
Arch Models
Most investors dislike risk taking and require a premium for holding assets

with risky payoffs. The variance of an asset has been used to measure risk, and
split the risk into a company specific component, which is diversifiable, and a
market component which cannot be diversified. This measure of the uncondi-
tional volatility does not recognize that there may be predictable patterns in
stock market volatility. We will analyze models of conditional (on information
at time t-1) volatility. These type of models have the implication for finance
that investors can predict the risk. This type of models successfully character-
ize the fact that stock prices seem to go through long periods of high and long
periods of low volatility.
The fact that market participants may predict volatility has important impli-

cations The most important is that for periods where the investor has forecasted
prices to be very volatile, she should either exit the market or require a large
premium as a compensation for bearing an unusual high risk.

Empirical Regularities of Asset Returns.
i Thick Tails

Asset returns tend to be leptokurtotic . The documentation of this empirical
regularity is presented in Mandelbrot (1965).

ii Volatility Clustering

" ... large changes tend to be followed by large changes, of either sign and
small changes tend to be followed by small changes "

iii Leverage Effects

The so-called "leverage effect" first noted by Black(1976) refers to the ten-
dency for stock prices to be negatively correlated with changes in stock volatility.
A firm with debt and equity outstanding typically becomes more highly lever-
aged when the value of the firm falls. This raises the equity return volatility.

iv) Non-Trading Periods

Information that accumulates when financial markets are closed is reflected
in prices after the markets reopen. If for example, information accumulates
at a constant rate over calendar time, then the variance of the returns over the
period from Friday close to the Monday close should be three times the variance
from the Monday close to the Tuesday close.

v) Forecastable Events
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Patell and Wolfson (1979,1981) show that individual firm’s stock returns
volatility is high around earning announcements.

Introduction: Conditional and Unconditional moments

Before presenting the alternative Arch type models, we will briefly review
the difference between conditional and unconditional moments.
Let us assume that yt follows a random walk, i.e.

yt = yt−1 + εt

Then

yt = y0 +
tX
i=1

εi

Unconditional Moments

The unconditional mean and variance are;

E(yt) = y0
V (yt) = tσ

2

A RW has a constant unconditional mean but a time varying unconditional
variance.

Conditional Moments
The conditional mean and variance are;

E(yt|yt−1) = yt−1
V (yt|yt−1) = E(yt −E(yt|yt−1))2 = E(yt−1 + εt −E(yt|yt−1))2 = σ2

A RW has a constant unconditional mean but a time varying unconditional
variance.
So while the unconditional variance of a random walk model tends to infinite

as t increase, the conditional variance is constant.
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Univariate Parametric Models

Arch Models
In the linear Arch(q) model originally introduced by Engle(1982), the time

varying conditional variance is postulated to be a linear function of the past q
squared innovations.

σ2t = ω +

qX
i=1

αiε
2
t−i = w + α(L)ε2t−1

A sufficient condition for the conditional variance to be positive is that the
parameters of the model satisfy the following constraints; ω > 0 and α1 >
0,α2 > 0, , ....αq > 0
Defining νt ≡ ε2t − σ2t , the ARCH(q) model can be re-written as

ε2t = ω + α(L)ε2t−1 + νt

( Notice that σ2t = E(ε
2
t |ε2t−1, ε2t−2, .....)) Since Et−1(νt) = 0, the model corre-

sponds to an AR(q) model for the squared innovations, ε2t . Then, the process
is covariance stationary if and only if the sum of the positive autoregressive
parameters is less than one, in which case the unconditional variance equals

V ar(ε2t ) = ω/(1− α1 − α2...− αq).

Even though εt ’s are serially uncorrelated they are clearly not independent
through time. In accordance with the stylized facts for assets returns discussed
above, there is a tendency for large (small) absolute values of the process to be
followed by other large (small) values of unpredictable sign.

The ARCH(1) Model

Constant unconditional Variance but non-constant conditional Variance.

