The Kalman Filter

The Kalman filter is an Algorithm for sequentially updating a linear projection for a state-space representation.

Consider y_t a vector of of n variables observed at date t.

Then the state space representation can be written as

$$
\xi_{t+1} = F\xi_t + \nu_{t+1}
$$

\n
$$
y_t = A'x_t + H'\xi_t + \omega_t
$$

\n
$$
Observation Equation
$$

where F_{rxr} , A'_{nxk} , H'_{nxr} are matrices of parameters and $x_{t_{kx1}}$ is a vector of predetermined variables.

The shock v_{t+1} is a white noise with

$$
E(v_t v'_\tau) = \begin{cases} Q_{rxr} \text{ if } t = \tau \\ 0 \text{ Otherwise} \end{cases}
$$

and ω_t is a white noise with

$$
E(\omega_t \omega_{\tau}') = \begin{cases} R_{nxn} & \text{if } t = \tau \\ 0 & \text{Otherwise} \end{cases}.
$$

Since x_t is predetermined or exogenous, it does not provide information about ξ_{t+s} or ω_{t+s} , for s>0, beyond that contained in $\{y_{t-1}, y_{t-2}....\}$.

Assumptions

We assume that $E(v_t\xi_1')=0$, $E(w_t\xi_1')=0$ and $E(v_t\omega_\tau)=0$ for all t and τ. Noting that we can write $ξ_t = v_t + F v_{t-1} + F^2 v_{t-2} + ... + F^{t-2} v_2 + F^{t-1} ξ_1$, we get the following conditions:

- **a**) $E(v_t \xi'_\tau) = 0$ for all $\tau = t 1, t 2, \dots$
- **b**) $E(\omega_t \xi_\tau') = 0$ for all t and τ .
- c) $E(\omega_t y_\tau') = 0$ for all $\tau = t 1, t 2, \dots$ (sin ce $E(\omega_t(A'x_\tau + H'\xi_\tau + \omega_\tau)') = 0$)
- **d**) $E(v_t y_\tau') = 0$ for all $\tau = t 1, t 2, \dots$ (sin ce $E(v_t(A'x_\tau + H'\xi_\tau + \omega_\tau)') = 0$)

The Filter

The filter is motivated as an algorithm for calculating linear least squares forecasts of the state vector on the basis of the data observed through date t, $\xi_{t+1|t} = E(\xi_{t+1}|I_t)$, where the operator E denotes the linear projection of ξ_{t+1} on I_t and a constant, and $I_t = \{y'_t, y'_{t-1}, y'_{t-2} \ldots y'_1, x'_t, x'_{t-1}, x'_{t-2} \ldots x'_1\}$. The filter calculates these forecasts recursively, generating $\xi_{1|0}$, $\xi_{2|1}$, $\xi_{3|2}$,, $\xi_{T|T-1}$ in succession. Associated with each these forecast is a MSE matrix represented by the following (rxr) matrix $P_{t+1|t} = E\left[(\xi_{t+1} - \hat{\xi}_{t+1|t}) (\xi_{t+1} - \hat{\xi}_{t+1|t})' \right]$. For the typical element $\hat{\xi}_{t|t-1}$, with its associated $P_{t|t-1}$, the goal of the the filter is to produce $\hat{\zeta}_{t+1|t}$, with its associated $P_{t+1|t}$. The steps of the filter typically involve initializing the filter, updating the linear projection (when new information arrives) and producing a new forecast conditional on the new information set.

Initializing the filter: Starting the recursion.

To initialize the filter we need a proxy of $\widehat{\xi}_{1|0}$ and we take for this the unconditional expectation, $E(\xi_1)$, with the associated $P_{1|0} = E[(\xi_1 - E(\xi_1))(\xi_1 - E(\xi_1))']$. To calculate $E(\xi_1)$, we use the state equation and take expectations in both sides obtaining $E(\xi_{t+1}) = FE(\xi_t)$ or $(I - F)E(\xi_t) = 0$. If all the eigen values of F are smaller than 1 this implies that $\hat{\xi}_{1|0} = E(\xi_1)=0$. The associated MSE matrix $P_{1|0} = E[(\xi_1)(\xi_1)]$ can be obtained in similar way noting that $E(\xi_{t+1}\xi'_{t+1}) = E[(F\xi_t + v_{t+1})(F\xi_t + v_{t+1})'] = FE(\xi_t\xi'_t)F' + Q$. If we denote $\Sigma = E(\xi_t \xi'_t)$, then we can write the previous expression as $\Sigma = F\Sigma F' + Q$. If all the eigenvalues or F are smaller than 1 then this can be solved using Vec operators as $Vec(P_{1|0}) = Vec(\Sigma) = [I_{r^2} - F \otimes F]^{-1} Vec(Q)$.

