
Stationary Stochastic Time Series Models
When modeling time series it is useful to regard an observed time series,

(x1, x2, ..., xn), as the realisation of a stochastic process. In general a stochas-
tic process can be described by an n - dimensional probability distribution
p(x1, x2, ..., xn) so that the relationship between a realisation and a stochas-
tic process is analogous to that between the sample and population in classical
statistics.
Specifying the complete form of the probability distribution will in general

be too ambitious so we usually content ourselves with the first and second
moments, that is, (i) the n means, (ii) the n variances and (iii) the n(n− 1)/2
covariances.

(i) E(x1), E(x2), ..., E(xn)

(ii) V (x1), V (x2), ..., V (xn)

(iii) Cov(xi, xj), i < j.

If we could assume joint normality of the distribution, these set of conditions
would then completely characterise the properties of the stochastic process.
Even if this were the case, it will be impossible to infer all values of the first and
second moments from just one realisation of the process, since there are only n
observations but n (means)+ n (variances) + n(n−1)/2 (covariances) unknown
parameters.
Further simplifying assumptions must be made to reduce the number of

unknown parameters to manageable proportions.

Stationarity

A stochastic process is said to be strictly stationary if its properties are
unaffected by a change in the time origin, that is

p(x1, x2, ..., xn) = p(x1+l, x2+l, ..., xn+l).

A stochastic process is said to be weak stationary if the first and second
moments exist and do not depend on time.

E(x1) = E(x2) = ... = E(xt) = µ (1)

V (x1) = V (x2) = ... = V (xt) = σ2 (2)

Cov(xt, xt−k) = Cov(xt+l, xt−k+l) = γk (3)

Condition (3) states that the covariances are functions only of the lag k, and
not of time. These are usually called autocovariances.
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From conditions (2) and (3) we can easily derive that the autocorrelations,
denoted as ρk also only depend on the lag.

ρk =
Cov(x1, x2)
2
p
V (x1)V (x2)

=
γk
σ2
=

γk
γo

(4)

The autocorrelations considered as a function of k are referred to as the
autocorrelation function, ACF, or sometimes the correlogram. Note that since

γk = Cov(xt, xt−k) = Cov(xt−k, xt) = Cov(xt, xt+k) = γ−k

it follows that γk = γ−k , and only the positive half of the acf is usually
given.

The Wold decomposition theorem

Every weakly stationary, purely non-deterministic, stochastic process (xt−µ)
can be written as a linear combination of uncorrelated random variables. (by
purely non-deterministic we mean that any linear deterministic components
have already been subtracted from xt ).
This representation is given by

(xt − µ) = εt + θ1εt−1 + θ2εt−2 + ... (5)

=
∞X
j=0

θjεt−j where θ0 = 1

The sequence of random variables (εt, εt−1, εt−2, ...) are assumed to be uncor-
related and identically distributed with zero mean and constant variance (a
white-noise process), that is

E(εt) = 0
V (εt) = σ2

Cov(εt,εt−k) = 0 for all k.

Using equation (5) we can see that;
The mean of the process described in equation (5) is

E(xt) = µ, (6)

The Variance is

γo = E(xt − µ)2
= E(εt + θ1εt−1 + θ2εt−2 + ...)2 (7)

= σ2(1 + θ21 + θ22 + ...) (since Cov(εt,εt−k) = 0 for all k)

= σ2
∞X
j=0

θ2j where θo = 1 (8)
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The covariance

ρk = E(xt − µ)(xt−k − µ)
= E(εt + θ1εt−1 + θ2εt−2 + ...)(εt−k + θ1εt−1−k + θ2εt−2−k + ...) (9)
= E(θkεt−kεt−k) +E(θk+1θ1εt−k−1εt−k−1) + ................

= σ2
∞X
j=0

θjθj+k, where θ1 = 0 (10)

Moving Average Processes

A moving average process of order q is a special case of equation (5) where
the number of lags are truncated at q. For yt = xt − µ, is written as

yt = εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q, t = 1, ..., T

and denoted by yt˜MA(q)
A finite moving average is always stationary since equations (6), (7), and (8)

will automatically satisfy the weak stationary conditions for a finite sum.

Example MA(1)

yt = εt + θ1εt−1 (11)

Then

(i) E(yt) = 0

(ii) E(yt)
2 = E(εt + θ1εt−1)2 = σ2(1 + θ21)

(iii)

E(ytyt−k) = E(εt + θ1εt−1)(εt−k + θ1εt−k−1)½
σ2θ1 for k = 1
0 for k > 1

(iv)

ρk =

½
θ1/(1 + θ21) for k = 1

0 for k > 1

Example MA(q)

(i) E(yt) = 0
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(ii) E(yt)
2 = σ2(1 + θ21 + θ22 + ...+ θ2q)

(iii)

E(ytyt−k) =


qP
j=0

σ2θjθj+k for k = 1, 2, ..., q

0 for k > q

(iv)

ρk =


qP
j=0

σ2θjθj+k/
qP
j=0

θ2j for k = 1, 2, ..., q

0 for k > q

Autoregressive Model

An autoregressive process of order p is written as

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt, t = 1, ..., T (12)

This will be denoted yt~AR(p)

Example AR(1)

yt = φ1yt−1 + εt t = 1, ......, T (13)

