
Generalised Method Of Moments
Specification on moment conditions rather than the full (ML).

Classical Method of Moments
Let {y1, ..., yn} be random sampled from a distribution with density f(y; θ). As-

sume that E(yit) = µi(θ), i = 1, ..., k. (k population moments can be calculated as
functions of θ). The classical method of moments estimates θ by θ̂, where θ̂ is such
that

µi(θ̂) =
1

n

nX
t=1

yit, i = 1, ..., k

e.g.

f(yt; v) =
Γ
¡
1+v
2

¢
√
πvΓ

¡
v
2

¢(1 + y2t
v
)−

1+v
2 [t(v)]

E(yt) = 0, E(y
2
t ) =

v

v − 2 , v > 2

µ̂2n =
1

n

nX
t=1

y2t , µ̂2
p→ µ2

µ̂2n = E(y2t ) =⇒ µ̂2n =
v

v − 2 =⇒ bv = 2µ̂2n
µ̂2n − 1

, µ̂2 > 1

(if µ̂2n = 1, v̂ would be infinity: an N(0, 1) distribution fits the sample second
moment better than any member of the t family).

Generalised Method Of Moments

In deriving an estimate of v we might use more than one moment.
If v > 4,

µ4 = E(y4t ) =
3v2

(v − 2)(v − 4)

µ̂4n =
1

n

nX
t=1

y4t

We cannot choose v so as to match both the sample second and fourth moment,
but we can try choosing it so as to be as close as possible to both by minimising a
criterion function such as:
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Q = g0Wg

g =

·
µ̂2n − µ2
µ̂4n − µ4

¸
W is a (2×2) positive definite symmetric weighting matrix reflecting the impor-

tance given to matching each of the moments.

GMM Hansen 1982

We will now present the GMM estimation procedure using Hansen (1982) nota-
tion.
Consider
wt = m× 1 a vector of variables observed at time t
θ = k × 1 a vector of unknown parameters
θ0 = k × 1 a vector of true parameters values

Consider h(θ, wt), r× 1 vector-valued function, h : (<k ×<m)→ <r and suppose
that θ0 (the DGP) is characterised by the following moment conditions (orthogonality
condition)

E[h(θ0, wt)] = 0

The empirical moments (sample counterpart) are

g(θ, ηn)
r×1

=
1

n

nX
t=1

h(θ, wt)

ηn = (w
0
1, w

0
2, ..., w

0
n) (nm× 1)

GMM chooses θ so as to make g(θ, ηn) as close as possible to zero (the population
moments). That is, the GMM estimator θ̂ is defined as

θ̂ = argmin
θ

Q(θ, ηn)

where

Q(θ, ηn) = [g(θ, ηn)]
0Wn[g(θ, ηn)]

and {Wn}∞n=1 is a sequence of (r × r) positive definite weighting matrices which
may be a function of ηn
[if k = r, g(θ̂, ηn) = 0]
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For the above example using this notation we have that

h(θ, wt) =

"
y2t − v

v−2
y4t − 3v2

(v−2)(v−4)

#

NB The classical method of moments is a special case of GMM where

• wt = yt; θ = ν; Wn = 1; h(θ, wt) = y2t − v
v−2 ; g(θ, ηn) =

1
n

Pn
t=1 y

2
t − v

v−2
and Q(θ, ηn) =

¡
1
n

Pn
t=1 y

2
t − v

v−2
¢2
. Clearly the smallest value is obtained for

Q(θ, ηn) = 0 and bvn = 2µ̂2n
µ̂2n−1 .

Number of parameter to estimate and orthogonality conditions
In general if the number of parameters to be estimated, k, is the same that the

number of orthogonality conditions r, then the objective function is minimised by
setting g(bθn, ηn) = 0
If r > k then how close to zero would each of the orthogonality conditions be, will

depend on its weight on the weighting matrix Wn.

For any value of θ, the magnitude of the (rx1) vector g(θ, ηn) is the sample mean
of the n realizations of the (rx1) random vector h(θ, wt).
If wt is strictly stationary and h(·) is continuous, the LLN implies that

g(θ, ηn)
p→ E[h(θ, wt)]

Suppose that θ0 is the only value that satisfies that E[h(θ0, wt)] = 0, then bθn such
that it minimizes [g(θ, ηn)]

0Wn[g(θ, ηn)] gives a consistent estimate of θ0, i.e., bθn P→ θ0.
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Optimal Weighting Matrix

Suppose that when evaluated at the true value θ0, the process {h(θ0, wt)}∞−∞ is
strictly stationary with mean zero and autocovariance matrix given by

Γj = E {[h(θ0, wt)][h(θ0, wt−j)]0} .
Assuming that these autocovariances are absolutely summable, define

S ≡
∞X

j=−∞
Γj

then S is the asymptotic variance of the sample mean of h(θ0, wt), g(θ0, ηn) defined
as 1

S = lim
n→∞

nE{[g(θ, ηn)][g(θ, ηn)]0}

The optimal value for the weighting matrixWn turns out to be S−1, the inverse of
the asymptotic variance. The minimum asymptotic variance for θ̂n is obtained when
θ̂n is chosen to minimse

Q(θ, ηn) = [g(θ, ηn)]
0S−1[g(θ, ηn)].

