
Cointegration
In economics we usually think that there exist long-run relationships between

many variables of interest. For example, although consumption and income may
each follow random walks, it seem reasonable to expect that there is a long run
relationship between these variables, or in other words that in the long run these
variables move together. The alternative scenario will be that Income increase
relative to consumption with time. This seems implausible. Other series that
appear to move together are; short term - long term interest rates, imports and
exports, prices and wages, stock prices and dividends ,etc.
Then the aim behind cointegration is the detection and analysis of long run

relationships amongst economic time series variables. Given that most eco-
nomic time series, appear to be non-stationary, they often require differencing
or detrending to be transformed to stationarity. A problem with differenc-
ing or detrending is that we may remove relevant long run information. The
cointegration analysis provides a way of retaining both short-run and long-run
information.
Another reason why we are concerned with cointegration is that sometimes

is thought to be a pre-requisite for the validity of some economic theory. For
example if short term and long term interest rates (assuming there are I(1)) are
not cointegrated, then, the term structure of interest rates cannot hold.
Definitions
A linear combination of two I(1) variables, say Y and X can be either I(1)

or I(0). If this combination is I(1) the variables are said to be not-cointegrated.
If there are I(0) such that Y + βX˜I(0)

Example 1
Consider the following model:

xt + βyt = ut (1)

xt + αyt = et (2)

ut = ut−1 + ε1t (3)

et = ρet−1 + ε2t with |ρ| < 1 (4)

(ε1t, ε2t)
0 is distributed identically and independently as a bivariate normal

with

E(ε1t) = E(ε2t) = 0 (5)

var(ε1t) = σ11, var(ε2t) = σ22, cov(ε1tε2t) = σ12 (6)

Solving for xt and yt form the above system with α 6= β gives
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xt = α(α− β)−1ut − β(α− β)−1et,
yt = −(α− β)−1ut + (α− β)−1et.

Then we can conclude that both xt and yt are integrated of order one i.e.,
xt˜I(1), yt˜I(1), since ut is integrated of order one. Nonetheless xt + yt is
I(0) because et is stationary. In this example the cointegrating vector is (1,α)
and x+ αy is the equilibrium relationship. In the long run the variables move
towards the equilibrium x+ αy = 0 recognizing that this relationship need not
to be realized exactly even as t tends to infinity.

In the bivariate case if the equilibrium condition exists, is unique.

Proof.
Suppose that there exist two distinct co-integrating parameters α and γ such

that x+ αy and x+ γy are both ~I(0). This implies that (α− γ)yt is also I(0)
because a linear combination of two I(0) variable is also I(0). But we know that
for α 6= γ , (α− γ)yt ~I(1) therefore we have a contradiction unless α = γ.

Example
Consider the following example where cointegration of Prices and Dividends

is a necessary condition for markets efficiency in the Fama sense.
Let us assume that stock prices might be written as

Pt =
∞X
i=1

(1/(1 + r))iE(Dt+i|It) + εt

where we may assume that εt is an I(0) process that might be, a white noise if
it represents, say a measurement error, or it might be an autoregressive process
if we assume agents are risk adverse. Let also assume Dt follows a random walk
which is a special case of an I(1) variable.

Dt = Dt−1 + νt.

Then, we may express stock prices as

Pt = (1/r)Dt + εt

Given that Dt are integrated of order one, stock prices also are integrated of
order one, since the sum of an I(1) process and an I(0) process is I(1).
We can easily see that if the theory is valid, (1,−(1/r)) is going to be a

cointegrating vector since

(1,−(1/r))
·
Pt
Dt

¸
= Zt = εt

Notice that we assumed that εt was I(0), therefore if the theory holds dividends
and prices should be cointegrated.
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Different Representations for a cointegrating relationship

Consider the model described in equations (1) - (6). Take |ρ| < 1, then
whenever xt and yt are cointegrated, we can show for the simple 2 variables
model, that the system of two equations has different representations, namely,
vector autoregressive (strange name), error-correction and moving-average rep-
resentations.