Notice that if this relationship is valid for time t, it should also be valid for
time t− 1, that is

yt−1 = φ1yt−2 + εt−1 (14)

Substituting equation (12) into equation (11) we get the following expression.

yt = φ1(φ1yt−2 + εt−1) + εt

= φ21yt−2 + φ1εt−1 + εt

and repeating this procedure j − 1 times we get

yt = φj1yt−j + φj−11 εt−(j−1) + φj−21 εt−(j−2) + ...+ φ1εt−1 + εt (15)

Now if |φ| < 1 the deterministic component of yt is negligible if j is large
enough. Under this condition equation (13) might be written as
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yt =
∞X
j=0

φj1εt−j (16)

In other words, whenever |φ1| < 1, an autoregressive process of order 1 may
be written as an infinite moving average process in which the coefficient of εt−j
is φj1.
The first point to establish about an autoregressive process is the conditions

under which it is stationary. Clearly, for the AR(1) process the condition for
stationarity is |φ1| < 1 since whenever this condition holds the weak stationary
conditions are automatically satisfied:

Proof:

(i) The mean exists and does not depend on time.

E(yt) = E(
∞P
j=0

φj1εt−j) = 0

Notice that this is only true when |φ1| < 1.
Using equation (13), we can easily verify that when |φ1| ≥ 1 , then
E(yt) = φj1yt−j
Therefore, whenever |φ1| ≥ 1, the expected value of yt depends on t, and

then violates the stationarity condition.

(ii) The variance exists and does not depend on time.

V (yt) = V (
∞P
j=0

φj1εt−j)

= E(
∞P
j=0

φj1εt−j)
2 (since E(yt) = 0)

= E(
∞P
j=0

φ2j1 ε2t−j) (since ε is a WN process)

=
∞P
j=0

φ2j1 E(ε
2
t−j) = σ2

∞P
j=0

φ2j1 =
σ2

(1− φ21)
(since |φ1| < 1)

or

γ0 =
σ2

(1− φ21)
(17)

(iii) The autocovariances exist and do not depend on time.

To calculate the autocovariance of an autoregressive process is slightly more
complicated than that of a moving average. We proceed in the following way;

E(ytyt−k) = φ1E(yt−1yt−k) +E(εtyt−k),
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or

γk = φ1γk−1 +E(εtyt−k)

Now notice that

E(εtyt−k) = E[εt(φ
j−1
1 εt−k−(j−1) + φj−21 εt−k−(j−2) + ...+ φ1εt−k−1) + εt−k)]

Given that the error terms are WN processes, this expression is equal to zero
for k > 0, and we can write the autocovariance function as

γk = φ1γk−1 (18)

From equation (16) we can easily derive the autocorrelation function that is

ρk = φ1ρk−1 (19)

Therefore whenever the process is stationary the autocorrelation function
declines exponentially. Using equation (17) it can easily be seen that ρk = φk1ρ0.

Examples

i)φ1 = .5

ii)φ1 = −.5

The Lag Operator

The lag operator, L, is defined by the transformation

Lyt = yt−1 (20)

Notice that the lag operator may also be applied to yt−1 yielding

Lyt−1 = yt−2 (21)

Now substituting (18) into (19) we get Lyt−1 = L(Lyt) = L2yt = yt−2 and
so in general

Lkyt = yt−k for k ≥ 0 (22)

The lag operator can be manipulated in a similar way to any algebraic quan-
tity.
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Figure 1:

Example
Let us reproduce for convenience equation (14), an infinite moving average

process in which the coefficient of εt−j is φ
j
1 , that is,

yt =
∞P
j=0

φj1εt−j where we assume |φ1| < 1 , then using the lag operator this
expression may be written as

yt =
∞P
j=0
(φ1L)

jεt = εt/(1− φ1L)

Notice that L is regarded as having the property that |L| ≤ 1, and then
|φ1L| < 1, which is a necessary condition for the convergence of the series.
This can be rearranged in the following way

(1− φ1L)yt = εt

or

yt = φ1yt−1 + εt
The Difference operator

The first difference operator, ∆, is defined as ∆ = 1− L.
For example
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Figure 2:

∆yt = (1− L)yt = yt − yt−1.
and

∆2yt = (1− L)2yt = (1− 2L+ L2)yt = yt − 2yt + yt−2

Autoregressive processes using Lag operators

An AR(p) process may be written as,

(1− φ1L− φ2L
2 − ...− φpL

p)yt = εt, t = 1, ...., T

or

φ(L)yt = εt, t = 1, ...., T

where φ(L) = (1− φ1L− φ2L
2 − ...− φpL

p).
The stationarity condition for an autoregressive process may be expressed

in terms of the roots of the polynomial of order p in L.
This may be easily understood for a first order autoregressive process. We

have shown that an AR(1) process may be written as,
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(1− φ1L)yt = εt, t = 1, ...., T

then we consider the roots ( one in this case) of the polynomial in L, (1 −
φ1L) = 0, that is L = 1/φ1 , which is greater than 1 (in absolute value) whenever
|φ1| < 1.
In general an autoregressive process of order p is said to be stationary when

all the roots of the polynomial (1−φ1L−φ2L2− ...−φpLp) lie outside the ”unit
circle”. (there are all greater than one in absolute value).

