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Problem Set 1 - Preferences
1. Let  be a preference relation on a set X. Define Ix to be the set of all

y ∈ X for which y  x. Show that the set (of sets!) Ix|x ∈ X is a partition of
X.

(i) For all x and y, either Ix  Iy or Ix ∩ Iy  ∅.
Note that the indifference relation is symmetric and transitive.
Let x,y ∈ X, and assume that Ix ∩ Iy ≠ ∅, which means that there exists

z ∈ Ix ∩ Iy. Let a be any element in one of the sets, let us say Ix. It means that
a  x. But z  x and z  y since z ∈ Ix ∩ Iy. By symmetry of the indifference
relation, x  z. By transitivity of , it follows that a  y, and thus a ∈ Iy.

(ii) For every x ∈ X, there is y ∈ X such that x ∈ Iy.
Let x ∈ X. The completeness of  means that x  x. Consequently, x ∈ Ix.



2. Kreps (1990) introduces another formal definition for preferences. His
primitive is a binary relation P interpreted as “strictly preferred”. He requires
P to satisfy:

Asymmetry: For no x,y do we have both xPy and yPx.
Negative Transitivity (NT): ∀x,y, z ∈ X, if xPy, then either xPz or zPy (or both).
Explain the sense in which Kreps’ formalization is equivalent to the

traditional definition.
We will closely follow the proof presented in the lecture notes. The following

steps are required:
a. Construct an interpretation-preserving function T that maps a binary relation

P satisfying asymmetry and negative-transitivity into preference relations.
Consider the following candidate function T, which maps any relation P into a

binary relation defined by
xTPy if not yPx.
Note that T preserves interpretation: If “y is not strictly preferred to x” according

to Kreps’ formalization, then “x is at least as good as y”.
b. Prove that TP is a preference relation.
Completeness of TP: Kreps’ asymmetry property of P says that for any x and y

in X, either not xPy or not yPx. Thus either xTPy or yTPx.
Transitivity: Let x,y, z ∈ X be such that xTPy and yTPz. If not xTPz, then zPx.

By NT, either yPx or zPy. Thus either not xTPy or not yTPz, a contradiction.
c. Prove that T is one-to-one.
Let P1 and P2 be two different relations satisfying Kreps’ properties. Then there

is a pair x,y such that xP1y and not xP2y (or the opposite), and thus not yTP1x and
yTP2x. Thus, TP1 ≠ TP2, implying that T is one to one.

d. Prove that T maps onto all preference relations.
Let  be a preference relation. Define P, by:
xPy if not y  x.
P preserves Kreps’ properties:
Asymmetry: Since  is complete, then we never have both xPy and yPx.
NT: Let x,y, z ∈ X be such that xPy, and thus not y  x. Therefore it is not true

that both y  z and z  x. Therefore either zPy or xPz.
Finally, note that TP .



3. Let Z be a finite set and let X be the set of all nonempty subsets of Z.
Let  be a preference relation on X (not Z). Consider the following two
properties of preference relations on X:

1. If A  B and C is a set disjoint to both A and B, then A  C  B  C, and
if A  B and C is a set disjoint to both A and B, then A  C  B  C.

2. If x ∈ Z and x  y ∀y ∈ A, then A  x  A, and
if x ∈ Z and y  x ∀y ∈ A, then A  A  x.

a. Discuss the plausibility of the properties in the context of interpreting 
as the attitude of the individual toward sets from which he will have to make
a choice at a “second stage”.

Consider an appealing interpretation of the formal model: The elements in Z are
the alternatives which might be chosen at the end of a decision process, a set A is
a set of candidates to be considered seriously in the second stage. If we have in
mind that the economic agent is certain about his preferences in the later stage
then (a) is problematic: if the best element in menu A is better than the best in
menu B, and menu C includes an even better element, then A  B but
A  C  B  C, violating (a). Also, if any element of menu A is strictly better than
z ∈ Z, then A  z but A  A  z, violating (b). The properties make more sense
if the decision maker has in mind a tiny possibility that he will err in his choice or
that there is a possibility that an alternative which he chooses will not be feasible at
the end.

b. Provide an example of a preference relation that:
(1) Satisfies both properties.
The relation  defined by A  B if |A|≥ |B| satisfies (a) and (b) in a degenerate

way (since for all x and y we have x  y).
A "better" class of examples (including the previous one): Let X be divided to

two sets G and B. Define a preference relation by the utility function
uA  |A ∩ G|−|A ∩ B|. Clearly it satisfies both properties.

(2) Satisfies the first but not the second property.
Let z∗ ∈ Z. Define  over X whereby A  B  z∗ ∈ A, z∗ ∉ B and A  B

otherwise.
(a) Let A,B,C ∈ X be such that A  B and C is disjoint to both A and B. If A  B,

then z∗ ∈ A and z∗ ∉ B,C, which implies that A  C  B  C. If A  B, then either z∗

is a member of both sets A  C and B  C or of none. In both cases A  C  B  C.
(not b) Let A  z∗ and y ≠ z∗ . Then A  y but A  A  y violating the

second part of (b).
More generally, attach to each element x a non-negative number vx and

define a preference relation by a utility function UA  a∈Ava. Then the
preference relation satisfies a but typically not b unless v gets only one positive
and one negative values.

(3) Satisfies the second but not the first property.
Let ∗ be a preference relation on Z. Define  by A  B if
(1) the ∗ −best element in A is strictly better than the ∗ −best element in B,

or



(2) the agent is indifferent between the best elements but the ∗ −worst
element in A is weakly better than the ∗ −worst element in B.

(not a) Let a ∗ b ∗ c ∗ d. Then b  c, but b  a,d  c  a,d.
(b) Let A ∈ X and z ∈ Z. If z is strictly ∗ −better (strictly ∗ −worse) then all

a ∈ A, then A  z  A A  A  z.
c. Show that if there are x,y, z ∈ Z such that x  y  z, then there is no

preference relation satisfying both properties.
Assume  satisfies (a) and (b), with x  y  z for some x,y, z ∈ Z. From

(b), x  x,y and y, z  z. Applying (a) to the above, x, z  x,y, z and
x,y, z  x, z, a contradiction.



4. Let  be an asymmetric binary relation on a finite set X that does not
have cycles. Show (by induction on the size of X) that  can be extended to a
complete ordering.

If a set A is finite and  is an acyclic relation on A (there are no cycles), then
there must exist an x ∈ A such that there is no y ∈ A such that y  x.

Since X is finite, then there exists an x1 ∈ X such that there is no y ∈ X such that
y  x1. Define x1 ∗ y for all such y ∈ X − x1. Again, there exists an x2 ∈ X − x1
such that there is no y ∈ X − x1 such that y  x2. Define x2 ∗ y for all such y, and
so on. By induction we can define ∗ for all x ∈ X.

By construction, the relation ∗ is complete, asymmetric, extends  and
transitive: let xi ∗ xj and xj ∗ xh. Then i  j and j  h and therefore, xi ∗ xh.

5. Listen to the illusion called the Shepard Scale. (You can find it on the
internet. Currently, it is available at http://asa.aip.org/demo27.html.)

Can you think of any economic analogies?
The Shepard Scale consists of three separate scales that play the same tone at

different octaves. As the notes ascend, one scale drops its pitch an octave, a
change the listener does not notice because the other two scales continue to
ascend monotonically, which “covers up” the drop. Several notes later, a second
scale drops its pitch an octave, and so on. Thus, the Shepard Scale sounds as if it
perpetually ascends, even though the same finite set of notes are repeated. See
http://en.wikipedia.org/wiki/Shepard_tone for explanation.

The phenomenon is a reminder of an example due to Fishburn and LaValle
(1988):

Many of us prefer the lottery f2 to the lottery f1. However, one can easily
construct the other 4 lotteries f3, f4, f5, f6, (increase the $500 to $1000 and reduce
the other prizes by $100), such that we would prefer f3 to f2, f4 to f3, ... and f1 to f6.

See Peter C. Fishburn and Irving H. LaValle (1988). "Context-Dependent
Choice with Nonlinear and Nontransitive Preferences", Econometrica, Vol. 56,
1221-1239. Stable URL: http://www.jstor.org/stable/1911365



Problem Set Two – Utility

1. The purpose of this problem is to make sure that you fully understand
the basic concepts of utility representation and continuous preferences.
Prove or disprove the following:

a. Is the statement "if both U and V represent , then there is a strictly
monotonic function f :  →  such that Vx  fUx" correct?

False: Let X   and preferences be represented by the utility functions

Vx  x and Ux 
x if x ≤ 0

x  1 if x  0.

The only increasing function f :  →  that satisfies Vx  fUx is

fx 

x if x ≤ 0

0 if 0  x ≤ 1

x − 1 if x  1

which is not strictly increasing.
b. Can a continuous preference relation be represented by a

discontinuous utility function?
True: The preferences (x  y if x ≥ y) is represented by U in (a) are continuous,

though U is discontinuous.

c. Show that in the case of X  , the preference relation that is
represented by the discontinuous utility function ux  x (the largest
integer n such that x ≥ n) is not a continuous relation.

1  1/2, but 1 −   1/2 for   0 small, violating C1.
d. Show that the two definitions of a continuous preference relation, C1

and C2, are equivalent to

1. Definition C3: ∀x ∈ X, the upper and lower contours
y ∣ y  x and z ∣ x  z are closed sets in X.

Definition C4: ∀x ∈ X, the sets y ∣ y  x and z ∣ x  z are
open sets in X.

(C3  C4) By completeness, the sets y ∣ x  y and y ∣ y  x are the
complementary to y ∣ y  x and y ∣ x  y correspondingly. Thus the formers
are open sets iff the later are closed sets.

(C1  C4) Let x ∈ X and a ∈ y ∣ y  x. By C1, there exists an   0 such that
Ba ⊆ y ∣ y  x, (Ba is the set of points in X that are less than  distance
from a). Thus y ∣ y  x is open. The argument for z ∣ x  z open is analogous.

(C4  C1) Let us use the notation B  x to mean that y  x for all y ∈ B.
Assume first that there exists an z ∈ X such that x  z  y. By C4, there exist

1,2  0 such that B1x  z and z  B2y. Let   min1,2. By transitivity,



every point in Bx is strictly better than every point in By.
Next, assume that there does not exist a z ∈ X such that x  z  y. As above, by

C4 there exists an   0 such that Bx  y and x  By. Since there is no z such
that x  z  y, then Bx  x and y  By, and thus by transitivity, every point in
Bx is strictly better than every point in By.