Some useful statistical results are given below for the simplest ARCH(1)
model, which is identical to the one used by Engle (1982). The main result
is that this simple model exhibits constant unconditional variance but non-
constant conditional variance.
Consider the following model

yt = µ+ εt

εt = ut(ω + αε2t−1)
1/2, ut˜IIN(0, 1),ω > 0,α > 0

(NOTICE that (ω+αε2t−1)
1/2 is the conditional standard deviation, σt defined

as (E(ε2t |ε2t−1, ε2t−2, .....))1/2 .
i) The conditional expectation of εt is equal to zero

E(εt|εt−1) = E(ut|εt−1)(ω + αε2t−1)
1/2 = 0
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Notice that E(ut|εt−1) = E(ut) = 0, since ut ~IIN(0,1)

ii) The conditional variance is given by the following formula

V ar(εt|εt−1) = E(u2t |εt−1)(ω + αε2t−1) = (ω + αε2t−1)

Notice that E(u2t |εt−1) = E(u2t ) = 1, since ut ~IIN(0,1)
Then the conditional mean and variance of yt are given by the following

formulae;

E(yt|yt−1) = µ

V ar(yt|yt−1) = (ω + αε2t−1)

Then, the conditional variance of yt is time varying. On the other hand it
can be easily seen that the unconditional variance is time invariant whenever ε2t
is stationary, i.e.

V (yt) = V (εt) = ω/(1− α)

whenever the process is stationary.
( since V (εt) = E(ε2t ) = E(ω + αε2t−1) = ω + αE(ε2t−1) )

First Order Autoregressive Process with ARCH effects.

For more complicated models such as AR(1)-ARCH(1), we obtain similar
results provided that the process for y is stationary, i.e. that the autoregressive
parameter is smaller than one in absolute value.
Assume the following first order autoregressive process

yt = θyt−1 + εt

where εt = ut(ω + αε2t−1) and ut ~IIN(0,1) , ω >0 , α> 0
then

i) The conditional expectation of εt is equal to zero

E(εt|εt−1) = E(u2t |εt−1)(ω + αε2t−1) = 0 since E(ut|εt−1) = E(ut) = 0

ii) The conditional variance is given by the following formula
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V ar(εt|εt−1) = E(u2t |εt−1)(ω + αε2t−1) = (ω + αε2t−1)

since E(u2t |εt−1) = E(ut) = 1
Then the conditional mean and variance of yt are given by the following

formulae;

E(yt|yt−1) = θyt−1

V ar(yt|yt−1) = (ω + αε2t−1)

To find the unconditional variance of yt we recall the following property for
the variance;

V ar(yt) = E(V ar(yt|yt−1)) + V ar(E(yt|yt−1))

then

i) E(V ar(yt|yt−1)) = E(ω + αε2t−1) = ω + αE(ε2t−1) = ω + αV ar(εt−1)

ii) V ar(E(yt|yt−1)) = θ2V ar(yt−1)

Then if the process is covariance stationary we have

V ar(yt) =
ω + αV ar(εt−1)

(1− θ2)

=
ω

(1− α)(1− θ2)

(Since V ar(εt−1) = ω/((1− α))

GARCH Models

In empirical applications it is often difficult to estimate models with large
number of parameters, say ARCH(q). To circumvent this problem Bollerslev
(1986) proposed the Generalized ARCH or GARCH(p, q) model,

σ2t = ω +

qX
i=1

αiε
2
t−i +

pX
i=1

βiσ
2
t−i

= ω + α(L)ε2t−1 + β(L)σ2t−1

A sufficient condition for the conditional variance in the GARCH(p, q) model
to be well defined is that all the coefficients in the infinite order linear ARCH

5



model must be positive. Provided that α(L) and β(L) have no common roots
and that the roots of the polynomial in L, (1 − β(L)) = 0 lie outside the unit
circle, this positive constraint is satisfied, if and only if, the coefficients of the
infinite power series expansion for α(L)/(1− β(L)) are non-negative.
Rearranging the GARCH(p, q) model by defining νt ≡ ε2t − σ2t , it follows

that

ε2t = ω + (α(L) + β(L))ε2t−1 − β(L)νt−1 + νt

which defines an ARMA( Max(p, q),p) model for ε2t
By standard arguments, the model is covariance stationary if and only if all

the roots of (1− α(L)− β(L)) lie outside the unit circle.
If all the coefficients are positive, this is equivalent to the sum or the autore-

gressive coefficients being smaller that 1.
The analogy to ARMA class of models also allows for the use of standard

time series techniques in the identification of the orders of p and q.
In most empirical applications with finitely sampled data, the simple GARCH(1, 1)

is found to provide a fair description of the data.