Moving average processes using Lag operators

yt = (1 + θ1L+ θ2L
2 + ...+ φqL

q)εt t = 1, ......, T

or

yt = θ(L)εt

where θ(L) = (1 + θ1L+ θ2L
2 + ...+ φqL

q).
Sometimes we want to express a moving average as an autoregressive pro-

cess. For this to be possible we need to impose conditions on the parameters
similar to the ones we impose for stationarity. If these conditions hold the mov-
ing average process is said to be invertible.

Invertibility

ARMA(q) process is said to be invertible if all the roots of the polynomial
(1 + θ1L+ θ2L

2 + ...+ φqL
q) lie outside the unit circle.

Autoregressive Moving Average processes - ARMA processes

An autoregressive moving average process of order (p, q), denoted as ARMA(p, q)
is written as

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q t = 1, ......, T

or

φ(L)yt = θ(L)εt
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with φ(L) and θ(L) defined as before.
Notice that the AR(p) and the MA(q) are special cases of the ARMA(p, q)

process. The stationarity of an ARMA process depends solely on its autore-
gressive part and the invertibility only on its moving average part. Therefore
an ARMA process is stationary if the roots of φ(L) are outside the unit cir-
cle and it is invertible whenever the roots of θ(L) are outside the unit circle.
If both conditions hold an ARMA process can be written either as an infinite
autoregressive process or as a infinite moving average process.
Example ARMA(1,1)

yt = φ1yt−1 + εt + θ1εt−1

Autocovariance function of an ARMA(1,1).

γk = E(ytyt−k) = φ1E(yt−1yt−k) +E(εtyt−k) + θ1E(εt−1yt−k)
= φ1γk−1 +E(εtyt−k) + θ1E(εt−1yt−k)

When k = 0

γ0 = φ1γ1 +E(εt(φ1yt−1 + εt + θ1εt−1)) + θ1E(εt−1(φ1yt−1 + εt + φ1εt−1)

where

• E(εt(φ1yt−1 + εt + θ1εt−1)) = σ2

• E(εt−1(φ1(φ1yt−2 + εt−1 + θ1εt−2) + εt + θ1εt−1)) = (φ1 + θ1)σ
2

then

γ0 = φ1γ1 + σ2 + θ1(φ1 + θ1)σ
2

When k = 1

γ1 = φ1γ0 + θ1E(εt−1(φ1yt−2 + εt−1 + θ1εt−2))

then

γ1 = φ1γ0 + θ1σ
2

for k ≥ 2

γk = φ1γk−1

The autocovariance function is therefore

(i) γ0 = φ1γ1 + σ2 + θ1(φ1 + θ1)σ
2
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(ii) γ1 = φ1γ0 + θ1σ
2

(iii) γk = φ1γk−1

Equations (i) and (ii) are a system of two equations with two unknowns γ0
and γ1 .

γ0 =
1 + θ21 + 2θ1φ1

1− φ21
σ2

γ1 =
(1 + θ1φ1)(φ1 + θ1)

1− φ21
σ2

Partial Autocorrelations

Autocorrelation functions are very useful to identify the existence and the
order of a moving average processes. We have also shown that the autocor-
relation function of an autoregressive process declines exponentially, but it is
difficult to guess the order of the autoregressive process from the plot of the
autocorrelation function. In other words we know that the autocorrelation func-
tion of an autoregressive process declines exponentially but this plot does not
enables us to distinguish between an AR(p) and a AR(p+ 1) process.
To help with this problem of discrimination we define the partial autocor-

relation function - PACF. In general, the correlation between two random
variables is due to both being correlated with a third variable, e.g the correlation
between yt and yt−2 , for an AR(1) process has to come through the correlation
between yt and yt−1 on the one hand and yt−1 and yt−2 on the other hand.
So the kth partial autocorrelation, φk = φkk , function measures the corre-

lation not accounted for by an AR(k − 1) process.
For an autoregressive process of order p the Yule-Walker equations are given

by the following recursion formulae;

ρk = φ1ρk−1 + φ2ρk−2 + φ3ρk−3 + ...+ φpρk−p for k = 1, ......p.

Then we just need to set k = p or φp = φkk and solve the following system
of equations.

ρk = φ11ρk−1 + φ22ρk−2 + φ33ρk−3 + ...+ φkk

Then I give values to k that range from 1 to k and generate a system of k
equations in k unknowns.

ρ1 = φ11ρ0 + φ22ρ1 + φ33ρ2 + ...+ φkkρk−1 for k = 1
ρ2 = φ11ρ1 + φ22ρ0 + φ33ρ1 + ...+ φkkρk−2 for k = 2

ρk = φ11ρk−1 + φ22ρk−2 + φ33ρk−3 + ...+ φkkρ0 for k = k
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And solve the system for φkk using kramer’s rule.
In practice, however we are ignorant of the true values of ρi as well as k (the

order of the autoregressive process), which is of course, the whole problem. As
we will see later, the empirical methodology will consist in trying to find which
φkk is not significantly different from zero.
If the process generating the data is of pure moving average form, what

pattern would we expect to find for the partial autocorrelation function? Since
an MA process may be written as an AR process of infinite order, we should
expect a moving average process decays exponentially.

Example AR(1)

ρk = φ1ρk−1 , then ρk = φ11ρk−1 since p = k = 1,
ρ1 = φ11ρ0 for k = 1.

