
SWITCHING REGIME ESTIMATION.
Introduction.

Usually in econometrics we assume that observed data has been drawn from
some data generating mechanism which may be related to some specific eco-
nomic theory or simply represent the true relationship between a set of variables.
An underlying assumption in all econometric models is that all the observations
have been drawn from the same distribution conditional on some constant pa-
rameter set. It is very unlikely that economic time series can be characterized
in such a way since we expect changes in the properties of the data when there
is a change in macroeconomic policy, say from free floating to target exchange
rates, or even a more dramatic change from war time to peace time.
The standard econometric approach consist of trying to detect the existence

of these changes in regime using different types of parameter constancy tests, and
then impose dummy variables to account for these changes. By doing this, the
econometrician could ensure parameter constancy within regime. Nevertheless
this procedure might be very rigid and may lead to the use of models with too
many dummy variables. How should we model a change in the process followed
by a particular time series? Suppose that the series under scrutiny has a break
in the unconditional mean at time t1 . For data prior to t1 we might use a model
such as

yt − µ1 = φ(yt−1 − µ1) + εt for t1 < t

and for data after t1

yt − µ2 = φ(yt−1 − µ2) + εt for t ≥ t1
Even if this specification may capture the break at t1 , is not a satisfactory

time series model. For example, how are we to forecast a series described as
above. Also, if the process has change in the past it could also change again.
The change in regime does not need to be the outcome of a perfectly foreseeable,
deterministic event. Rather the change itself may be regarded as a random
variable. A complete time series model would therefore include a description of
the probability law governing the change from µ1 to µ2
We might consider the process to be influenced by an unobserved random

variable xt , which is called the state or regime. This variable may take different
values at date t; if xt = 1, then the process is in regime 1, while xt = 2 means
that the process is in regime 2. Therefore we can write this model as

yt − µxt = φ1(yt−1 − µxt−1) + εt

where the unconditional mean takes the values µ1 when xt = 1 and the value
µ2 when xt = 2.
We then need a description of the time series process for the unobserved

variable. Since xt only takes discrete values we need to model this process using
a discrete-valued random variable. The easiest is a Markov chain.
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Properties of Markov Processes.

Let xt be a random variable ( which denotes the unobserved state of the
system) that can take values 0 and 1. If the probability that xt takes a particular
value at time t, only depends on its value at t− 1, this variable is governed by
a Markov process.

P ((xt = i|xt−1 = j, xt−2 = k...) = P ((xt = i|xt−1 = j)
The process is summarized by the probabilities: P (xt = 0|xt−1 = 0) = q and
P (xt = 1|xt−1 = 1) = p.
These information is usually summarized in what is called the transition

Matrix or transition probability matrix.

0 1 (time t-1)
0 q (1− p)
1 (1− q) p
(time t)

Autoregressive Representation of Markov Process.

·
1− xt+1
xt+1

¸
=

·
q (1− p)

(1− q) p

¸ ·
1− xt
xt

¸
+

·
ζ1,t+1
ζ2,t+1

¸
or

Wt+1 = PWt + Ut+1

where

Wt+1 =

·
1− xt+1
xt+1

¸
and Ut+1 =

·
ζ1,t+1
ζ2,t+1

¸
and Etζ1,t+1 = 0, Etζ2,t+1 =

0, so EtUt+1 = 0
Then it follows that Wt is a random vector that takes the value

Wt =

·
1
0

¸
when xt = 0

and

Wt =

·
0
1

¸
= when xt = 1

E(Wt+1|xt = i) =
·

q
1− q

¸
when i = 0

E(Wt+1|xt = i) =
·
1− p
p

¸
when i = 1.