2. Give an example of preferences over a countable set in which the
preferences cannot be represented by a utility function that returns only
integers as values.

Let X  N, which is countable. Define preferences to be such that

1  3  5 . . . 2  4 . . . .

By contradiction, assume that there exists a utility function u : X → Z that
represents . Then u1  N and u2  n for some n,N ∈ Z. But there are an
infinite number of odd numbers, implying that u maps to an infinite number of
integers between n and N, a contradiction.



3. Let  be continuous preferences on a set X ⊆ nwhich contains the
interval connecting the points x and z. Show that if y ∈ X and x  y  z, then
there is a point m on the interval connecting x and z such that y  m.

Construct inductively the sequence xn, zn,mn as follows: Start with define
x0  x, z0  z and the midpoint m0  1/2x0  1/2z0.

If mn  y then we found the point we look for. Otherwise, mn  y or y  mn.
If mn  y let xn1  mn and zn1  zn.
If y  mn let xn1  xn and zn1  mn.
In any case define mn1  1/2xn1  1/2zn1.
If none of the points mn  y then xn  y  zn for all n. Both sequences (xn and

zn converge to some m∗ on the interval between x and z.
Since  is continuous, then m∗  y and y  m∗, and thus m∗  y.



4. Consider the sequence of preference relations n n1,2,…, defined on


2 where n is represented by the utility function unx1,x2  x1
n  x2

n. We will
say that the sequence n converges to the preferences ∗ if for every x and
y such that x ∗ y, there is an N such that for every n  N we have x n y.
Show that the sequence of preference relations n converges to the
preferences ∗ which are represented by the function maxx1,x2.

Let x ∗ y. Since maxx1,x2  maxy1,y2, then there exists an   0 such that
maxx1,x2  1  maxy1,y2. Consequently, for n large enough
maxx1,x2n  2maxy1,y2n. But x1

n  x2
n ≥ maxx1,x2n and

2maxy1,y2n ≥ y1
n  y2

n, and thus x n y for n large enough.

5. The following is a typical example of a utility representation theorem: Let
X  

2 . Assume that a preference relation  satisfies the following three
properties:

ADD: a1,a2  b1,b2 implies that a1  t,a2  s  b1  t,b2  s ∀s, t.
SMON: If a1 ≥ b1 and a2 ≥ b2, then a1,a2  b1,b2. In addition, if either

a1  b1 or a2  b2 then a1,a2  b1,b2.
CON: Continuity.
a. Show that if  has a linear representation (that is,  are represented by

a utility function ux1,x2  x1  x2 with ,  0), then  satisfies ADD,
SMON, CON.

ADD: Let s, t ∈  and x,y ∈ X be such that x  y. Note that
x1,x2  y1,y2  x1  x2 ≥ y1  y2  x1  t  x2  s ≥ y1  t  y2 
ux1  t,x2  s ≥ uy1  t,y2  s  x1  t,x2  s  y1  t,y2  s.
SMON: Let x,y ∈ X be such that x1 ≥ y1 and x2 ≥ y2 with at least one strict

inequality. Since ,  0, then x1  x2  y1  y2, which implies that
x1,x2  y1,y2.

CON: ux1,x2 is continuous, and thus  is continuous.
b. Show that for any pair of the three properties there is a preference

relation that does not satisfy the third property.
Satisfies only ADD, SMON: Lexicographic preferences satisfy ADD and SMON,

but are not continuous (see the lecture notes).
Satisfies only ADD, CON: The preferences represented by ux1,x2  x1 − x2

satisfy ADD and CON, but not SMON since 1,1  1,2.
Satisfies only MON, CON: Preferences represented by ux1,x2  x1

2  x2
2 satisfy

SMON and CON, but not ADD since 3,0  2,1 and 3,3  2,4.
c. Show that if  satisfies the three properties, then it has a linear

representation.
Assume first that x and y are two different points such that x  y. Then:
(i) x  y/2  y. Otherwise, x  y/2  y would imply that

x  xy
2  x−y

2  y  x−y
2  xy

2  y. by ADD, a contradiction.

(ii) z  1 − x  y  x for  ∈ 0,1. Define xn,yn inductively as follows: let
x0  x, y0  y. Let m0  x0  y0/2.



Assume z belongs to xn,yn and its length is 1/2n the length of x,y. The point z
belongs to at least one of the intervals xn,mn and mn,yn. Define xn1,yn1 to be
one of those intervals which contains z. Now, all xn  x for all n. The sequence
xn → z, therefore by continuity z  x .

(iii) Let z be on the line which connects x and y, z  x. Without loss of
generality, assume that z is closer to x. There is n such that w  z  ny − x is
between x and y. By ADD if a − x  b − y (that is a-bx-y) then a  b. Thus by
transitivity z  w  x.

 

y
)(2 xyz 

x
)( xyz 

z

By SMON there is an   0 such that a  x1  ,x2  x  x1,x2 −   b. By
question 3, there exists y (different than x) on the interval which connects a and b
such that x  z. Thus, every point is on a difference line which is a line. The
indifference lines must be parallel since otherwise we will get a contradiction to
ADD.

d. Characterize the preference relations which satisfy ADD, SMON and an
additional property MUL:

a1,a2  b1,b2 implies that a1,a2  b1,b2 for any  ≥ 0.

Define s  supx|0,1  x, 0 (by SMON the set is not empty).
Case (1): s   or s  0: the preferences must be lexicographic with priority for

the second or first components, respectively.
Assume s  .
If a2  b2 then a1,a2  b1,b2 iff a1,a2 − b2  b1, 0 (by ADD) iff

a1/a2 − b2, 1  b1/a2 − b2, 0 (by MUL), which is always true (by s  .
If a2  b2 then a1,a2  b1,b2 iff a1  b1 (by SMON).
Thus, we have a lexicographic relation with priority for the second component.
If s  0 then it follows that s  supy|1,0  0,y   and the preferences

must be lexicographic with priority for the first component.
Case (2):   s  0



Let a1,a2 and b1,b2 be two vectors with a1 ≤ b1. a1,a2 relates to b1,b2 as
0,a2 − b2 relates to b1 − a1, 0 (by ADD) and thus as b1 − a1/a2 − b2, 0 relates
to 0,1. This relation is determined by the comparison of b1 − a1/a2 − b2 to s,
which is equivalent to the comparison of a1  sa2 and b1  sb2.

Therefore, if 0,1  s, 0 then x1  sx2 represents the preferences. If
0,1  s, 0 or 0,1  s, 0 then the preferences are lexicographic with the first
priority to x1  sx2 and the second to x2 or x1 accordingly.



6. Let X be a finite set and let , be a pair where  is a preference
relation and  is a transitive sub-relation of  (by sub-relation, we mean
x  y implies x  y). We can think about the pair as representing the
responses to the questionnaire A where Ax,y is the question:

How do you compare x and y? Tick one of the following five options:
 I very much prefer x over y (x  y)
 I prefer x over y (x  y)
 I am indifferent (I)
 I prefer y over x (y  x)
 I very much prefer y over x (y  x)
Assume that the pair satisfies extended transitivity: If x  y and y  z, or if

x  y and y  z then x  z. We say that a pair , is represented by a
function u if
ux  uy iff x  y,
ux − uy  0 iff x  y, and
ux − uy  1 iff x  y.
Show that every extended preference , is represented by a function

u.
Denote A  B if a  b for all a ∈ A and b ∈ B. Let X1,X2,..., XK be the 

indifference sets such that XK  XK−1 . . . X1. Define first uX1  0.
Let us define uXk for k  1.
(1) if Xk  Xk−1, then uXk  uXk−1  2
(2) if Xk is not  even of X1, then uXk ∈ uXk−1, 1
(3) otherwise, there exists a maximal mk such that Xk  Xmk. Define uXk

such that uXk  uXk−1 and 1  uXmk1  uXk  uXmk  1.
Clearly, x  y iff ux  uy
Also, if x  y then ux  uy, since we picked uXk as an increasing sequence.
Finally, if x  y , x ∈ Xk and y ∈ Xm then mk ≥ m and

ux  uXmk  1 ≥ uy  1.



7. Utility is a numerical representation of preferences. One can think
about the numerical representation of other abstract concepts. Here, you will
try to come up with a possible numerical representation of the concept
“approximately the same” (see Luce (1956) and Rubinstein (1988)). For
simplicity, let X  0,1. Consider the following six properties of S:....

We will focus here only on (c).
Let S be a binary relation that satisfies the above six properties and let

  0. Show that there is a strictly increasing and continuous function
H : X →  such that aSb  |Ha − Hb|≤ .

Note the definitions of mx and Mx in the question.
Define xn by x0  0, x1  M0, x2  Mx1  MM0 and so on. By S6, xn

is increasing and bounded above by 1, and thus xn converges to x∗ ≤ 1. By S5,
there exists an N such that xN−1Sx∗, and thus x∗ ≤ MxN−1  xN. Since x∗ is the
upper bound of xn, then x∗  1 by S6. Define N to be the smallest integer such
that xN  1, and thus 0  x0 . . . xN  1.

Lemma 1: If a ∈ xn,xn1, where 1 ≤ n ≤ N − 1, then ma ∈ xn−1,xn.
Proof: Since xnSxn1, then xnSa by S4, and thus ma ≤ xn. Moreover,

xn−1 ≤ ma, as otherwise ma  xn−1 and Mxn−1  xn ≤ Mma, violating the
assumption that M increasing.

Lemma 2: ma is strictly increasing and continuous on x1, 1.
Proof: ma  0 if a  x1, as otherwise aS0, and thus M0 ≥ a  x1, a

contradiction. By S6, the lemma is proved.

Define

Ha 

x1
a if a ≤ x1

Hma   if a  x1.

H is clearly continuous and strictly increasing on 0,x1, with Hx1  .
If a ∈ x1,x2, then Ha  ma/x1  1 since ma ∈ 0,x1 by Lemma 1. Thus

H is strictly increasing and continuous on x1,x2 by Lemma 2. Since mx1  0,
then Hx →  as x → x1 from the right, and thus H in continuous and strictly
increasing on 0,x2, with Hx2  2.