Then

ρ1 = φ1 = φ11 for k = 1.
φii = 0 for k > 1.

Example AR(2)

ρk = φ1ρk−1 + φ2ρk−2

then

ρk = φ11ρk−1 + φ22ρk−2 since p = k = 2,

Giving values to k we construct the following system of equations

ρ1 = φ11 + φ22ρ1 for k = 1,

ρ2 = φ11ρ1 + φ22 for k = 2,

then

φ22 =
ρ2 − ρ21
1− ρ21

.

φii = 0 for k > 2
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Summary of Identification rules using ACF and PACf

For an AR(p) Process

(i) the ACF declines exponentially

(ii) the PACF is zero for lags greater than p.

For a MA(q) Process

(i) the ACF is zero for lags greater than q.

(ii) the PACF declines exponentially

Therefore using sample information, we might calculate sample ACF and
PACF to try to identify the right model. These methodology advocated by Box
and Jenkins usually consist of four steps.
(1) Transform the data, if necessary, so that the assumption of covariance

stationarity is a reasonable one.
(2) Make an initial guess of small values of p and q for an ARMA(p, q) model

that might describe the transformed series.
(3) Estimate the parameters in φ(L) and θ(L)
(4) Perform diagnostic analysis to confirm that the model is indeed consistent

with the observed features of the data.
We have up to now assumed (1) holds and described point (2). Now we

are going to explain both the empirical properties of the sample analogs of the
above defined parameters and how to estimate these models.

Properties of the correlogram, the PACF and other Sample
Statistics.

The correlogram is the basic tool of analysis in the time domain. An inspec-
tion of the correlogram may lead to the conclusion that the series is random,
or that exhibits a pattern of serial correlation that which perhaps can be mod-
eled by a particular stochastic process. In order to decide which model is best
representing the data, it is necessary to know something about the sampling
properties of the correlogram and related statistics such as the mean and auto-
covariances.

Sample analogs for the ACF and PACF function

We have described the autocorrelation and partial autocorrelation function
in terms of the population autocorrelations. These values can be estimated
from a single series. In general this involves to calculate the following sample
moments
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The sample mean

The sample mean, µ̂, is an unbiased estimator of the mean of a stationary
process, µ. It is calculated as

µ̂ = T−1
TX
t=1

yt

It can easily be shown that µ̂ is unbiased. It can also be shown that, al-
though it is algebraically demanding, that the sample mean is also a consistent
estimator.

The Sample Variance

γ̂0 = T
−1

TX
t=1

(yt − µ̂)2

The sample Autocovariances.

γ̂k = T
−1

TX
t=k+1

(yt − µ̂)(yt−k − µ̂)

The sample Autocorrelations

The sample autocorrelation, ρ̂k , is defined as the ratio of γ̂k and γ̂0 .

ρ̂k = γ̂k/γ̂0

It can be shown that the asymptotic variance of ρ̂k , Avar(ρ̂k), is approxi-
mately (1/T ), where T is the sample size. Using this approximation, the stan-
dard deviation is clearly

p
(1/T ) .

Testing for the significance of ρk

In order to identify in practice, using autocorrelation functions, which par-
ticular type of model is the one that best represents the data, we should test
whether the different parameters ρk are different from zero. Under the null hy-
pothesis, i.e. ρk = 0, ρ̂k is distributed asymptotically (valid for large samples)
Normal with mean zero and variance (1/T ).
Proceeding on this basis, a test may be carried out on the sample auto-

correlation at a particular lag, τ , by treating
√
T ρ̂k as a standarised normal

variable. At a five percent level of significance, the null hypothesis is rejected if
the absolute value of

√
T ρ̂k is greater than 1.96.
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Testing for the significance of φkk

We proceed in a similar way than the one we describe to identify the par-
ticular model using autocorrelation functions. We test whether the different
parameters φkk are different from zero.
Under the null hypothesis, i.e. φkk = 0, is distributed approximately asymp-

totically Normal with mean zero and variance (1/T ).
Unfortunately these identifying tools won’t tell us neither whether the pre-

ferred model is mispecified, nor what to do when two different models, say
ARMA(1,2) and ARMA(2,1) seem to be equally valid. Therefore we will need
to estimate these models.
Autoregressive models may be estimated simply by OLS but this procedure

is not useful whenever the model has Moving Average terms. To estimate these
models we need to use another procedure.

Maximum Likelihood Estimation

The principle on which estimation of ARMA models will be based is that of
maximum likelihood.
We will present this principle for the simplest case which entails to find

estimators of the mean and the variance of a random variable, say X, which
is known to be normally distributed. The vector of population parameters is
(µ,σ2).
The principle may be expressed as follows. Given a sample (x1, x2, ..., xn),

which are the values of the population parameters that have most likely gener-
ated that sample.
We then define the likelihood function as a function of the parameters given

the sample, that is,

L(µ,σ2|x1, x2, ..., xn) = f(x1|µ,σ2)f(x2|µ,σ2)...........f(xn|µ,σ2)

In writing the right hand side as the product of the density functions we have
made use of two assumptions; i) the random variables are identically distributed,
ii) there are independent.
We can rewrite the likelihood function as

