
Non-Stationary Series.
There are three important types of time series which one is likely to find in

financial econometrics:

Stationary.

A (weakly) stationary time series has a constant mean, a constant variance
and and the covariance is independent of time. Stationarity is essential for stan-
dard econometric theory. Without it we cannot obtain consistent estimators.
A quick way of telling if a process is stationary is to plot the series against

time. If the graph crosses the mean of the sample many times, chances are that
the variable is stationary, otherwise that is an indication of persistent trends
away from the mean of the series.

Trend Stationary

A trend stationary variable is a variable whose mean grows around a fixed
trend. This provides a classical way of describing an economic time series which
grows at a constant rate. A trend-stationary series tends to evolve around a
steady, upward sloping curve without big swings away from that curve. De-
trending the series will give a stationary process. For simplicity assume that
the following process.

yt = α+ µt+ εt where εt˜N(0,σ
2)

Notice that the mean of this process varies with time but the variance is
constant.

E(yt) = α+ µt

V (yt) = E(α+ µt+ εt − (α+ µt))2 = σ2

Notice that if you define a new variable, say y∗t , y∗t = yt − (α + µt) then yt
is stationary.

Unit roots

An autoregressive process of order p, AR(p), has a unit root if the polynomial
in L, (1− φ1L− ...φpLp) has a root equal to one.

A Random Walk.

The simplest example of a process with a unit root is a random walk, i.e.,

yt = yt−1 + εt (1)

where εt is i.i.d. with zero mean and constant variance.
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Lagging the process one period we can write

yt−1 = yt−2 + εt−1

Substituting back in equation (1) we get

yt = yt−2 + εt−1 + εt

Repeating this procedure we can easily show that

yt = y0 + ε1 + ε2 + ...+ εt−1 + εt

Mean of a RW process
If y0 is fixed the mean is constant over time

E(yt) = E(y0 + ε1 + ε2 + ....+ εt−1 + εt) = y0

The variance of yt , ”conditional” on knowing y0 , can be computed as

V (yt) = V (y0 + ε1 + ε2 + ....+ εt−1 + εt)

= V (ε1) + V (ε2) + ...+ V (εt−1) + V (εt) = tσ2

As we move further into the future this expression becomes infinite. We conclude
that the variance of a unit root process is infinite.
A unit root process will only cross the mean of the sample very infrequently,

and the process will experience long positive and negative strays away from the
sample mean.
A process that has a unit root is also called integrated of order one,

denoted as I(1). By contrast a stationary process is an integrated of order
zero process, denoted as I(0).

ARIMA(p, d, q)

A common practice using the Box and Jenkins methodology was just to take
first differences of the series and analyze de differenced process. We can then
define an ARIMA(p, d, q) process as
(1− φ1L− ...φpLp)(1− L)dyt = (1 + φ1L− ...+ φqL

q)εt

How do we test for a unit root?

In this section we will show that the standard t-test cannot be applied for
a process with unit root. The standard testing procedure that we use for sta-
tionary series yields a degenerate distribution. We also find the distribution
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under these circumstances but it turns out that is not a t-distribution and that
is biased to the left.
Consider the following model

yt = α+ yt−1 + εt (2)

where εt ”is assumed” to be N(0,σ2). It can easily be shown that asymptot-
ically √

T (α̂T − α) L−→ N(0, (1− α2))

If we where able to use this distribution for α = 1 then
√
T (α̂T − α) P−→ 0

Even though this is valid, it is not very useful for hypothesis testing.
To obtain a non-degenerate asymptotic distribution for α̂T in the unit root

case, it turns out that we have to multiply by T and not by the square root
of T . Then the unit root coefficient converges at a faster rate T than for the
stationary case.
To get a better sense of why scaling by T is necessary when the true value

of α is unity consider

α̂T − α =

PT
t=1 yt−1εtPT
t=1 y

2
t−1

then

T (α̂T − α) =
T−1

PT
t=1 yt−1εt

T−2
PT
t=1 y

2
t−1

Now, under the null that α = 1, yt can be written as

yt = y0 + ε1 + ε2 + ...+ εt−1 + εt

= ε1 + ε2 + ...+ εt−1 + εt if we assume y0 = 0.

