Annex 2: Estimation Method – Consistency and Efficiency

Fixed-Effects (FE) estimator

The Pollution Equation is estimated using the Fixed-Effects Within estimator. This estimator allows the fixed effects 
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to differ across plants by estimating a different constant for each plant. 

The first step in the fixed-effects (FE) estimator is to transform the data by subtracting the “within” mean from each variable:
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 are the “within” plants means for the dependent variable, each of the independent variables and the error term. The second step is to apply OLS to this transformed data.

The FE are obtained by:
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where bFE is the FE estimator. 

The coefficient covariance matrix are given by:
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where 
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 represents the differenced X, and 
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, so eFE’eFE is the SSR of the FE model. When the panel is unbalanced, as in this case, the total number of available observations is used instead of NT. 

The FE estimator is the BLUE as long as vit is the standard classical disturbance with mean zero and covariance matrix 
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 the FE estimator is consistent. However, if T is fixed and N 
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, then only the 
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 (bFE) are consistent, but not the estimator for the fixed effects 
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 (ai), since the number of parameters increases as N increases. 

Estimation with Non-spherical errors

In the case of panel data estimation, four possibilities of non-spherical errors are treated in the literature:

(1) Panel Heteroskedasticity: 
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. It is assumed that the variance of the errors differs across plants but not across months within each plant.

(2) Contemporaneously Correlated Errors: 
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, with all other covariances equal to zero. 

(3) Plant-specific Serially Correlation Errors: 
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 are “shocks” temporally independent, identically distributed, zero-mean random variables.

(4) Common Serially Correlated Errors: 
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The estimation is carried out by FE - SUR Weighting least squares. This is a FGLS estimator assuming that the errors are both (1) panel heteroskedastic (plant specific and time independent) and (2) contemporaneously correlated (across plants). Serial correlation of errors is not assumed and thus it is not the Parks estimator. 

Assume to simplify notation that Ti = T for all i (all plants have the same number of observations; the panel is balanced). Then, the form of 
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, the (52*74)*(52*74) [NT*NT] covariance matrix is as follows:
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where
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with 
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, which is assumed to be constant across t. 

The weighting is done calculating 
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 estimated from a first-stage pooled OLS regression:
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(1)
The max function in the denominator handles the case of unbalanced panel down-weighting the covariance terms. Provided that the number of MV is ….. “asymptotically negligible” this approach leads a consistent estimate of 
[image: image33.wmf]Σ

 that is generally invertible. In my case 
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 is a (74*74) matrix, but its rank is, at most, 52 (the lesser of T=52 and N=74). This would mean that 
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 is not of full rank and therefore is not invertible. 

Nevertheless, the adjustment in the denominator of  (1) to handle unbalanced panel apparently works the matrix toward invertibility down-weighting non-diagonal elements of 
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 (pushing them to zero in the limit). This is the only explanation why I could obtain estimates using the unbalanced panel of (52*74)*(52*74). Nevertheless, it is also true that these estimates are not likely to be consistent ones in this setting.

I have no choice but to estimate my model using 52 plants.

This is the distribution of non-reporting events in the original sample of 74 plants:

According to Verbeek and Nijman (1992b), a first way to obtain consistent estimators of the parameters in the cases of one way error correction models when the selection rule is non-ignorable is by a generalization for the case of panel data of the two-step Heckman procedures for selectivity bias in cross sectional data sets. 