More generally, if a ∈ xn,xn1, where n ≤ N − 1, then ma ∈ xn−1,xn,
mma ∈ xn−2,xn−1 and so on by Lemma 1. Therefore
Ha  m. . .ma. . . /x1  n, which is strictly increasing and continuous by
Lemma 2, where m. . .ma. . .  applies m inductively n times. Since Hx → n as
x → xn from the right, then H is strictly increasing and continuous on 0,xn1.

Let a,b ∈ 0,1 where a  b. If b ≤ x1, then H represents S by S4. Otherwise, aSb
iff Hmb ≤ Ha  Hb iff |Hb − Ha|≤ , where the first iff follows from aSb iff
mb ≤ a  b and H strictly increasing, and the second iff follows from
Hb  Hmb  .





Problem Set 3 – Choice

Problem 1:
The following are descriptions of decision making procedures. Discuss

whether the procedures can be described in the framework of the choice
model discussed in this lecture and whether they are compatible with the
"rational man" paradigm.

a. The decision maker (DM) has in mind a ranking of all alternatives and
chooses the alternative that is the worst according to this ranking.

Let  be the preferences reflecting the DM’s ranking. The choice procedure is
rationalized by the preference relation ∗ , where b ∗ a whenever a  b.

b. The DM chooses an alternative in order to maximize another person’s
suffering.

Assuming that the relation "the other person suffers more from x than he does
from y" is complete and transitive, the DM is maximizing a well-defined preference
relation.

c. The DM asks his two children to rank the alternatives and then
chooses the alternative that is the best “on average”.

The question is, of course, what does the expression "on average" mean. If the
DM ranks all alternatives in X and uses the ranking to attach the number to each
alternative a in any set A (independently of A, then the DM’s behavior is consistent
with rationality. But if the score of an alternative is recalculated for every choice set
then his behavior may be inconsistent with the rational man paradigm. For
example, assume that one child ranks the alternatives a,d,e,b,c and the other as
b,c,a,d,e. Then, the element a is chosen from the set a,b,c,d,e while b is chosen
from a,b,c.

d. The DM has an ideal point in mind and chooses the alternative that is
closest to it.

Let x be the ideal point and da,b the distance function between a,b ∈ X. The
behavior is rationalized by the preferences represented by ua  −da,x.

e. The DM looks for the alternative that appears most often in the choice
set.

A choice function C is not well-defined. The DM’s behavior is different when
faced with the group of elements a,a,b than when faced with the group a,b,b,
even though in both cases he chooses from the set a,b.

f. The DM always selects the first alternative that comes to his attention.
C is not well-defined: C a,b   a ≠ b  C b,a , although the choice

set in the two cases is the same.
g. The DM has an ordering in mind and always chooses the median

element.
C violates condition . Assume that the order of the grand set X  a,b,c,d,e

is alphabetical. Then, Ca,b,c,d,e  c but Ca,b,c  b.





Problem 2:
Let’s say that you are to make a choice from a set A. Consider two

procedures:
(a) You choose from the entire set or (b) You first partition A into the

subsets A1 and A2, then make a selection from each of the subsets and finally
make a choice from the two selected elements.

a. Formulate a “path independence” property (for single-valued choice
functions).

Let A1 and A2 be a partition of A. By partition, we mean A1,A2 ≠ ∅, A  A1  A2

and A1 ∩ A2  ∅. C satisfies path independence if

CA  CCA1,CA2.

b. Show that the rational decision maker satisfies this property.
Let A1, A2 be a partition of A. Let x  CA and x ∈ Ai. Then x  CAi and x is

also the best choice from CA1,CA2.
c. Find examples of choice procedures that do not satisfy this property.
(i) The "second best" procedure. If x  y  z, then Cx,y, z  y while

CCx,y,Cz  z.
(ii) Let X be partitioned into Y and Z and let  be an ordering on X. Let CA be

the  -minimal element if all alternatives in A are in Y and the  -maximal alternative
otherwise. If Y  a,b, Z  c,d and a  b  c  d, then Ca,b,c,d  a but
CCa,b,Cc,d  b.

d. Show that if a choice function satisfies path independence, then it is
consistent with rationality.

We will show that Condition  is satisfied. Let A ⊂ B ⊆ X be such that CB ∈ A.
By path independence, CB  CCA,CB ∖ A. Since CB is in A, then it is not
in B ∖ A. Therefore CB is identical to CA.

e. Find an example of a multi-valued choice function satisfying path
independence which cannot be rationalized.

In the context of choice correspondences, path independence implies:

CA  CCA1  CA2.

Let a  b  c  d and CA be a set which contains the best and worst elements
in A. C satisfies path independence (verify) but violates WA since a ∈ Ca,b,c,d
and c ∈ Ca,b,c but c ∉ Ca,b,c,d.



Problem 3:
Let X be a finite set. Check whether the following three choice

correspondences satisfy WA:
1) CA  x ∈ A ∣ the number of y ∈ X for which Vx ≥ Vy is at least

|X|/2 and if this set is empty, then CA  A.
By C, a satisfactory element is one which is in the upper half of the elements in

the grand set.
C satisfies WA. Define:

G  x ∈ X ∣ Vx ≥ Vy for at least |X|/2 alternatives y ∈ X.

Let x,y ∈ A ∩ B such that x ∈ CA and y ∈ CB.
If x ∈ G, then x ∈ CB.
If x ∉ G, then there are no elements of A in G and thus y ∉ G. Since y ∈ CB,

then CB  B and thus x ∈ CB as well.
Alternatively: define ux  1 if x ∈ G and 0 otherwise. Clearly, Cu  C.
2) DA  x ∈ A ∣ the number of y ∈ A for which Vx ≥ Vy is at least

|A|/2.
By D, a satisfactory element is one in the upper half of the elements of the

choice set.
It is not necessarily consistent with the rational man paradigm: Let

Va  Vb  Vc  Vd  Ve. Then, c ∈ Ca,b,c,d,e and a ∈ Ca,b,c, but
c ∉ Ca,b,c.

3) EA  x ∈ A ∣ x 1 y for every y ∈ A or x 2 y for every y ∈ A, where
1 and 2 are two orderings over X.

By E, a satisfactory element is one which is optimal according to one of the two
criteria. It is not necessarily consistent with the rational man paradigm. Let
x 1 y 1 z and y 2 z 2 x. Then, z ∈ Cx, z and x ∈ Cx,y, z, but
z ∉ Cx,y, z.



Problem 4:
Consider the following choice procedure: A decision maker has a strict

ordering  over the set X and assigns to each x ∈ X a natural number classx
to be interpreted as the “class” of x. Given a choice problem A, he chooses
the best element in A from those belonging to the most common class in A
(i.e., the class that appears in A most often). If there is more than one most
common class, he picks the best element from the members of A that belong
to a most common class with the highest class number.

a) Is this procedure consistent with the “rational man” paradigm?
No. Let a  b  c  d  e, classa  classb  classc  1 and

classd  classe  2.
Ca,b,c,d,e  a but Ca,d,e  d, thus violating .
b) Define the relation xPy if x is chosen from x,y. Show that the relation

P is a strict ordering (complete, asymmetric and transitive).
By definition, P is complete and asymmetric. We will see that it is also transitive.

That is, if xPy and yPz, then xPz.
If xPy and yPz, then [classx  classy or classx  classy and x  y], and

[classy  classz or classy  classz and y  z]. If either classx  classy or
classy  classz, then classx  classz and Cx, z  x. Otherwise,
classx  classz and x  z and thus x ∈ Cx, z.

Alternatively: Note that P is identical to the lexicographic preferences with first
priority given to class and second priority to the relation .



Problem 5:
Consider the following two choice procedures. Explain each procedure

and try to persuade a skeptic that they “make sense”. Determine For each of
them whether they are consistent with the “rational man” model.

a) The primitives of the procedure are two numerical (one-to-one)
functions u and v defined on X and a number v∗. For any given choice
problem A, let a∗ ∈ A be the maximizer of u over A and let b∗ ∈ A be the
maximizer of v over A. The decision maker chooses a∗ if va∗ ≥ v∗ and b∗ if
va∗  v∗.

One interpretation of this procedure is that the DM actually wants to maximize v
but pretends to maximize u. If the maximization of u yields a result which is too bad
for him, he abandons the pretense and maximizes v. The procedure may fail
condition . For example,

Element u v

x 3 1

y 2 2

z 1 3

and let v∗  2.

Then Cx,y, z  z but Cy, z  y.
b) The primitives of the procedure are two numerical (one-to-one)

functions u and v defined on X and a number u∗. For any given choice
problem A, the decision maker chooses the element a∗ ∈ A that maximizes u
if ua∗ ≥ u∗ and the element b∗ ∈ A that maximizes v if ua∗  u∗.

In this case, the DM, cares about the value of u only if it is at least u∗.
Otherwise, he cares about v. The DM behaves as if he is maximizing lexicographic
preferences with first priority given to the function u′x, which receives the value
ux if ux ≥ u∗ and u∗ − 1 otherwise, and second priority to vx.



Problem 6:
The standard economic model assumes that choice is made from a set.

Let us construct a model where the choice is assumed to be made from a list
(note that the list a,b is distinct from a,a,b and b,a). Let X be a finite
grand set. A list is a nonempty, finite vector of elements in X. In this
problem, consider a choice function C to be a function that assigns a single
element from a1,… ,ak to each vector L  〈a1,… ,ak. Let 〈L1,… ,Lm be the
concatenation of the m lists L1,… ,Lm (note that if the length of Li is ki, then
the length of the concatenation is∑ i1,…,m

ki. We say that L‘ extends the list

L if there is a list M such that L‘ 〈L,M.
We say that a choice function C satisfies property I if for all L1,… ,Lm,

C〈L1,… ,Lm  C〈CL1,… ,CLm.
a) Interpret Property I. Give two examples of choice functions that satisfy

I and two examples that do not.
Property I is analogous to path independence.
Two choice functions that satisfy I:
(i) Choose the first alternative in L.
(ii) Choose the first alternative in L that is “at least as good as” some x̃ ∈ X and

choose the last element in L if there is no such alternative.