VAR Representation

Let us reproduce for expositional reasons equations (1), (2), (3) and (4)

xt + βyt = ut (1)

xt + αyt = et (2)

ut = ut−1 + ε1t (3)

et = ρet−1 + ε2t with |ρ| < 1 (4)

If we lag one period equations (1) and (2) and subtract the lagged value from
each expression we get

∆xt + β∆yt = ∆ut (7)

∆xt + α∆yt = ∆et (8)

Notice that
∆ut = ε1t
∆et = −(1− ρ)et−1 + ε2t and using equation (2)

= −(1− ρ)(xt−1 + αyt−1) + ε2t
then (7) and (8) might be rewritten as·

1 β
1 α

¸ ·
∆xt
∆yt

¸
=

·
ε1t

−(1− ρ)(xt−1 + αyt−1) + ε2t

¸
and inverting the matrix we have·

∆xt
∆yt

¸
=

1

α− β

·
α −β
−1 1

¸ ·
ε1t

−(1− ρ)(xt−1 + αyt−1) + ε2t

¸
or ·

∆xt
∆yt

¸
=

1

α− β

·
αε1t + β(1− ρ)(xt−1 + αyt−1)− βε2t
−ε1t − (1− ρ)(xt−1 + αyt−1) + ε2t

¸
(9)

or ·
∆xt
∆yt

¸
=

1

α− β

·
β(1− ρ) β(1− ρ)α
−(1− ρ) −(1− ρ)α

¸ ·
xt−1
yt−1

¸
+

·
ζ1t
ζ2t

¸
where
ζ1t = (α− β)−1(αε1t − βε2t)
ζ2t = (α− β)−1(ε2t − ε1t)
Notice that this VAR representation IS NOT a VAR in the first differences.

We would see later on that a VAR in first differences is not a possible represen-
tation when the variables are I(0).
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Error Correction Mechanism

In the 70’s the way to proceed when the series under consideration where
I(1) was just to take differences of these series and then regress the differenced
series. It has been shown that this procedure is unsatisfactory mainly because
it looses all long run information. (Also the interpretation of the coefficients is
different from that one of the original regression)
In recent years one of the most popular ways of proceeding is to write our

models as ECM (error correction mechanisms). The strong motivation for this
models was mainly empirical since these models perform very well. In later
years it have been shown that if two variables are cointegrated, there exist an
ECM representation for these variables. This representation has the advantage
that it keeps long run and short run information.
Consider a vector of I(1) variables Xt, then if Xt ˜CI(1, 1) there exist an

error-correction representation for the data. A very general way of writing
these type of models is

φ(L)(1− L)Xt = −α0Xt−1 + θ(L)εt,

where α is the cointegrating vector, θ(L) is a polynomial in the lag operator,
φ(L) is a finite order lag polynomial with roots outside the unit circle and εt is
a white noise. Also φ(0) = I.
Alternatively we could write the model as

∆Xt = −α0Xt−1 +Φ(L)∆Xt + θ(L)εt,

where φ(L) = I +Φ(L).
The intuition behind the error-correction model is that long run errors have

to be corrected in the short run dynamics such that the process can move closer
to its long run target.

Again let Xt = (X1t,X2t) and let Zt−1 be the cointegrating relationship.
Then the error correction equation for X2t is

∆X2t = γZt−1 +Φ1(L)∆X1t−1 +Φ2(L)∆X2t−1 + θ(L)νt

Then if the error correction theory is true we will expect that γ < 0 which implies
that whenever Zt−1 > 0, i.e., X2t is above the long run equilibrium, then, ∆X2t
will be negative, i.e., it will move in the direction of the equilibrium.
An important implication of the theory of cointegration is that asset prices

cannot be cointerated if the weak efficiency market hypothesis holds. This is
simply because if two asset prices are cointegrated, it is possible to forecast time
t returns using information available a t time t−1. This goes against the simple
no-arbitrage model.

ECM representation.
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Consider once more the two variables model. It can be seen that the ECM
representation follows directly from the VAR representation (equation (9)) .·

∆xt
∆yt

¸
=

1

α− β

·
β(1− ρ)(et−1)
−(1− ρ)(et−1)

¸
+

·
ζ1t
ζ2t

¸
(9’)

Moving Average Representation
This follows directly from the VAR representation (1) and (2).
Equations (1) and (2) may be written in matrix notation as·

1 β
1 α

¸ ·
xt
yt

¸
=

·
ut
et

¸
,

which can be also written as·
xt
yt

¸
=

1

α− β

·
α −β
−1 1

¸ ·
ut
et

¸
,

or taking first diferences as·
∆xt
∆yt

¸
=

1

α− β

·
α −β
−1 1

¸ ·
∆ut
∆et

¸
,

and noting that ·
∆ut
∆et

¸
=

·
ε1t

(1− L)(1− ρL)−1ε2t

¸
,

we can obtain the MA representation as·
∆xt
∆yt

¸
=

1

α− β

·
α −β
−1 1

¸ ·
ε1t

(1− L)(1− ρL)−1ε2t

¸
.