Consider the following one-way error component linear regression model,
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whith i denoting units (industrial plants in my case) and t denoting time. 
[image: image39.wmf]'

it

x

is the 1*k vector of k explanatory variables and 
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is the corresponding k*1 parameter vector. 
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denotes the unobservable individual specific effect and 
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denotes a usual disturbance term. It is assumed that the errors terms
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are independent of the explanatory variables. It is also assumed that 
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if and only if the unit is observed for all t.
I assume that the selection rule (the missing data mechanism) is given by
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where 
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 (it is usually assumed that this threshold level is zero for simplicity). 
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is a vector of variables, usually containing a subset of the variables in 
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is the corresponding vector of parameters, and 
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accounts for the unobserved individual specific effect  in the selection process. Finally, 
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is the error term. For simplicity we assume normality of the error terms and independence of 
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where 
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Two correction terms are needed in the case of panel data and not just one (known as the standard Heckman correction term). This is because know there are two error components both in the equation of interest and in the selection mechanism equation. Nevertheless, the idea remains similar to the original cross section Heckman’s case in the sense that these terms are the conditional expectations of 
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and the selection rule. From Verbeek and Nijman (1992b), these conditional expectations are 
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Not surprisingly, the authors concluded that this solution is “still computationally unattractive” (Verbeek and Nijman, 1990, p. 692). Given this problem, Verbeek and Nijman conclude, “it may be worthwhile to have some simple variables that can be used instead to approximate the true correction term to check for the selectivity of non-response” (p. 692). Examples of such variables presented by these authors are: (1) the number of waves the plant participate, (2) a dummy variable equal to one if the plant is observed in all periods, and (3) a dummy variable indicating whether the plant is observed in the previous period. These type of variables would be more helpful in the case of the RE models, because in the case of the FE model, the selection rule bias is captured entirely by the individual effect term and it would not be possible to identify the parameters of the proposed correction terms from the individual effect parameter (“the fixed effect estimator is more robust for selectivity bias than the random effects estimator”, p. 682). At this point of my research I have not decide yet on what correction terms to use. 

Panel – Corrected Standard Errors

According to the E-Views manual: “(T)he parameter estimates and the covariance matrix of the parameters of the model are computed using the standard GLS formulae” (Quantitative Micro Software, 2000). 

And it only simplifies to 
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 when the errors are spherical. Therefore it is incorrect to calculate the standards errors of parameter estimates using this formula. Beck and Katz (1993) have argued that this leads to “extreme overconfidence, often underestimating variability by 50% or more”(pg. 634). What I do then is to re-estimate the coefficient standard errors taking the square root of the diagonal elements of:
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The chosen solution to avoid the singularity of 
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 and at the same time use the information of the 22 (74 – 52) plants that I have “in excess” of T was to obtain consistent fixed-effects point estimates of my parameters and then calculate consistent estimates of the standard errors of the fixed-effects estimators.
 

In fact this approach is in the spirit of the procedure suggested by Beck and Katz (1995) and Beck et. al (1993) The difference with respect to Beck and Katz (1995) is that I used a FE model to obtain my point estimates instead of plain OLS and that I correct an error in the suggestion of these authors.

The advantage of  this method is not only that circumvent the impossibility of applying FGLS (in a framework where the “spherical” error structure could hardly be sustain) producing consistent estimates of the parameters I am interested in, but also allow to draw correct inferences about this coefficient estimates. 

The motivation of Beck and Katz (1995) for suggesting Panel Corrected Standard Errors (PCSEs) was the overconfidence produced by Park’s (FGLS) standard errors. A point already made by Freedman and Peters (1984). My motivation here is somewhat different since I cannot use FGLS in the first place due to the fact that N>T.

Beck, et al. (1993) and Beck and Katz (1995) suggested to obtain the point estimates by inefficient but consistent OLS and then to obtain correct estimates of their standard errors by applying the usual general formula 
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. “Any serial correlation of the errors must be eliminated before the panel-corrected standard errors are calculated”(pg. 638). In such a case 
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 would be exactly as in footnote 21 and all that is needed to estimate 
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Instead, I obtain my inefficient but consistent point estimates by the FE model with “spherical” errors and calculate their correct standard errors using the general formula for the sampling variability of the FE estimates:
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where bFE is the FE estimator, and 
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~

 the Within – mean – transformed regressors’ matrix. 

The wrong assumption in the method by Beck and Katz is that the bOLS obtained after correcting for serial correlation are consistent.