Given the starting values $\hat{\xi}_{1|0}$ and $P_{1|0}$, the next step is to calculate $\hat{\xi}_{2|1}$ and $P_{2|1}$.

Forecasting y_t .

To forecast y_t we have to note that we assumed that x_t contains no information about ξ_t beyond that contained in I_{t-1} , then $\widehat{E}(\xi_t|x_t, I_{t-1}) = \widehat{E}(\xi_t|I_{t-1})$ $\xi_{t|t-1}.$

Then the forecast of y_t is

$$
\widehat{y}_{t|t-1} = A'x_t + H'\widehat{\xi}_{t|t-1},
$$

with associated forecasting error $y_t - \hat{y}_t|_{t-1} = H'(\xi_t - \xi_{t|t-1}) + \omega_t$ and MSE, $E [(y_t - \widehat{y}_{t|t-1})(y_t - \widehat{y}_{t|t-1})'] = H'P_{t|t-1}H + R.$

Updating the inference about ξ_t .

The inference about the value of ξ_t is updated on the basis of the observation of y_t to produce $\xi_{t|t} = E(\xi_t|y_t, x_t, I_{t-1}) = E(\xi_t|I_t).$

The formulae to update a linear projection is
\n
$$
\hat{\xi}_{t|t} = \hat{\xi}_{t|t-1} + E\left[(\xi_t - \hat{\xi}_{t|t-1})(y_t - \hat{y}_{t|t-1})'\right] \left(E\left[(y_t - \hat{y}_{t|t-1})(y_t - \hat{y}_{t|t-1})'\right]^{-1} (y_t - \hat{y}_{t|t-1}) \right]
$$
\nNoting that:
\n
$$
-E\left[(\xi_t - \hat{\xi}_{t|t-1})(y_t - \hat{y}_{t|t-1})'\right] = P_{t|t-1}H,
$$
\n
$$
-E\left[(y_t - \hat{y}_{t|t-1})(y_t - \hat{y}_{t|t-1})'\right] = H'P_{t|t-1}H + R,
$$
\n
$$
-\hat{y}_{t|t-1} = A'x_t + H'\hat{\xi}_{t|t-1},
$$

this formulae can be written as

$$
\hat{\xi}_{t|t} = \hat{\xi}_{t|t-1} + P_{t|t-1}H(H'P_{t|t-1}H + R)^{-1} \underbrace{(y_t - A'x_t + H'\hat{\xi}_{t|t-1})}_{=H'(\xi_t - \hat{\xi}_{t|t-1}) + \omega_t}
$$

This expression has as associated MSE,

$$
E\left[(\xi_t - \hat{\xi}_{t|t}) (\xi_t - \hat{\xi}_{t|t})' \right] = P_{t|t} = P_{t|t-1} - P_{t|t-1} H \left(H' P_{t|t-1} H + R \right)^{-1} H' P_{t|t-1}
$$

Proof
$$
E[(\xi_{t} - \hat{\xi}_{t|t})(\xi_{t} - \hat{\xi}_{t|t})'] = E[(\xi_{t} - [\hat{\xi}_{t|t-1} + P_{t|t-1}H(H'P_{t|t-1}H + R)^{-1}(y_{t} - A'x_{t} + H'\hat{\xi}_{t|t-1})](\xi_{t} - \hat{\xi}_{t|t})']
$$

\n
$$
= E\left[\frac{(\xi_{t} - \hat{\xi}_{t|t-1}) - P_{t|t-1}H(H'P_{t|t-1}H + R)^{-1}(H'(\xi_{t} - \hat{\xi}_{t|t-1}) + \omega_{t}) (A - B)'}{\xi_{t} - \xi_{t|t-1}}\right]
$$