We have analyzed the possible representations assuming a cointegration re-
lationship between two variables. The concept of cointegration can be easily
extended to n-variables.

Definition
Consider a n×1 vector of stochastic variables Xt = (X1t,X2t, ..,Xnt). We

say that the elements of the vector are cointegrated of order (d, b), which we
denote Xt ~CI(d, b) if

i) each of the components of Xt are I(d).

ii) there exists (at least) a vector such that Zt = α0Xt is I(d− b) for d ≥ b > 0.
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Then α is called the cointegrating vector
If d = b = 0, then α0Xt = 0 defines a long-run equilibrium relationship.
Notice that α is not unique since for any non-zero scalar b, b α0Xt is also inte-

grated of order zero. Then in speaking of the cointegrating vector, an arbitrary
normalization must be made, such that the first element of is unity.
If n > 2, there may be r ≤ n − 1 linearly independent (n × 1) vectors

(α1, ...,αr) such that A0Xt ~I(0), where A is the (n× r) matrix A = [α1,...,αr],
such that rank(A)=r, where r is the cointegrating rank.
The vectors (α1, ...,αr) are not unique, since for any non-zero (r× 1) vector

b, b0A0Xt~I(0), so b0A0 could be described as a cointegrating matrix.

Granger’s Representation Theorem

In the two variables case we have shown that when two variables are coin-
tegrated they do have a VAR, an ECM and a MA representation. This were
particular cases of the Granger’s Representation Theorem which is valid for a
N variables vector.
Consider an n - vector time series Xt which satisfies:

Φ(L)Xt = c+ ut

where Φ(L) = In −
PP
i=1 ΦiL

i , and ut is a white noise with positive definite
covariance matrix. It is assumed that det[Φ(z)]= 0 which implies |z| ≥ 1. Sup-
pose that there exist exactly r cointegrating relationships among the elements
of Xt . Then:

(i) there exists an (n× r) matrix A, of rank r < n such that A0Xt ~I(0).
(ii) ∆Xt has an MA representation given by ∆Xt = µ+Ψ(L)ut with

A0Ψ(1) = 0,

where

Ψ(L) = In +
∞X
i=1

ΨiL
i

To understand the meaning of the restriction A0Ψ(1) = 0 and its implica-
tions consider the MA

∆Xt = µ+Ψ(L)ut

Now re-write it as Xt = Xt−1+µ+Ψ(L)ut and substitute backwards to obtain

Xt = X0 + µt+Ψ(1)
tX
i=1

ui + ηt − η0
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where µ = E(∆Xt) and {ηt} is a I(0) sequence: ηt =
P∞
S=0 asut−s, as =

−P∞i=1Ψs+i
Then pre-multiplying Xt by the cointegrating matrix A0, we get the coin-

tegrating relationship. Therefore each term in the right hand side has to be
I(0).

A0Xt = A0(X0 − η0) +A
0µt+A0Ψ(1)

tX
i=1

ui +A
0ηt

Then it is easy to see that for A0Xt ~I(0), it is necessary that A0Ψ(1) = 0.
This is only a necessary condition. Stationarity of A0Xt further requires that
A0µ = 0. If µ 6= 0, then unless A0µ = 0 is satisfied, the linear combination A0Xt
will grow deterministically at rate A0µ.
Notice that A0Ψ(1) = 0 implies that Ψ(1) is singular since A0 is a matrix

with r LI vectors. This means that the matrix operator Ψ(L) is non invertible.
Thus, a cointegrated system can never be represented by a finite-order VAR for
∆Xt.

Theorem
The (n × n) matrix Φ(1) has a reduced rank r < n, and there exists an

(n× r) matrix B such that Φ(1) = BA0.
Proof
Consider an n-vector time series Xt which satisfies:

Φ(L)Xt = c+ ut

and the Wold representation

∆Xt = µ+Ψ(L)ut.

Then multiplying the Wold representation by Φ(L), we get

(1− L)Φ(L)Xt = Φ(1)µ+Φ(L)Ψ(L)ut
and using the autoregressive representation (multiplied by(1− L)) we get

(1− L)Φ(L)Xt = (1− L)(c+ ut)

and equating the last two expressions we get

(1− L)ut = Φ(1)µ+Φ(L)Ψ(L)ut
(since (1− L)c = 0) then, the above expresion implies that:

1) Φ(1)µ = 0.

