Exercise 7

- 1) Read the paper, "Rational-Expectations Econometric Analysis of Changes in Regime. An investigation of the Term Structure of Interest Rates". James Hamilton.
- 2) Consider the following representation of a Markov process.

$$\begin{bmatrix} 1-x_{t+1} \\ x_{t+1} \end{bmatrix} = \begin{bmatrix} q & (1-p) \\ (1-q) & p \end{bmatrix} \begin{bmatrix} 1-x_t \\ x_t \end{bmatrix} + \begin{bmatrix} \zeta_{1,t+1} \\ \zeta_{2,t+1} \end{bmatrix}$$

or:

$$W_{t+1} = PW_t + U_{t+1}$$

where

$$W_t = \left[\begin{array}{c} 1 - x_{t+1} \\ x_{t+1} \end{array}\right] \text{ and } U_{t+1} = \left[\begin{array}{c} \zeta_{1,t+1} \\ \zeta_{2,t+1} \end{array}\right]$$

and $E_t \zeta_{1,t+1} = 0, E_t = \zeta_{2,t+1},$ so $E_t U_{t+1} = 0$

i) Which values $\zeta_{1,t+1}$ and $\zeta_{2,t+1}$ should take at t+1 (for $x_t = 1$ and for $x_t = 0$) to ensure that, $E_t \zeta_{1,t+1} = 0, E_t = \zeta_{2,t+1}$.

3)

- i) Find the eigen-values, λ_1 and λ_2 of the transition probability Matrix defined as in two.
- ii) Find the associated eigen-vectors.
- iii) Show that P can be written as $P = T\Lambda T^{-1}$, where T is the matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues.
- iv) Show that $P^n = T\Lambda^n T^{-1}$ and find P^n .

Solution

For the following representation of a Markov processes

$\left[\begin{array}{c} 1-x\\ x_{t}\end{array}\right]$	$\begin{bmatrix} v_{t+1} \\ +1 \end{bmatrix} =$	$= \left[\begin{array}{c} q\\ (1-q) \end{array} \right]$	$ \begin{pmatrix} 1-p \\ p \end{bmatrix} $	$\left[\begin{array}{c} 1-x_t\\x_t\end{array}\right]$] + [$\left[\begin{array}{c} \zeta_{1,t+1} \\ \zeta_{2,t+1} \end{array}\right]$,

we can use the second row to derive the properties of the shocks, i.e.,

$$x_{t+1} = (1-q)(1-x_t) + px_t + \zeta_{2,t+1}$$

Then conditional on $x_t = 0$,

If $x_{t+1} = 0$, $\zeta_{2,t+1} = -(1-q)$ with probability q

If $x_{t+1} = 1$, $\zeta_{2,t+1} = q$ with probability 1 - q.

Conditional on $x_t = 1$,

If $x_{t+1} = 0$, $\zeta_{2,t+1} = -p$ with probability 1 - p

If $x_{t+1} = 1$, $\zeta_{2,t+1} = 1 - p$ with probability p

Then it is clear that $E(\zeta_{2,t+1}|x_t = 0) = E(\zeta_{2,t+1}|x_t = 1) = 0.$

Notice that using the law of iterative expectations we obtain that $E(\zeta_{2,t+1}) = 0$.

3)

i) To find the eigen values we solve

$$Det \left[\begin{array}{cc} q - \lambda & (1 - p) \\ (1 - q) & p - \lambda \end{array} \right] = 0.$$

which is equivalent to solve $\lambda^2 - (p+q)\lambda + (-1+p+q) = 0$, which gives $\lambda_1 = 1$ and $\lambda_2 = (-1+p+q)$.

ii) The associated eigenvectors are calculated using the formulae:

 $Px = \lambda x$, where P is the transition matrix and x is the eigen vector associated to λ .

Then for $\lambda_1 = 1$.

$$\begin{bmatrix} q & (1-p) \\ (1-q) & p \end{bmatrix} \begin{bmatrix} x_1^1 \\ x_2^1 \end{bmatrix} = 1 \begin{bmatrix} x_1^1 \\ x_2^1 \end{bmatrix}$$

which gives $qx_1^1 + (1-p)x_2^1 = x_1^1$, or $x_1^1 = \frac{1-p}{1-q}x_2^1$. Assigning the value $\frac{1-q}{2-(p+q)}$ to x_2^1 . gives $x_1^1 = \frac{1-p}{2-(p+q)}$.

Then for $\lambda_1 = 1$ the associated eigenvector is $\begin{bmatrix} \frac{1-p}{2-(p+q)} \\ \frac{1-q}{2-(p+q)} \end{bmatrix}$.

For
$$\lambda_2 = (-1+p+q)$$
.

$$\begin{bmatrix} q & (1-p) \\ (1-q) & p \end{bmatrix} \begin{bmatrix} x_1^2 \\ x_2^2 \end{bmatrix} = (-1+p+q) \begin{bmatrix} x_1^2 \\ x_2^2 \end{bmatrix}$$

which gives $qx_1^2 + (1-p)x_2^2 = (-1+p+q)x_1^2$, or $x_1^1 = -x_2^2$. Assigning the value 1 to x_2^2 . gives $x_1^1 = -1$.

Then for $\lambda_1 = (-1 + p + q)$ the associated eigenvector is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

iii) Notice that we can write both results using matrix notation as

$$\begin{bmatrix} q & (1-p) \\ (1-q) & p \end{bmatrix} \begin{bmatrix} \frac{1-p}{2-(p+q)} & -1 \\ \frac{1-q}{2-(p+q)} & 1 \end{bmatrix} = \\ \begin{bmatrix} \frac{1-p}{2-(p+q)} & -1 \\ \frac{1-q}{2-(p+q)} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1+p+q \end{bmatrix} .$$

If we define $T = \begin{bmatrix} \frac{1-p}{2-(p+q)} & -1 \\ \frac{1-q}{2-(p+q)} & 1 \end{bmatrix}$ and $\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & -1+p+q \end{bmatrix}$

then $PT = T\Lambda$ or $P = T\Lambda T^{-1}$.

iv) $P^n = T\Lambda T^{-1}T\Lambda T^{-1}T\Lambda T^{-1}....T\Lambda T^{-1} = T\Lambda^n T^{-1}.$

If we substitute these values we obtained the expression derived in the lecture notes.

,