Persistence and Stationarity

Using the GARCH(1,1) model it is easy to construct multi period forecasts
of volatility. When α+β < 1, the unconditional variance of εt+1 is ω/(1−α−β).
If we re-write the following GARCH(1,1) as

σ2t = ω + αε2t−1 + βσ2t−1
= ω + α(ε2t−1 − σ2t−1) + (α+ β)σ2t−1

The coefficient measures the extent to which a volatility shock today feeds
through into next periods volatility, while (α + β) measures the rate at which
this effect dies over time. Recursively substituting and using the law of iterated
expectations, the conditional expectation of volatility j periods ahead is,

Et[σ
2
t+j ] = (α+ β)j(σ2t − ω/(1− α− β)) + w/(1− α− β)

The multi period volatility forecast reverts to its unconditional mean at rate
(α+ β).

IGARCH Models

Integrated GARCH models are processes were the autorregresive part of the
square residuals has a unit root, i.e., (α+ β) = 1. For this case the conditional
expectation of the volatility j periods ahead is

Et[σ
2
t+j ] = σ2t + jω.
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This process looks very much as a random walk with drift ω. Then, if εt follows
an IGARCH process the unconditional variance does not exist and therefore
it is not covariance stationary. Nelson(1990) shows that the analogy with the
random walk process should be treated with caution since the IGARCH process
is not covariance stationary but it may be proved to be strictly stationary.
For example when ω = 0, Et[σ2t+j] = σ2t , so volatility is a martingale. But

the volatility remains bounded , since it cannot be negative, and then using the
fact that a bounded martingale must converge, we can show that it converges
to zero, a degenerate distribution.
Despite the fact that it seems to be an empirical regularity that volatility is

IGARCH (many estimated models have coefficients that sum near 1) we regard
this type of process as unlikely. (see section on structural breaks and GARCH
models)

EGARCH Models

Even if GARCH models successfully capture thick tailed returns, and volatil-
ity clustering, are not well suited to capture the "leverage effect" since the con-
ditional variance is a function only of the magnitudes of the lagged residuals
and not their signs
In the exponential GARCH (EGARCH) model of Nelson (1991) σ2t depends

on both the size and the sign of lagged residuals.

EGARCH(1,1) Models

lnσ2t = α0 + β1 lnσ
2
t−1 + γ0([|εt−1/σt−1|− (2/π)1/2] + δ(εt−1/σt−1))

Obviously the EGARCH model always produces a positive conditional variance
σ2t for any choice of α0, β1, γ0 and so that no restrictions need to be placed
on these coefficients (except |β1| < 1). Because of the use of both |εt/σt| and
(εt/σt), σ2t will also be non-symmetric in εt and, for negative δ, will exhibit
higher volatility for large negative εt .

Other ARCH Specifications

Glosten, Jagannathan and Runkle (1989) proposed the following specifica-
tion:

εt = σtνt , where vt is iid.

σ2t = α0 + β1σ
2
t−1 + α1ε

2
t−1 + α2ε

2
t−1It−1,

where, It−1 = 1 if εt−1 ≥ 0 and It−1 = 0 if εt−1 < 0.
The non-negativity condition is satisfied provided that all the parameters

are positive. If leverage effects do exist, α2 < 0.

7



Additional Explanatory Variables.

It is straightforward to add other explanatory variables to a GARCH spec-
ification. Glosten, Jagannathan and Runkle(1993) add a short-term nominal
interest rate to various GARCH models and show that it has a significant pos-
itive effect on stock market volatility.

σ2t = ω + βσ2t−1 + αε2t−1 + γXt−1,

where X is any positive variable.

GARCH in Mean Models

Many theories in finance assume some kind of relationship between the mean
of a return and its variance . A way to take this into account is to explicitly
write the returns as a function of the conditional variance or, in other words, to
include the conditional variance as another regressor. GARCH in Mean Models
allow for the conditional variance to have mean effects. Most of the time this
conditional variance term will have the interpretation of a time varying risk
premium.
Consider the following model.

yt = θxt + ψσ2t + εt

and
σ2t = ω + α(L)ε2t−1 + β(L)σ2t−1

Consistent estimation of θ and ψ is dependent on the correct specification of the
entire model. The estimation of GARCH in Mean type of models is numerically
unstable and many empirical applications have used ARCH-M type of models
which are easier to estimate.
An ARCH in Mean model simply models the conditional variance as an

ARCH model instead of modeling as GARCH, i.e.

σ2t = ω + α(L)ε2t−1

Example of an ARCH(1)-M
Consider a simple version of the above model.

yt = ψσ2t + εt

where εt = vtσt vt ~N(0,1)

σ2t = w + ω + αε2t−1

Then yt may be expressed as

yt = ψ(ω + αε2t−1) + εt
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Then the expected value of yt is

E(yt) = ψω + ψαE(ε2t−1)

and using that E(ε2t−1) = ω/(1− α)then

E(yt) = ψω + ψαω/(1− α)

Which can be viewed in finance models as the unconditional expected return
for holding a risky asset.