Two choice functions that violate I:
(i) Choose the second alternative in L.
(ii) Choose the last alternative such that the alteratives from the start of the

sequence up to that alternative are in ascending order.
b) Define formally the following two properties of a choice function:
Order Invariance OI: A change in the order of the elements in the list does

not alter the choice.
Let L  〈a1,… ,aK. A permutation of L is a list L  〈a1,… ,aK, where  is a

permutation of 1,… ,K. C satisfies OI if CL  CL for every permutation .
Duplication Invariance DI: Deleting an element that appears elsewhere in

the list does not change the choice.
C satisfies DI if CL  CL′ whenever L  〈〈L1,x, 〈L2, L′  〈〈L1, 〈L2 and x

appears in either L1 or L2.
c) Characterize the choice functions that satisfy the following three

properties together: Order Invariance, Duplication Invariance and Property I.
Claim: Let C be a choice function over the lists of X. If C satisfies OI, DI and I,

then there exists a rationalizable choice function C over the sets of X such that
CL  CL, where L is the set of elements in L.

Proof: Let K,L be two lists such that K  L. By OI and DI, choice is
preserved when the duplicate alternatives in both lists are removed and the
resulting lists are reshuffled so that the remaining alternatives appear in the same
order. Thus, CK  CL and thus C is well-defined and single-valued.

By Problem 2(d), showing that C satisfies path independence is sufficient for



rationalizability. For any set S ⊆ X, define 〈S to be some list of elements in S. Let
A,B ⊆ X be disjoint. Then:

CA  B  C〈〈A, 〈B by def. of C

 C〈C〈A,C〈B by property I

 C〈CA,CB by def. of C

 CCA,CB by def. of C

Assume now that at the back of the decision maker’s mind there is a value
function u defined on the set X (such that ux ≠ uy for all x ≠ y). For any
choice function C, define vCL  uCL. We say that C accommodates a
longer list if whenever L′ extends L, vCL′ ≥ vCL and there is a pair of lists
L’ and L, such that L’ extends L and vC L′  vCL.

d) Give two interesting examples of choice functions that accommodate a
longer list.

(i) Choose the u-maximal element in L.
(ii) Choose the second u-best alternative in L.

e) Give two interesting examples of choice functions which satisfy
property I but do not accommodate a longer list.

(i) Choose the first alternative in L that yields at least utility ũ and choose the
last alternative in L if ux  ũ for all x ∈ L.

(ii) Choose the first element in L.



Problem 7:
We say that a choice function c is lexicographically rational if there exists

a profile of preference relations a a∈X (not necessarily distinct) and an
ordering O over X such that for every set A ⊂ X, cA is the a -maximal
element in A, where a is the O -maximal element in A.

A decision maker who follows this procedure is attracted by the most
notable element in the set (as described by O). If a is that element, he applies
the ordering a and chooses the a -best element in the set.

We say that c satisfies the reference point property if for every set A, there
exists a ∈ A such that if a ∈ A ′′ ⊂ A ′ ⊂ A and cA ′ ∈ A ′′, then cA ′′  cA ′.

a. Show that a choice function c is lexicographically rational if and only if
it satisfies the reference point property.

 Assume c is lex. rational. For every set A we’ll show that the O − maximal
element a ∈ A satisfies the requirement of the reference point property. Note that
for any A ′ ⊂ A containing a, a is still the O − maximal element. Thus, for all subsets
of of A containing a, cA ′ is determined by a . Thus condition  will be satisfied for
all subsets of A containing a. This gives us the reference point property.

 Assume c satisfies the reference point property. We build the representation
recursively. Consider the set X. By the reference point property there exists an
element a1 such that for all subsets of X that contain a1, condition  holds. Define
Y  x ∈ X|cx,a1  x. For any x,y ∈ Y, x ≠ y, define x a1 y if x  ca1,x,y
(including the case y  a1), and for any x ∉ Y define a1 a1 x. Extend a1 such that
the elements in X\Y are ordered arbitrarily. This preference relation, a1 , is well
defined by condition , and it rationalizes the choices of c whenever a1 is available.
Now consider the set X ∖ a1, and repeat the procedure. We’ll find an a2 and a2

such that a2 represents all choices of c whenever a2 is available in the subsets of
X ∖ a1. For completeness, assume that for any i ≠ 1, ai a2 a1. Also construct the
O − preference such that a1 O a2. By induction we can complete the O − preference,
and a for every a in X.

b. Try to come up with a procedure satisfying the reference point axiom
which is not stated explicitly in the language of the lexicographical rational
choice function (No idea about the answer).



problem 8:
Consider a decision maker who has in mind a set of rationales and a

preference relation and chooses the best alternative that he can rationalize.
Formally, we say that a choice function c is rationalized if there is an

asymmetric complete relation  (not necessarily transitive!) and a set of
partial orderings k k1...K (called rationales) such that cA is the  -maximal
alternative from among those alternatives found to be maximal in A by at
least one rationale (given a binary relation  we say that x is  -maximal in A if
x  y for all y ∈ A). Assume that the relations are such that the procedure
always leads to a solution.

We say that a choice function c satisfies The Weak Weak Axiom of
Revealed Preference (WWARP) if for all x,y ⊂ B1 ⊂ B2 (x ≠ y) and
cx,y  cB2  x, then cB1 ≠ y.

a. Show that a choice function satisfies WWARP if and only if it is
rationalized. For the proof, construct rationales, one for each choice
problem, that are asymmetric binary relations and allow that  will not
necessarily be transitive.)

 Let us see first that the axiom is satisfied by any rationalized choice
function: If x is chosen from B2 then has a rationale in B2 (I.e. there is a rationale
k such that x is the k -maximal in B2). Thus, it has a rationale also in B1. If y were
chosen from B1, then it has a rationale in B1 as well. Since y is chosen from B1 it
must be that y  x. For x,y both x and y have rationales and thus y would have
been chosen from x,y, a contradiction.

 Let c be a choice function satisfying WWARP. For every set B, define x B y
iff x  cB and y ∈ B. Obviously, this rationale is a very partial ordering. As to the
top preferences , they are elicited by the choice from the two-element sets: x  y if
Cx,y  x.

To see that those definitions "work", assume cB1  x but there is rationale B2

and a y which is B2 -maximal in B1 such that y  x . It must be that B1 ⊂ B2 and
cB2  y. By definition of  also Cx,y  y. A contradiction to WWARP.

b. What do you think about the axiomatization?
There might be other ways in which people’s choices satisfy WWARP.

Axiomatizing such a choice with partial orderings for each subset might be
representing the choice procedure in a much more complex way than actual.

Consider the "warm-glow" procedure: The decision maker has two
complete orderings in mind: one moral M and one selfish S . He chooses
the most moral alternative m as long as he doesn’t "lose" too much by not
choosing the most selfish alternative. Formally, for every alternative s there
is some alternative ls such that if the most selfish alternative is s then he is
willing to choose m as long as m S ls. If ls S m, he chooses s.

The function l satisfies s S ls and s S s′ iff ls S ls′.
d. Show that WWARP is satisfied by this procedure.
Assume in contradiction that WWARP is violated, i.e. there exists

x,y ⊂ B1 ⊂ B2 (x ≠ y ) and Cx,y  CB2  x, and CB1  y.



Assume x is the moral maximal in B2. Clearly x is also the moral maximal in B1

and this implies that y is the selfish maximal in B1. Since x is chosen in B2, it must
be that x s lsB2, where sB2 is the selfish maximal in B2. But B1 ⊂ B2 implies
sB2 s sB1  y. By monotonicity of ls, x s ly which contradicts that cB1  y.

Assume that x is the selfish maximal in B2. Clearly x is also the selfish maximal
in B1, hence y is the moral maximal in B1. This implies that in x,y, x is the selfish
maximal and y is the moral maximal. Since x is chosen in x,y, it must be that
y s lx. But since x is also selfish maximal in B1 this contradicts that cB1  y.

e. Show directly that the warm-glow procedure is rationalized (in the
sense of the definition in this problem).

There are two rationales, the selfish and the moral orderings. The final relation
 is the moral ordering, that is x  y if x m y. However, if ly s x, then it is
reversed, that is y  x.

To see that this works, given any set we choose the moral and selfish maximal,
m and s. Then we apply the final ordering. Note that if m s ls then the ordering
says m  s. Otherwise, s  m as desired.



Problem Set 4 – Consumer Preferences
Problem 1. Consider the preference relations on the interval 0,1 which

are continuous. What can you say about those preferences which are also
strictly convex?

We will show that a continuous preference relation  on X  0,1 is strictly
convex iff there exists a point x∗ such that b  a for all a  b ≤ x∗ or all x∗ ≥ b  a.

(a) Let  be continuous and strictly convex. Since the preferences are
continuous and X is compact there exists a unique x∗ ∈ X that maximizes the
preferences (see Lecture 5). Let 0 ≤ a  b ≤ x∗. By definition a  x∗ and
b  a  1 − x∗ for some  ∈ 0,1 and thus, by strict convexity a  b. The case,
for two points in x∗, 1 is analogous .

(b) Assuming that the preferences are increasing in 0,x∗ and decreasing in
x∗, 1, we will show that they satisfy strict convexity. Let  ∈ 0,1 and a,b ∈ X be
such that a ≠ b and a  b. It must be that a  1 − b is either between a and x∗

or between b and x∗. If a  1 − b is between b and x∗, then a  1 − b  b. If it
is between a and x∗, then a  1 − b  a  b.



Problem 2. Show that if the preferences  satisfy continuity and
monotonicity, then the function ux defined by x  ux,… ,ux is
continuous.

Let x be a point in X. By definition ux ≥ 0. We need to show that for any   0
there exists  such that |ux − uy|  for any y ∈ Bx.

If ux −  ≥ 0, then by monotonicity, x  ux − , . . . ,ux − . By continuity,
there exists 1  0 such that uy  ux −  for y ∈ B1x .

If ux −   0, then for any 1  0, uy  ux −  for y ∈ B1x .
Similarly, by monotonicity, ux  , . . . ,ux    x and thus

ux  , . . . ,ux    B2x for some 2  0 by continuity. Therefore,
ux    uy for y ∈ B2x.

Define   min1,2. Then, |ux − uy|  for any y ∈ Bx.