\n
$$
= E(AA') - E(BA') - E(AB') + E(BB'), where
$$

\n
$$
E(AA') = P_{t|t-1}
$$

\n
$$
E(BA') = E\left\{ \left[P_{t|t-1}H(H'P_{t|t-1}H + R)^{-1}(H'(\xi_{t} - \hat{\xi}_{t|t-1}) + \omega_{t}) \right](\xi_{t} - \hat{\xi}_{t|t-1})'\right\} = \frac{P_{t|t-1}H(H'P_{t|t-1}H + R)^{-1}H'P_{t|t-1}}{P_{t|t-1} - P_{t|t-1}}.
$$

\n
$$
E(BB') = E\left\{ (\xi_{t} - \hat{\xi}_{t|t-1}) \left[((\xi_{t} - \hat{\xi}_{t|t-1})'H + \omega_{t})(H'P_{t|t-1}H + R)^{-1}H'P_{t|t-1} \right] \right\} = \frac{P_{t|t-1}H(H'P_{t|t-1}H + R)^{-1}H'P_{t|t-1}}{P_{t|t-1} - P_{t|t-1} - P_{t|t-1}}.
$$

\n
$$
= P_{t|t-1}H(H'P_{t|t-1}H + R)^{-1} E\left\{ \left[(H'(\xi_{t} - \hat{\xi}_{t|t-1}) + \omega_{t}) \right] \left[((\xi_{t} - \hat{\xi}_{t|t-1})'H + \omega_{t}')(H'P_{t|t-1}H + R)^{-1}H'P_{t|t-1} \right] \right\}
$$
<

$$
=P_{t|t-1}H(H'P_{t|t-1}H+R)^{-1}H'P_{t|t-1}.
$$

Then
$$
E\left[(\xi_t - \hat{\xi}_{t|t}) (\xi_t - \hat{\xi}_{t|t})' \right] = E(AA') - E(BA') - E(AB') + E(BB')
$$

$$
= P_{t|t-1} - P_{t|t-1}H(H'P_{t|t-1}H + R)^{-1}H'P_{t|t-1}.
$$

<u>Producing</u> a Forecast of ξ_{t+1}

$$
\widehat{\xi}_{t+1|t} = \widehat{E}(\xi_{t+1}|I_t) = F\widehat{E}(\xi_t|I_t) + \widehat{E}(v_{t+1}|I_t) = F\widehat{\xi}_{t|t}.
$$

Using the formulae derived for updating a linear projection, we can express this forecast as $\hat{\hat{\epsilon}}$ = F i

$$
\widehat{\xi}_{t+1|t} = F \left[\widehat{\xi}_{t|t-1} + P_{t|t-1} H \left(H' P_{t|t-1} H + R \right)^{-1} (y_t - A' x_t + H' \widehat{\xi}_{t|t-1}) \right]
$$
\n
$$
= F \widehat{\xi}_{t|t-1} + \underbrace{F P_{t|t-1} H \left(H' P_{t|t-1} H + R \right)^{-1} (y_t - A' x_t + H' \widehat{\xi}_{t|t-1})}_{= K_t \text{ The Kalman Gain Matrix.}}
$$

The MSE Associated with the forecast can easily be obtained from the forecasting equation

$$
P_{t+1|t} = E\left[(F\xi_t + v_{t+1} - F\xi_{t|t}) (F\xi_t + v_{t+1} - F\xi_{t|t})' \right]
$$

= $FP_{t|t}F' + Q$
= $F\left[P_{t|t-1} - P_{t|t-1}H\left(H'P_{t|t-1}H + R\right)^{-1}H'P_{t|t-1} \right]F' + Q$

Examples of State Representation.