Testing for Arch

Before attempting to estimate a GARCH model you should first check if
there are ARCH effects in the residuals of the model. Clearly we should not
explicitly model (and estimate) the conditional volatility of series as GARCH
when there are not signs of Arch effects.
The original Lagrange Multiplier test for ARCH proposed by Engle (1982) is

very simple to compute, and relatively easy to derive. Under the null hypothesis
it is assumed that the model is say an AR(p) model

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt

where εt is a Gaussian white noise process, εt|It−1 ~N(0,σ2)where It is the in-
formation set. The Alternative hypothesis is that the errors are ARCH(q).

The test for ARCH(q) effect simply consists on regressing

ε̂2t = α1ε̂
2
t−1 + α2ε̂

2
t−2 + ...+ αq ε̂

2
t−q + ψt

Under the null hypothesis that α1 = α2 = ... = αq = 0, and TR2 is asymptoti-
cally distributed χ(q), where T is the number of observations.
While this is the most widely used test we should be cautious in interpret-

ing the results. If the model is misspecified it is quite likely to reject the null
hypothesis simply because most of the time serial correlation in the residuals
will induce serial correlation in the squared residuals.

Structural Breaks and ARCH effects

It has been shown ( Diebold (1986) ) that breaks in the variance, which are
not taken into account by the econometrician, will look as ARCH effects when
the whole sample is used. In other words, it might be that for a sub sample the
unconditional variance changes from say to and then back to the previous level.
In this case to model the conditional variance as an ARCH model will be the
wrong thing to do. In this case, it is recommended to divide the sample and
test for ARCH for the sub periods, if no ARCH effects are found for any of the
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sub periods but are found for the whole sample that is a clear indication of a
break in the unconditional variance and not of ARCH effects. Many researchers
wrongly estimated GARCH Models in many situations where there was only a
change in regime. For example many papers use GARCH models to fit interest
rate series for USA when the change in the Volatility was simply a result of the
different operative procedures of the Federal Reserve (a different distribution).

GARCH Effects and Sampling Frequency

It can be proved that GARCH models do not temporarily aggregate, or in
other words if a model is GARCH using daily data cannot be GARCH with
weakly data and so on. Given that we don’t observe the data generating pro-
cess in practice is very difficult to determine at which sampling frequency the
data presents GARCH effects (if it has at all). Nevertheless there are some well
established empirical regularities that show that the higher is the sampling fre-
quency (say daily) the higher the GARCH effects. Weakly and every forth night
data seem to also present GARCH effect. Monthly data usually does not have
GARCH effects and whenever these are detected, are usually due to a structural
break of the unconditional variance.

Estimating GARCH Models

Maximum likelihood Estimation with Gaussian Errors
The estimation of GARCH type models is easily done by conditional maxi-

mum likelihood.
If the model to be estimated is

yt = xtθ + εt

Where xt is a (row) vector of predetermined variables, which could include
lagged variables, θ is a parameter vector and εt ~N(0,σ2t ), where the conditional
variance is assumed to be GARCH(1,1), i.e. ;

σ2t = ω + αε2t−1 + βσ2t−1

Then the conditional distribution of yt is

f(yt|xt, It−1) = (2πσ2t )−.5 exp(−.5(yt − xtθ)2/σ2t )
Then the conditional log likelihood is

logL(θ,ω,α,β|It−1) =
TX
t=1

(−.5 log(2π)− .5 log(σ2t )− .5σ−2t (yt − xtθ)2)

Notice that at time 1 we need initial values for ε0 and σ20. These values are
usually assumed to be the equilibrium values, that is σ20 = ω/(1− α− β) and
ε0 = (ω/(1− α− β)).5
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Maximum likelihood Estimation with non Gaussian Errors

The unconditional distribution of many financial time series seems to have
fatter tails than the normal. GARCH effects may not account for this and
we need to use another distribution for εt . A tractable distribution is the
t-distribution. We proceed as before but replace the Normal density function
by

f(εt) = (Γ[(ν + 1)/2]/Γ(ν/2))((ν − 2)πσ2t )−.5[1 + (ε2t/(σ2t (ν − 2))]−(ν+1)/2

Where n is a parameter to be estimated which represents the degrees of freedom.
We estimate as before numerically subject to the constraint that n is greater
than 2.