Problem 3. In a world with two commodities, consider the following
condition: The preference relation  satisfies Convexity 4 if for all x and   0

x1,x2  x1 − ,x2  1  x1 − 2,x2  1  2 implies 2 ≥ 1.

Interpret Convexity 4 and show that for strong monotonic and continuous
preferences, it is equivalent to the convexity of the preference relation.

Interpretation: If after an x1 is reduced by , the consumer must be
compensated with  units of good 2 in order to remain indifferent to x, then he must
be compensated with at least 2 units of good 2 if his consumption of x1 is
decreased by 2.

Convexity 1  Convexity 4: Let
x1,x2  x1 − ,x2  1  x1 − 2,x2  1  2. By convexity 1,

x1 − ,x2 
1  2

2
  1

2
x1,x2  1

2
x1 − 2,x2  1  2

 x1 − ,x2  1.

Then, 1  2/2 ≥ 1 by monotonicity and thus 2 ≥ 1.

Convexity 4  Convexity 1: First, we show that if x  y, then x  y/2  y. If
x ≠ y then by strong monotonicity we can WLOG assume x1  y1 and y2  x2.
Define Δ  0 by Δ  y2 − x2/2 and   x1 − y1/2. By strong monotonicity

x1 − ,x2  2Δ   x1  y1

2
,y2  y  x

  x1  y1

2
,x2  x1 − ,x2.

By continuity, there exists   0 such that

x1,x2  x1 − ,x2    y  x1 − 2,x2  2Δ.

By Convexity 4, 2Δ −  ≥  and thus Δ ≥ . By monotonicity,
x  y

2
 x1 − ,x2  Δ  x1 − ,x2    y.

Now if x  y, then there exists z on the interval which connects 0 and x, such
that zk ≤ xk for all k and z  y. Then, by monotonicity and the previous result,
x  y/2  z  y/2  y. The rest follows from the following Lemma:

Lemma: If  are continuous preferences, then  are convex iff [x  y implies
x  y/2  y] for all x,y ∈ X.

Proof: Assume x  y and z  x  1 − y for  ∈ 0,1. We will show that
z  y. Construct a sequence xn,yn such that both xn,yn  y and z between xn

and yn. Define x0  x, y0  y. Continue inductively. Let mn  xn  yn/2. Then, mn

is at least as good as either xn or yn and the above argument and transitivity imply
that it is at least as good as y. Define:

xn1  mn and yn1  ynif z lies between yn and mn, and

xn1  xn and yn1  mnotherwise.

Thus, xn1,yn1  y and z is between xn1 and yn1. Since yn,xn → z, z  y by



continuity.



Problem 4. Complete the proof (for all K) of the claim that any continuous
preference relation satisfying strong monotonicity quasi-linearity in all
commodities can be represented by a utility function of the form∑k1

K kxk,
where k  0 for all k.

Proof by induction on K: We have already proved this for K  1 and 2.
Let  be a preference relation satisfying the problem’s assumptions. Consider

the preferences restricted to the set of all vectors of the type 0,x2, . . . ,xK. The
preferences satisfy Continuity, Strong Monotonicity and Quasi-Linearity in goods
2, . . ,K. By the induction hypothesis, there is a vector of positive numbers kk2,..,K

such that 0,x2, . . . ,xK  0,∑k2
K kxk, 0, . . . , 0.

By quasi-linearity in good 1, x1,x2, . . . ,xK  y2,y2, . . . ,yK iff
x1,∑k2

K kxk, 0, . . . , 0  y2,∑k2
K kyk, 0, . . . , 0.

The relation over all vectors of the type x1,x2, 0, . . . , 0 satisfies the three
properties in the first two dimensions. Thus, there exists 1,2  0 such that
x1,x2, 0, . . . , 0  1x1  2x2,0, , 0, . . . , 0 and thus x  1x1 ∑k2

K 2kxk, 0. . . , 0

and by strong monotonicity in the first good, the preferences have a linear utility
representation.



Problem 5. Show that for any consumer’s preference relation  satisfying
continuity, monotonicity, strong monotonicity with respect to commodity 1
and quasi-linearity with respect to commodity 1, there exists a number vx
such that x  vx, 0, . . . , 0 for every vector x.

Since  satisfies continuity and monotonicity every bundle is indifferent to a
bundle on the main diagonal. Thus, it is sufficient to show the claim for bundles on
the main diagonal.

Let e  1, . . . , 1 and define

T   ∈  | e  x1, 0, . . . , 0 for all x1 ∈ .

We will see that T  ∅. Assume that T ≠ ∅. Let   infT. There are two cases:
Case 1:  ∈ T. Then   0 and by strict monotonicity of commodity 1,

1  ,, . . . ,  e. By continuity, there exists   0 such that

1  , − , . . . , −   e  x1, 0, . . . , 0

for all x1.
Since  −   infT, there exists an x1

∗ such that
x1
∗, 0, . . . , 0   − , − , . . . , −  and by quasi-linearity in commodity 1,

x1
∗  1  , 0, . . . , 0  1  , − , . . . , − , a contradiction.

Case 2:  ∉ T. Then , 0, . . . , 0  e for some . By strong monotonicity of
commodity 1,   1,0, . . . , 0  e. By continuity, there is an   0 such that
  1,0, . . . , 0    e, which contradicts   infT.



Problem 6. We say that a preference relation satisfies separability if it can
be represented by an additive utility function, that is, a function of the type
ux  ∑k

vkxk.

(a) Show that such preferences satisfy condition S: for any subset of
commodities J, and for any bundles a,b,c,d, we have

aJ,c−J  bJ,c−J  aJ,d−J  bJ,d−J

where xJ,y−J is the vector that takes the components of x for any k ∈ J and
takes the components of y for any k ∉ J.

aJ,c−J  bJ,c−J  ∑
k∈J

vkak ∑
i∉J

vici ≥ ∑
k∈J

vkbk ∑
i∉J

vici

∑
k∈J

vkak ∑
i∉J

vidi ≥ ∑
k∈J

vkbk ∑
i∉J

vidi

 aJ,d−J  bJ,d−J.

Graphically, if two bundles lie on the same horizontal line and a,c  b,c, then
a change of c to d will preserve the preference relation, that is a,d  b,d.
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(b) Show that for K  2 such preferences satisfy the Hexagon − condition: If
a,b  c,d̸ and c,e  f,b then a,e  f,d.
v1a  v2b ≥ v1c  v2d and
v1c  v2e ≥ v1f  v2b implies
v1a  v2e ≥ v1f  v2d.

(c) Give an example of a continuous preference relation which satisfies
condition S and does not satisfy separability.

Consider any preference relation with linear indifference curves as depicted:
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Such preferences violate the Hexagon Condition.



Problem 7. (a) Show that the preferences represented by the utility
function minx1, . . . . ,xK are not differentiable.

Let x∗  a, . . . ,a and let vx∗ be a candidate set of subjective values. Without
loss of generality, let v1x∗  0. Then, 1,0,0, . . . , 0  vx∗  0 but
a  ,a,a, . . . ,a  x∗ for all , and thus 1,0,0, . . . , 0 ∉ Dx∗, a contradiction.

(b) Check the differentiability of the lexicographic preferences in 2.
Lexicographic preferences are not differentiable. Let x ∈ 2 and assume that

vx is a vector of subjective values. Since x  0,1  x for all   0, then 0,1 is
an improving direction and v2x  0. Then, for small   0, −, 1  vx  0.
However, −, 1 is not an improving direction, a contradiction.

(c) Assume that  is monotonic, convex and differentiable such that for
every x, we have (*) Dx  d ∣ x  d  x. What can you say about ?

We will show that the indifference curves are linear.
By differentiability and (*) there exists vx such that d  vx  0 iff x  d  x.

Graphically, any point above the dotted line is strictly better than x:

 

x
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We will show that for any z ∈ X on the dotted line (that is zvx  xvx), we have
x  z.

First let us see that (**) any z ∈ X on the dotted line satisfies x  z. If z  x, then
by (*) z − x ∈ Dx and by differentiability z − x  vx  0 but as zvx  xvx, a
contradiction.

To see that z  x, by continuity we can assume that z is not a "corner point". It
must be that vz  vx, since otherwise there would be a point on
y | yvz  zvzsuch that yvx  xvx but by (*) y  x though x  z  y. Thus
x − z  vz  0 and by (**) (applied to z) z  x.

(d) Assume that  is a monotonic, convex and differentiable preference
relation. Let Ex  d ∈ K ∣ there exists ∗  0 such that x  d  x for all
 ≤ ∗. Show that −d ∣ d ∈ Dx ⊆ Ex but not necessarily
−d ∣ d ∈ Dx  Ex.



We first show that −d ∣ d ∈ Dx ⊆ Ex. By contradiction, let d ∈ Dx be
such that −d ∉ Ex. WLOG x  d  x and x − d  x. By definition of Dx,
d  vx  0 and e  vx  0 for some e with ek ≤ dk with at least one strict inequality.
For   0 small enough x  e  x. By convexity any convex combination of x  e
and x − d is at least as good as x but the segment contains points which by
monotonicity are at least as bad as x.

Let  be represented by ux  x1x2. Since u is quasi-concave, has continuous
partial derivatives and satisfies uix  0. Thus, the relation  is convex, monotonic
and differentiable. Let d  1,−1 and note that −d ∈ E2,2 but d ∉ D2,2.

(e) Consider the consumer’s preferences in a world with two commodities
defined by:

ux1, x2  
x1  x2 if x1  x2 ≤ 1

1  2x1  x2 if x1  x2  1
.

Show that these preferences are not continuous but nevertheless are
differentiable according to our definition.

If x1  x2 ≤ 1, then differentiability holds for vx  1,1 and if x1  1, then
differentiability holds for vx  2,1. The preferences are not continuous, since
0,2  1,0, but 0,2  1  , 0 for   0.



Problem Set 5– Demand: Consumer Choice
Problem 1. Verify that when preferences are continuous, the demand

function xp,w is continuous in prices and in wealth (and not only in p).
Let pn,wn converge to p,w. Since xp,w is homogeneous of degree zero,

then

xpn,wn  x p
n

wn
, 1.

Since demand is continuous in p, then

x p
n

wn
, 1 → x pw , 1  xp,w,

where the equality follows from xp,w being homogeneous of degree zero.