2) (1− L) = Φ(L)Ψ(L), in particular for L = 1, requires that Φ(1)Ψ(1) = 0.
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Let π0 denote a row of Φ(1), then conditions 1. and 2. imply that π is a
cointegrating vector.
Now if a1, a2, ...ar form a basis for the space of cointegrating vectors, then

we can express, π = (a1, a2, ...ar)br×1, since any linear combination of a coin-
tegrating vector is also a cointegrating vector.or π0 = b0A0 Applying the same
reasoning for each of the rows of the rows we get

Φ(1) = BA0

(iii) There exist a VAR representation in Levels and the determinant of the
polynomial in Φ has a unit root. This can be shown by noticing that Φ(1)
is singular.

(iv) Error Correction Representation.

To show this point we first need to transform the original VAR

Φ(L)Xt = c+ ut,

using the following relationship

In −
pX
i=1

ΦiL
i = In − (

PX
i=1

Φi)L− (I − L)
p−1X
i=1

ΓiL
i

where
Γi = −

Pp−1
i=j Φj+1 for j = 1, ..., p− 1

Then

(In −
pX
i=1

ΦiL
i)Xt =

Ã
In −

Ã
pX
i=1

Φi)L+ (I − L)
p−1X
i=1

ΓiL
i

!!
Xt = c+ ut.

Then rearranging terms

Xt = c+ (

pX
i=1

Φi)Xt−1 +
p−1X
i=1

Γi∆Xt−i + ut

= c+

p−1X
i=1

Γi∆Xt−i + (In − Φ(1))Xt−1 + ut

∆Xt = c+

p−1X
i=1

Γi∆Xt−i − Φ(1)Xt−1 + ut

From this expression we can derive the following results.

(a) If rank [Φ(1)] = 0 then Φ(1) = 0 and Xt˜I(1) since we can write everything
in terms of a VAR in diferences. This is only valid when the variables do
not cointegrate.
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(b) If rank [Φ(1)] = n then det(Φ(1)) 6= 0 (Φ(L) does not have a unit root). This
implies that Xt˜I(0) and therefore it should have a MA representation
since we can invert the original expression, i.e.,

Xt = Φ(L)
−1(c++ut)

(c) If rank [Φ(1)] = r, 0 < r < n then Φ(1) = BA0, where B is an nxr matrix .

(See a explanation of these in the section about Johansen Procedure).

Restrictions in the parameters of the Error Correction Representation.

∆Xt = c+

p−1X
i=1

Γi∆Xt−i −BZt−1 + ut, Zt = A0Xt

In this error-correction representation all variables are I(0). Then the term
A0Xt is viewed as the ”error” from the long run equilibrium relationship, and
B gives the ”correction” to Xt caused by this error.
Notice that taking expected values in both sides we get;

[I −
p−1X
i=1

ΓiL
i]E(∆Xt) = c−BE(Zt−1)

Thus, in order to have a system in which there is no drift in any of the variables
[i.e., E(∆Xt) = 0 ], we need to impose the restriction c = BE(Zt−1) (this is
equivalent to A0µ = 0) In the absence of such a restriction, it is implied by the
ECM that there are n− r separate time trends that account for the trend Xt .
Then imposing this restriction we obtain

∆Xt = BE(Zt−1) +
p−1X
i=1

Γi∆Xt−i +−BZt−1 + ut

= −B(Zt−1 −E(Zt−1)) +
p−1X
i=1

Γi∆Xt−i + ut

the intercept enters the system only via the error-correction term and there is
no autonomous growth component.
Again notice that A is not unique since Φ(1) = BA0 = BPP−1A0 = B∗A∗0,

for all r × r non-singular matrices P .

Tests For Cointegration.
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Univariate Tests for Cointegration.

1) Static regression : The Engle - Granger Approach.