1. An ARMA Process

Consider the following ARMA Process

$$
(y_{t+1} - \mu) = \phi_1(y_t - \mu) + \phi_2(y_{t-1} - \mu) + \dots + \phi_P(y_{t-p+1} - \mu) + \varepsilon_{t+1}
$$

$$
E(\varepsilon_t \varepsilon_\tau) = \begin{cases} \sigma^2 \text{ if } t = \tau \\ 0 \text{ Otherwise.} \end{cases}
$$

The state equation

$$
\begin{bmatrix} y_{t+1} - \mu \\ y_t - \mu \\ y_{t-p+2} - \mu \end{bmatrix} = \begin{bmatrix} \phi_1 & \phi_2 & \phi_P \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} y_t - \mu \\ y_{t-1} - \mu \\ y_{t-1} - \mu \end{bmatrix} + \begin{bmatrix} \varepsilon_{t+1} \\ 0 \\ 0 \end{bmatrix}
$$

$$
= \varepsilon_{t+1}
$$

Observation Equation (Identity)

$$
y_{t} = \mu + [1, 0, 0] \begin{bmatrix} y_{t} - \mu \\ y_{t-1} - \mu \\ y_{t-p+1} - \mu \end{bmatrix}
$$

where $A' = \mu, x_{t} = 1, H' = [1, 0, 0], \omega_{t} = 0.$

2. A $MA(1)$ process

Consider the following MA process

$$
y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}
$$

The state Equation

$$
\begin{bmatrix} \varepsilon_{t+1} \\ \varepsilon_t \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_t \\ \varepsilon_{t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{t+1} \end{bmatrix}
$$

The Observation Equation (Identity)

$$
y_t = \mu + \begin{bmatrix} 1 & \theta \end{bmatrix} \begin{bmatrix} \varepsilon_t \\ \varepsilon_{t-1} \end{bmatrix}
$$

where $A' = \mu$, $x_t = 1$, $H' = \begin{bmatrix} 1, \theta \end{bmatrix}$, $\omega_t = 0$.

3. An $ARMA(p, q)$

Consider the following ARMA Process

$$
(y_t - \mu) = \phi_1(y_{t-1} - \mu) + \phi_2(y_{t-2} - \mu) + \dots + \phi_P(y_{t-r} - \mu) + \varepsilon_{t+1}
$$

+ $\varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_2 \varepsilon_{t-r+1}$

$$
E(\varepsilon_t \varepsilon_\tau) = \begin{cases} \sigma^2 \text{ if } t = \tau \\ 0 \text{ Otherwise.} \end{cases} \text{ and } r = Max \{p, q+1\},
$$

 $\phi_j = 0 \text{ for } j > p \text{ and } \theta_j = 0 \text{ for } j > q.$

The state equation

$$
\begin{bmatrix} y_{t+1} - \mu \\ y_t - \mu \\ y_{t-p+2} - \mu \end{bmatrix} = \begin{bmatrix} \phi_1 & \phi_2 & \phi_P \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_t - \mu \\ y_{t-1} - \mu \\ y_{t-1} - \mu \end{bmatrix} + \begin{bmatrix} \varepsilon_{t+1} \\ 0 \\ 0 \end{bmatrix}
$$

$$
= \varepsilon_{t+1}
$$

Observation Equation (Identity)

$$
y_{t} = \mu + [1, \theta_{1}, \theta_{r-1}] \left[\begin{array}{c} y_{t} - \mu \\ y_{t-1} - \mu \\ \hline \\ y_{t-p+1} - \mu \end{array} \right]
$$

where $A' = \mu, x_{t} = 1, H' = [1, \theta_{1}, \theta_{r-1}], \omega_{t} = 0.$

Proof. Notice that the second element of ξ_{t+1} is equal to the first element of ξ_t . We denote this relationship as ξ_{t+1} [2] = ξ_t [1]. Then is easy to see that $\xi_{t+1}[2] = \xi_t[1] = L\xi_{t+1}[1], \xi_{t+1}[3] = \xi_t[2] = L^2\xi_{t+1}[1]$, or in general $\xi_{t+1} [j] = \xi_t [j+1] = L^{j-1} \xi_{t+1} [1].$

Then using the first row of the state equation we can write

$$
\xi_{t+1}[1] = (\phi_1 + \phi_2 L + \dots + \phi_r L^{r-1}) \xi_t [1] + \varepsilon_{t+1}
$$

$$
(1 + \phi_1 L + \phi_2 L^2 + \dots + \phi_r L^r) \xi_{t+1} [1] = \varepsilon_{t+1}
$$