The above vectors are simply column i+ 1 of the transition matrix.
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Then

E(Wt+1|Wt) = P

·
1 0
0 1

¸
and

Ut+1 =Wt+1 −E(Wt+1|Wt) =Wt+1 −P
·
1 0
0 1

¸

Now notice that the second row gives

xt+1 = (1− q) + (−1 + p+ q)xt + ζ2,t+1

This expression can be recognized as an AR(1) process with constant term 1−q
and autoregressive coefficient (−1 + p+ q)
The process is stationary whenever the autoregressive coefficient is smaller

than 1, i.e., (−1 + p+ q) < 1 ,or ,p+ q < 2.
Then the expected value of xt is given by

E(xt+1) = (1− q) + (−1 + p+ q)E(xt)
or

E(xt) = (1− q)/(2− p− q)
since E(xt+1) = E(xt) for a stationary process. Also notice that the expected
value may be written as

E(xt) = 0. P (xt = 0) + 1P (xt = 1) = P (xt = 1)

therefore the unconditional probabilities of being in state 1 and zero are

P (xt = 1) = (1− q)/(2− p− q)
and

P (xt = 0) = 1− P (xt = 1) = 1− (1− q)/(2− p− q) = (1− p)/(2− p− q)

Conditional and Unconditional Probabilities of States 0 and 1

(An alternative derivation).

Notice that to start the Markov chain we need information of the probabili-
ties of state 0 and 1 at time zero. This is given by the unconditional probabilities
P (x0 = 0) and P (x0 = 1). To get the unconditional probabilities of the states
at time 1, you simply need to multiply the unconditional probabilities at time
zero by the matrix of transition probabilities.
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·
P (x1 = 0)
P (x1 = 1)

¸
=

·
q (1− p)

(1− q) p

¸ ·
P (x0 = 0)
P (x0 = 1)

¸
It is shown in Cox and Miller (1965) that if there exists a statistical equilibrium
in which the state equilibrium is independent of the initial conditions, then the
state probability π satisfies the condition that Π = PΠ, where P is the matrix
of transition probabilities.·

π0
π1

¸
=

·
q (1− p)

(1− q) p

¸ ·
π0
π1

¸
where π0 = P (xt−j = 0) and π1 = P (xt−j = 1) for all values of j.
Then using π0 + π1 = 1 we get the following values:

π0 =
(1− p)

(2− p− q) and π1 =
(1− q)

(2− p− q)
where π0 and π1 are the equilibrium unconditional probabilities. If there

exists a pair of initial values that introduce stationarity in the stochastic process,
then choice of the initial value is of great importance. Note that the initial values
can be the equilibrium unconditional probability.
Given the following initial values,·

p0(0)
p0(1)

¸
=

·
π0
π1

¸
it can be shown (by multiplying n times by the transition probability matrix)
that the unconditional probability vector at time n is:·

pn(0)
pn(1)

¸
=

·
π0
π1

¸
Therefore, the distribution does not change with time and the stochastic process
is always in equilibrium.

Forecasts for a Markov chain

Sometimes it is also useful to know the probability of being in state 1 (0)at
time t+n given that state 1 (0) prevailed at time t. A clear example is Hamilton’s
(1988) application of filter to test the (rational) expectational hypothesis of the
term structure of interest rates which requires the forecasting of the state n
periods ahead given the information of the state at time t.
. A n-periods ahead forecast for a Markov chain can be obtained simply by

multiplying n times by the transition probability.·
P (xt+n = 0)
P (xt+n = 1)

¸
=

·
q (1− p)

(1− q) p

¸n ·
P (xt = 0)
P (xt = 1)

¸
Following Cox and Miller (1965), Pn is derived in the following way:

4



1) Find the eigen-values of the transition probability Matrix.

λ1 = 1, λ2 = −1 + p+ q,

2) Find the associated eigen-vectors."
(1−p)
(2−p−q)
(1−q)
(2−p−q)

#
,

· −1
1

¸

3) Express P as TΛT−1, where

T =

"
(1−p)
(2−p−q) −1
(1−q)
(2−p−q) 1

#
,

is the matrix of eigen-vectors and

Λ =

·
1 0
0 −1 + p+ q

¸
,

a diagonal matrix of eigen-values.