For the model

yt = βxt + εt

Regress y on x using OLS achieves a consistent estimate of the long-run steady
-state relationship between the variables of the model, and all dynamics and en-
dogeneity issues can be ignored asymptotically. This arises because of the super
consistency property of the OLS estimator when the series are cointegrated.
Suppose that the model that dynamic model that captures both short ad-

justment and the long run relationship is

yt = γoxt + γ1xt−1 + αyt−1 + εt

This can be re-written as

yt = βxt + λ1∆xt−1 + λ2∆yt−1 + εt

where β = γ0 + γ1/(1− α), etc.
Thus, estimating the static model to obtain the long-run parameter β is

equivalent to estimating the dynamic model without the short run terms. Ac-
cording to the super consistency property if yt and xt are both non-stationary
I(1) variables, and εt ~I(0), then as the sample size, T , becomes larger the OLS
estimator converges to its true value at a much faster rate than the I(0) vari-
ables. Of course the omitted dynamic terms are capture by the residuals. This
we will see later will be a problem in short samples.

As a second stage I can use alternative testing stragesies:

i) Make an (ADF) test for unit roots for the residuals

If you do not reject the Hypothesis that the residuals have a unit root (that
there are I(1)), then Y and X are not cointegrated. On the other hand if you
do reject this hypothesis against the stationary alternative, then you conclude
that the residuals ( a linear combination of Y and X ) are I(0), then Y and X
are cointegrated.
Therefore we regress

∆ε̂t = φε̂t−1 +
p−1X
i=1

φi∆ε̂t−i + µ+ δt+ ζt

The question of including a trend and or a constant term in the test regression
depends of whether this terms appear in the original regression. That is the
deterministic component can be added either to the static regression or to the
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ADF regression, but not to both. Hansen (1992) has shown that including a
deterministic trend results in loss of power.
Note that is not possible to use standard Dickey - Fuller critical values. The

standard table will tend to over reject the null of no cointegration. Note also
that the distribution of the test statistic under the null is affected by the number
of regressors included in the static model.
Fortunately MacKinon (1991) provides Table which has linked the critical

values for particular tests to a set of parameters of an equation of response
surfaces.

C(p) = φ∞ + φ1T
−1 + φ2T

−2

Response surfaces for critical values of cointegration tests.

n Model %point φ∞ φ1 φ2
1 no C 1 -2.5658 -1.960 -10.04

no t 5 -1.9393 -0.398 0.0
10 -1.6156 -0.181 0.0

1 C 1 -3.4336 -5.999 -29.25
no t 5 -2.8621 -2.738 -8.36

10 -2.5671 -1.438 -4.48
1 C 1 -3.9638 -8.353 -47.44

t 5 -3.4126 -4.039 -17.83
10 -3.1279 -2.418 -7.58

3 C 1 -4.2981 -13.790 -46.37
no t 5 -3.7429 -8.352 -13.41

10 -3.4556 -6.241 -2.79

where C(p) is the p per cent critical value.

Now consider the simple DF test for the residuals

∆ε̂t = φε̂t−1 + ζt

This can be re-written (evaluating at β = β̂ )

∆(yt − βxt) = φ(yt−1 − βxt−1) + ζt

or
∆yt = β∆xt + φ(yt−1 − βxt−1) + ζt

but this is not an unrestricted ECM, it imposes that the change in the short
run is the same that the long run effect. This is unlikely to be true.

The Engle-Granger-Yoo three step Approach.
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Engle and Yoo propose a third step to the standard Engle-Granger proce-
dure which seeks to overcome some of the problems inherent in using the static
model which yields β generally biased in small samples. Assuming that there is
a unique cointegration vector and weak exogeneity of the short run parameters,
then the third step provides a correction of the first stage estimate of β and en-
sures it has a normal distribution. The methodology consists of correcting the
long-run relationship by the small sample bias (γ/(1− α)) and use the corrects
residuals to perform the ADF test.

The Cointegrating Durbin-Watson.

ii) The null may be tested using the Sargan-Bhargava or CDW test

This test is very simple and consist in comparing the DW statistic with tabu-
lated values. The rationality of this procedure is as follows: Consider equations
(2) and (4).

xt + αyt = et (2)

et = ρet−1 + ε2t with |ρ| < 1 (4)

A regression of xt on yt will yield serially correlated residuals. We can use
the DW statistic to get information about ρ since this statistic is approximately
2(1− ρ).

DW ∼= 2(1− ρ)

Then if ρ is equal to 1 (a unit root), the DW statistic equals zero. Sargan
and Bhargava provide tables to test this hypothesis. However, this critical value
is only relevant when the disturbance follows a first order autoregressive pro-
cess and there is there no higher serial correlation, which is unlikely. Thus the
CRDW test is generally not a suitable test statistic.

