xt, xt−1...xt−m are not observed

is usually carried out by using a Kalman filter. The main differences of the
approach used by Hamilton and followed here relative to the standard Kalman
filter are the non-linearities in the parameters and the fact that the states are
assumed to follow a Markov process. An optimal nonlinear inference of the
states is carried out by the bivariate extension to Hamilton’s filter presented
below.

4.1 The Filter.

We assume that both the variables included in the filter are governed by the
scalar state variable. The filter involves the following five steps.
Step_1. Calculate the joint density of the m past states and the current

state conditional on the information included in St−1 ,Dt−1 and all past values
of S and D, S and D being the variables that are observed.

p(xt, xt−1, ..., xt−m|St−1, St−2, ., S0,Dt−1,Dt−2, .,D0)
= p(xt|xt−1)p(xt−1, xt−2, ., xt−m|St−1, St−2, ., S0,Dt−1,Dt−2, .,D0)

p(xt|xt−1) is transition probability matrix of the states which are assumed
to follow a Markov process. As in all the subsequent steps, the second term on
the right-hand-side is known from the preceding step of the filter, in this case,
p(xt−1, ..., xt−m|St−1, ..., S0,Dt−1, ..,D0) is known from the input to the filter,
which in turn represents the result of the iteration at date t− 1 (from step 5).
As in the univariate case, we require initial values for the parameters and ini-

tial conditions for the Markov process. The unconditional distribution p(xm, xm−1, ., x0)
has been chosen for the first observation.

Step_2. Calculate the joint conditional distribution of St, Dt and (xt, xt−1, ..., xt−m)
p(St,Dt, xt, xt−1, ., xt−m|St−1, ., S0,Dt−1, .,D0)
= p(St,Dt|xt, xt−1, ., xt−m, St−1, ., S0,Dt−1, .,D0)p(xt, xt−1, ., xt−m|St−1, ., S0,Dt−1, .,D0)
where we assume that

p(St,Dt|xt, xt−1, ..., xt−m, St−1, .., S0,Dt−1, ...,D0)
=

1

2π|Σ|1/2 exp(−
1

2
u0Σ−1u)
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u =


(St − α1xt − α0)− Φm(St−m − α1xt−m − α0)− ψ1(Dt−1 − β1xt−1 − β0)

−.− ψm(Dt−m − β1xt−m − β0)
(Dt − β1xt − β0)− ϕm(St−m − α1xt−m − α0)− Ω1(Dt−1 − β1xt−1 − β0)

−.− Ωm(Dt−m − β1xt−m − β0)



Σx0 =

·
ω20 c0
c0 τ20

¸
Σx0 =

·
ω21 c1
c1 τ21

¸
Note that p(StDt|xt, .., xt−m, St−1, ..., S0,Dt−1, .,D0) involves (xt, ., xt−m)which
is a vector which can take 2m+1 values.

Step_3. Marginalize the previous joint density with respect to the states
which gives the conditional density from which the (conditional) likelihood func-
tion is calculated.

p(St,Dt|St−1, ..., S0,Dt−1, ...,D0)

=
1X

xt=0

1X
xt−1=0

...
1X

xt−m=0

p(St,Dt, xt, ..., xt−m|St−1, ..., S0,Dt−1, ...,D0)

Step_4. Combining the results from steps 2 and 3, calculate the joint density
of the state conditional on the observed current and past realizations of y.

p(xt, xt−1, ..., xt−m|St, ..., S0,Dt, ...,D0)
=

p(St,Dt, xt, ..., xt−m|St−1, ..., S0,Dt−1, ...,D0)
p(St,Dt|St−1, ..., S0,Dt−1, ...,D0)

Step_5 The desired output is then obtained from

p(xt, xt−1, ..., xt−m+1|St, ..., S0,Dt, ...,D0)

=
1X

xt−m=0

p(xt, xt−1, ..., xt−m|St, ..., S0,Dt, ...,D0)

The output of step 5 is used as an input to the filter in the next iteration.
Estimates of the parameters are calculated as a by-product of the filter from
step 3.
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TESTING THE TERM STRUCTURE OF INTEREST RATES
FROM A SWITCHING REGIME VAR
The process that drives the spread and the short-term interest rate difference

is the VAR of equation described above in which Dt denotes the first difference
of the three month rate, R1t−R1t−1 and St denotes the yield spread R2t−R1t
.
The expectations hypothesis of the term structure of the interest rates can

be written as

St = (1/2)EtDt+1 + θ + ut

The restrictions imposed by the expectations model are presented below. Both
an unrestricted and a restricted VAR can be estimated, and the restrictions
tested using a likelihood ratio test.