Problem 2. Show that if a consumer has a homothetic preference relation,
then his demand function is homogeneous of degree one in w.

Let   0 and y ∈ Bp,w. Then y/ ∈ Bp,w. Since xp,w  y/ and
preferences are homothetic, then xp,w  y, and thus, xp,w is the best
element in Bp,w, that is xp,w  xp,w.



Problem 3. Consider a consumer in a world with K  2, who has a
preference relation that is convex and quasi-linear in the first commodity.
How does the demand for the first commodity change with w?

Claim: For any p either there is no w such that x1p,w  0 or there exists an
w∗ ≥ 0 such that if w ≤ w∗, then the consumer does not consume the first
commodity, and if w ≥ w∗, then the first commodity absorbs all changes in wealth,
that is x1p,w  w−w∗

p1
.

Proof: Normalize p1  1. First, we show if x1p,w  0, then x1p,w′  0 for
w′ ≤ w.

Let w′ ≤ w. Denote a  0,w′/p2, b ∈ Bp,w′ such that pb  w′,
c  a1  w − w′,a2, d  b1  w − w′,b2 and e  0,w/p2.

Note that pd  w and c is between e and d. Since e  d then c  d. By the
quasi-linearity a  b. Therefore xp,w′  a  0,w′/p2.
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Now, if there is w such that x1p,w  0 then by continuity of the demand
function w∗  maxw ∣ x1p,w  0 exists. We need to show that
xp,w  w − w∗,w∗/p2 for all w ≥ w∗. If x2p,w  w∗/p2 , for some w  w∗, let
a  xp,w and by the quasi linearity in the first commodity b  0,a2  y for all
y ∈ Bp,p2x2p,w contradicting the definition of w∗ (see graph). If x2p,w  w∗/p2,
for some w  w∗, then c  xp,w and
d  x1p,w − w − w∗,x2p,w  e  0,w∗/p2, a contradiction to the definition of
w∗.
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Problem 4. Let  be a continuous preference relation (not necessarily
strictly convex) and w a number. Consider the set G  p,x ∈ 

K  
K ∣ x is

optimal in Bp,w. (For some price vectors, there could be more than one
p,x ∈ G.) Calculate G for the case of K  2 and preferences represented by
x1  x2.

Show that for any preference relation, G is a closed set.
If preferences are represented by x1  x2, then the consumer will buy the

cheapest good. Therefore, G is the set
p, 0,w/p2|p2  p1  p, w/p1, 0|p1  p2  p, ,w/p2 − |p2  p1,  ∈ 0,w/p

Let pn,xn be a sequence of points in G converging to p,x. Then pnxn ≤ w for
every n, and thus px  limn→ pnxn ≤ w, i.e. x ∈ Bp,w.

If x is not optimal in Bp,w, then there exists a y ∈ Bp,w such that y  x. By
continuity, there exists an   0 such that By  Bx, and thus there exists a
bundle z ∈ By such that pz  w and z  x. Since pn → p, then pnz ≤ w for n large.
Since xn → x, then xn ∈ Bx for n large, and thus z  xn, a contradiction to xn be
optimal in Bpn,w.



Problem 5. Determine whether the following consumer behavior patterns
are fully rationalized (assume K2):

a. The consumer’s demand function is xp,w  2w/2p1  p2,w/2p1  p2.
Yes. xp,w is rationalized by the monotonic preferences represented by

ux  minx1, 2x2.

b. The consumer consumes up to quantity 1 of commodity 1 and spends
his excess wealth on commodity 2.

Yes. xp,w is rationalized by the monotonic preferences represented by

ux 
x1 if x1  1

1  x2 if x1 ≥ 1

c. The consumer chooses the bundle x1,x2 which satisfies x1
x2

 p1
p2

and

costs w. (Does the utility function ux  x1
2  x2

2 rationalize the consumer’s
behavior?)

No. The behavior violates the WA. x2,1, 5  2,1 and x1,2, 5  1,2.
Both bundles are affordable in both budget sets.

The function ux  x1
2  x2

2 does not rationalize xp,w since a consumer
maximizing u would allocate all wealth to the cheapest good. The “first order
condition” approach is not appropriate because preferences represented by u are
not convex.



Problem 6. In this question, we consider a consumer who behaves
differently from the classic consumer we talked about in the lecture. Once
again we consider a world with K commodities. The consumer’s choice will
be from budget sets. The consumer has in mind a preference relation that
satisfies continuity, monotonicity, and strict convexity; for simplicity,
assume it is represented by a utility function u.

The consumer maximizes utility up to utility level u0. If the budget set
allows him to obtain this level of utility, he chooses the bundle in the budget
set with the highest quantity of commodity 1 subject to the constraint that
his utility is at least u0.

a. Formulate the consumer’s problem.

maxx∈Bp,w ux if maxx∈Bp,w ux  u0, and

maxx∈Bp,w x1 s.t. ux ≥ u0 if maxx∈Bp,w ux ≥ u0.

b. Show that the consumer’s procedure yields a unique bundle.
If maxx∈Bp,w ux  u0, then the consumer acts as in the standard framework.

xp,w exists because preferences are continuous and is unique because
preferences are strictly convex.

If maxx∈Bp,w ux ≥ u0, define B̃  x ∈ Bp,w ∣ ux ≥ u0, which is compact,
and convex (by strict convexity). Then maxx∈B̃ x1 exists. If both y and z are solutions
then by the strict convexity uy  z/2  u0 and thus there is a vector x such that
ux  u0 and x1  y1 contradicting the optimality of y in B̃.

c. Is this demand procedure rationalizable?
Yes. The procedure is rationalized by

vx 
ux if ux  u0

u0  x1 if ux ≥ u0.

d. Does the demand function satisfy Walras Law?
Yes. Preferences are monotonic.

e. Show that in the domain of p,w for which there is a feasible bundle
yielding utility of at least u0 the consumer’s demand function for commodity
1 is decreasing in p1 and increasing in w.

In both cases the budget set is enlarging and the consumer could obtain more
x1 and preserve u0.

f. Is the demand function continuous?
Yes. By question 2, showing that the demand xp,w is continuous in p is

sufficient. Let zp,w be the solution of maxx∈Bp,w ux. Note that in this case zp,w
is not necessarily the consumer’s demand xp,w.

Let pn converge to p. If uzp,w  u0 then for n large enough



maxx∈Bpn,wux  u0 and the demand is zpn,w converges to zp,w which is the
demand in p,w.

Assume uzp,w ≥ u0. Let m  inf i,n pin  0, the infimum of the commodity
prices. Then xpn,w ∈ 0,w/mK for all n, and thus WLOG we can assume that
xpn,w converges to a bundle y. By contradiction, assume that y ≠ xp,w.

If uy  u0, then by continuity, there exists an   0 such that
Bxp,w  By. Then, there exists a a ∈ Bxp,w such that pa  w and a  y.
For n large, pna ≤ w and a  xpn,w, a contradiction.

If uy ≥ u0, then x1p,w  y1. Let a  1
2 xp,w 

1
2 y. Then a1  y1, a ∈ Bp,w

and ua  u0 by strict convexity. By continuity, there exists an   0 small such that
a1 −   y1  , p  a − e1  w and ua − e1 ≥ u0. Thus for n large, Bpn,w
contains a − e1 which yields utility larger than u0 and quantity larger than x1pn,w,
a contradiction.



Problem 7. It’s a common practice in economics to view aggregate
demand as being derived from the behavior of a “representative consumer”.
Give two examples of “well-behaved” consumer preference relations that can
induce average behavior that is not consistent with maximization by a
“representative consumer”. (That is, construct two “consumers”, 1 and 2,
who choose the bundles x1 and x2 out of the budget set A and the bundles y1

and y2 out of the budget set B so that the choice of the bundle x1x2

2 from A

and of the bundle y1y2

2 from B is inconsistent with the model of the rational

consumer).
Let pA,wA  1,2, 8, pB,wB  2,1, 8 and

u1x 
x1 if x1  4

4  x2 if x1 ≥ 4
u2x 

x2 if x2  4

4  x1 if x2 ≥ 4

The demands of the two agents in A will be 4,2 and 0,4 and thus
xAp,w  2,3. Similarly, xBp,w  3,2. Both average bundles are interior in A
and in B. Thus, we the average demand violates the weak axiom.



Problem 8. A commodity k is Giffen if the demand for the k’th good is
increasing in pk. A commodity k is inferior if the demand for the commodity
decreases with wealth. Show that if there is a vector p,w such that the
demand for the k’th commodity is rising after its price has increased, then
there is a vector p′,w′ such that the demand of the k’th commodity is falling
after the income has increased (Giffen implies inferior).

Let ek be the vector with the k’th component being 1 and all other components
being 0. We have xkp  ek,w  xkp,w. Let w′ ≥ w be the “compensating” wealth
level, that is p  ek  xp,w  w′. Thus, xp  ek,w′  xp,w.

By definition
pxp  ek,w′  xkp  ek,w′  p  ek  xp  ek,w′ ≤ w′  w  xkp,w.

If xkp  ek,w′  xkp,w then pxp  ek,w′  w contradicting the optimality of
xp,w in Bp,w.
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Problem Set 6 - Choice over Budget Sets and the Dual
Consumer

Problem 1. In a world with two commodities, consider a consumer’s
preferences that are represented by the utility function ux1,x2  minx1,x2.

a. Calculate the consumer’s demand function.
A solution x∗ must satisfy x1

∗  x2
∗ and px∗  w. Thus,

xp,w  w/p1  p2,w/p1  p2.
b. Verify that the preferences satisfy convexity.
Let uy,uz ≥ ux, that is miny1,y2 ≥ minx1,x2 and

minz1, z2 ≥ minx1,x2. Then
uy  1 − z  miny1  1 − z1,y2  1 − z2 ≥

miny1,y2  1 − minz1, z2 ≥ minx1,x2  ux.
c. Calculate the indirect utility function vp,w.
vp,w  uxp,w  w/p1  p2.
d. Verify Roy’s Identity.

xip,w  −
∂vp,w/∂pi
∂vp,w/∂w

 − −w/p1  p22

1/p1  p2
 w
p1  p2

.

e. Calculate the expenditure function ep, z and verify the Dual Roy’s
Identity.