S can be consistently estimated by

bSn = Γ̂0 +

qX
j=1

w(j, q)(Γ̂j + Γ̂0j)

Γ̂j =
1

n

nX
t=j+1

[h(θ̂, wt)][h(θ̂, wt−j)]0

where w(j, q) is a lag window
Since bSn requires an estimate of θ0, the following iterative procedure is used in

practice which it turns out to be correct since bSn = Γ̂0 +
Pq

j=1w(j, q)(Γ̂j + Γ̂0j)
P→ S:

1. Obtain θ̂0 using an arbitrary weighting matrix such as Wn = Ir and producebS(0)n

1If yt is a covariance stationary process such that

• E(yt) = µ

• Γj = E {(yt − µ)(yt−j − µ)0} .

Then yn
P→ µ and limn→∞ nE{(yn − µ)(yn − µ)0} =

∞P
j=−∞

Γj
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2. Use bS(0)n to arrive at a new GMM estimate θ̂1

3. Repeat the process until θ̂j+1 ≈ θ̂j

Asymptotic Properties

Let θ̂n be the value that minimizes

[g (θ, ηn)]́ bS−1n [g (θ, ηn)]

Thus, the GMM estimate θ̂n is the solution to the following system of non-linear
equations:

´½
∂g (θ, ηn)

∂θ́

¯̄̄̄
θ=θ̂n

¾
| {z }

(kxr)

bS−1n|{z}
(rxr)

h
g
³
θ̂n, ηn

´i
| {z }

(rx1)

= 0

Since g (θ, ηn) is the sample mean of a process whose population mean is zero, then
g (·) should satisfy the central limit theorem2. Given that Wn is strict stationary and
h (θ, wn) is continuous

⇒√n [g (θ0, ηn)] L→ N (0, S)

Let g(θ, ηn) be differentiable in θ for all ηn, and let θ̂ be the GMM with r ≥ k.

Let {bSn} be a sequence of positive definite (r × r) matrices such that bSn p→ S > 0.
Suppose, further, that the following hold:

1. θ̂
p→ θ0

2.
√
ng(θ0, ηn)

d→ N(0, S)

3. for any sequence {θ∗n} such that θ∗n p→ θ0

p lim
n→∞

[
∂g(θ, ηn)

∂θ0

¯̄̄̄
θ=θ∗n

] = p lim
n→∞

[
∂g(θ, ηn)

∂θ0

¯̄̄̄
θ=θ0

] = D0
(r×k)

with the columns of D0 linearly independent
Then,

√
n(θ̂ − θ0)

d→ N(0, V ),

V = (DS−1D0)−1

2

√
n (x̄n − µ) =

1√
n

³X
xi − µ

´
d→ N

¡
0, σ2

¢
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θ̂
α∼ N(θ0,

1

n
V )

with

bV = (D̂n
bS−1n D̂0

n)
−1, D̂0

n =
∂g(θ, ηn)

∂θ0

¯̄̄̄
θ=θ̂

Consider the FOC

´½
∂g (θ, ηn)

∂θ́

¯̄̄̄
θ=θ̂n

¾
| {z }

(kxr)

bS−1n|{z}
(rxr)

h
g
³
θ̂n, ηn

´i
| {z }

(rx1)

= 0

Note that we can do a Taylor expansion of g
³
θ̂n, ηn

´
around θ0, i.e.:

g
³
θ̂n, ηn

´
= g (θ0, ηn) +

Ã
∂g(θ̂n, ηn)

∂θ0

¯̄̄̄
¯
θ̂n=θ0

!³
θ̂n − θ0

´
Then, substituting this expressions back in the FOC½

∂g (θ, ηn)

∂θ́

¯̄̄̄
θ=θ̂n

¾́ bS−1n
(
g (θ0, ηn) +

Ã
∂g(θ̂n, ηn)

∂θ0

¯̄̄̄
¯
θ̂n=θ0

!³
θ̂n − θ0

´)
= 0


∂g (θ, ηn)

