The Kalman Filter

The Kalman filter is an Algorithm for sequentially updating a linear projec-
tion for a state-space representation.

Consider y; a vector of of n variables observed at date ¢.

Then the state space representation can be written as

i1 = F§tuon State Equation
ye = Aw+H'E 4w, Observation Equation

where Fypp, Al ., H) .. are matrices of parameters and x, , is a vector of
predetermined variables.

The shock v;11 is a white noise with

AN chr ift=r
E(vrvr) = { 0 Otherwise

and w; is a white noise with

Rypn ift=r1
0 Otherwise

Blars) = {

Since x; is predetermined or exogenous, it does not provide information
about &, , or wyys, for s>0, beyond that contained in {y;_1,9:—2....} .

Assumptions

We assume that E(v:£]) = 0, E(w€)) = 0 and E(v;w,) = 0 for all ¢ and
7. Noting that we can write £, = vy + Fvy_1 + F?vy_o + .. + Ft 720y + F171E,
we get the following conditions:

a) E(né)=0forallt=t—1,t—2,.......

b) E(w&l) =0 for allt and 7.
c) B(wey,) =0 forallt =t—1,t—2,........ (since E(wi(A'z,+H'E . +w,) =0)
d) E(vyl) =0 forallTt =t—1,t—2,....... (since E(vi(A'z, +H'E +w,) =0)

The Filter




The filter is motivated as an algorithm for calculating linear least squares
forecasts of the state vector on the basis of the data observed through date t,
i1t = E(§44111), where the operator £ denotes the linear projection of £, 4

/
on Iy and a constant, and Iy = {y}, yi_1,yi_o-¥}, 2}, Ti_1, @) _y..xy } . The filter

calculates these forecasts recursively, generating &g, §aj1, E3j20 - Lrjr—1 in
succession. Associated with each these forecast is a MSE matrix represented by

the following (rxr) matrix Py, = E [(ft_H — &) (e — -§t+1\t)/} . For the
typical element Zt\t—lv with its associated P;;_1, the goal of the the filter is to

produce Et 1)t With its associated Py1)¢. The steps of the filter typically involve
initializing the filter, updating the linear projection (when new information
arrives) and producing a new forecast conditional on the new information set.

Initializing the filter: Starting the recursion.

To initialize the filter we need a proxy of E”O and we take for this the uncondi-
tional expectation, £(¢;), with the associated P = E[(§; — .E(£1))(§, — - E(&y1))'] -
To calculate E(&;), we use the state equation and take expectations in both
sides obtaining E(&;,,) = FE() or (I — F)E(&;) = 0. If all the eigen values
of F are smaller than 1 this implies that ElIO = E(&) = 0. The associated
MSE matrix Pyjg = E[(£;)(£;)'] can be obtained in similar way noting that
E(&116141) = B(F& +ve41)(FE + vei)] = FEE)F + Q. If we denote
Y = E(£,£)), then we can write the previous expression as ¥ = FXF' + Q. If
all the eigenvalues or F' are smaller than 1 then this can be solved using Vec
operators as Vec(Pyg) = Vec(E) = [[,- — F ® F]_1 Vec(Q).

Given the starting values 21\0 and Pp|o, the next step is to calculate /5\2‘1 and
P2‘1.

Forecasting y;.

To forecast y; we have to note that we assumed Athat x¢ contains no informa-
tion about &, beyond that contained in I;_1, then E(&;|zt, [i—1) = E(&]li-1) =

Etfe—1-
Then the forecast of y; is
Yeje—1 = Alwy + Hlﬁt\tq,
with associated forecasting error y; — 71 = H' (&, —Eﬂt,l) +wy and MSE,
E [(yt — Uept—1) Wt — Yepp—1)'] = H'Pyy_1 H + R.

Updating the inference about ¢,.