Cointegration in Multivariate Systems- The Johansen Approach

Defining zt , a vector of n potentially endogenous variables it is possible to
specify the following DGP and the model zt as an unrestricted VAR involving
k-lags of zt

zt = A1zt−1 + ...+Akzt−k + ut

where zt is n× 1 and each of the Ai is n×n matrix of parameters. As we show
above this equation can be written as a vector error-correction model

∆zt = Γ1∆zt−1 + ...+ Γk−1∆zt−k−1 +Πzt−k + ut
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where Γi = −(I −A1− ...−Ai) (i = 1, .., k− 1), and Π = −(I −A1− ...−Ak).
This way of specifying the system contains information on both the short run
and the long run adjustments to changes in zt , via the estimates of Γ̂i and
Π̂ respectively. As it will be seen, Π = αβ0, where α represents the speed
of adjustment to disequilibrium, while β is a matrix of long-run coefficients
such that the term β0zt−k represents up to n − 1 cointegration relationships.
Assuming that zt is a vector of non-stationary I(1) variables, then all the terms
in differences are I(0) while Πzt−k must also be I(0) for the error term to be a
white noise.
There are two cases where this requirement is met:

1. When there is no cointegration at all, implying that there are no linear
combinations of zt that are I(0), and consequently Π is a matrix of n× n
zeros. In this case the appropriate model is a VAR in differences.

2. When there exist up to n − 1 cointegration relationships β0zt−k ~I(0).
In this instance there will exist a number r ≤ n−1 cointegration vectors
where r is the number of columns of which form r LI combinations of the
variables in zt , together with (n−r) non-stationary vectors in β. Only the
cointegration vectors in enter in the VECM, which implies that for the last
(n − r) columns, the are insignificantly small. Thus the typical problem
faced, of determining how many r cointegration vectors exist amounts to
equivalently testing which columns in Π are zero. Consequently testing for
cointegration amounts to a consideration of the rank of Π, that is, finding
the number of r linearly independent columns in Π.

−If Π is full rank the variables in zt have to be I(0)
−If Π is zero there is no cointegrating vector
−If Π is reduced rank the number of cointegrating vectors is the RANK(Π)

Canonical Correlations

Population Canonical Correlations
Let the (n1 × 1) vector yt and the (n2 × 1) vector xt denote stationary

random variables. Typically this variables are measured in deviations from the
population mean such that E(yty0t) represents the variance-covariance matrix of
yt .
In general ·

E(yty
0
t) E(ytx

0
t)

E(xty
0
t) E(xtx

0
t)

¸
=

·
ΣY Y ΣY X
ΣXY ΣXX

¸
We can often gain some insight into the nature of these correlations by defining
two new (n× 1) random vectors ϕt and ξt , where n is the smaller of n1 and n2
.
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ϕt = K0yt
ξt = A0xt

The matrices K0 and A0 are chosen such that·
E(yty

0
t) E(ytx

0
t)

E(xty
0
t) E(xtx

0
t)

¸
=

·
ΣY Y ΣY X
ΣXY ΣXX

¸

E(ϕtϕ
0
t) = K

0ΣY YK = I,

E(ξtξ
0
t) = A

0ΣXXA = I and,

E(ϕtξ
0
t) = R =


r1 0

r2

0 rn


where the elements of ϕt and ξt are ordered in such a way that1 ≥ r1 ≥

r2...... ≥ rn ≥ 0

The population ri is known as the ith population canonical correlation be-
tween yt and xt .
The canonical correlations can be calculated by calculating the eigen values

of
Σ−1Y Y ΣYXΣ

−1
XXΣXY ,

λ1 > λ2 > ...λn , and the canonical correlations turn out to be the square roots
of these eigenvalues.

The Johansen Method of reduced rank regression

The procedure may be described as follows:
First rewrite the ECM Equation

∆zt + αβ0zt−k = Γ1∆zt−1 + ...+ Γk−1∆zt−(k−1) + ut

it is possible to correct for the short run dynamics (i.e., take out their effect)
by regressing ∆zt and 0zt−k separately on the right hand side of the previous
equation, i.e.,

