Exercise 1

1) Using Eviews (file named return.wfl), plot the ACF and PACF function for
the series "returns”. Identify the series.

2) Read the paper ”Do we really know that financial markets are efficient?” by
Lawrence H. Summers.

3)

i) Derive the theoretical autocorrelation function of an ARMA(1,2) process.
ii) Derive the theoretical autocorrelation function of an ARMA(2,1) process.
4) Derive the partial autocorrelation function of an AR(3) process.

5) The simplest Present Value Theory of stock prices says that the stock price
is the discounted value of all future dividends. Assume that dividends
follow an AR(2) process and that the discounted factor is constant.

i) Which process does stock prices follow?



Solution

1) In order to identify the series we are going to use the plot of the ACF and the
PACF functions. In order to do that we have to use the ” Correlogram”

command.

You must choose the E-Views command ”Quick”, then ”Series Statistics”
and then ”Correlogram”. When you get there, you should specify the
series you would like to plot and then the lags you would like to include

(default=36) in the estimation.

When you plot the Correlogram for the series ”Return” you will find the

following results:

Autocorrelation  Partial Correlation AC
I* | JF 1 0.147
| 1o 2 -0.014
[ | o 3 -0.043
[ | o 4 0.032
|| o] 5 0.031
[ | . 6 -0.083
|| o 7 -0.081
1 1o 8 -0.039
o Jo 9 0.051
Jo o 10 0.003
o JE 11 0.056
.| 1o 12 0.047
I 1o 13 0.066
|| Jo 14 0.041
Jo o 15 0.009
o o 16 -0.010
o o 17 -0.046
1o 1o 18 -0.012
N 1o 19 0.023
Jo o 20 0.017
N 1o 21 0.015
N 1o 22 -0.047
o o 23 -0.006
N 1 24 -0.015

PAC
0.147
-0.036
-0.037
0.044
0.018
-0.093
-0.052
-0.022
0.050
-0.014
0.068
0.033
0.045
0.019
0.007
-0.009
-0.037
0.004
0.040
0.012
0.021
-0.055
-0.005
-0.033

Q-Stat
20.081
20.252
21.997
22.942
23.828
30.280
36.394
37.823
40.282
40.293
43.247
45.308
49.433
50.992
51.065
51.154
53.137
53.285
53.799
54.069
54.294
56.366
56.403
56.624

Prob
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000



To identify a series we know that:

- An AR(p) process has a declining AC function and the PACF is zero for
lags greater than p.

- A MA(q) process has a AC function that is zero for lags greater than q
and a PACF that declines exponentially.

The autocorrelation is described by:

o(k) = TG = 30

Looking at the table, we can see that all the lags are significant and therefore
you reject the null hypothesis of p(k) = 0 for each lag, and as a results
the residual cannot be a white noise process. Notice that the estimated
value for Q-Stat p(1) it is significant at a 95%, which implies that the null
hypothesis of p(1) = 0.is rejected.

We will attempt to identify the series from specific to general. We will
fit an AR(1) and check whether the residuals of that regression are white
noise.

Since the estimate of p(1) is too small it is very difficult (looking at the
above table) to tell which type of process is the best to characterize the
series under scrutiny (a MA or AR process). We first try with an AR(1).

Yr = G1yi—1 + &

You should go to ”Quick”, ”Estimate Equation”, an then you have to
type the dependent and independent variables that you will include in the
regression: Returns C' AR(1). We obtain the following results:

Variable Coefficient Std. Error t-Statistic Prob.