4) Use the result that

Pn = TΛnT−1

or

Pn =

"
(1−p)
(2−p−q) −1
(1−q)
(2−p−q) 1

#·
1 0
0 −1 + p+ q

¸"
1 1

− (1−q)
(2−p−q)

(1−p)
(2−p−q)

#

0 1 (time t)
0 (1−p)

(2−p−q) +
(1−q)(p+q−1)n

(2−p−q)
(1−p)
(2−p−q) − (1−p)(p+q−1)n

(2−p−q)
1 (1−q)

(2−p−q) − (1−q)(p+q−1)n
(2−p−q)

(1−q)
(2−p−q) +

(1−p)(p+q−1)n
(2−p−q)

(time t+n)

Note that by making n = 1 in the above matrix we end with the matrix of
transition probabilities, P.
Note also that when n tends to infinity, the conditional tends to the uncon-

ditional probability. The fact that xt has been in state 0 or 1 ”infinite” number
of periods ago does not provide any useful information.
In addition, we can derive the conditional expectations:
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E(xt+n|xt = 0) =
(1− q)

(2− p− q) −
(1− q)(p+ q − 1)n

(2− p− q)
E(xt+n|xt = 1) =

(1− q)
(2− p− q) +

(1− p)(p+ q − 1)n
(2− p− q)

The expected value of xt at time n conditional on s at time zero is:

E(xt+n|xt = xt) = (1− q)
(2− p− q) + (xt −

(1− q)
(2− p− q) )(p+ q − 1)

n

This result is derived assuming that xt is observed (conditional on xt ),
in most of the empirical applications we will assume that the states are unob-
served and must be predicted from the realizations of yt (the observed variable).
Hamilton has done this using a non-linear filter consisting of five steps that are
described below. His procedure for drawing inferences about xt is an iterative
one. Given an initial inference about xt−1 based on data observed through date
t−1, iteration t produces an inference about xt based on data observed through
data t.

A Brief Description of Hamilton’s Non-Linear Filter.

The filter developed by Hamilton assumes that discrete states ( say high or
low inflation) of the economy are not known and therefore have to be inferred
from the data. He assumes that the states follow a discrete Markov process.
Hamilton constructed an optimal non-linear forecast, which can be thought
of as arising from a two step procedure which involves obtaining an optimal
inference about the current state given the past values of the variable that is to
be forecast, and then using the outcome of the filter to generate future forecasts
of this variable.
Hamilton’s starting point is the assumption that the economy has two possi-

ble states, let us say, state zero and state one. For the sake of simplicity, he also
assumes that the unconditional mean and the variance are the only parameters
that are allowed to vary between regimes. It should be noted that there is no
reason to assume a priori that the other parameters will remain constant from
one regime to the other, and this is something that can easily be tested using
traditional procedures.
The observed variable, yt , is assumed to follow an autoregressive process of

order m, allowing the mean and the variance to vary from state 0 to state 1.
This can be represented in the following way.

yt−µxt = φ1(yt−1−µxt−1)+ φ2(yt−2−µxt−2) + ..+φm(yt−m− µxt−m) + σxtvt

vt is distributed N(0,1) and µxt is parameterized as α0 + α1xt and σxt as
w0 + w1xt
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That is the mean is equal to α0 in state 0 (when xt = 0), and equal to
α0 + α1 in state 1 (when xt = 1) and the standard deviation is equal to w0 in
state zero and equal to w0 + w1 in state one.
The error vt is assumed to be independent of all xt−j ≥ 0

4.2.2 Hamilton’s Filter.

Step_1. Calculate the joint density of the m past states and the current
state conditional on the information included in yt−1 and all past values of y,
where y is the variable that is observed. This is done by using the Markov
property which says that only the information of the last state is relevant.1

p(xt, xt−1, ., xt−m|yt−1, yt−2, ., y0) = p(xt|xt−1)p(xt−1, xt−2, ., xt−m|yt−1, yt−2, ., y0)

p(xt|xt−1) is given by (4.1). As in all the subsequent steps the second term
on the right-hand-side is obtained from the preceding step of the filter. In
this case, p(xt−1, xt−2, ..., xt−m|yt−1, yt−2, ..., y0) is known from the input to the
filter, which in turn represents the result of the iteration at date t−1 (from step
5).
To begin with the iteration, it is necessary to assign some initial values to

the parameters, and to impose some initial conditions on the Markov process.
For the sake of simplicity, the unconditional distribution p(xm−1, xm−2, ...x0)
has been chosen for the first observation.

p(xm−1, xm−2, ...x0) = p(xm−1|xm−2)...p(x1|x0)p(x0)

where p(x0) are the equilibrium unconditional probabilities as defined above.