The inference about the value of ¢, is updated on the basis of the observation
of y; to produce &y, = E(§4|ys, w4, [1-1) = E(&| 1)

The formulae to update a linear projection is

-1

Et|t = /f\t\t_l-l-E {(ft _gt\t—l)(yt - @\th‘fl)/} (E [(yt — Yeje—1) (Yt — @t\tq)/]) (Ye—-Yej—1)

Noting that:
-E {(ft - £t|t—1)(yt - {U\t|t71)/} = Py_1H,

-E [(ye — Geje—1) (v N Yejt—1)'] = H'Pyy_1H + R,
Yrje—1 = A'zy + H'Eypy_q,

this formulae can be written as

o~ o~ -1 o~
Eie = Egppmr + Pope—r H (H'Pyy_1 H + R) (ye — Awe + H'Eyy )

:H,(gtfgt\tflﬂ’wt

This expression has as associated MSE,

i~ -~ -1
E (ft - €t|t)(£t - §t|t)/] = Pt|t = Pt|t—1 *Pt\t—lH (Hlpt|t—1H =+ R) H/Pt\t—l



Proof EI: - Eﬂ;)(é‘zt - gt\t)/ ]
= EI: (Si— [gt\t—l + P;\t—lH(HPtlt—1H+ R)_l o —A'x i+ Hgt\tfl)])(gt B E"’)/]

=E| (&= &,.) = Py HHPy H+ R (H' (& &, ) + @) (4=B)'
ﬁ_/

\a

=A B
=E(AA') — E(BA') — E(AB") + E(BB"), where
® E(AA’) = Pt\t—l

® £(BA) = E{[ Py HHPy  H+ R (H'(E =&, )+ 00 &~ &, ) } = Pyt HHPy \H+ R HPy, .

® EUB) = E{(g, - [((5[ ~ &) H+0)(HP H+R) " HPy_, ]} =P, HHP, H+R)'HP,

® £(BB) = E{[Py HH Py H+ R (H (& -8, ) +0) |[(&~ &, ) H+ o) HPy H+ R HPyy |}
=Py HHPy  H+ R E{[(H'E =&, ) +0) |[(& =8, ) Ht o) |} HPy H+ R HPy,

v

=H'P g H+R
=P, H(H'P, H+R)"'HP, .

Then E[ (¢6,- &,)(&—&,)' | = E(44") — E(BA') — E(4B') + E(BB')
=Py _Pt\t—lH(HPt\t—lH+ R)ilH,Pt\t—l-

Producing a Forecast of ¢, ,

Evape = E(&enlle) = FE(& L) + E(via|ly) = Féy,.

Using the formulae derived for updating a linear projection, we can express
this forecast as ) R
§eprp =1 [5t\t—1 + Pyy1H (H'Pjy—1H+R) (g — Almy + H'€y4_1)

o~ _1 A~
=F&,_+ P H (H/Pt\t—lH + R) (ye — Ay + H'ft\t—l)

=K; The Kalman Gain Matrix.

The MSE Associated with the forecast can easily be obtained from the fore-
casting equation

Py = FE [(Fft + U1 — 'th|t)(F§t + Vg1 — Fgm)/}
- FPt‘tF/ + Q
-1
= F|Pys— PyaH (H' Py H+ R) ™ H'Pyp | F'4Q

4



Examples of State Representation.

§ip1 = F§+uem State Equation
y = Almg+ H'E +wy Observation Equation

1. An ARMA Process
Consider the following ARMA Process

Werr — 1) = d1(ye — 1) + (Y1 — 1) + oo + Op(Yt—pi1 — 1) + 141
oc2ift=r1
E(ewer) = { 0 Otherwise.

The state equation

Yt+1 — M b1 P9 op Yt — 1 Et+1
Ye — p 0 0 Yt—1— [ 0
= 0 1 0 +
Yt—pt2 — I 10 Ye—pt1 — I 0
% N——
=& =F =& I

Observation Equation (Identity)

Yt —
Yt—1 —
Y = :U+[17 0, 0]
Yt—p+1 — M
where A = p, =1, H' =[1, 0, 0], w=0.