Derivation of the restrictions in the regime-shifting VAR

We express the system in companion form:



S0t
S0t−1
S0t−2
S0t−3
Dt
D0
t−1

D0
t−2

D0
t−3


=



Φ1 Φ2 Φ3 Φ4 ψ1 ψ2 ψ3 ψ4
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
ϕ1 ϕ2 ϕ3 ϕ4 Ω1 Ω2 Ω3 Ω4
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0





S0t−1
S0t−2
S0t−3
S0t−4
Dt−1
D0
t−2

D0
t−3

D0
t−4



+



(ω0 + ω1xt)νt
0
0
0

(τ0 + τ1xt)εt
0
0
0


(A3)

This allows us to express the expected values of the centered interest rate
differences conditional on information at time t − 1. We have proceeded as
in Hamilton (1988), first considering forecasts under the assumption that the
information set includes observation of the regime directly. This information set
can be written as I∗t = {St, St−1, .,Dt,Dt−1, ., xt, xt−1, ., } This assumption will
be relaxed below. Using this notation we can express the expected two periods
ahead centered short-term interest rate difference conditional on information
possessed by the agents at time t− 1 as:
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E[D0
t+1|I∗t−1] =

£
0 0 0 0 1 0 0 0

¤
∆2Z 0t−1,

where

∆ =



Φ1 Φ2 Φ3 Φ4 ψ1 ψ2 ψ3 ψ4
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
ϕ1 ϕ2 ϕ3 ϕ4 Ω1 Ω2 Ω3 Ω4
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


;

Z0t−1 =



St−1 − α0 − α1xt−1
St−2 − α0 − α1xt−2
St−3 − α0 − α1xt−3
St−4 − α0 − α1xt−4
Dt−1 − β0 − β1xt−1
Dt−2 − β0 − β1xt−2
Dt−3 − β0 − β1xt−3
Dt−4 − β0 − β1xt−4


The expected 2 period ahead first-difference of the short-term interest rate can
be written as:

E[Dt+1|I∗t−1] = β0 + β1E(xt+1|I∗t−1) +E(D0
t+1|I∗t−1),

and by further substitution

E[Dt+1|I∗t−1] = β0 + β1E(xt+1|I∗t−1) +
£
0 0 0 0 1 0 0 0

¤
∆2Z0t−1

A similar formula can be derived for the spread:

E[St|I∗t−1] = α0 + α1E(xt|I∗t−1) +E(S0t|I∗t−1)
and by further substitution

E[St|I∗t−1] = α0 + α1E(xt|I∗t−1) +
£
1 0 0 0 0 0 0 0

¤
∆Z 0t−1
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Substituting the expected value of a 2-period-ahead two-state Markov pro-
cess, the following expression for the expected short rate is obtained:

E[Dt+1|I∗t−1] = β0 + β1[ρ+ (xt−1 − ρ)λ2] +
£
0 0 0 0 1 0 0 0

¤
∆2Z0t−1

where ρ = 1−q
2−p−q and λ = (p+ q − 1)

Finally, substituting the expected (difference of the) short-term interest rates
and the expected spread, the term structure of interest rates relationship can
be expressed as;

α0 + α1[ρ+ (xt−1 − ρ)λ] +
£
1 0 0 0 0 0 0 0

¤
∆Z 0t−1 ((A4))

=
1

2
[β0 + β1[ρ+ (xt−1 − ρ)λ2] +

£
0 0 0 0 1 0 0 0

¤
∆2Z0t−1] + θ

where

∆2 =

·
A B
C D

¸
((A5))