Effectively, if one get rid of the serial correlation of the errors using the classic methods to transform the data (Cochrane - Orcutt, Prais and Winsten, etc) one would end up estimating a dynamic panel because this correction requires the inclusion of a lagged dependent variable as a regressor.
 According to Beck et al. (1993) “In the presence of lagged dependent variables, OLS is consistent if the errors are temporally independent.” (pg. 946). But this is wrong. In a panel data structure the lagged dependent variable is a function of the fixed effect component of the error. This correlation does not disappear when the fixed – effect terms are wiped out using the Within transformation.
 Therefore one of the regressors is correlated with the errors and the OLS estimates are inconsistent, even when the errors are not serially correlated (see Baltagi (1995), pgs. 125-126 and Greene (1997), pg. 640). This is the basic problem in dynamic panel data econometrics.

It is clear then that following Beck and Katz’s method one would obtain biased estimates of 
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 and 
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, and therefore biased estimates of the errors and the standard errors of bFE. But if this is true, then the method does not produce the results for which it was proposed in the first place: to obtain consistent estimates of the 
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 and its standard errors.

This point has already, although very recently, being made in the literature (see Kristensen and Wawro, 2003). These authors made exactly the same point and conducted Monte Carlo experiments to asses how problematic the lag specification is comparing the method of OLS/Panel Corrected Errors, the method of FE without corrected errors and the method of FE with Arellano´s robust  standard errors. These three models were compared when varying the degree of serial correlation of the errors and the degree of correlation between the fixed – effects and the other explanatory variables.

But in spite of the usefulness of these study, the truth is that if the estimated model is a FE model, then 
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 structure responding to the appropriate structure of the errors. Therefore, the undoubtedly best option to calculate correct standard errors for the fixed-effects estimates in the presence of non-spherical disturbances is to calculate Cov(bFE) with the appropriate form of 
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 So the first step to obtain consistent estimates of the standard errors of the FE estimates is to obtain a consistent estimate of 
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. Of course the problem here for the researcher is that none of the most commonly used statiscal packages include a routine to estimate this variance- covariance matrix and therefore this could be cumbersome. For this reason I test for the error structures first.

It is clear that to do this I need consistent estimates of the autocorrelation coefficients 
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 are not calculated using the usual methods because I would fall in the same problem as Beck and Katz. Instead, 
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, i=1,…, 74
that is as the OLS estimates of the pooled and un-pooled models, with e being the residuals of the FE model estimation. 

The 
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 are also estimated from the FE model in the following way
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The max function in the denominator handles the case of unbalanced panel down-weighting the covariance terms. 

Dynamic panels
Autoregressive errors are generally the consequence of bad specification. A lagged dependent variable must be included in the equation. But with a lagged dependent variable the FE estimator is biased and inconsistent. Only if T 
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will the FE estimator be consistent (See Baltagi, Ch. 8). Since most panels have one digit T and large N, IV and GMM estimators have been proposed, because these instruments are consistent for finite T when N 
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. Anderson and Hsiao (1981) proposed an IV estimator. But this is not necessarily efficient. Arellano and Bond (1991) and Blundell and Bond (1998) proposed consistent and efficient GMM estimators for this type of panels. Nevertheless, our panel is not of this type. We do not have a one-digit T and we do not have a large N either. The literature has recently begun to study the issue of how to estimate these cases in a consistent and efficient manner. Kiviet (1995) show that IV and GMM estimators have poor finite sample properties and proposed a Least Squares Dummy Variable bias-corrected estimator (LSDVC). Bun and Kiviet (2001) study the performance of asymptotic test procedures panels with T and N less than 20. Galiani and Gonzalez (2005) study the small sample properties of all the “dominant methods proposed in the literature to estimate dynamic panel models”. (pg. 3) These methods are the LSDV (FE) estimator, the LSDVC of Kiviet (1995), the Arellano-Bond (1991) estimator and the Blundell and Bond (1998) estimator.