∂θ́

¯̄̄̄
θ=θ̂n

P→D0


0

bS−1n
P→S−1

g (θ0, ηn) +


∂g (θ, ηn)

∂θ́

¯̄̄̄
θ=θ̂n

P→D0


0

bS−1n
P→S−1


∂g(θ̂n, ηn)

∂θ0

¯̄̄̄
¯
θ̂n=θ0

P→D0


³
θ̂n − θ0

´
= 0

−




∂g (θ, ηn)

∂θ́

¯̄̄̄
θ=θ̂n

P→D0


0

bS−1n
P→S−1


∂g(θ̂n, ηn)

∂θ0

¯̄̄̄
¯
θ̂n=θ0

P→D0



−1

∂g (θ, ηn)

∂θ́

¯̄̄̄
θ=θ̂n

P→D0


0

bS−1n
P→S−1

g (θ0, ηn) =
³
θ̂n − θ0

We know that

lim
√
n
³
θ̂n − θ

´
p→ − ¡DS−1D0¢−1DS−1| {z }

C0

√
ng (θ0, ηn)

But
√
n (g (θ0, ηn))

L→ N (0, S), hence

√
n
³
θ̂n − θ

´
L→ N (0, C 0SC) = N

³
0,
¡
DS−1D0¢−1´ = N (0, V )
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And

θ̂n
L→ N

Ã
θ0,

V̂n
N

!
where V̂n =

h
D̂n
bS−1n D̂0

n

i−1
and the estimate of bSn can be constructed as before.

Testing Overidentifying Restrictions:
Hansen´s J-Test

When r > k, we can test whether all the sample moments are as close to the
population moments as we can expect if E [h (θ0, wt)] = 0.
Knowing3 that √

ng (θ0, ηn)
L→ N (0, S)

we can easily see that£√
ng (θ0, ηn)

¤0
S−1

£√
ng (θ0, ηn)

¤ L→ χ2(r)

Notice that this holds when we evaluate g (θ, ηn) at θ0, and we may well guess
that it might also hold when evaluated at bθn. However, this is not true since the FOC
implies that k different linear combination of g

³bθn, ηn´ = 0.
Since g

³bθn, ηn´ contains (r − k) non degenerate random variables, it turns out
that a correct test for the identifying restrictions r > k is

J =
h√

ng
³bθn, ηn´i0 bS−1n

h√
ng
³bθn, ηn´i

= n[g(θ̂n, ηn)]
0 bS−1n [g(θ̂n, ηn)] L→ χ2(r−k)

Unfortunately, it really fails to detect violations of the orthogonality conditions
for misspecified models.

Inference with GMM
3Knowing that, if

Z(n×1) ∼ N (0,Ω) =⇒ Z0Ω−1Z ∼ χ2(n)
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H0 : r(θ) = 0, where r : Θ→ <q

R(θ) =
∂r(θ)

∂θ

W = nr̂0[R(D̂n
bS−1n D̂0

n)
−1R̂0]r̂ α∼ χ2(q)
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Examples of GMM Estimators:

OLS

yt = x0tβ + ut

E(xtut) = 0 justifies the use of OLS

E[xt(yt − x0tβ0)] = 0 for the true value β0

h(θ, wt) = xt(yt − x0tβ0), wt = (yt, x
0
t)
0, θ = β

r = k, so OLS is a just-identified GMM specification.
The GMM estimate β̂ satisfies

g(θ̂, ηn) =
1

n

nX
t=1

xt(yt − x0tβ̂) = 0

nX
t=1

xtyt = (
nX
t=1

xtx
0
t)β̂ =⇒ β̂ = (

nX
t=1

xtxt)
−1(

nX
t=1

xtyt)

If ut is not iid, GMM is not efficient (not as efficient as GLS). It is consistent, but
the formulas for the standard errors have to be adjusted.

IV

yt = x0tβ + ut, E(xtut) 6= 0
Let zt be an r × 1 vector of instruments, such that E(ztut) = 0
The orthogonality conditions are

E[zt(yt − x0tβ0)] = 0

This is a special case of the GMM framework, with

wt = (yt, x
0
t, z

0
t)
0, θ = β

If k = r, the GMM estimator satisfies
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0 = g(θ̂, ηn) =
1

n

nX
t=1

zt(yt − x0tβ̂)

=⇒ β̂ = (
nX
t=1

ztx
0
t)
−1(

nX
t=1

ztyt)

which is the usual IV estimator.