L(µ,σ2|x1, x2, ..., xn) =
nY
i=1

f(xi|µ,σ2)

where Π is the multiplication operator and

f(xi|µ,σ2) = 1√
2πσ

e−
1
2
(xi−µ)2

σ2
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Notice that

nY
i=1

=
1√
2πσ

e−
1
2
(xi−µ)2

σ2 = (
1√
2πσ

)ne−
1
2

nP
i=1

(xi−µ)2

σ2

The Maximum likelihood estimators, µ̂ and σ̂2, are designed to maximize the
likelihood that the sample comes from a normal distribution with parameters
µ and σ2. To find them optimally we just differentiate the likelihood function
with respect to µ and σ2.
Notice that if we make a monotonic transformation of the likelihood func-

tion, the optimal values are not affected by the transformation. Sometimes is
algebraically easier to maximize the logarithm of the maximum likelihood, that
is

log(L(µ,σ2|x1, x2, ..., xn)) = −n
2
log(2π)− nlog(σ)−

nP
i=1
(xi − µ)2

2σ2

Optimization

∂log(L)
∂µ

=

nP
i=1
(xi − µ)2

σ2
= 0

∂log(L)
∂σ

= −n
σ
+

nP
i=1
(xi − µ)2

σ3
= 0

This system gives as solutions

µ̂ =

nP
i=1
xi

n

σ̂2 =

nP
i=1
(xi − µ)2

n

Conditional Maximum Likelihood Estimates
Usually when we estimate ARMA(p, q) models we evaluate the conditional

maximum likelihood. What is meant by conditional is that we assume that the
first max(p, q) observations are known. In practice we maximize the likelihood
usually by numerical procedures.
For example for an AR(1) process
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yt = φ1yt−1 + εt t = 1, 2, T

We then assume the log of joint distribution of yT , yT−1, ..., y2 conditional
on the value of y1 .

f(yT , yT−1, ..., y2|y1,φ1,σ2) =
TQ
i=1
f(yi|yi−1,φ1,σ2)

the objective then being to maximize

= −(T − 1)log(2π).5 − (T − 1) log σ −

TP
t=2
(yt − φ1yt−1)2

2σ
.

We maximize this function by numerical procedures and obtain φ̂1, σ̂
2.

The ”Portmanteau” statistic.

The final step in the Box - Jenkins methodology is to perform diagnostic
analysis to confirm that the model is indeed consistent with the observed features
of the data. If the model that we identified is the right one, the residuals of the
estimated are supposes to be white noise. The most common test for whiteness
of the residuals is the ”Box and Pierce” test which makes use of the Q statistic.
The ”Portmanteau” statistic, Q, defined as

Q∗(k) = T
kX
i=1

ρ̂2i

it can be shown to be asymptotically distributed, under the null hypothesis
that yt is a white noise, chi square with k degrees of freedom.
If the test is applied to the residuals of an estimated ARMA(p, q) model, say

ε̂, then Q∗(k) is distributed χ2(k − p− q).
This statistic has bad small sample properties. A better approximation is

obtained by modifying the statistic in the following way.

Q(k) = T (T + 2)
kX
i=1

(T − i)−1ρ̂2i

This statistic is the one reported in the econometric package EVIEWS
.

The use of model Selection Criteria.
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The model selection criteria is a set of rules that will help us to discriminate
between alternative ”successful” models. That is, it might be that we end with
two alternative models that ”pass” all the relevant test and I need to somehow
to decide between them. The most used criteria are
The Akaike Criteria (AIC)

AIC(p, q) = log σ̂2 + 2(p+ q)T−1

The Schwarz Criteria (BIC)

BIC(p, q) = log σ̂2 + (p+ q)T−1 log(T )

These criteria are used as follows; whenever we have two different models
that seem to be equally good we choose the model which has smallest AIC or
BIC.

Forecasting with Time-Series Models
When we introduced the concept of stochastic process as models for time

series at the beginning of the course, it was with the ultimate objective of using
the models to infer from the past history of a series its likely course in the future.
More precisely we want to derive from a model the conditional distribution of
future observations given the past observations that it implies. This final step in
the model building process is what we refer loosely as forecasting. It should be
noted that in practice the model in hand is never the hypothetical ”true” process
generating the data we have observed. Rather, it is an approximation to the
generating process and is subject to errors in both identification and estimation.
Thus, although we shall discuss forecasting as if we knew the generating process,
it is clear that our success in practice will depend in part on the adequacy of our
empirical model and therefore on success in the preceding stages of identification
and estimation.

Minimum Mean-square-error Forecasts

The main motivation for beginning the discussion about forecasting with the
conditional expectation is that in many operational contexts it is desirable to be
able to quote a point forecast, a single number, and the conditional expectation
has the desirable property of being the minimum mean square error forecast.
That is, if the model is correct, there is no other extrapolative forecast which
will produce errors whose squares have smaller expected value.
Although we have not discussed how conditional expectations are computed,

this general result is easily demonstrated as follows.
Given the availability of a set of observations up to, and including yT , the

optimal predictor l steps ahead is the expected value of yt+l conditional on the
information at time t = T . This may be written as

byt+l|T = E∗(yt+l|IT )
18



The predictor is optimal in the sense that has minimum mean square error.
This is easily seen by observing that for any predictor, E(yt+l|IT ), constructed
on the basis of the information available at time T , the forecasting error can be
split into parts:

yt+l − byt+l|T = [yt+l −E(yt+l|IT )] + [E(yt+l|IT )− byt+l|T ]
Since the second term on the right hand side is fixed at time T , it follows

that, on squaring the whole expression and taking expectations at time T , the
cross-product term disappears leaving.