Then under the null that α = 1, yt ~N(0,σ2t). To find the distribution of
the numerator we need to do some easy but tedious algebra. We start by noting
that under the null,

y2t = (yt−1 + εt)
2 = y2t−1 + 2yt−1εt + ε2t

and rearranging terms we obtain

yt−1εt =
1

2
(y2t − y2t−1 − ε2t ).

Then, the sum which appears in the numerator can be expressed as

TX
t=1

yt−1εt =
TX
t=1

1

2
(y2t − y2t−1 − ε2t ) =

1

2
(y2T − y20)−

TX
t=1

1

2
ε2t .
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Then, recalling that y0 = 0 and multiplying by (T−1) we obtain the expression
of the numerator as the sum of two terms

T−1
TX
t=1

yt−1εt = (
1

2T
)y2T −

TX
t=1

(
1

2T
)ε2t

To find the distribution of this expression we divide each side by σ2 which
yields the following result

(σ2T )−1
TX
t=1

yt−1εt = (1/2)(
yT

σ
√
T
)2 −

TX
t=1

(
1

2σ2T
)ε2t

Consider the first term of this expression. Since we have shown above that
yt ~N(0,σ2t), standardizing we obtain

(yT /σ
√
T )˜N(0, 1),

and then squaring this expression we find that the first term of the numerator
is distributed Chi-square

(yT/σ
√
T )2˜χ2(1).

It can be shown using the law of large numbers that the second term converges
in probability to σ2, i.e.

(1/T )
TX
t=1

ε2t P−→ σ2, or (1/σ2T )
TX
t=1

ε2t P−→ 1

If we put both results together we can see that the numerator converges to

(σ2T )−1
TX
t=1

yt−1εt L−→ (1/2)(X − 1) where X˜χ2(1).

It can also be shown using the law of large numbers that the the denominator
converges in probability to

E(T−2
TX
t=1

y2t−1).

Now,as yt−1 ~N(0,σ2(t − 1)), then E(y2t−1) = σ2(t − 1). Therefore the
expected value of the denominator can be written as

E(T−2
TX
t=1

y2t−1) = T
−2σ2

TX
t=1

(t− 1) = σ2T−2(T − 1)T/2

Then if we multiply (α̂T − α) by T instead than by
√
T , we obtain a non-

degenerate asymptotic distribution, but this distribution is not gaussian.
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A convenient way of finding the distributions of processes with unit roots is
using continuous time stochastic processes defined below.

Brownian Motion
To show what is a BM we may start first considering a simple RW without

drift.

yt = yt−1 + εt, εt˜N(0, 1)

or
yt = ε1 + ε2 + ...+ εt−1 + εt and yt˜N(0, t)

Now consider the change between t and s

ys − yt = εt + εt+1 + ...+ εs

is ˜N(0, s − t) and is independent of changes between dates r and q whenever
t < s < r < q.
Consider now the change between yt and yt−1 with εt˜N(0, 1), and suppose

we view εt as the sum of two independent Gaussian variables.

εt = e1t + e2t with eit˜N(0, 1/2)

We may associate e1t with the change between yt−1 and yt at some interim
point, say yt−1/2 , such that

yt−1/2 − yt−1 = e1t
and

yt − yt−1/2 = e2t
Sampled at an integer yt−yt−1 ~N(0,1), but we can consider n possible divisions
as above such that,

yt − yt−1 = e1t + e2t + ......+ eNt
where eit ~iid N(0,1/N) .
The limit when N →∞ is a continuous process called a Standard Brownian

Motion. The value this process takes at date t is denotedW (t). A realization of
a continuous time process can be viewed as a stochastic function, denoted W (.)
where W : t ∈ [0,∞)→ R.