C 0.000542 0.000272 1.995215 0.0463

AR(1) 0.147150 0.032482 4.530161 0.0000
R-squared 0.021659  Mean dependent var 0.000543
Adjusted R-squared  0.020604 S.D. dependent var 0.007132
S.E. of regression 0.007058  Akaike info criterion -7.067120
Sum squared resid 0.046181 Schwarz criterion -7.056713
Log likelihood 3284.677 F-statistic 20.52236
Durbin-Watson stat ~ 1.989755 Prob(F-statistic) 0.000007

Inverted AR Roots 15

The series "returns” seem to be an AR(1) which seems to be stationary because
the AR root is 0.—115 > 1. Nevertheless we can only be sure that it is an
AR(1) if the residuals are clean, therefore we need to check the correlogram
of the residual to inquire whether the residuals are (or not) a white noise
process. If they are, we stop and conclude the process is an AR(1), if not
we continue augmenting the model.



Autocorrelation  Partial Correlation
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| 10
| 11
| 12
| 13
| 14
| 15
| 16
| 17
| 18
| 19
| 20
| 21
| 22
| 23
| 24

AC
0.005
-0.030
-0.048
0.035
0.040
-0.079
-0.066
-0.036
0.059
-0.012
0.051
0.030
0.056
0.031
0.004
-0.005
-0.044
-0.010
0.024
0.012
0.020
-0.050
0.003
-0.007

PAC
0.005
-0.030
-0.048
0.035
0.037
-0.080
-0.061
-0.038
0.046
-0.017
0.061
0.036
0.048
0.026
0.012
-0.002
-0.037
-0.007
0.037
0.015
0.032
-0.049
-0.007
-0.026

Q-Stat
0.0223
0.8505
2.9962
4.1439
5.6272
11.503
15.612
16.852
20.100
20.246
22.686
23.560
26.501
27.418
27.437
27.456
29.317
29.409
29.940
30.072
30.471
32.871
32.879
32.932

Prob

0.356
0.224
0.246
0.229
0.042
0.016
0.018
0.010
0.016
0.012
0.015
0.009
0.011
0.017
0.025
0.022
0.031
0.038
0.051
0.063
0.048
0.064
0.082

We can see that for the 6th lag, the Prob(associated with the Q statistics)
are smaller than the 5% critical level and therefore the Q-Stat determines
that the lag 6 is significant. This test shoews that in the sixth lag there is
either an AR or a M A component. We estimate the following equation:

Y(t) = P1yi—1 + dgYi—6 + €

To estimate this model we go in the Eviews menu to ”Quick”, ” Estimate
Equation” and type: Return C AR(1) AR(6), obtaining the following

results:



Variable
C
AR(1)

AR(6)
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Inverted AR Roots

Coefficient
0.000541
0.149802
-0.087959
0.029410
0.027314
0.007034
0.045815
3288.372
2.000263

.60 -.33i
-.55 -.33i

Std. Error
0.000246
0.032386
0.032345
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
.60+.331
-.55+.33i

t-Statistic
2.200320

4.625564

-2.719380

.02+.661

Prob.
0.0280
0.0000
0.0067
0.000543
0.007132
-7.072921
-7.057311
14.02948
0.000001
.02 -.66i1

The t-statistics for theAR(1) and AR(6) lags are both significant at a 5%
(NB these are only valid when the residuals are white noise, otherwise you
should use Newey and West standard errors). Looking at the Correlogram
of the residuals of this regresion realise that we cannot reject the null
hypothesis taht the residual is a white noise process. We therefore stop the
identification procedure and conclude that the above model characterize

the data correctly.

The Correlogram shows that we cannot reject the null hypothesis that
states that the residuals are a white noise process.



Autocorrelation

Partial Correlation
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19
20
21
22
23
24

AC
0.000
-0.029
-0.047
0.032
0.045
0.012
-0.048
-0.035
0.056
-0.012
0.052
0.024
0.052
0.029
0.010
-0.009
-0.040
-0.008
0.025
0.009
0.018
-0.051
0.001
-0.006

PAC
0.000
-0.029
-0.047
0.031
0.043
0.012
-0.043
-0.031
0.052
-0.020
0.054
0.034
0.055
0.031
0.010
-0.005
-0.043
-0.014
0.026
0.005
0.027
-0.050
-0.002
-0.021