MSE(byt+l|T ) = V ar(byt+l|T ) + [byt+l|T −E(yt+l|IT )]2
In the first term on the right hand side, the conditional variance of yt+l ,

does not depend on byt+l|T . Hence the minimum mean square estimate (MMSE)
of yt+l is given by the conditional mean and it is unique.

Computation of Conditional Expectation
Forecasts

One-Step-Ahead Forecasts
We now consider the question of how to construct an MMSE of a future

observation from an ARMA process, given observations up to and including
time T . The ARMA process is assumed to be stationary and invertible, with
known parameters and independent disturbances with mean zero and constant
variance σ2.
The equation of an ARMA(p, q) model at time T+1 is

yT+1 = φ1yT + φ2yT−1 + .....+ φpyT−p+1+
εT+1 + θ1εT + θ2εT−1 + ...+ θqεT−q+1

then

byt+1|T = φ1yT + φ2yT−1 + ....+ φpyT−p+1+
θ1εT + θ2εT−1 + ...+ θqεT−q+1

Since all variables with time subscripts through period T have been realised
(are no longer random) and E(εT+1|IT ) = 0.
For the numerical evaluation of byt+l|T from the above equation we need a

value for the disturbances.

Optimal predictions for ARMA models
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We now consider the question of how to construct an MMSE of a future
observation from an ARMA process, given observations up to and including
time T . The ARMA process is assumed to be stationary and invertible, with
known parameters and independent disturbances with mean zero and constant
variance σ2.
The equation of an ARMA(p, q) model at time T + l is

byT+l|T = φ1byT+l−1|T + φ2byT+l−2|T + ....+ φpbyT+l−p|T+
εT+l|T + θ1ε̂T+l−1|T + θ2ε̂T+l−2|T + ...+ θq ε̂T+l−q

l = 1, 2, .....
WherebyT+j|T = yT+j for j ≤ 0 and ε̂T+j|T =

½
0 for j > 0
εt+j for j ≤ 0 .

This expression provides a recursion for computing optimal predictions of
the future observations.
Example 1 For the AR(1) process

yT+l = φ1yT+l−1 + εT+l at time T + l

byT+l|T = φ1byT+l−1|T l = 1, 2, ......

The starting value is given by byT |T = yT , and so the previous equation may
be solved to yieldbyT+l|T = φl1yT
thus the predicted values decline exponentially towards zero, and the forecast

function has exactly the same form as the autocovariance function.
Let us calculate the forecast error for this process

yT+l − byT+l|T = φ1yT+l−1 + εT+l − φl1yT

= φl1yT + εT+l + φ1εT+l−1 + φ21εT+l−2 + ...+ φl−11 εT+l − φl1yT

Then, the variance of the forecast error l periods ahead is given by

V (yT+l − byT+l|T ) = V (εT+l + φ1εT+l−1 + φ21εT+l−2 + ...+ φl−11 εT+l)

= (1 + φ21 + φ41 + ...+ φ
2(l−1)
1 )σ2

Note that the variance of the forecast error increases (nonlinearly) as l be-
comes large.
Example 2
At time T + 1, the equation for an MA(1) process is of the form
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yT+1 = εT+1 + θ1εT

Then in general

byT+l|T = ε̂T+l|T + θ1ε̂T+l−1|T

byT+l|T = θ1εT for l = 1

= 0 for l > 1.

The variance of the forecast error for a MA(1) is

V (yT+l − byT+l|T ) = σ2 for l = 1
= (1 + θ21)σ

2 for l > 1

Thus the forecast error variance is the same for a forecast 2, 3, etc periods
ahead, etc.

The ARMA(1,1) Process

yt = φ1yt−1 + εt + θ1εt−1

byT+l|T = φ1yT + θ1εT for l = 1
= φ1byT+l−1|T for l > 1
= φl1yT + φl−11 θ1εT

(derive the MSE of the forecast as before).

Measuring the Accuracy of Forecasts

Various measures have been proposed for assessing the predictive accuracy
of forecasting models. Most of these measures are designed to evaluate ex-post
forecasts. The most well known are
The Root Mean Squared Error

RMSE =

vuut1

l

T+lX
i=T+1

(bYi − Yi)2
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where l is the number of periods being forecasted
The Mean Absolute Error.

MAE =
1

l

T+lX
i=T+1

|bYi − Yi|
Which indicator should be used depends of the purpose of the forecasting

exercise. The RMSE will penalize big errors more than the MAE measure.
Consider the following two models, say 1 and 2. Assume model 1 forecasts

accurately most of the time but performs very badly for an unusual observation.
On the other hand assume that model 2 forecasting performance is poor most of
the time but predicts the unusual observation with small error. Comparing the
forecasting performances of these models whenever we use the RMSE indicator
we would probably favour model 2, and favour model 1 when the MAE criteria
is used. In this extreme experiment the preferred model depends very much on
the preferences of the user, that is whether she prefers to forecast most of the
time poorly but get right the unusual observation ( e.g. a devaluation of the
currency) or have most of the time a good forecast even if forecasts completely
bad the unusual observation ( buy pounds on tuesday before black Wednesday).