The LSDV (FE) estimator is consistent only when T 
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. It is supposed to perform well in panels with large T. Nevertheless, the question of how large must T be to ignore the bias of the LSDV estimator is still unanswered in the literature. 
In the absence of instruments that are uncorrelated with the individual effects Arellano and Bond (1991) proposed first differencing the model to wipe out the fixed effects and to use appropriate lagged dependent and predetermined variables as instruments to estimate the model by a GMM. The AB estimator requires that the errors are not correlated since if they were the term 
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 will be correlated with the differenced error term
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. If this is the case all the lagged values beyond t-1 are valid instruments for the differenced terms in the equation for period t. “Because the number of instruments increases with the time series dimension T, the model generates many over-identifying restrictions even for moderate T, although the quality of these instruments is often poor” (Galiani and Gonzalez, 2005, pg. 6). This means that although the quantity of restrictions may be large, which is good a-priori, the restrictions themselves may be bad indicators of the true value of the parameters.

When there are instruments available uncorrelated with the individual effects, these can be used in the equation in levels. Blundell and Bond (1998) propose an estimator using these types of instruments. They show that this estimator has superior properties in terms of small sample bias and root-mean square error than the AB, especially in data with high persistence.


Both of these estimators, the AB and the BB are consistent for finite T and N 
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Dynamic Unobserved Effects Model
The model studied by Galiani and Gonzalez (2005) is the following: First-order autoregressive model with one explanatory variable:
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i = 1,…,N y t = 1,..,T. The unobserved effects (
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) are modelled as fixed effects, probably correlated with the included exogenous regressor x. The (
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) are assumed strictly exogenous conditional on the unobserved effects. GG also assumed dynamic stability (
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 are assumed to be independently distributed across units with zero mean and constant variance 
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Stacked by time and then by cross section the model is:
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Censored Regression Model (Tobit) with Fixed Effects

The censored regression model in the panel data context is given by:
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c is usually set to zero.

Because the individual fixed effect 
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does not enter the equation

Binary Choice Modelling 

(Greene (1997, pg. 882):

Each observation is treated as a single draw from a Bernoulli distribution (binomial with one draw)
. The model with success probability 
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and independent observations leads to the joint probability or likelihood function:
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This can be conveniently written as
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Taking logs
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Fixed Effects Logit

(Taken from Greene (1997) pg. 899)

A fixed effects model is:
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In this non-linar model it is not possible to sweep out the heterogeneity by taking difference. In addition, even if it is possible to estimate the parameters, any desirable properties of the estimated individual effects, 
[image: image130.wmf]i

a

, will depend on increasing T , which will not make sense in the typical panel. This will be particularly problematic for maximum likelihood estimators , whose only desirable properties are asymptotic. The solution, as Chamberlain suggests, is to remove the heterogeneity by some other means, and thereby finesse the problem of estimating the
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Chamberlain (1980) has suggested another approach to estimate this model for panels with large n and small T (it is not actually limited to small T but the computation of the probabilities becomes “unwieldy” as T grows). His suggestion is that we consider the set of Ti observations for unit i as a group. 

This implies that instead of maximizing the Unconditional likelihood function
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Chamberlain suggests, instead, maximizing the conditional likelihood function,
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That is, the likelihood function for each set of Ti observations is conditioned on the number of 1’s in the set.

Example: Large number of cross-sectional units, each observed in two periods, 1 and 2. 

The unconditional likelihood is:


[image: image134.wmf](

)

)

(

Pr

Pr

2

2

1

1

i

i

i

i

i

y

Y

ob

y

Y

ob

L

=

=

=

Õ


For each pair of observations we have the following possibilities:

(1) yi1 = 0 and yi2 = 0 , Prob(0,0/sum = 0) = 1

(2) yi1 = 1 and yi2 = 1 , Prob(1,1/sum = 2) = 1

The ith term in Lc above for either of these two possibilities is 1. So when we take logs these terms disappear. The units (plants) with all observations equal to 1 or 0 are dropped out. They contribute nothing to the conditional likelihood function.