Obviously, hip, z  minz1, z2. Thus, ep, z  minz1, z2p1  p2.
Then hip, z  ∂ep, z/∂pi  minz1, z2.



Problem 2. Imagine that you are reading a paper in which the author uses
the indirect utility function vp1,p2,w  w/p1  w/p2. You suspect that the
author’s conclusions in the paper are the outcome of the“fact” that the
function v is inconsistent with the model of the rational consumer. Take the
following steps to make sure that this is not the case:

a. Use Roy’s Identity to derive the demand function.

xip,w  −
∂vp,w/∂pi
∂vp,w/∂w

 − −w/pi2

p1  p2/p1p2


wpj
pip1  p2

.

b. Show that if demand is derived from a smooth utility function, then the
indifference curve at the point x1,x2 has the slope − x2 / x1 .

By part (a), xip,w  0 for i  1,2. Note that x2p,w  
p1
p2
2x1p,w.

If u is quasi-concave, then

∂ux/∂x1

∂ux/∂x2
 p1
p2

 x2
x1

c. Construct a utility function with the property that the ratio of the partial
derivatives at the bundle x1,x2 is x2 / x1 .

ux   x1  x2 .

d. Calculate the indirect utility function derived from this utility function.
Do you arrive at the original vp1,p2,w? If not, can the original indirect utility
function still be derived from another utility function satisfying the property
in (c)?

The indirect utility function derived from u is
uxp,w   wp1/p2p1  p2  wp2/p1p1  p2   wp1  p2 / p1p2 .

The function u2x represents the same preference relation and
u2xp,w  vp,w.



Problem 3. A consumer with wealth w is interested in purchasing only
one unit of one of the items included in a (finite) set A. All items are
indivisible. The consumer does not derive any “utility” from leftover wealth.
The consumer evaluates commodity x ∈ A by the number Vx (where the value
of not purchasing any of the goods is 0). The price of commodity x ∈ A is
px  0.

a. Formulate the consumer problem.
Let "n" denote not purchasing anything, where pn  0 and Vn  0. Define

Bp,w  x ∈ A  n ∣ px ≤ w. We get: vp,w  maxx∈Bp,wVx.

b. Check the properties of the indirect preferences (homogeneity of
degree zero, monotonicity, continuity and quasi-convexity).

The proofs of Homogeneity, Monotonicity and Quasi Convexity are valid. The
indirect utility function is not continuous: Take K  1, A  x, where Vx  1,
px  1 and w  1. Then v1,1  1 but v1,1 −   0 for any   0.

c. Calculate an indirect utility function for the case in which A  a,b and
Va  Vb  0.

Vp,w 

Va pa ≤ w

Vb pb ≤ w  pa
0 pa,pb  w



Problem 4. Assume that the consumer’s preferences  satisfy
monotonicity, continuity and strict convexity. Show that the bundle x is the
best element in Bp,w if and only if for all y ∈ Bp,w different then x there
exists a budget set Bp′,w′ containing y and not x such that p,w ∗ p′,w′.

 Let x∗  xp,w. Let y ∈ Bp,w, y ≠ x∗. Choose p′,w′ such that x|xp′  w′
is the hyperplane tangent to the indifference curve through y. Clearly, y ∈ Bp′,w′ ,
x∗ ∉ Bp′,w′, and xp,w  xp′,w′.

Let x∗ ∈ Bp,w such that for any y ∈ Bp,w different then x∗ there exists a
budget set Bp′,w′ containing y and not x∗ such that p,w ∗ p′,w′. Then,
xp,w  xp′,w′  y for all y ≠ x∗ and thus, it must be that xp,w  x∗



Problem 5. Show that if the preferences are monotonic, continuous and
strictly convex, then the Hicksian demand function hp, z is continuous.

Let pn, zn converge to p, z0. Define zk  supzkn, m  infpkn and
M  suppkn. The consumer does not need more than M∑

k
zk to obtain any zn.

Thus, hlpn, zn ≤ M∑
k
zk/m for all l. Thus, WLOG we can assume that hpn, zn

converges to some bundle h∗.
By contradiction, assume that h∗ ≠ hp, z0. By the continuity of the preferences

h∗  z0, and thus (assuming that hp, z is uniquely defined) ph∗  php, z0. There
exists an   0 such that ph∗  php, z0  , . . , and by monotonicity of the
preferences hp, z0  , . . ,  z0. Then, for n large enough,
pnhpn, zn  pnhp, z0  e and hp, z0  e  zn, a contradiction.



Problem 6. One way to compare budget sets is by using the indirect
preferences which involves comparing xp,w and xp′,w. Following are two
other approaches to making such a comparison.

Define:

CVp,p′,w  w − ep′, z  ep, z − ep′, z

where z  xp,w. This is the answer to the question: What is the change in
wealth that would be equivalent, from the perspective of p,w, to the change
in price vector from p to p′?
Define:

EVp,p′,w  ep, z′ − w  ep, z′ − ep′, z′

where z′  xp′,w. This is the answer to the question: What is the change in
wealth that would be equivalent, from the perspective of p′,w, to the change
in price vector from p to p′?
Now, answer the following questions regarding a consumer in a
two-commodity world with a utility function u:

a. For the case of the preferences represented by ux1,x2  x1  x2,
calculate the two consumer surplus measures.

CVp,p′,w  w − wminp1
′ ,p2

′ 
minp1,p2

 w minp1,p2 − minp1
′ ,p2

′ 
minp1,p2

EVp,p′,w  wminp1,p2
minp1

′ ,p2
′ 

− w  w minp1,p2 − minp1
′ ,p2

′ 
minp1

′ ,p2
′ 

Assume that the price of the second commodity is fixed and that the price
vectors differ only in the price of the first commodity.

b. Assume that the first good is a normal good (the demand is increasing
with wealth). What is the relation of the two measures to the “area below the
demand function” (which is a standard third definition of consumer
surplus)?

(This part should be polished)
Let a  p1

′′  p1
′  b and let A denote the area under the demand curve for

commodity 1 between a and b.
Let u′  va,p2,w and u′  vb,p2,w.
Let h1p,u denote the hicksian demand h1p, z when uz  u.
If commodity 1 is a normal good, then h1p,u is increasing in u, and thus

h1t,p2,u′ ≤ h1t,p2,vt,p2,w ≤ h1t,p2,u′′ for t∈ a,b.

Recall that by the Dual Roy’s identity, ∂et,p2,u
∂p1

 h1t,p2,u By integrating,



CVp′,p′′,w  
a

b ∂et,p2,u′
∂p1

dt  
a

b
h1t,p2,u′dt

≤ 
a

b
h1t,p2,vt,p2,wdt  

a

b
x1t,p2,wdt  A

≤ 
a

b
h1t,p2,u′′dt  

a

b ∂et,p2,u′′
∂p1

dt  EVp′,p′′,w.

c. Explain why the two measures are identical if the individual has
quasi-linear preferences in the second commodity and in a domain where the
two commodities are consumed in positive quantities.

Recall that by Question 4 of PS5, the consumer’s demand adjusts to a change
in wealth by adjusting consumption of the quasi-linear good (in this case
commodity 2) and the consumption of commodity 1 is constant. Consider the
following diagram where CV and EV are drawn. Since the indifference curves are
parallel horizontally, the two measures are identical.

p

'z z

'p

CV

EV



Problem 7.
a) Verify that you know the envelope theorem, which states conditions

under which the following is correct:
Consider a maximization problem maxxux,1, , . . ,n | gx,1, , . . ,n  0.

Let V1, , . . ,n be the value of the maximization. Then ∂V
∂i
a1, , . . ,an 

∂u−g
∂i

x∗a1, , . . ,n,a1, , . . ,n where x∗a1, , . . ,n is the solution to the

maximization problem and  is the Lagrange multiplier associated with the
solution of the maximization problem.

b) Derive the Roy’s identity from the envelope theorem (hint: show that in
this context ∂V/∂i

∂V/∂j
a1, , . . ,an 

∂g/∂i
∂g/∂j

x∗a1, , . . ,n,a1, , . . ,n).

In the context of the consumer’s problem we have a1, , . . ,n  p1, . . . ,pk,w,
ux,1, , . . ,n  ux and gx,1, , . . ,n  w − px. Note that u depends on  i only
through x (That is, the prices and wealth don’t have a direct effect on the utility. The
utility depends on the prices and wealth only through their effect on the bundle x).
Using the chain rule it implies that ∂u/∂ ix1, , . . ,n,1, , . . ,n  ∂u/∂x  ∂x/∂ i.
Thus, if x∗a1, , . . ,n is the solution to the maximization problem then ∂u/∂x  0 and
therefore ∂u/∂ ix∗1, , . . ,n,1, , . . ,n  0 for all i.

Denote   a1, , . . ,n.
The envelope theorem states that:

∂V/∂ i  ∂u/∂ ix∗, − ∂g/∂ ix∗,

Thus,

∂V/∂ i  −∂g/∂ ix∗,.

By taking ratios and canceling out :

∂V/∂ i
∂V/∂ j

  ∂g/∂ i
∂g/∂ j

x∗,.

Since gx,  w − px, for any i  1,2, . . . ,n − 1:

∂g/∂ i  ∂g/∂pix∗a,a  −xi∗

and for i  n:

∂g/∂n  ∂g/∂wx∗a,a  1

Plugging this in ∂V/∂i
∂V/∂j

  ∂g/∂i
∂g/∂j

x∗, we get −∂v/∂pi
∂v/∂w  xi∗ which is exactly

Roy’s identity.
c) What makes it is easy to prove Roy’s identity without using the

envelope theorem?
The fact that the utility does not depend directly on the prices (only through the

bundle x).



Problem Set 7: The Producer
Problem 1. Assume that technology Z and the production function f

describe the same producer who produces commodity K using inputs
1,… ,K − 1. Show that Z is a convex set if and only if f is a concave function.
Z is convex
iff −v,y, −v ′,y ′ ∈ Z,  ∈ 0,1 implies that −v − 1 − v ′,y  1 − y ′ ∈ Z
iff y ≤ fv, y ′ ≤ fv ′,  ∈ 0,1 implies that y  1 − y ′ ≤ fv  1 − v ′
iff fv  1 − fv ′ ≤ fv  1 − v ′
iff f is concave.