Definition of a SBM
W (.) is a continuous time process,associating each date t ∈ [0, 1] with the

scalar W (t) such that
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(a) W (0) = 0

(b) for any dates 0 < t1 < t2... < tk < 1,

W (t2)−W (t1), ......,W (tk)−W (tk−1).
are independent multivariate gaussian with W (ts)−W (tt)~N(0,s− t)

(c) W (t) is continuous with probability 1.

The functional Central Limit Theorem
Recall the simplest version of the Central limit Theorem.
If εt~iid with mean zero and variance σ2, then the sample mean ε̃t =

T−1
PT
t=1 εt and the central limit theorem states that

√
T ε̃T L−→ N(0,σ2)

Consider now an estimator based on the following principle: Given a sample
size T , we calculate the mean of the first half of the sample and throw out the
rest of the observations.

eε[T/2]∗ = ([T/2]∗)−1 [T/2]X
t=1

εt

where [T/2]∗ is the larger integer ≥ than T/2, i.e.
[T/2]∗ = T/2 for T even

[T/2]∗ = (T − 1)/2 for T odd.
This will also satisfy p

[T/2]∗ε̃[T/2]∗ L−→ N(0,σ2)

Moreover the estimator will be independent of an estimator that uses only the
second half of the sample.
More generally we can construct a Variable XT (r) from the sample mean of

the first rth fraction of observations, where r ∈ [0, 1] defined by

XT (r) =
1

T

Tr∗X
t=1

εt

For any given realization XT (r) is a step function in r, with

XT (r) =


0 for 0 ≤ r < (1/T )
ε1/T for (1/T ) ≤ r < (2/T )
(ε1 + ε2)/T for (2/T ) ≤ r < (3/T )
(ε1 + ε2 + ε3 + ε4 + ...+ εT )/T for r = 1
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then
√
TXT (r) = (1/

√
T )

Tr∗X
t=1

εt = (
√
Tr∗/

√
T )(1/

√
Tr∗)

Tr∗X
t=1

εt

but

(1/
√
Tr∗)

Tr∗X
t=1

εt L−→ N(0,σ2) while (
√
Tr∗/

√
T )→ √r

Hence the asymptotic distribution of
√
TX(r) is that of

√
r times a N(0,σ2)

or
√
TXT (r) L−→ N(0,σ2r).
Clearly this implies that

√
TXT (r)

σ
L−→ N(0, r).

Notice that this is evaluated at a given value r (NB

√
TXT (r)

σ
is a random

variable).
We could consider the behaviour of the sample mean based on Tr∗1 through

Tr∗2 for r2 > r1 and conclude that
√
T (XT (r2)−XT (r1))

σ
L−→ N(0, r2 − r1)

Then a sequence of stochastic functions
√
T (XT (.)

σ |∞T=1 has an asymptotic
probability law that is described by a standard brownian motion.

√
T (XT (.))

σ
L−→ W (.) (this is a random function)

This function evaluated at r = 1 is just the sample mean, XT (1) = T−1
PT

t=1 εt,

then when r = 1 the CLT is a special case of this function, that is

√
T (XT (1))

σ
L−→ W (1) =

N(0, 1)

Convergence in Functions
Let S(.) represent a continuous time stochastic process with S(r) repre-

senting its value at some date r for r ∈ [0, 1]. Suppose further that for any
given realization S(.) is a continuous function of r with probability 1, being
{ST (.)}|∞T=1 a sequence of such continuous functions,
We say that

ST (.) L−→ S(.) whenever the following holds:
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a) For any finite collection of k particular dates 0 < r1 < r2.... < rk ≤ 1, the
sequence of k dimensional random vectors yT L−→ y where

yT ≡
·
ST (r1)
ST (rk)

¸
and y ≡

·
S(r1)
S(rk)

¸
b) For each ε > 0 the probability that ST (r1) differs from ST (r2) for any dates

r1 and r2 within a distance δ of each other goes to zero uniformly in T as
δ → 0..

c) P{|ST (0)| > λ}→ 0 uniformly in T as λ→∞.
This definition applies to sequences of continuous functions though XT (r) is

a discontinuous step function. Fortunately the discontinuities occur at count-
able points.