MLE

Let yt denote a random vector, and Yt = (y
0
1, y

0
2, ..., y

0
t−1)

0. Assuming that yt are
i.i.d., the log-likelihood function is

L(θ) =
nX
t=1

log f(yt; θ)

Since f(yt; θ) is a density, Z
A

f(yt; θ)dyt = 1

where A is the set of possible values of yt, and
R
dyt denote multiple integration

w.r.t. dy1t, dy2t, ..., dyνt.
By differentiating both sides w.r.t. θ, we haveZ

A

∂f(yt; θ)

∂θ
dyt = 0

Assuming that regularity conditions are satisfied, so that the order of differentia-
tion and integration can be reversed.

Z
A

∂f(yt; θ)

∂θ

1

f(yt; θ)
f(yt; θ)dyt = 0 =⇒Z

A

∂ log f(yt; θ)

∂θ
f(yt; θ)dyt = 0

Let the score of the tth observation be:

h(θ, Yt) =
∂ log f(yt; θ)

∂θZ
A

h(θ, Yt)f(yt; θ)dyt = 0⇐⇒ E[h(θ, Yt)] = 0
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The GMM principle suggests using an estimate θ̂ that solves:

1

n

nX
t=1

h(θ̂, Yt) = 0

The FOC for maximisation of L(θ) are:
nX
t=1

∂ log f(yt; θ)

∂θ
=

nX
t=1

h(θ, Yt) = 0

∴the MLE is the same as the GMM based on the moment conditions E[h(θ, Yt)] =
0
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Estimation of Dynamic RE models
The tests of rational expectations models are based on the fact that undetr this

hypothesis the forecasting errors are uncorrelated with the information that the agents
have available at the time of the forecast. As long as the econometrician observes
a subset of the information people have actually used, RE suggest orthogonality
conditions that can be used in the GMM framework.

Example Hansen-Singleton (1982)
The authors consider the problem of a representative agent (stock holder) that

maximizes consumption by choosing a portfolio of assets. They assume a CIS utility
function and a discount factor. They want both to estimate the unknown para-
menters and test whether the theorey is concistent with the data.
Consider the following preferences: u (ct) , with

∂u(ct)
∂ct

> 0, ∂
2u(ct)
∂c2t

< 0, where ct =
consumption.
The stockholder maximizes

∞X
τ=0

βτE [u (ct+τ)| I∗t ] ,

where I∗t is the information set at time t and 0 < β < 1.
The stockholder purchases m different assets, where a dollar invested in asset i at

date t will yield a gross return at date (t+ 1) equal to
¡
1 + rit+1

¢
. This is not known

with certainty at date t.
If the stockholder takes a position in each of the m assets, the optimal portfolio

is
u0 (ct) = βE

£¡
1 + rit+1

¢
u0 (ct+1)

¯̄
I∗t
¤
, i = 1, 2, ....,m (1)

Suppose:

u (ct) =
c1−γt

1− γ
, γ > 0, γ 6= 1

Then equation(1) implies

c−γt = βE
£¡
1 + rit+1

¢
c−γt+1

¯̄
I∗t
¤

1 = βE

"¡
1 + rit+1

¢µct+1
ct

¶−γ ¯̄̄̄¯ I∗t
#

Then

E

("Ã
1− β

¡
1 + rit+1

¢µct+1
ct

¶−γ!¯̄̄̄¯ It
#)

= 0, where It is a subset of I∗t

If we define

θ = (β, γ)0

wt =

µ
r1t+1, r

2
t+1, ..., r

m
t+1,

ct+1
ct

, I 0t

¶0
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Then

h

Ã
θ|{z}
2×1

, wt

!
mx1

=



·µ
1− β

¡
1 + r1t+1

¢ ³
ct+1
ct

´−γ¶¯̄̄̄
It

¸
...·µ

1− β
¡
1 + rmt+1

¢ ³
ct+1
ct

´−γ¶¯̄̄̄
It

¸


(The RE hypothesis implies that h (·) should be uncorrelated with past values)

Hence

g (θ, yt) =
1

T

TX
t=1

h (θ, wt)

Therefore the function to minimize with respect to θ is

Q = [g (θ, yt)]
0 bS−1T [g (θ, yt)]

where bST = 1

T

TX
t=1

©
[h (θ, wt)] [h (θ, wt)]

0ª
They used as instruments, l lags of ct

ct+1
......, r1t ....., r

2
t ......r

m
t (In the paper there

are only 2 assets which are returns adjusted by inflation and by exchange rates) +
constants.
We have m(m+ 1)l separete over identifying restrictions .

r = m ((m+ 1)l + 1) orthogonality conditions

and k = 2

It are typically lagged values.

Test ∼ χ2(m(m+1)l)
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