A =


Φ21 +Φ2 + ϕ1ψ1 Φ1Φ2 +Φ3 + ϕ2ψ1 Φ1Φ3 +Φ4 + ϕ3ψ1 Φ1Φ4 + ϕ4ψ1

Φ1 Φ2 Φ3 Φ4
1 0 0 0
0 1 0 0



B =


ψ1Φ1 + ψ2 + ψ1Ω1 ψ1Ω2 + ψ3 + ψ2Φ1 Φ1ψ3 + ψ4 +Ω3ψ1 Φ1ψ4 + Ω4ψ1

ψ1 ψ2 ψ3 ψ4
0 0 0 0
0 0 0 0



C =


ϕ1Φ1 + ϕ2 + ϕ1Ω1 ϕ2Ω1 + ϕ3 + ϕ1Φ2 Φ3ϕ1 + ϕ4 +Ω1ϕ3 Φ4ϕ1 +Ω1ϕ4

ϕ1 ϕ2 ϕ3 ϕ4
0 0 0 0
0 0 0 0



D =


Ω21 +Ω2 + ϕ1ψ1 Ω1Ω2 +Ω3 + ϕ1ψ2 Ω1Ω3 +Ω4 + ϕ1ψ3 Ω1Ω4 + ϕ1ψ4

Ω1 Ω2 Ω3 Ω4
1 0 0 0
0 1 0 0


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Expression (A2) is linear in xt−1, xt−2, xt−3, xt−4 . This means that to calculate
the forecasts given information on It−1 , we only have to replace xt−1, xt−2, xt−3, xt−4
in expression (A4) with their conditional expectation given It−1 .
The restrictions on the VAR follow immediately from equating the first row

of the matrix ∆ with the 5th row of ∆2 , and by equating the constants and
coefficients of xt−1 on each side of the equation (A4).
The restrictions written out in full are:

Φ1(2− ϕ1) = ϕ2 + ϕ1Ω1 ψ1(2− ϕ1) = Ω2 +Ω1Ω1
Φ2(2− ϕ1) = ϕ3 + ϕ2Ω1 ψ2(2− ϕ1) = Ω3 +Ω2Ω1
Φ3(2− ϕ1) = ϕ4 + ϕ3Ω1 ψ3(2− ϕ1) = Ω4 +Ω3Ω1
Φ4(2− ϕ1) = ϕ4Ω1 ψ4(2− ϕ1) = Ω4Ω1

α1 =
β1λ
2

RESULTS OF THE BIVARIATE FILTER FOR SPREAD AND
FIRST DIFFERENCE OF SHORT TERM RATES.

The filter was run for USA data for the period March1962-September1987.
With no restrictions imposed, the results are as follows. The estimated uncon-
ditional means are:

meânS(xt) = .2479 +0.8880xt
(3.6566) (4.3586)

meânD(xt) = .0399 +1.6210xt
(1.4719) (5.4925)

The estimated covariance matrices for state 0 and state 1 are:

Σ̂x0 =


.3100 .0309
(6.3461) (1.5993)

.0885
(6.4605)

 Σ̂x1 =


6.5448 1.9526
(3.3852) (4.9799)

1.0265
(2.3377)


The probabilities of remaining in the same state as the previous period are:

p̂ = .8373
(5.2592)

q̂ = .9782
(64.3921)

with expected duration of the states of

(1− q̂)−1 = 46.0630 months
(1− p̂)−1 = 6.1482 months .