∆zt = P1∆zt−1 + ...+ Pk−1∆zt−(k−1) +R0t
zt−k = T1∆zt−1 + ...+ Tk−1∆zt−(k−1) +Rkt
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Which can be used to form the residual (product moment) matrices

bSij = T−1X bRit bR0jt i, j = 0, k

The maximum likelihood estimate of β is obtained as eigenvectors corresponding
to the largest eigenvalues from solving the equation

|λbSkk − bS0k bS−100 bS0k| = 0
which gives the n eigenvalues λ̂1 > λ̂2 > .....λ̂n and their corresponding eigen
vectors, ϕ̂ = (ϕ̂1 > ϕ̂2 > ... > ϕ̂n). Those r elements in ϕ̂ which determine lin-
ear combinations of stationary relationships can be denoted β = (ϕ̂1, ϕ̂2, ..., ϕ̂r),
that is, these are the cointegration vectors. This is because the eigen values are
the largest squared canonical correlations between the ”levels” residuals Rkt and
the ”differences” residuals R0t, that is, we obtain estimates of all the distinct
ϕ̂0izt combinations of the I(1) levels of zt which produce high correlations with
the stationary ∆zt elements, such combinations being the cointegrating vectors
by the virtue of the fact that they must themselves be I(0) to achieve a high
correlation. Thus the magnitude of λ̂i is a measure of how strongly the coin-
tegration relations are correlated with the stationary part of the model. The
last (n − r) combinations indicate the non-stationary combinations and theo-
retically are uncorrelated with the stationary elements. Consequently, for the
eigenvectors corresponding to the non-stationary part of the model, λ̂i = 0 for
i = r + 1, ......., n.

Testing for reduced rank

To find the number of cointegrating vectors we said that is equivalent to
find the number of linearly independent columns in Π or the number of n − r
columns of significantly small.
The approach amounts to a reduced rank regression which provides n eigen-

values λ̂1 > λ̂2 > .....λ̂n and their corresponding eigen vectors,ϕ̂ = (ϕ̂1 > ϕ̂2 >
... > ϕ̂n). Those r elements in ϕ̂ which determine linear combinations of station-
ary relationships can be denoted β = (ϕ̂1, ϕ̂2, ..., ϕ̂r) that is, the distinct ϕ̂

0
izt ,

which we will denote β0izt , are correlated with the stationary part of the model.
The last n− r combinations obtained from the Johansen approach indicate the
non stationary combinations, and theoretically these are uncorrelated with the
stationary elements in the ECM. Consequently, for the eigenvectors correspond-
ing to the non-stationary part of the model, λ̂i = 0 for i = r + 1, ..., n.
Thus to test the null hypothesis that there are at most r cointegration vectors

amounts to test

H0)λi = 0 i = r + 1, ...., n.
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where only the first r eigenvalues are non-zero. (This is tested against the
alternative of n cointegrating vectors).
It can be shown (see Hamilton) that the likelihood test that corresponds to

the ECM under the null that there are only r cointegrating vectors is

L∗(H0) = −(Tn/2)log(2π)− (Tn/2)− (T/2)log
¯̄̄ bS00 ¯̄̄− (T/2) rX

i=1

log(1− λ̂i).

It can also be shown that the likelihood test that corresponds to the ECM
without any restriction on the number of cointegrating vectors is

L∗ = −(Tn/2)log(2π)− (Tn/2)− (T/2)log
¯̄̄ bS00 ¯̄̄− (T/2) nX

i=1

log(1− λ̂i).

Then a likelihood ratio test, using a non standard distribution, can be con-
structed, using what is known as the Trace statistic.

λtrace = −T
nX

i=r+1

log(1− λ̂i) r = 0, 1, ..., n− 2, n− 1

Another test of the significance of the largest λr is the so called maximal-
eigenvalue or λ−max statistic :

λmax = −T log(1− λ̂r+1) r = 0, 1, ..., n− 2, n− 1.

This tests the existence of r cointegrating vectors against the alternative that
r + 1 exist and is derived in exactly same way.

Testing restrictions on the cointegrating vector.

Many times we are interested to test restrictions on the cointegrating vector.
For example I might be interested in some theoretical long run relationship which
impose some restrictions on the values of the cointegrating relationship. We may
be also interested in testing whether we should include or not a regressor in the
cointegrating relationship.
The crucial point in deriving a LR test for these type of hypothesis is that

both under the null and the alternative there are r cointegrating relationships
and therefore the asymptotic theory is standard since the regressions only in-
volve variables which are I(0)and the test would be distributed chi-square. The
LR test will be

LR = −T
rX
i=1

log(1− λ̂i) + T
rX
i=1

log(1− λ̃i)
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