
The Kalman Filter

The Kalman filter is an Algorithm for sequentially updating a linear projec-
tion for a state-space representation.

Consider yt a vector of of n variables observed at date t.

Then the state space representation can be written as

ξt+1 = Fξt + υt+1 State Equation

yt = A0xt +H 0ξt + ωt Observation Equation

where Frxr, A0nxk,H
0
nxr are matrices of parameters and xtkx1 is a vector of

predetermined variables.

The shock υt+1 is a white noise with

E(υtυ
0
τ ) =

½
Qrxr if t = τ
0 Otherwise

and ωt is a white noise with

E(ωtω
0
τ ) =

½
Rnxn if t = τ
0 Otherwise

.

Since xt is predetermined or exogenous, it does not provide information
about ξt+s or ωt+s, for s>0, beyond that contained in {yt−1, yt−2....} .

Assumptions
We assume that E(υtξ

0
1) = 0, E(wtξ

0
1) = 0 and E(υtωτ ) = 0 for all t and

τ . Noting that we can write ξt = υt + Fυt−1 + F 2υt−2 + ..+ F t−2υ2 + F t−1ξ1,
we get the following conditions:

a) E(υtξ
0
τ ) = 0 for all τ = t− 1, t− 2, ........

b) E(ωtξ
0
τ ) = 0 for all t and τ .

c) E(ωty
0
τ ) = 0 for all τ = t−1, t−2, ........(sin ce E(ωt(A0xτ+H 0ξτ+ωτ )0 = 0)

d) E(υty
0
τ ) = 0 for all τ = t−1, t−2, ........(sin ce E(υt(A0xτ+H 0ξτ+ωτ )0 = 0)

The Filter

1



The filter is motivated as an algorithm for calculating linear least squares
forecasts of the state vector on the basis of the data observed through date t,bξt+1|t = bE(ξt+1|It), where the operator bE denotes the linear projection of ξt+1
on It and a constant, and It =

©
y0t, y

0
t−1, y

0
t−2..y

0
1, x

0
t, x

0
t−1, x

0
t−2..x

0
1

ª0
. The filter

calculates these forecasts recursively, generating bξ1|0, bξ2|1, bξ3|2, ......,bξT |T−1 in
succession. Associated with each these forecast is a MSE matrix represented by

the following (rxr) matrix Pt+1|t = E
h
(ξt+1 − .bξt+1|t)(ξt+1 − .bξt+1|t)0i . For the

typical element bξt|t−1, with its associated Pt|t−1, the goal of the the filter is to
produce bξt+1|t, with its associated Pt+1|t. The steps of the filter typically involve
initializing the filter, updating the linear projection (when new information
arrives) and producing a new forecast conditional on the new information set.

Initializing the filter: Starting the recursion.

To initialize the filter we need a proxy of bξ1|0 and we take for this the uncondi-
tional expectation, E(ξ1), with the associated P1|0 = E [(ξ1 − .E(ξ1))(ξ1 − .E(ξ1))

0] .
To calculate E(ξ1), we use the state equation and take expectations in both
sides obtaining E(ξt+1) = FE(ξt) or (I − F )E(ξt) = 0. If all the eigen values
of F are smaller than 1 this implies that bξ1|0 = E(ξ1) = 0. The associated
MSE matrix P1|0 = E [(ξ1)(ξ1)

0] can be obtained in similar way noting that
E(ξt+1ξ

0
t+1) = E [(Fξt + υt+1)(Fξt + υt+1)

0] = FE(ξtξ
0
t)F

0 + Q. If we denote
Σ = E(ξtξ

0
t), then we can write the previous expression as Σ = FΣF 0 +Q. If

all the eigenvalues or F are smaller than 1 then this can be solved using V ec
operators as V ec(P1|0) = V ec(Σ) = [Ir2 − F ⊗ F ]−1 V ec(Q).
Given the starting values bξ1|0 and P1|0, the next step is to calculate bξ2|1 and

P2|1.

Forecasting yt.

To forecast yt we have to note that we assumed that xt contains no informa-
tion about ξt beyond that contained in It−1, then bE(ξt|xt, It−1) = bE(ξt|It−1) =bξt|t−1.
Then the forecast of yt is

byt|t−1 = A0xt +H 0bξt|t−1,
with associated forecasting error yt−byt|t−1 = H 0(ξt−bξt|t−1)+ωt and MSE,
E
£
(yt − byt|t−1)(yt − byt|t−1)0¤ = H 0Pt|t−1H +R.