The results of the centred vector autoregression are presented below.
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S0t = −.0737S0t−1 −.1259S0t−2 +.3535S0t−3 −.0389S0t−4
(−.6738) (−.5622) (1.5599) (−.1668)
+1.880D0

t−1 −.2927D0
t−2 +.1185D0

t−3 −.0617D0
t−4

(.9370) (−1.4716) (.5829) (−.8388)
D̂0
t = .9206S0t−1 −.2758S0t−2 +.2757S0t−3 +.1659S0t−4

(16.6812) (−2.5431) (2.4383) (1.3912)
+.3255D0

t−1 −.2250D0
t−2 −.0992D0

t−3 −.0092D0
t−4

(3.2131) (−2.1276) (−0.9309) (−.2427)
The results for the restricted VAR are as follows. The estimated uncondi-

tional means are:

meânS(xt) = .2559 +0.7315xt
(3.0395)

meânD(xt) = .0460 +1.6946xt
(.4510) (6.3019)

The estimated covariance matrix for state 0 and state 1 are:

Σ̂x0 =


.3171 .0309
(6.1881) (1.6019)

.0889
(6.7281)

 Σ̂x1 =


6.6380 2.2090
(6.1218) (5.0504)

1.2778
(2.9433)


The probabilities of remaining in the same state as the previous period are:

p̂ = .8835
(11.0581)

q̂ = .9798
(67.7155)

with expected duration of the states of

(1− q̂)−1 =49.6150 months
(1− p̂)−1 =8.5874 months .

The results of the centred vector autoregression are presented below.

bS0t = .0059S0t−1 +.1006S0t−2 +.2345S0t−3 +.0566S0t−4

−0.0486D0
t−1 −.1541D0

t−2 +.0245D0
t−3 −.0343D0

t−4

D̂0
t = .9305S0t−1 −.3063S0t−2 +.2105S0t−3 +.1801S0t−4

(16.2174) (−3.1903) (2.0875) (1.6931)
+.3360D0

t−1 −.1650D0
t−2 −.1094D0

t−3 +.0105D0
t−4

(3.6233) (−1.8035) (−1.0734) (.2232)
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The likelihood ratio for testing the restrictions in the restricted VAR is
asymptotically distributed under the null as Chi square with ten degrees of free-
dom since ten restrictions were imposed. The result is: 2(34.2325− 31.6316) =
5.2018. Thus the hypothesis that the restrictions implied by the term structure
of interest rates is not rejected at the 5% level.1

The restricted estimates show that the mean change in the short rate was not
significantly different from zero in state0, but was positive in state1, the point
estimate of the mean rate of change being 1.7 percentage points per quarter. The
variance covariance matrix differs between states. The variance of innovations
in the spread is bigger by a factor of 21 in state 1 than in state0, and the
variance of differences in the short rate by a factor of 13. The covariance between
innovations is insignificant in state 0 and significantly different from zero in state
1.
On the basis of these estimates, we can calculate the probabilities of having

been in each of the two states at any time, i.e., prob(xt = 1|St, St−1, St−2, ....,Dt,Dt−1,Dt−2, ...).
These are illustrated in figures 6 and 7. The probabilities obtained from the
unrestricted estimates are very similar to those obtained from the restricted es-
timates. These indicate a shift to the high variance regime only for the period
1979(4)-1982(3). These results broadly confirm Hamilton’s finding of a regime
change associated with the change in Federal Reserve operating procedures at
that time.

6. MONTE CARLO ANALYSIS.

In order to shed some light on the usefulness of this methodology, this section
reports the results of a small Monte Carlo investigation of the issues in question.
(This is analogous to an exercise undertaken in a related context, stock prices,
allowing for stochastic regime switching, by Cecchetti, Lam, and Mark(1990)).
The data generating process in the Monte Carlo study is the restricted VAR
with endogenous regime-switching of the previous section. This process is by
construction consistent with the expectations model of the term structure. We
then perform the traditional tests described in section 2 and calculate their
small-sample properties.
In all simulations that follow, each Monte Carlo experiment is replicated 1000

times, using the GAUSS matrix programing language and its RNDN function
to generate the pseudo-normal innovations.
In each replication, the initial values are the four first historical values of D

and S (S and D between 1962 (2) and 1963 (2)). For x, the corresponding initial
values are 0,0,0,0. The results are therefore conditional on these fixed initial
values. We then generate a sequence of realizations of the Markov process for x,
and innovations in each of the two equations in the VAR, generating a sample
of 102 observations. These are used to generate series for the spread S and the
difference in the short rate D. The following test statistics are then calculated:

1Note that the log lokelihoods quoted in the text omi a constant term equal in value to
−N ln(2π), where N is the number of observations
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(i) t-statistic for the null hypothesis d1 = 2 in the Mankiw-Miron OLS test
regression:

Dt = c1 + d1St−1 + ζ1t.