Step_2. Calculate the joint conditional distribution of yt and (xt, xt−1, ..., xt−m).

p(yt, xt, xt−1, ..., xt−m|yt−1, yt−2, ..., y0) = p(yt|xt, xt−1, ..., xt−m, yt−1, yt−2, ..., y0).
p(xt, xt−1, xt−2, ..., xt−m|yt−1, yt−2, ..., y0)

where we assume that

p(yt|xt, xt−1, ., xt−m, yt−1, yt−2, ., y0)
=

1√
2π(ω0 + ω1xt)

exp[− 1

2[ω0 + ω1xt]2
((yt − α1xt − α0)

−φ1(yt−1 − α1xt−1 − α0)− ..− φm(yt−m − α1xt−m − α0))
2]

1This means that the probability of the current state conditional on the previous state is
equal to the probability of the current state conditional on the m past states, that is;
P (Xt|Xt−1) = (Xt|Xt−1, ...,Xt−m)
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Note that p(yt|xt, xt−1, ., xt−m, yt−1, yt−2, ., y0) involves (xt, xt−1, ., xt−m)which
is a vector which can take 2m+1 values.

Step_3. Marginalise the previous joint density with respect to the states
giving the conditional density, from which the (conditional) likelihood function
is calculated.

p(yt|yt−1, yt−2, ., y0) =
1X

xt=0

1X
xt−1=0

..
1X

xt−m=0

p(yt, xt, xt−1, ., xt−m|yt−1, yt−2, ., y0)

Step_4. Combine the results from steps 2 and 3 to calculate the joint density
of the state conditional on the observed current and past realizations of y

p(xt, xt−1, ., xt−m|yt, yt−1, yt−2, ., y0) = p(yt, xt, xt−1, ., xt−m|yt−1, yt−2, ., y0)
p(yt|yt−1, yt−2, ., y0)

.
Step_5. The desired output is then obtained from

p(xt, xt−1, ., xt−m+1|yt, yt−1, yt−2.., y0) =
1X

xt−m=0

p(xt, xt−1, ., xt−m|yt, yt−1, yt−2, ., y0)

The output of step 5 is used as an input to the filter in the next iteration.
Note that to iterate, estimates of the parameters are required. Maximum like-
lihood estimates can be obtained numerically from Step 3 as a by-product of
the filter, and this is the approach followed in Hamilton (1988). The sample
conditional likelihood is:

ln p(yt, yt−1, yt−2, ., ym)|ym−1, ., y0) =
TX
t=m

ln p(yt|yt−1, ., y0).

which can be maximized numerically with respect to the unknown parameters
(α1,α0, p, q,ω0,ω1,φ1,φ2...φm).
Notice that p and q, the parameters of the transition matrix, are also esti-

mated by maximum likelihood. As we said in Note 1, p and q are the parameters
of the transition matrix associated with remaining in the previous state.
Hamilton’s filter requires the numerical optimization of a very complicated

non-linear function. Cramer (1986) has pointed out that maximum likelihood
estimation suffers from several specific types of failures. First, the parameter
vector may change direction at ever increasing speed toward absurd values, while
still increasing log likelihood at each step. Second, the iterative process may
also enter a loop and keep repeating the same movements of the parameters.
Third, collinearity of the data or under identification of the model can produce
a close to singular information matrix. We must bear in mind that most of these
problems can occur in the examples to be analyzed as a result of the non-linear
nature of Hamilton’s filter.
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