Convergence for a sequence of Random
Functions.

It will be helpful to extend the earlier definition of convergence in probability
to sequences of random functions.
Let {ST (.)}|∞T=1 and {VT (.)}|∞T=1 denote sequences of random continuous

functions with
ST : r ∈ [0, 1]→ R, VT : r ∈ [0, 1]→ R.

Let the scalar YT represent the largest amount by which ST (r) differs from
VT (r).

YT = Sup|ST (r)− VT (r)|
Then {YT }|∞T=1 is a sequence of random variables and we could talk about its
probability limit. If the sequence converges in prob to 0, then we can say that

ST (r) P−→ VT (r) or Sup|ST (r)− VT (r)| P−→ 0.

This can be generalized to sequences of functions. For example, if {ST (.)}|∞T=1
and {VT (.)}|∞T=1 are sequences of continuous functions with VT (.) P−→ ST (.) and
ST (.) L−→ S(.), for S(.) a continuous function, then VT (.) L−→ S(.)

Continuous Mapping Theorem
If g(.) is a continuous functional, which could associate a real variable y with

the stochastic function S(.), then the theorem states that if ST (.) L−→ S(.) and
g(.) is a continuous functional, then g(ST (.)) L−→ g(S(.))
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( Examples of continuous functionals)
y =

R 1
0
S(r)dr or y =

R 1
0
[S(r)]2dr

Example

Given

√
TXT (.)

σ
L−→ W (.) , we can simply use the theorem to get

√
TXT (.) L−→ σW (.)

or

[
√
TXT (.)]

2 L−→ [σW (.)]2

Applications to Unit Root Processes
Example: a Random Walk.

yt = yt−1 + εt εt˜iid(0,σ
2)

or
yt = ε1 + ε2 + ......+ εt−1 + εt

this can be used to express the stochastic function

XT (r) =


0 for 0 ≤ r < (1/T )
y1/T for (1/T ) ≤ r < (2/T )
y2/T for (2/T ) ≤ r < (3/T )
yT /T for r = 1

Notice that the tth rectangle has width 1/T and height yt−1/T. The total
area is then Z 1

0

XT (r)dr = y1/T
2 + y2/T

2 + ...........+ yT−1/T 2

Multiplying both sides by
√
TZ 1

0

√
TXT (r)dr = T

−3/2
TX
t=1

yt−1

But we know from the continuous mapping theorem that as T →∞Z 1

0

√
TXT (r)dr L−→

Z 1

0

[σW (r)]dr
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Figure 1:

( since [
√
TXT (.)] L−→ [σW (.)]), implying

T−3/2
TX
t=1

yt−1 L−→
Z 1

0

[σW (r)]dr

Consider now the following autoregressive process

yt = ρyt−1 + εt εt˜iid(0,σ
2)

(ρ̂T − ρ) =

PT
t=1 yt−1εtPT
t=1 y

2
t−1

then and assume that we want to test the null

H0) ρ = 1 .

T (ρ̂T − 1) =
T−1

PT
t=1 yt−1εt

T−2
PT
t=1 y

2
t−1

Then the distribution of the denominator can be easily obtained since

T−2
TX
t=1

y2t−1 L−→
Z 1

0

[σW (r)]2dr

becuase
[
√
TXT (.)] L−→[σW (.)],
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[
√
TXT (.)]