(ii) t-statistic for the null hypothesis d1 = 2 in the previous test regression es-
timated by IV; the instrument set includes St−2, St−3, St−4,Dt−1,Dt−2,Dt−3,Dt−4
, and a constant term.
(iii) t-statistic for the null hypothesis d2 = .5 in the test regression:

St = c2 + d2Dt+1 + ζ2t,

estimated by IV; the instrument set includesDt,Dt−1,Dt−2,Dt−3, St−1, St−2, St−3, St−4
, and a constant term.
Table2 reports the estimated mean biases (d̂1 − 2) and (d̂2 − .5) together

with their Monte Carlo standard error, as well as rejection frequencies of the
expectations hypothesis under the estimation strategies (i), (ii) and (iii). All
tests are two-sided, and are performed using 5% Gaussian critical values. Since
1000 replications per experiment are generated, the approximate 95% confidence
interval for the test rejection frequencies for a nominal size of 5% is [3.6%,6.4%].
It is apparent from the rejection frequencies of the test in case (i) that

inferences drawn from the Mankiw-Miron regression are wholly unreliable if the
data is drawn from a switching regime-restricted VAR DGP The OLS estimator
of the slope coefficient is severely biased, and the relevant t-test rejects the null
hypothesis an impressive 100% of the time.
The use of an IV estimator in the same regression does not provide a sub-

stantial improvement: the estimate of d remains substantially biased, and the
test statistic in case (ii) massively over-rejects the (true) null hypothesis. The
empirical size of the test is 95.7% (93.8% using White’s correction for het-
eroskedasticity) against a nominal size of 5%.
The test in case (iii) appears less bad than the other two in terms of the

average size of the distortion. Nevertheless, its performance is still very poor
under the assumed data generating process. The bias of the IV estimator of d
is smaller in absolute size than the biases obtained in cases (i) and (ii), but as a
proportion of the true value of the parameter it is as bad as the worst of them.
The associated t-test rejects in 75.5% of replications.
The use of heteroskedasticity-consistent standard errors in case (iii) makes a

small reduction in the frequency of rejection. Nevertheless, the test still rejects
in 64.2% of replications.
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(i) (ii) (iii)
Rejection frequency (in %) 100 95.7 75.5
(using White´s correction) 100 93.8 64.2
Estimated mean bias -.95 -.75 .22
(of the sample coef.)
M.C. Standard error (.0033) (.0055) (.0037)
Proportional bias -.475 -.375 .44
Average std (.05969) (.1265) (.07413)
Average White´s std (.08335) (.1636) (.09893)

The results of the Monte Carlo experiments show that the values obtained
for the slope coefficient in section (3) for the full sample are not inconsistent with
the data having been generated from the restricted VAR with regime switching.
It may be useful to contrast these results with ones obtained in a very similar

situation, except that the ingredient of regime switching is absent. A related
paper (Driffill et al(1992)) uses a Monte Carlo study of artificial interest rate
data, allowing as here for an error in the expectations model. It uses time-series
processes with unit roots and near unit roots for the short rate. The sample
size is 100. It finds that the frequency of rejection in case (i) above is 100%; in
case (ii) it is around 50%; and in case (iii) it is around 7% (the exact frequency
depending on the time-series process assumed for the short term interest rate).
This suggests that, for the Mankiw-Miron regression (cases (i) and (ii) above),
regime-switching is only partly responsible for the high rejection frequencies.
Even though IV in the Mankiw-Miron regression is consistent in the absence of
regime switching, it turns out to be biased in small samples. However, in case
(iii) above, the small sample properties of the estimator appear to be satisfactory
in the absence of regime-switching.
Only when the sample size is increased to 10000 observations (iii) gives a 5%

frequency of rejections.
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