2. A MA(1) process
Consider the following MA process

Yo = P+ e+ 041

The state Equation

[621}:[(1) 8][sil}+[5t+1]



The Observation Equation (Identity)

Et—1
where A’ = p, zp =1, H=[1, 0], w=0.

ye = p+|1 9]{ Et}

3. An ARM A(p, q)
Consider the following ARMA Process

(yr — 1) = 11— 1) + Po(Yr—2 — 1) + oo + Op(Ye—r — p1) + €111
+er + 01601 + O26p_2+ ... + +025t—r+1
o?ift=r
E(eer) = { 0 Otherwise. and 7 = Maz {p,q+ 1},
¢; = Oforj>pandf;=0forj>q.

The state equation

Yt+1 — [ b1 P ¢p Ye — Et+1
Yt — 1 0 0 Yt—1 — U 0
= 0 1 0 +
Yt—pt2 — [ 10 Yt—p+1 — I 0
=€ =F =& s

Observation Equation (Identity)

Yt —
Yt—1 — M
Yy = /},—|—[ 1, 917 0r—1 ]
Yt—p+1 — H
:ft
where A’ = p, =1, H =] 1, 6y, 01 |, w=0.

Proof. Notice that the second element of &, is equal to the first element
of §&. We denote this relationship as &, [2] = & [1]. Then is easy to see
that &1 (2] = & [1] = L& 1 [1], &40 3] = & [2] = L% [1], or in general
Sl =&+ =071 [1].

Then using the first row of the state equation we can write

§ir1 1] = (¢1 + Po L+ .. + ¢, L") 1] + 14



or
(1+ ¢ L+ ¢l + oo + ¢, L7)E, 1 [1] = €11
Using the observation equation we may see that

g =g+ (L+ 0L+ 0202 + ...+ 0,1 L7 1)¢, [1]

Then multiplying the observation equation in both side by (1+¢; L+ ¢y L%+
..... + ¢, L") we obtain

A+ L+ 4+, L)y —p) = A+ L+ +0, L DA +¢L+..+¢.L7)E 1]

o

= (1+60L+.+0,_ L He

4. The ex-ante real interest rate

The ex-ante real interest rate is unobserved. Assume we can write the
de-meaned real interest rate as £, = 4 — m° — u, then we can write the
state equation as §;,; = ¢§; +v¢y1. The econometrician has observations
on the ex-post real rate which can be written as

i —m = (i —7°) + (7° = m).

Now, if expectations are rational, then m = 7¢ + w;,. and then the mea-
surement equation is of the form

’it—7T = (it—ﬂe)—Fwt
= p+&+we

5. Uncovering the cyclical component

Stock and Watson (1991) postulated the existence of an unobserved vari-
able C; which represents the state of the business cycle. They assumed
that we observed n macroeconomic variables and that these variables,
(Y1t Y2ty Yty oenee ,Ynt) are assumed to be influenced by the business cycle
and also have an idiosyncratic component, denoted X;; unrelated to the
movements in y;; for ¢ # j.

If the business cycle and each of the idiosyncratic components could be

described by an univariate AR(1) process, then we can write the measure-
ment equation as

Ct+1 ¢C 0 0 0 0 Ct ’L)Ct+1

X1t+1 (bl 0 0 Xlt Ulyys

X2t+1 = ¢2 0 0 X2t + V2441
.0

Xnt+1 ¢n Xnt U"t+1

=841 =F =¢, =viq1



The observation equation can be written as

Y1t e v 1 0 0 0 0 Cy
Yot Ho Y2 010 0 X1,
Y3t = | p3 + 0 0 0 Xo,
0
Ynt | pz1 L P Tn 01 nx(n+1) an (n+1)z1

6. Linear Regression Models with Time Varying Coefficients

One important application of the state space model with stochastically vary-
ing parameters as a regression in which the coefficient vector changes over time.
Consider the following regression model with time varying coefficients.

Y = By + we,

in the state space representation this equation represents the measurement equa-
tion while we can write the state equation as

(/Bt—l-l _B) = F(ﬁt - B) + Ut
=¢ =

If the eigenvalues of F are all inside the unit circle, then /5 has the interpre-
tation of the average of the steady-state value for the coefficient vector. If

e ([41[8 2))

then the state space model can be written as

Vi1
Wt

Yo = $23+ Ty + wi,
(6t+1 - B) F (ﬁt *E) + Vet