2 L−→[σW (.)]2,Z 1

0

[
√
TXT (r)]

2dr L−→
Z 1

0

[σW (r)]2dr,

and

T−2
TX
t=1

y2t−1 =
Z 1

0

[
√
TXT (r)]

2dr

(since(XT (r))
2
=


0 for 0 ≤ r < (1/T )
(y1/T )

2 for (1/T ) ≤ r < (2/T )
(y2/T )

2 for (2/T ) ≤ r < (3/T )
. .
(yT /T )

2 for r = 1

and
R 1
0
[
√
TXT (r)]

2dr =

T
³
(y1)

2 /T 3 + (y2)
2 /T 3 + ...........+ (yT−1)

2 /T 3
´
)

Also

T−1
TX
t=1

yt−1εt L−→ (1/2)σ2[W (1)2 − 1]

(Recall that T−1
PT

t=1 yt−1εt = (1/2T )y
2
T −

PT
t=1(1/2T )ε

2
t (when y0 = 0))

then

T (ρ̂T − 1) =
(1/2)σ2[W (1)2 − 1]R 1

0
[σW (r)]2dr

Recall thatW (1)2 is chi square with one degree of freedom. The prob that a
Chi-Square is less than 1 is .68 and since the denominator is positive, the prob
that ρ̂T − 1 is negative approaches 0.68 as T tends to infinity. In other words
in two thirds of the samples generated by a RW, the estimate will be less than
the true value of unity or negative values will be twice as likely than positive
values.
In practice critical values for the random variable T (ρ̂T − 1) are found by

calculating the exact small-sample distribution assuming the innovations are
gaussian, generally by Monte Carlo.

ρ̂T is a super consistent estimator

It follows that ρ̂T is a super consistent estimate of the true value.
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√
T (ρ̂T − 1) =

T−3/2
PT
t=1 yt−1εt

T−2
PT
t=1 y

2
t−1

but the numerator converges to T−
1
2 (1/2)σ2[W (1)2 − 1] . The chi-square

function has finite variance then the variance of the numerator is of order (1/T ),
meaning that the numerator converges in probability to zero, hence

√
T (ρ̂T −1)

P−→ 0

Testing for the existence of unit roots

Consider the following model

yt = µ+ βt+ αyt−1 + εt (3)

where εt ”is assumed” to be N(0,σ2)
We want to test the Hypothesis of the existence of a unit root therefore we

set the following null and alternative hypothesis.
H0) α = 1 ( unit root )
H1) α < 1 ( Integrated of order zero )
The obvious estimator of is the OLS estimator, β̂. The problem is that under

the null hypothesis there is considerable evidence of the non - adequacy of the
asymptotic (approximate in large samples) distribution. Therefore
Equation (3) can be reparameterizied as

∆yt = µ+ (α− 1)yt−1 + βt+ εt

or

∆yt = µ+ λyt−1 + βt+ εt (4)

For this expression the relevant hypothesis should be written as

H0)λ = 0 ( unit root )
H1)λ < 0 ( Integrated of order zero )

Fuller (1976) tabulated, using Monte Carlo methods, critical values for al-
ternative cases, for example for a sample size of 100 the 5 % critical values
are

µ = 0, β = 0 −2.24
µ 6= 0, β = 0 −3.17
µ 6= 0, β 6= 0 −3.73

Therefore the method simply consist to check the t-statistic of λ̂ against the
critical values of Fuller (1976). Notice that the critical values depend on
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i) the sample size

ii) whether you include a constant and/or a time trend.

This procedure is only valid when there is no evidence of serial correlation in
the residuals, ε̂t . To see if this condition is satisfied you should look at the di-
agnostic tests for serial correlation in the regression. If there is serial correlation
you should need to include additional lags, say ∆yt−1,∆yt−2 etc to equation (4)
until the serial correlation of the residuals disappears, that is

Augmented Dickey Fuller

∆yt = µ+ λyt−1 + βt+ α1∆yt−1 + ...+ αk∆yt−k + εt

In this case we chose to augment the regression with k lags. This is usually
denoted as ADF(k). To choose the order of augmentation of the DF regression
several procedures have been proposed in the literature. Some of these consist
in:

(i) choosing k as a function of the number of observations as in Schwert (1989)

k = INT (12 (T/100 )
1/12

)

(ii) information based rules such as AIC and BIC.