Updating the inference about ξt.
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The inference about the value of ξt is updated on the basis of the observation
of yt to produce bξt|t = bE(ξt|yt, xt, It−1) = bE(ξt|It).
The formulae to update a linear projection is

bξt|t = bξt|t−1+E h(ξt − bξt|t−1)(yt − byt|t−1)0i ¡E £(yt − byt|t−1)(yt − byt|t−1)0¤¢−1 (yt−.byt|t−1)
Noting that:

-E
h
(ξt − bξt|t−1)(yt − byt|t−1)0i = Pt|t−1H,

-E
£
(yt − byt|t−1)(yt − byt|t−1)0¤ = H 0Pt|t−1H +R,

-byt|t−1 = A0xt +H 0bξt|t−1,
this formulae can be written as

bξt|t = bξt|t−1 + Pt|t−1H
¡
H 0Pt|t−1H +R

¢−1
( yt −A0xt +H 0bξt|t−1| {z }
=H0(ξt−ξt|t−1)+ωt

)

This expression has as associated MSE,

E
h
(ξt − bξt|t)(ξt − bξt|t)0i = Pt|t = Pt|t−1−Pt|t−1H

¡
H 0Pt|t−1H +R

¢−1
H 0Pt|t−1
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Proof E  t 

 t|t t 


 t|t



 E  t 

 t|t1  Pt|t1HHPt|t1H  R

1yt  A x t  H

 t|t1  t 


 t|t



E

A

 t 

 t|t1 

B

Pt|t1HHPt|t1H  R
1H t 


 t|t1   t A  B

EAA   EBA   EAB  EBB,where
 EAA   Pt|t1
 EBA   E Pt|t1HHPt|t1H  R

1H t 

 t|t1   t  t 


 t|t1

  Pt|t1HHPt|t1H  R
1HPt|t1 .

 EAB  E  t 

 t|t1  t 


 t|t1

H   tHPt|t1H  R
1HPt|t1 Pt|t1HHPt|t1H  R

1HPt|t1
 EBB  E Pt|t1HHPt|t1H  R

1H t 

 t|t1   t  t 


 t|t1

H   tHPt|t1H  R
1HPt|t1

Pt|t1HHPt|t1H  R
1

HPt|t1HR

E H t 

 t|t1   t  t 


 t|t1

H   t HPt|t1H  R
1HPt|t1

Pt|t1HHPt|t1H  R
1HPt|t1 .

Then E  t 

 t|t t 


 t|t

  EAA   EBA   EAB  EBB
 Pt|t1  Pt|t1HHPt|t1H  R

1HPt|t1 .

Producing a Forecast of ξt+1

bξt+1|t = bE(ξt+1|It) = F bE(ξt|It) + bE(υt+1|It) = Fbξt|t.
Using the formulae derived for updating a linear projection, we can express

this forecast asbξt+1|t = F
hbξt|t−1 + Pt|t−1H

¡
H 0Pt|t−1H +R

¢−1
(yt −A0xt +H 0bξt|t−1)i

=Fbξt|t−1 + FPt|t−1H
¡
H 0Pt|t−1H +R

¢−1| {z }
=Kt The Kalman Gain Matrix.

(yt −A0xt +H 0bξt|t−1)
The MSE Associated with the forecast can easily be obtained from the fore-

casting equation

Pt+1|t = E
h
(Fξt + υt+1 − .Fbξt|t)(Fξt + υt+1 − Fbξt|t)0i

= FPt|tF 0 +Q

= F
h
Pt|t−1 − Pt|t−1H

¡
H 0Pt|t−1H +R

¢−1
H 0Pt|t−1

i
F 0 +Q
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Examples of State Representation.

ξt+1 = Fξt + υt+1 State Equation

yt = A0xt +H 0ξt + ωt Observation Equation

1. An ARMA Process
Consider the following ARMA Process

(yt+1 − µ) = φ1(yt − µ) + φ2(yt−1 − µ) + ...+ φP (yt−p+1 − µ) + εt+1

E(εtετ ) =

½
σ2 if t = τ
0 Otherwise.

The state equation
yt+1 − µ
yt − µ

yt−p+2 − µ


| {z }

=ξt+1

=


φ1 φ2 φP
1 0 0
0 1 0

1 0


| {z }

=F


yt − µ
yt−1 − µ

yt−p+1 − µ


| {z }

=ξt

+


εt+1
0

0


| {z }
=υt+1

Observation Equation (Identity)

yt = µ+
£
1, 0, 0

¤


yt − µ
yt−1 − µ

yt−p+1 − µ


where A0 = µ, xt = 1, H

0 =
£
1, 0, 0

¤
, ωt = 0.

2. A MA(1) process
Consider the following MA process

yt = µ+ εt + θεt−1

The state Equation·
εt+1
εt

¸
=

·
0 0
1 0

¸ ·
εt
εt−1

¸
+
£
εt+1

¤
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The Observation Equation (Identity)

yt = µ+
£
1 θ

¤ · εt
εt−1

¸
where A0 = µ, xt = 1, H

0 =
£
1, θ

¤
, ωt = 0.