The remaining possibilities are:

(3) yi1 = 0 and yi2 = 1 , Prob(0,1/sum = 1) =
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(4) yi1 = 1 and yi2 = 0 , Prob(1,0/sum = 1) =
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[image: image139.wmf]For this pair of observations the conditional probability is 
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 EMBED Equation.3  [image: image141.wmf]2
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By conditioning on the sum of the two observations the fixed effects are removed. “We can construct the conditional likelihood function as the product of these terms for the pairs of observations for which the two observations are (0,1). Pairs of observations with 1 and 0 are included analogously. The product of these terms such as the preceding, for those observations sets for which the sum is not zero or Ti , constitutes the conditional likelihood maximization of the resulting function is straightforward and may be done by conventional methods.

� I am grateful to Manuel Arellano for suggesting me this via e-mail communication. Of course, he was never aware of the details of the problem at hand, and therefore I am responsible for the errors.


� In the most simple version, if my statistical model is � EMBED Equation.3  ��� and � EMBED Equation.3  ��� with � EMBED Equation.3  ��� a white noise, and I transform the model to � EMBED Equation.3  ���to obtain spherical errors, I clearly end up estimating a dynamic panel.


� Assume � EMBED Equation.3  ��� where � EMBED Equation.3  ��� is a scalar, � EMBED Equation.3  ��� is a 1*K vector and � EMBED Equation.3  ��� is K*1. If we assume that � EMBED Equation.3  ��� where � EMBED Equation.3  ���distributes � EMBED Equation.3  ���. Then � EMBED Equation.3  ���will be correlated with the time-independent, cross-section specific effect � EMBED Equation.3  ���. Consequently OLS estimates will be biased and inconsistent even if � EMBED Equation.3  ��� is not serially correlated. This bias is still present in the fixed-effects model because the Within transformation does not eliminate the correlation: � EMBED Equation.3  ��� will be correlated with � EMBED Equation.3  ���because � EMBED Equation.3  ��� is correlated with� EMBED Equation.3  ���by construction.


� I use the term correct standard errors to differentiate from Arellano’s (1987) “robust standard errors. The latter do not correct for contemporaneous correlation.


� Kristensen and Wawro (2003) suggests a move into this direction, although not entirely, when they write in their footnote 17: “Another option is to estimate the least square dummy variable (LSDV) model for the point estimates of � EMBED Equation.3  ��� and the compute PCSEs. LSDV is equivalent to the FE estimator we employ, but requires the inclusion of N-1 additional dummy variables in the model. Even with moderately sized Ns, including these additional dummies can be cumbersome and violate limits on matrix size in commonly employed software. We ran some experiments and found that the results for LSDV with PCSEs were nearly identical to the results for FE with the robust standard error estimate. We are not aware of any studies that have used PCSEs with LSDV, but this is certainly an option for researchers”.


� Bernoulli distribution for a single binomial outcome (trial)


Prob (x = 1) = � EMBED Equation.3  ���


Prob (x = 0) = 1-� EMBED Equation.3  ���


where � EMBED Equation.3  ���. If � EMBED Equation.3  ���is constant over the trials and the trials are independent, then the distribution for x successes in n trials is a binomial distribution


Prob (X = x) = � EMBED Equation.3  ���, x = 1,2,3,…n.


� The model assumes � EMBED Equation.3  ��� (and � EMBED Equation.3  ��� has a logistic distribution function). Then


y = 1 if y* > 0


y = 0 if y* � EMBED Equation.3  ��� 0


The assumption of zero as the threshold value is innocent if the model contains a constant term. Corollary: Unless there is some compelling reason binomial probability models should not be estimated without a constant term. Now, the probability that y = 1 is


� EMBED Equation.3  ���


if the distribution is symmetric, as the logistic is, then


� EMBED Equation.3  ���
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