(iii) Sequential rules

General to specific seems to be preferable to the other methods.

Small sample properties of the Dickey Fuller tests.

The power ( the ability to reject the null Hypothesis) of the Dickey Fuller
Tests is notoriously weak. Thus it can be difficult to reject the null of a unit root
test even if the true series is stationary. That is, most of the time an ADF test
will not reject the null of unit root even if the true model is an autoregressive
model with an autoregressive coefficient of say .8 (that is an Integrated of order
zero series). In addition the ADF tests often come up with conflicting results
depending in the order of the lag structure. A good practice is to start with a
quite general model and delete the non significant lags of ∆yt.

Phillips-Perron-type tests for unit roots
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The ADF test includes additional lagged terms to account for the fact that
the DGP might be more complicated than an AR(1). An alternative approach
is that suggested by Phillips(1987) and Perron (1988). They make a non-
parametric correction to the standard deviation which provides a consistent
estimator of the variance.
They use

S2Tl = T
−1

TX
t=1

(ε2t ) + 2T
−1

lX
t=1

TX
t=j+1

εtεt−j

S2ε = T
−1

TX
t=1

(ε2t )

where l is the lag truncation parameter used to ensure that the autocorrelation
of the residuals is fully captured.
An asymptotically valid test φ = 1, for

∆yt = µ+ (φ− 1)yt−1 + εt εt˜iiD(0,σ
2)

when the underlying DGP is not necessarily an AR(1) process, is given by the
Phillips Z-test.

Z(τµ) = (Sε/STl)τµ − (1/2)(S2Tl − S2ε )[STl[T 2
TX
t=2

(yt − y)2].5]−1

where τµ is the t-statistic associated with testing the null hypothesis ρ = 1. The
critical values for this test statistic are the same as those used for the same case
in the fuller table. Monte Carlo work suggests that the Phillips-type test has
poor size properties (tendency to over reject when is true) when the underlying
DGP has large negative MA components.

Why is this Important?
The study of econometric models with non-stationary data has been one of

the most important concerns of econometricians in the last 20 years. Therefore
the topic is very vast and we just willmention some of the most important issues.

Spurious Regressions.

Granger and Newbold (1974) have shown that, using I(1), you can obtain
an apparently significant regression (say with a high R2 ) even if the regressor
and the dependent variable are independent. He generated independent random
walks regress one against the other and obtain very high R2 for this equation.
They conclude that this result is spurious. As a rule of thumb whenever you
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obtain a very high R2 and a very low DW you should suspect that the result
are spurious.

Regressing Series that are integrated of the same order

Another important issue is that whenever you try to explain a variable, say
yt , by another variable, say xt , you should check that these variables are inte-
grated of the same order to obtain meaningful results.

Usual problems with ADF tests and possible solutions
Structural breaks and unit roots

We have already mentioned that the ADF test has very low power to reject
the null hypothesis of the existence of a unit root. Therefore is very difficult
using this type of test to distinguish between an autoregressive process with
root, say .95, and a unit root process. This is particularly true if there is a
structural break in the mean of the series. Perron (1988) have shown that an
I(0) process with a structural break in the mean will be difficult to distinguish
from a I(1) process. If we know were the break takes place, the natural thing to
do, is to partial out the break by using dummy variables and test for unit roots
once the break has been partialled out.
A possible solution to try to identify these breaks is to perform the ADF

test recursively and to compute recursive t-statistics.
Perron (1989) showed that if a series is stationary around a deterministic

time trend which has undergone a permanent shift sometime during the period
under consideration, failure to take account of this change in the slope will
be mistaken by the usual ADF unit root test as a persistent innovation to a
stochastic (non-stationary) trend. That is, a unit root test which does not take
into account a break in the series will have very low power. There is a similar
loss in power if there is a shift in the intercept.
If the breaks in the series are known then it is relatively simple to adjust the

ADF test by including dummy variables to ensure there are as many determin-
istic regressors as there are deterministic components in the DGP.
However is unlikely that we will know the break then we can proceed by

using the critical values provided by Banjeree, Lumsdaine and Stock (1992).