3. An ARMA(p, q)

Consider the following ARMA Process

(yt − µ) = φ1(yt−1 − µ) + φ2(yt−2 − µ) + ...+ φP (yt−r − µ) + εt+1

+εt + θ1εt−1 + θ2εt−2 + .....++θ2εt−r+1

E(εtετ ) =

½
σ2 if t = τ
0 Otherwise.

and r =Max {p, q + 1} ,
φj = 0 for j > p and θj = 0 for j > q.

The state equation
yt+1 − µ
yt − µ

yt−p+2 − µ


| {z }

=ξt+1

=


φ1 φ2 φP
1 0 0
0 1 0

1 0


| {z }

=F


yt − µ
yt−1 − µ

yt−p+1 − µ


| {z }

=ξt

+


εt+1
0

0


| {z }
=υt+1

Observation Equation (Identity)

yt = µ+
£
1, θ1, θr−1

¤


yt − µ
yt−1 − µ

yt−p+1 − µ


| {z }

=ξt

where A0 = µ, xt = 1, H
0 =

£
1, θ1, θr−1

¤
, ωt = 0.

Proof. Notice that the second element of ξt+1 is equal to the first element
of ξt. We denote this relationship as ξt+1 [2] = ξt [1] . Then is easy to see
that ξt+1 [2] = ξt [1] = Lξt+1 [1] , ξt+1 [3] = ξt [2] = L2ξt+1 [1] , or in general
ξt+1 [j] = ξt [j + 1] = Lj−1ξt+1 [1] .
Then using the first row of the state equation we can write

ξt+1 [1] = (φ1 + φ2L+ .....+ φrL
r−1)ξt [1] + εt+1
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or
(1 + φ1L+ φ2L

2 + .....+ φrL
r)ξt+1 [1] = εt+1

Using the observation equation we may see that

yt = µ+ (1 + θ1L+ θ2L
2 + .....+ θr−1Lr−1)ξt [1]

Then multiplying the observation equation in both side by (1+φ1L+φ2L
2+

.....+ φrL
r) we obtain

(1 + φ1L+ ..+ φrL
r)(yt − µ) = (1 + θ1L+ ..+ θr−1Lr−1)(1 + φ1L+ ..+ φrL

r)ξt [1]| {z }
=εt

= (1 + θ1L+ ..+ θr−1Lr−1)εt

4. The ex-ante real interest rate
The ex-ante real interest rate is unobserved. Assume we can write the
de-meaned real interest rate as ξt = it − πe − µ, then we can write the
state equation as ξt+1 = φξt+ υt+1. The econometrician has observations
on the ex-post real rate which can be written as

it − π = (it − πe) + (πe − π).

Now, if expectations are rational, then π = πe + ωt, . and then the mea-
surement equation is of the form

it − π = (it − πe) + ωt

= µ+ ξt + ωt.

5. Uncovering the cyclical component
Stock and Watson (1991) postulated the existence of an unobserved vari-
able Ct which represents the state of the business cycle. They assumed
that we observed n macroeconomic variables and that these variables,
(y1t, y2t, y3t, ......, ynt) are assumed to be influenced by the business cycle
and also have an idiosyncratic component, denoted Xit unrelated to the
movements in yjt for i 6= j.

If the business cycle and each of the idiosyncratic components could be
described by an univariate AR(1) process, then we can write the measure-
ment equation as

Ct+1

X1t+1

X2t+1

Xnt+1


| {z }

=ξt+1

=


φC 0 0 0 0

φ1 0 0
φ2 0 0

. 0
φn


| {z }

=F


Ct

X1t

X2t

Xnt


| {z }

=ξt

+


υCt+1
υ1t+1
υ2t+1

υnt+1


| {z }

=υt+1
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The observation equation can be written as
y1t
y2t
y3t

ynt


nx1

=


µ1
µ2
µ3

µn


nx1

+


γ1 1 0 0 0 0
γ2 0 1 0 0

0 0 0
. 0

γn 0 1


nx(n+1)


Ct

X1t

X2t

Xnt


(n+1)x1

6. Linear Regression Models with Time Varying Coefficients

One important application of the state space model with stochastically vary-
ing parameters as a regression in which the coefficient vector changes over time.
Consider the following regression model with time varying coefficients.

yt = x0tβt + ωt,

in the state space representation this equation represents the measurement equa-
tion while we can write the state equation as¡

βt+1 − β
¢| {z }

=ξt+1

= F
¡
βt − β

¢| {z }
=ξt

+ υt+1

If the eigenvalues of F are all inside the unit circle, then β has the interpre-
tation of the average of the steady-state value for the coefficient vector. If

νt+1
ωt

¯̄̄̄
xt, It−1˜N

µ·
0
0

¸
,

·
Q 0
00 σ2

¸¶
,

then the state space model can be written as

yt = x0tβ + x0tξt + ωt,¡
βt+1 − β

¢
= F

¡
βt − β

¢
+ υt+1
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