Q-Stat
0.0001
0.7955
2.8766
3.8171
5.7335
5.8642
8.0545
9.1906
12.120
12.245
14.746
15.279
17.840
18.630
18.724
18.807
20.342
20.403
20.996
21.077
21.377
23.838
23.838
23.875

Prob

0.090
0.148
0.125
0.210
0.153
0.163
0.097
0.141
0.098
0.122
0.085
0.098
0.132
0.172
0.159
0.203
0.226
0.276
0.316
0.250
0.301
0.354

Nevertheless, since we were not sure about the nature of the sixth lag (it seems
that it could either be an AR(6) or a MA(6)) we ill also estimate the

following model :

y(t) = Pry1—1 + beer—6 + €4



Variable Coefficient Std. Error t-Statistic Prob.

C 0.000539 0.000250 2.155296 0.0314

AR(1) 0.145798 0.032547 4.479613 0.0000

MA(6) -0.075680 0.032824 -2.305661 0.0213
R-squared 0.027516  Mean dependent var 0.000543
Adjusted R-squared  0.025416 S.D. dependent var 0.007132
S.E. of regression 0.007041  Akaike info criterion -7.070972
Sum squared resid 0.045904 Schwarz criterion -7.055361
Log likelihood 3287.467 F-statistic 13.10050
Durbin-Watson stat ~ 1.989908 Prob(F-statistic) 0.000002

Inverted AR Roots 15
Inverted MA Roots .65 .33+.56i .33 -.561  -.33 -.56i
-.33+.56i -.65

The residuals of the above regression seem to be a white noise process and
therefore we can conclude that this model also seems to fit the data cor-
rectly/

Selection Criteria

Since both models seem to fit the series, we choose the model that has the
lower value for the relevant ”Selection Criteria”. We consider the Akaike
info criterion (AIC) and Schwarz criterion (SCH) (NB: To be sure whether
you have to choose the minimum or the maximum, always check the way
the program that you are using computes this criteria ).

The above selection criteria seem to the AR(1), AR(6) model for the series
"returns”.

Forecasting Criteria

Another way of comparing models is to check which model produces the best
forecast out of sample . To do this, once you have specified the AR(1)
AR(6) model, go to Procs/Forecast, type a name for the forecasted serie
(default: returnsf). and choose the dynamic forecasting-method.and set
the forecast period: 7920-7928.

You obtain the following results:

We seek to find models with small RMSE, MAE and MAPE values (the smaller
these values the better forecasting ability).

The Theil Inequality Coefficient lies between [0,1] where 0 is represents a
perfect fit.

The bias, variance and covariance proportion result from the decomposition of
the Mean squared forecast error: MSFE = > (y; — y4)?



0.02

Forecast: RETURNSF

== e ] Actual: RETURNS
Sample: 7920 7928

0.014 Include observations: 9

Root Mean Squared Error  0.002627
Mean Absolute Error 0.002258
Mean Abs. Percent Error ~ 127.2952
Theil Inequality Coefficient 0.757909

Bias Proportion 0.012364
-0.01 Variance Proportion 0.639761
Covariance Proportion 0.347876
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Figure 1:

The bias proportion tells us how far the mean of the forecast is from the mean
of the series. The variance proportion tells us how far is the variance of
the forecast from the actual and the covariance proportion measures the
remaining unsystematic forecasting error.

The idea is to obtain the smaller values for the mentioned measures.

Now, we estimate the other model: AR(1) MA(6) and repeat the same proce-
dure, we obtain

Comparing the values for the RMSE, MAE and MAPE we conclude that the
model AR(1) MA(6) seems to perform better out of sample than the other
model, but if you look at the values for the Theil Inequality, Bias and
Variance Proportion, it seems that the model AR(1) AR(6) has a better
out of sample performance.