Stochastic Volatility Models

A possible response to non-normality of returns conditional upon past re-
turns is to assume that there is a random variable conditional upon which
returns are normal, but this variable-which we may call stochastic volatility-is
not directly observed.
A simple example of a stochastic-volatility model is the following:

ηt = εte
αt/2,αt = φαt−1 + ξt

where εt ~N(0,σ2ε), ξt ~N(0,σ
2
ξ), and we assume that εt and ξt are serially

uncorrelated and independent of each other.
If we squared ηt, the returns equation, and take logs we can write this

expression as

log(η2t ) = αt + log(ε
2
t ), αt = φαt−1 + ξt

This is in linear state-space (to be covered in the course) form except that has
an error with a log χ2 distribution instead of a normal distribution.

How to compare Between Different GARCH - Specifications

Most of the GARCH models are non-nested (they cannot be written as a
restricted version of a more general process). Therefore the comparison between
different GARCH Models is no straight forward.

Misspecification Tests on the standardized residuals.
We have seen above that the residuals may be written as the product of a

WN and the conditional standard deviation. For example for an ARCH(1) this
can be written as

εt = vt(ω + αε2t−1)
1/2
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Therefore we can test for the existence ARCH effects in the standardized resid-
uals

v̂t = ε̂t/(ω̂ + α̂ε̂2t−1)
1/2

The model that ”cleans” the standardized residuals is a candidate to be the
”true” model.

Some Other Ways Of Discriminating between alternative ARCH
models.

We are going to present two alternative ways of discriminating between
ARCH models; (i) based on the use of auxiliary regressions of the squared
residuals, (ii) based in their forecasting ability.

(i) Comparison between alternative models based on the use of auxiliary
regressions

Pagan and Scwhert (1989) suggest to use the following auxiliary regression
as a mean of choosing between different Arch models.

ε̂2t = α+ βσ̂2t + ξt

This regress the squared residuals on the fitted variance of the alternative
GARCH models. If the chosen GARCH model is appropriate to explain the
conditional volatility of the series under scrutiny, you should expect α to be
zero, β to be one and the fit (R2) to be good.
Pagan and Scwhert (1989) propose to test the joint hypothesis

H0)α = 0, β = 1
H1)α 6= 0, β 6= 1

As a second step, they propose to compare the models that were not rejected
on the basis of goodness of fit. The argument being, the one with better fit the
better that mimics the conditional variance.
They also propose to express the previous regression in logarithms to ac-

count for scale effects and then compare the goodness of fit of this alternative
auxiliary regression.

(ii) Measuring the Accuracy of Forecasts of Different Arch Models.

Hamilton (1994) propose to use the forecasting ability of the different ARCH
models as a way of comparing these models. As we said before, the ARCH type
of models have the property that they allow to forecast the conditional variance
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of a series, therefore a criteria which may enable us to choose between different
models is to choose that one that forecast better.
Various measures (loss functions) have been proposed for assessing the pre-

dictive accuracy of the forecasting ARCH models.
The Mean Squared Error

MSE = (1/T )(
TX
t=1

(ε̂2t − σ̂2t )
2)

The Mean Absolute Error.

MAE = (1/T )(
TX
t=1

|ε̂2t − σ̂2t |)

The Mean Squared Error of the log of the squared residuals.

[LE]2 = (1/T )(
TX
t=1

(ln(ε̂2t )− ln(σ̂2t ))2)

The Mean Absolute Error of the log of the squared residuals.

[MAE]2 = (1/T )(
TX
t=1

|ln(ε̂2t )− ln(σ̂2t )|)

For all the models we calculate the proportional improvement over a model
which assumes constant variance, i.e., σ̂2t = σ̂2 (to account for scale effects).
The model that provides the largest proportional improvement is the one to be
preferred.
Hamilton also propose to compare the forecasting performance at different

horizons (4 and 8 periods). That will slightly modify the above formulae in the
following way;
The Mean Squared Error

MSE = (1/T )(
TX
t=1

(ε̂2t+τ −τ σ̂2t )2)

The Mean Absolute Error.

MAE = (1/T )(
TX
t=1

|ε̂2t+τ −τ σ̂2t |)

The Mean Squared Error of the log of the squared residuals.

[LE]2 = (1/T )(
TX
t=1

(ln(ε̂2t+τ )− ln(σ̂2t ))2)
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The Mean Absolute Error of the log of the squared residuals.

[MAE]2 = (1/T )(
TX
t=1

| ln(ε̂2t+τ )− ln(σ̂2t )|)

where τ σ̂
2
t is the forecast of the variance τ periods ahead given information at

time t.
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