Appendix 1
White’s Theorem

Theorem 1 If {Yt}∞t=1 is a martingale difference sequence with Y T =
1

T

P
Yt

and

• E(Y 2t ) = σ2t with σ
2
t
P→ σ2

• The moments E|Yt|r exist for r ≥ 2

• 1

T

P
Y 2t

P→ σ2

then it can be shown that
√
TY T ˜ N(0,σ

2).

Consider now the following infinite moving average representation for Yt,

Yt =
∞X
j=0

ψjεt−j ,
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with E(εt) = 0, E(ε2t ) = σ2, and define the randomvariable Xt = εtYt−k for
k > 0. Then, Xt is a martingale difference (if εt is iid, εtεt−1 is a martingale
difference) with variance E(X2

t ) = σ2E(Y 2t ) and fourth moment E(ε
4
t )E(Y

4
t ) <

∞.

Now if we can prove that
1

T

P
X2
t
P→ E(X2

t ) we would be under the condi-

tions of the White theorem and can use that
√
TXT =

1√
T

P
Xt˜N(0, E(X

2
t )).

or alternatively

1√
T

X
εtYt−k˜N(0,σ2E(Y 2t ))

Proposition 2
1

T

P
X2
t
P→ E(X2

t ) :

Proof. To prove proposition first note that
1

T

P
X2
t =

1

T

P
ε2tY

2
t−k =

1

T

P
(ε2t − σ2)Y 2t−k +

1

T

P
σ2Y 2t−k

P→ σ2E(Y 2t ).This results arise since

(i) (ε2t−σ2)Y 2t−k is a martingale difference with finite second moments
and therefore

1

T

P
(ε2t − σ2)Y 2t−k

P→ 0,

(ii)
1

T

P
σ2Y 2t−k

P→ σ2E(Y 2t ).

Then, it follows that
1

T

P
X2
t
P→ σ2E(Y 2t ) = E(X

2
t ).

Asymptotics of an AR(p) process.

Consider an autoregressive process

xt = µ+ φ1xt−1 + φ2xt−2 + ...+ φpxt−p + εt

We may write the standard autoregressive model in regression notation

yt = ztβ + ut

where yt = xt, zt = {1, xt−1, xt−2, ...xt−p}0, etc.
Here we cannot assume ut is independent of zt+1 , although is independent

of zt . Without this we cannot apply any of the small sample results and have
to rely on asymptotic results.
Consider the OLS estimator of β. Then we can write

√
T (bT − β) = ((1/T )

X
ztz

0
t)
−1((1/

√
T )
X

ztut)
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where

((1/T )
X

ztz
0
t)
−1 =


1 T−1

P
xt−1 . T−1

P
xt−1

T−1
P
xt−1 T−1

P
x2t−1 . T−1

P
xt−1xt−p

. . . .
T−1

P
xt−p T−1

P
xt−pxt−1 . T−1

P
x2t−p


−1

The elements of the first row converge in probability to µ = E(xt) and
T−1

P
xt−ixt−j converges in probability to E(xt−ixt−j) = γi−j + µ2

Then ((1/T )
P
ztz

0
t)
−1 converges in probability to Q−1, with the elements

of Q defined as above.
For the second term ztut is a martingale difference with positive definite

variance covariance given by E(ztututz0t) = E(u2t )E(ztz0t) = σ2Q.
Then using standard arguments

((1/
√
T )
X

ztut) L−→ N(0,σ2Q)

(notice that p lim 1
T

P
var(ztut) = σ2Q since ztut sequence of random vec-

tors withE(ztut) = 0 (a martingale difference) and (ztututz0t) = E(u2t )E(ztz0t) =
σ2Q.)
Then it follows that

√
T (bT − β) L−→ N(0,σ2Q−1)

(since ((1/T )
P
ztz

0
t)
−1 P→ Q−1 and

√
T (bT−β) = (1/T )

P
ztz

0
t)
−1((1/

√
T )
P
ztut) L−→ N(0,σ2Q−1QQ−10)

N(0,σ2Q−1).)

For an AR(1).

yt = φ1yt−1 + εt

Then Q = E(y2t−1) = γ0 = σ2/(1− φ2).
and√
T (φ̂T − φ) L−→ N(0,σ2(σ2/(1− φ2))−1) = N(0, (1− φ2))

Appendix 2
Forecasts based on Linear Projections and Updating these Projec-

tions.
Consider
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P (YT+1|Xt) = α0Xt
Then, if

E[(Yt+1 − α0Xt)X 0
t] = 0,

α0Xt is called a linear projection of Yt+1 on Xt .
Properties of linear projections

(i) E(Yt+1X
0
t) = α0E(XtX 0

t)

then
α0 = E(Yt+1X 0

t)(E(XtX
0
t))
−1

(ii) The mean square error associated with a linear projection is given by
E(Yt+1 − α0Xt)2 = E(Yt+1)

2 − E(Yt+1Xt)(E(XtX 0
t))
−1E(XtYt+1) (once

we substitute and rearrange terms)

(iii) If Xt includes a constant, then projection of aYt+1 + b on Xt

P (aYt+1 + b|Xt) = aP (Yt+1|Xt) + b

Updating a linear Projection and Triangular Factorizations
a) Triangular Factorizations