Using the observation equation we may see that

$$
y_t = \mu + (1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_{r-1} L^{r-1}) \xi_t [1]
$$

Then multiplying the observation equation in both side by $(1+\phi_1L+\phi_2L^2+$ $\ldots + \phi_r L^r$ we obtain

$$
(1 + \phi_1 L + ... + \phi_r L^r)(y_t - \mu) = (1 + \theta_1 L + ... + \theta_{r-1} L^{r-1}) \underbrace{(1 + \phi_1 L + ... + \phi_r L^r)\xi_t}_{= \epsilon_t} [1]
$$

=
$$
(1 + \theta_1 L + ... + \theta_{r-1} L^{r-1})\varepsilon_t
$$

$$
\qquad \qquad \blacksquare
$$

4. The ex-ante real interest rate

The ex-ante real interest rate is unobserved. Assume we can write the de-meaned real interest rate as $\xi_t = i_t - \pi^e - \mu$, then we can write the state equation as $\xi_{t+1} = \phi \xi_t + v_{t+1}$. The econometrician has observations on the ex-post real rate which can be written as

$$
i_t - \pi = (i_t - \pi^e) + (\pi^e - \pi).
$$

Now, if expectations are rational, then $\pi = \pi^e + \omega_t$, and then the measurement equation is of the form

$$
i_t - \pi = (i_t - \pi^e) + \omega_t
$$

= $\mu + \xi_t + \omega_t$.

5. Uncovering the cyclical component

Stock and Watson (1991) postulated the existence of an unobserved variable C_t which represents the state of the business cycle. They assumed that we observed n macroeconomic variables and that these variables, $(y_{1t}, y_{2t}, y_{3t}, \ldots, y_{nt})$ are assumed to be influenced by the business cycle and also have an idiosyncratic component, denoted X_{it} unrelated to the movements in y_{jt} for $i \neq j$.

If the business cycle and each of the idiosyncratic components could be described by an univariate $AR(1)$ process, then we can write the measurement equation as

$$
\left[\begin{array}{c} C_{t+1} \\ X_{1_{t+1}} \\ X_{2_{t+1}} \\ \hline \\ -\epsilon_{t+1} \end{array}\right] = \underbrace{\left[\begin{array}{cccc} \phi_C & 0 & 0 & 0 & 0 \\ \phi_1 & 0 & 0 & 0 \\ & \phi_2 & 0 & 0 \\ & & \ddots & 0 \\ & & & \phi_n \end{array}\right]}_{=F} \underbrace{\left[\begin{array}{c} C_t \\ X_{1_t} \\ X_{2_t} \\ \hline \\ x_{n_t} \end{array}\right]}_{=F} + \underbrace{\left[\begin{array}{c} v_{C_{t+1}} \\ v_{1_{t+1}} \\ v_{2_{t+1}} \\ \hline \\ v_{n_{t+1}} \end{array}\right]}_{=F}
$$

or

The observation equation can be written as

6. Linear Regression Models with Time Varying Coefficients

One important application of the state space model with stochastically varying parameters as a regression in which the coefficient vector changes over time.

Consider the following regression model with time varying coefficients.

$$
y_t = x_t' \beta_t + \omega_t,
$$

in the state space representation this equation represents the measurement equation while we can write the state equation as

$$
\underbrace{\left(\beta_{t+1}-\overline{\beta}\right)}_{=\xi_{t+1}}=F\underbrace{\left(\beta_{t}-\overline{\beta}\right)}_{=\xi_{t}}+ \upsilon_{t+1}
$$

If the eigenvalues of F are all inside the unit circle, then $\overline{\beta}$ has the interpretation of the average of the steady-state value for the coefficient vector. If

$$
\begin{bmatrix} \nu_{t+1} \\ \omega_t \end{bmatrix} x_t, \ I_{t-1} \tilde{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} Q & 0 \\ 0' & \sigma^2 \end{bmatrix} \right),
$$

then the state space model can be written as

$$
y_t = x_t'\overline{\beta} + x_t'\xi_t + \omega_t,
$$

$$
(\beta_{t+1} - \overline{\beta}) = F(\beta_t - \overline{\beta}) + \nu_{t+1}
$$