Recursive t-statistics

The recursive ADF -statistic is computed using sub samples t = 1..k fork =
k0, .....T , where k is the start up value and T is the sample size of the full sam-
ple. The most general model (with drift and trend) is estimated for each sub
sample and the minimum value of ττ (k/T ) across all the sub samples is chosen
and compared with the table provided by Banjeree, Lumsdaine and Stock

Rolling ADF tests
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This method could also be applied using a (large enough) window to see if
there are clear changes in the pattern of a series. This can be done by carrying
out the following steps

T Percentile ττ Recursive min τ τ Rolling min τ τ
100 .025 -3.73 -4.62 -5.29

.050 -3.45 -4.33 -5.01

.100 -3.15 -4.00 -4.71
250 .025 -3.69 -4.42 -5.07

.050 -3.43 -4.18 -4.85

.100 -3.13 -3.91 -4.59
500 .025 -3.68 -4.42 -5.00

.050 -3.42 -4.18 -4.79

.100 -3.13 -3.88 -4.55

Tests with stationarity as null

The KPSS test
Consider the following model.

yt = δt+ ξt + εt

where εt is a stationary process and ξt is a random walk given by

ξt = ξt−1 + ut ut˜iid(0,σ
2
u)

The null of stationarity is formulated as
H0)σ

2
u = 0

The test statistic for this hypotesis is given by

LM =

PT
t=1 S

2
t

σ̂2e

where et are the residuals of a regression of yt on a constant and a time
trend, σ̂2e is the residual variance for this regression and St is the partial sum of
et defined by

St =
TX
t=1

et t = 1, 2, .., T.

For testing the null of the level stationary instead of trend stationary the test
is constructed the same way except that e is obtained as the residual from a
regression of y on an intercept only. The test is an upper tail test. When the
errors are iid the asymptotic distribution of the test is derived in Nabeya and
Tanaka (1988). In other cases need to be conviniently adjusted.
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Variance Ratio Tests
Given the low power of the ADF test, the variance ratio test will provide us

with another tool to discriminate between stationary and non-stationary series.
Consider yt and assume that it follows follows a random walk, i.e

yt = yt−1 + εt

then by iterative substitution we know that

yt = yt−k + εt + εt−1 + εt−2 + εt−3 + ...+ εt−k+1

Now if we denote the difference between yt and yt−k as ∆kyt , then

∆kyt = εt + εt−1 + εt−2 + εt−3 + ...+ εt−k+1

and clearly the variance of ∆kyt, is σ2∆kyt = k , where σ2 is the variance of ε.
We can define a ”variance ratio” function (a function of k) as

λ1(k) =
V ar(∆kyt)

V ar(∆1yt)
= k.

Therefore a plot of λ1 against k should be an increasing straight line.
Alternatively we may define a new function λ2(k) as λ2(k) = λ1(k)/k, then

if there is a unit root, λ2(k) tends to one when k tends to infinite.
However if yt does not contain a unit root then lim λ2(k) when k tends to

infinite is equal to zero.

Proof
To see this assume the following AR(1) process
Example AR(1)

yt = φ1yt−1 + εt, t = 1, ......, T

we have seen that by iterative substitution we can express this process as

yt = φk1yt−k + φk−11 εt−(k−1) + φk−21 εt−(k−2) + ...+ φ1εt−1 + εt

Then subtracting yt−k in both sides of the equation we get the following expres-
sion

yt − yt−k = (φk1 − 1)yt−k + φk−11 εt−(k−1) + φk−21 εt−(k−2) + ...+ φ1εt−1 + εt

then the variance of yt − yt−k , V ar(∆kyt)

V (yt − yt−k) = (φk1 − 1)2V (yt−k) + V (
k−1X
j=0

φj1εt−j)

17



Notice that
V (yt−k) = V (yt) = (1/(1− φ21))σ

2

and
V (
Pk−1
j=0 φ

j
1εt−j) = ((1− φ2k1 )/(1− φ21))σ

2

therefore we can write the variance of ∆yt−k as

V (yt − yt−k) = (φk1 − 1)2(1/(1− φ21))σ
2 + ((1− φ2k1 )/(1− φ21))σ

2

In the same way we can express for a stationary process the variance of the first
difference of yt, (yt − yt−1) = (φ1 − 1)yt−1 + εt.