3 ii) Consider the following ARMA(2,1)

Yt = O1Yi—1 + Gols—2 + 01641 + &4

To calculate the autocorrelation function we first compute the autocovari-
ance function and then divide by the variance.

v(k) = E(Yyi—r) = 01 EWi—1Yt—x) + 02 E(Ye—2vt—1) + 01 E(et—1ys—1) + E(erys—)

To calculate the autocovariance function we need to give values to.k =
0,1,2,....until we find a recursion which is valid for all £ > than an integral.



0.02

Forecast: RETURNSF
,,,,,,,,,,,,,,, Actual: RETURNS
Sample: 7920 7928
0.014 Include observations: 9

Root Mean Squared Error 0.002620
Mean Absolute Error 0.002253
Mean Abs. Percent Error  126.1008
Theil Inequality Coefficient 0.764896

Bias Proportion 0.013221
-0.01 Variance Proportion  0.683128
Covariance Proportion 0.303652
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Figure 2:
¥(0) = E(ysye) = 1 E(Ye—1yt) + 0o E(Yi—2ys) + 01 E(et—19:) + E(erys) for k=0.

which can be written as

Y(0) = E(yeyr) = ¢17(1) + ¢27(2) + 01 E(e1-1(P19t—1 + Poye—2 + 01611 + €1))
+E(et(d1ye—1 + Poyr—2 + 01601 + €¢1)) for k=0.

which simplifies to

Y(0) = ¢y (1) + ¢o7(2) + 01(¢y + 01)02 + 02 for k=0.

analogously we can find that

Y(1) = ¢17(0) + ¢y(1) + 6102 for k=1

7(2) = ¢17(1) + ¢27(0)  for k=2.

Using the last three equations we can obtain v(2), v(1) and v(0) as a
function of ¢y, ¢y, 01 and o2.

Notice also that (k) = ¢1v(k — 1) + ¢oy(k — 2) for k> 2. The
autocorrelation function can be obtained simply by dividing by ~(0).



4) The partial autocorrelation function is used to determine the number of
autoregressive terms an ARMA model has. The usual practice is to derive
the PACF of a high order AR and then determine empirically which lags
are significant. These are sometimes called the Yule-Walker equations.

Consider an AR(p)

Yt = P1Yi—1 + GoYs—2 + oo + QpYt—p + €t

Then the Yule -Walker equations are

Giving values to k = 1, ....., p. we can get a system of equations in ¢;(p(1), ......... p(k))
fori=1,...p.

This system of equations have the partial autocorrelations as a solution
@, (p(1), e p(k)) fori=1,..,.p.

Therefore an AR(P) has p partial autocorrelations different from 0.

(5) The present value model states that the stock prices can be written as the
discounted (at a constant rate) value of future dividends, i.e.

oo

LY
P, :Etz(l+1") Dy

=0

It is also assumed that dividends follow an AR(2), i.e.,

Dy =¢ D1+ 9Dy o+ &4

This expression can be written in the companion form as

10
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WhereZt:[Dlt)il}’A:[(bll %2]and<t:{€0t].

Then to obtain an i periods ahead forecast of dividends it is straight
forward since it can be written as

EiDyi . = [1,0] Bt Zyy s = [1,0] A*Z,

Then substituting in the present value expression we get

Pt:[l,O} (1+T)AZt
i—0

7

Notice that Y52 (1=)'A'Z;. = (I — (1)) Z..

+r 1+r
If we define a matrix k = (I — (135)) !
Then [1,0] (I — (110))*th can be written as k11 Dy + k12 D;_1, where k11

and k12 are the elements of the first row of k.

Then we can write the price equation as P; = k11 Dy + k12D, or

P, = (k11 + ki2L) Dy.

Since the Dividends process can be written as

€t

Dy = — "
T L— 6,1

then the price equation can be written as

Et

Pr=tnt el =g
1 2

or

(1 — ¢ L — ¢ L*) P, = (k11 + k12L)ey,

an ARM A(2,1) process.

11