Consider the following Matrix

Ω =

 Ω11 Ω12 Ω13
Ω21 Ω22 Ω23
Ω31 Ω32 Ω33


Assume Ω is symmetric.
Now multiply the first row by Ω21Ω

−1
11 and subtracting the result from the

second row it yields a zero in (2, 1), while multiplying the first row by Ω31Ω
−1
11 and

subtracting the result from the third row it yields a zero in (3, 1)
Then if we pre-multiply by

E1 =

 1 0 0
−Ω21Ω−111 1 0
−Ω31Ω−111 0 1



E1Ω =


Ω11 Ω12 Ω13
0 Ω22-Ω21Ω

−1
11 Ω12| {z }

h22

Ω23-Ω21Ω
−1
11 Ω13| {z }

h23

0 Ω32-Ω31Ω
−1
11 Ω12| {z }

h32

Ω33-Ω31Ω
−1
11 Ω13| {z }

h33


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Then

E1ΩE
0
1 =

 Ω11 0 0
0 Ω22-Ω21Ω

−1
11 Ω12 Ω23-Ω21Ω

−1
11 Ω13

0 Ω32-Ω31Ω−111 Ω12 Ω33-Ω31Ω−111 Ω13

 = H

H =

 h11 0 0
0 h22 h23
0 h32 h33


Repeating the same line of reasoning let define

E2 =

 1 0 0
0 1 0
0 -h32h

−1
22 1



E2H =

 h11 0 0
0 h22 h23
0 0 h33-h32h

−1
22 h23


and

E2HE
0
2 =

 h11 0 0
0 h22 0
0 0 h33-h32h

−1
22 h23

 = D
Then Ω can always been written in the following way Ω = ADA0 where

A = (E2E1)
−1 = E−11 E−12 .

Where

E−11 =

 1 0 0
Ω21Ω

−1
11 1 0

Ω31Ω
−1
11 0 1

 ,

E−12 =

 1 0 0
0 1 0
0 h32h

−1
22 1

 and

A =

 1 0 0
Ω21Ω

−1
11 1 0

Ω31Ω
−1
11 h32h

−1
22 1


Updating a Projection

Let Y = {Y1, Y2, ...Yn}0be a vector of random variables whose second moment
is
Ω = E(Y Y 0)
Let Ω = ADA0 be a triangular factorization of Ω and define W
W = A−1Y
Then E(WW 0) = D, and the W are random variables which are uncorre-

lated.
Consider n = 3
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Then

 1 0 0
Ω21Ω

−1
11 1 0

Ω31Ω
−1
11 h32h

−1
22 1

 W1

W2

W3

 =
 Y1
Y2
Y3


The first equation states
W1 = Y1
The second equation Ω21Ω

−1
11W1 +W2 = Y2 , and defining α = Ω21Ω

−1
11 and

using the first equation we have E(W2W1) = 0 (because of the orthogonaliza-
tion) = E((Y2 − αY1)Y1) = 0.
Then the triangular factorization can be used to infer the coefficient of a lin-

ear projection. In general row i of A has the interpretation of a linear projection
of Yi on Y1 .
Then W2 has the interpretation of the residual of a linear projection of Y2

on Y1 so its MSE is E(W2W
0
2) = D22 = Ω22-Ω21Ω

−1
11 Ω12

The third equation states that
Ω31Ω

−1
11W1 + h32h

−1
22W2 +W3 = Y3

or
W3 = Y3 − Ω31Ω−111 Y1 − h32h−122 (Y2 − Ω21Ω−111 Y1)
Thus W3 is the residual of subtracting some linear combination of Y1 and

Y2 from Y3 , and this residual is uncorrelated by construction with either W1 or
W2 , E(W3W1) = E(W3W2) = 0.
Then
E[(Y3 − Ω31Ω−111 Y1 − h32h−122 (Y2 − Ω21Ω−111 Y1))Wi] i = 1 or 2.
Then the linear projection is
P (Y3|Y2, Y1) = Ω31Ω−111 Y1 + h32h−122 (Y2 − Ω21Ω−111 Y1)
with MSE = D33 = h33-h32h

−1
22 h23

This last expression gives a convenient formula for updating a linear pro-
jection. Suppose we want to forecast Y3 and have initial information about Y1
.
Then
P (Y3|Y1) = Ω31Ω−111 Y1.
Let Y2 represent some new information with which we want to update the

forecast. If we where just asked the magnitude of Y2 on the basis of Y1 alone
we get
P (Y2|Y1) = Ω21Ω−111 Y1.
On the other hand we know that
P (Y3|Y1, Y2) = Ω31Ω−111 Y1 + h32h−122 (y2 − Ω21Ω−111 Y1)
Then

P (Y3|Y1, Y2) = P (Y3|Y1) + h32h−122 (y2 − P (Y2|Y1))
so we can thus optimally update the forecast P (Y3|Y1) by adding to it a

multiple h32h
−1
22 of the unanticipated component of the new information.
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Notice that h22 = E(Y2 − P (Y2|Y1))2 and h32 = E(Y2 − P (Y2|Y1))(Y3 −
P (Y3|Y1)), then the projection formulae might be written as.

P (Y3|Y1, Y2) = P (Y3|Y1)
+E(Y2 − P (Y2|Y1))(Y3 − P (Y3|Y1)).(E(Y2 − P (Y2|Y1))2)−1(Y2 − P (Y3|Y1)).
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