V (yt − yt−1) = (φ1 − 1)2V (yt−1) + σ2 = (φ1 − 1)(1/(1− φ21))σ
2 + σ2

then the variance ratio can be written as

λ1(k) =
(φk1 − 1)2(1/(1− φ21))σ

2 + ( (1− φ2k1 )/(1− φ21) )σ
2

(φ1 − 1)2(1/(1− φ21))σ
2 + σ2

then the limit of λ1(k) when k tends to infinite for a stationary process is

limk→∞λ1(k) =
1

1− φ1

which is a constant provided that φ1 6= 1.
It should be clear from the previous result that the limit of λ2(k) equals 0

when k tends to infinite.

Trend stationary vs difference stationary processes

A trend stationary variable may be written as

yt = α+ µt+ εt + θ1εt−1 + θ2εt−2 + θ3εt−3 + ....

then yt−k is simply

yt−k = α+ µ(t− k) + εt−k + θ1εt−1−k + θ2εt−2−k + θ3εt−3−k + ...

The kth difference can be obtained simply by subtracting the two above equa-
tions

yt − yt−k = µk + εt + θ1εt−1 + ...+ θk−1εt−(k−1) + (θk − 1)εt−k +
(θk+1 − θ1)εt−(K−1) + ...+ (θk+q − θq)εt−q + ...

= µk +
k−1X
j=0

θjεt−j +
∞X
j=0

c(θk+j − θj)
2

18



Then the variance of yt − yt−k may be written as

V (yt − yt−k) = σ2
k−1X
j=0

θ2j + σ2
∞X
j=0

(θk+j − θj)
2

From the previous equation we can see that when k tends to infinity, the variance
of ∆kyt is equal to

V (∆kyt) = 2σ
2
k−1X
j=0

θ2j

Now the first difference of a trend stationary process, ∆yt is

yt − yt−1 = µ+ εt + (θ1 − 1)εt−1 + ...+ (θk+1 − θk)εt−(k+1)
+...+ (θk+q − θk+q−1)εt−q + .......

Then the variance of the first difference can be written as

V (yt − yt−1) = V (εt + (θ1 − 1)εt−1 + ...+ (θk+1 − θk)εt−(k+1)
+...+ (θk+q − θk+q−1)εt−(k+q) + .......)

= σ2(1 +
∞X
j=0

(θj+1 − θj)
2)

The variance ratio should be

λ1(k) =
V ar(∆kyt)

V ar(∆1yt)
=

2
Pk−1
j=0 θ

2
j

(1 +
P∞
j=0(θj+1 − θj)2)

This expression is a constant and might be greater or smaller than one de-
pending on the θj values. Therefore can simply distinguish between the two
models by simply noting that under the random walk assumption λ1 increase
with k and that under the trend stationary assumption λ1 tends to a constant.
Alternatively we can consider λ2 V ar(∆kyt)/k. and note both, that when the
model is a random walk this expression tends to 1 (see proof above), and that
this ratio should tend to zero when k tends to infinity since V ar(∆kyt) is con-
stant for the trend stationary model.

Sampling distribution of λ(k) under the Random Walk Hypothesis.

H0) α = 1 or yt = µ+ yt−1 + εt εt ~IID N(0, )
It can be shown that asymptotically under the null,

√
Tk(λ̂2(k) − 1) a

˜

N(0, 2(k − 1)). Then tests of the null Hypothesis can be carried out on the
standardized statistics.
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