Problem 2. Calculate the supply function zp for each of the following
production functions:

Let w denote the input prices and p denote the output price.
(a) fa  a1

, for  ≤ 1
If   1, then the firm solves maxa1≥0p − wa1, and thus z1p,w  0 if p  w and

is not defined otherwise.
If  ∈ 0,1, the firm solves maxa1≥0 pa1

 − wa1, which is strictly concave and
strictly increasing at a1  0. Then the first order condition is sufficient for
maximization, and thus z1p,w   wp 

1
−1

(b) ga  mina1,a2
z1p,w  z2p,w  0 if p  w1  w2 and is not defined otherwise.



Problem 3. Consider a producer who uses L inputs to produce K − L
outputs. Denote by w the price vector of the L inputs. Let akw,y be the
demand for the k’th input when the price vector is w and the output vector he
wishes to produce is y. Show the following:

a. Cw,y  Cw,y.
Cw,y  mina∣−a,y∈Z wa  mina∣−a,y∈Zwa  Cw,y.

b. C is nondecreasing in any input price wk.
Assume wl

′ ≥ wl for all l.
Cw′,y  w′aw′,y ≥ waw′,y ≥ waw,y  Cw,y.
c. C is concave in w.
Let w,w′ be input prices, w′′  w  1 − w′ for  ∈ 0,1. Then

Cw′′,y  w  1 − w′aw′′,y  waw′′,y  1 − w′aw′′,y

≥ Cw,y  1 − Cw′,y.

d. Shepherd’s lemma: If C is differentiable, ∂C
∂wk

w∗,y  akw∗,y (the kth

input commodity).
Fix y. C is now a function of w. For every w, Cw,y ≤ waw∗,y.

Cw∗,y  w∗aw∗,y. Thus w,c ∣ c  waw∗,y is tangent to the graph of the
function Cw,y at w∗,Cw∗,y. Since C is differentiable ∇Cw∗,y  aw∗,y.

e. If C is twice continuously differentiable, then for any two commodities j
and k, ∂aj/∂wkw,y  ∂ak/∂wjw,y.

By Shapherd’s Lemma and Young’s Theorem (mixed partial derivatives are
equal):

∂ajw,y
∂wk

 ∂
2Cw,y
∂wk∂wj

 ∂
2Cw,y
∂wj∂wk

 ∂akw,y
∂wj

.



Problem 4. It is usually assumed that the cost function C is convex in the
output vector. Much of the research on production has been aimed at
investigating conditions under which convexity is induced from more
primitive assumptions about the production process. Convexity often fails
when the product is related to the gathering of information or data
processing.

Consider, for example, a firm conducting a telephone survey immediately
following a TV program. Its goal is to collect information about as many
viewers as possible within 4 units of time. The wage paid to each worker is w
(even when he is idle). In one unit of time, a worker can talk to one
respondent or be involved in the transfer of information to or from exactly
one colleague. At the end of the 4 units of time, the collected information
must be in the hands of one colleague (who will announce the results).

Define the firm’s product, calculate the cost function and examine its
convexity.

The firm’s product is units of information.
Denote the agents by 1,...,n. Let i → j stands for i transfers information to j and

let → j stands for j collects information from a viewer. Denote a procedure by a
sequence of square brackets, each stands for one period and contains the
transfers of information during that period. Agent 1 will be the agent who
announces the result.
n  1. Since there is only one agent, he can use the four units of time only for

collecting information from four viewers. Thus, the maximum number of responses
is 4. An optimal procedure:

[ → 1 ][ → 1 ][ → 1 ][ → 1 ]
2. The last unit of time has to be used to transfer information from some agent,

2, to agent 1. Therefore, both agents can collect information only for the first three
units of time. Thus, the maximum number of responses is 6.

An optimal procedure:
[ → 1,→ 2][ → 1,→ 2][ → 1,→ 2][2 → 1 ]
3. Again, the last unit of time has to be used to transfer information from one

agent, let us say 2, to agent 1. However, one of these two agents has to get the
information from agent 3 one period earlier. Thus, there are two agents who are
free to collect information for two periods and one agent who is free for three
periods. The total number of collected responses is thus, bounded by 7.

An optimal procedure:
[ → 1,→ 2,→ 3][ → 1,→ 2,→ 3][ → 1,3 → 2][2 → 1 ]

4. If the firm employs 4 or more agents it can collect at most 8 responses.
Again, the last unit of time has to be used to transfer information from one

agent, let us say 2, to 1. It is sufficient to show that each of them cannot hold more



than 4 units of information after three periods. To see it note that after two periods
each agent can hold not more than 2 units and thus, after three periods he will
have 3 units if he makes a call himself, or 4 units if he gets the information
collected earlier by another agent.

An optimal procedure:
[ → 1,→ 2,→ 3,→ 4][ → 1,→ 2,→ 3,→ 4][ 3 → 1,4 → 2][2 → 1 ]

Let y be the "output", the number of responses the center collected and Cy,w
be the minimum cost of producing y. Then,

y 0 1,2,3,4 5,6 7 8

Cy,w 0 w 2w 3w 4w

Obviously, C is not convex: C2,w  w  w/2 . 5C0,w . 5C4,w.



Problem 5. Consider a firm producing one commodity using L inputs,
which maximizes production subject to the constraint of nonnegative profits.
Show that under reasonable assumptions, the firm’s supply function
satisfies Homogeneity of degree 0, monotonicity in prices and continuity.

Let Dp,w  x ∈ 
L ∣ pfx − wx ≥ 0. The firm solves maxx∈Dp,w fx. Let

xp,w be the firm’s input demand and yp,w  fxp,w be the firm’s optimal
output.

Homogeneity of degree zero for xp,w, yp,w: It follows from the fact that
Dp,w  Dp,w for   0.

Optimal output yp,w is non-increasing in w and strictly increasing in p if
f is strictly increasing: If w′ ≥ w, then Dp,w′ ⊆ Dp,w, and thus
yp,w′ ≤ yp,w. If p′  p, then there exists a x ′  xp,w such that x ′ ∈ Dp′,w. By
f strictly increasing, yp′,w ≥ fx ′  yp,w.

If f is continuous and strictly concave, then xp,w and yp,w are
continuous: Let pn,wn converge to p,w. Define p  suppn and w  infwkn,
and thus Dpn,wn ⊆ Dp, w, . . . ,w for all n. Then

xn ∈ x ∈ 
L ∣ pyp, w, . . . ,w − w, . . . ,w  x ≥ 0

since pyp, w, . . . ,w ≥ pnfxn and w, . . . ,w ≤ wn for all n. If xn does not
converge to xp,w then there is a subsequence that converges to some
x∗ ≠ xp,w. Since f is continuous, pfx∗ ≥ wx∗. Thus, by strict concavity,
fx∗  fxp,w.

Now (i) fx∗  xp,w/2  fx∗ and (ii) pfx∗ ≥ wx∗ and pfxp,w ≥ wxp,w
and by the strict concavity of f,
pfx∗  xp,w/2  pfx∗  pfxp,w/2 ≥ wx∗  xp,w/2.

Therefore we found x ′ such that fx ′  fx∗ and pfx ′ − wx ′  0. Therefore, for
n large enough, pnfx ′ − wnx ′ ≥ 0 and fx ′  fxn, a contradiction.



Problem 6. An event that could have occurred with probability 0.5 either
did or did not occur. A firm must provide a report in the form of "the event
occurred" or "the event did not occur". The quality of the report (the firm’s
product), denoted by q, is the probability that the report is correct. Each of k
experts (input) prepares an independent recommendation which is correct
with probability 1  p  0.5. The firm bases its report on the k
recommendations in order to maximize q.

a. Calculate the production function q  fk for (at least) k  1,2,3, . . .

Experts k fk

0 0.5

1 p

2 p2  p1 − p  p
3 p3  3p21 − p  p

b. We say that a “discrete” production function is concave if the
sequence of marginal product is nonincreasing. Is the firm’s production
function concave?

No. Marginal product is positive from 0 to 1, zero from 1 to 2 and then positive
from 2 to 3.

Assume that the firm will get a prize of M if its report is actually correct.
Assume that the wage of each worker is w.

c. Explain why it is true that if f is concave, the firm chooses k∗ so that
the k∗th worker is the last one for whom marginal revenue exceeds the cost
of a single worker.

The form’s profits if it employs k workers are: Mfk − kw. If f is concave, then
for any worker k  k∗, the firm’s marginal profit Mfk  1 − fk − w is positive,
whereas for any worker k  k∗, the firm’s marginal profit is negative.

d. Is this conclusion true in our case?
No. Since the marginal revenue of the second expert is 0, while it is possible

that it is optimal for the firm to hire 3 experts.



Problem 7. Come up with a theory for a producer who maximizes
production given the constraint of achieving a level of profit  (and does not
produce at all if he cannot).

a. Show conditions under which the producer’s problem has a unique
solution for every price vector.

Consider there to be only one output, and k inputs y  fa1, . . .ak. For a given
vector of inputs, and price vector the profit function is a,p  pyy − paa.

Now we can write the Producer’s problem as maxafa s.t. a,p ≥ .
Given prices, if there is no a s.t. a,p ≥ , then the producer chooses not to
produce.

If the production technology is strictly convex (fa strictly concave, decreasing
returns to scale), bounded from above, and all prices are strictly positive then we
have a unique solution to our problem.

Assume for contradiction that there are two solutions, a and a′. It must be that
fa  fa′ and a,p  a′,p  , otherwise we would be able to increase
production. Now look at a convex combination of these two points. For  ∈ 0,1,
due to strict concavity of fa, fa  1 − a′  fa  fa′, and therefore
a  1 − a′,p   (since paa  paa′  paa  1 − a′ and
pyfa  pyfa′  pyfa  1 − a′). But this means a  1 − a′ is better than a
and a′.

b. How does the supply of the good change with its price and the price of
any of the input goods.

Since we proved above that the solution is unique we can refer to the optimal
choice of inputs given prices as ap.

Consider increasing the output price: let p and p′ be price vectors s.t. py′  py
and pa′  pa. For all a if pyfa − paa ≥  then py′ fa − pa′ a   and for   0 small
enough also py′ fa  , . . . , − pa′ a  , . . . ,  . Therefore,
fap′, ≥ fap,  , . . . ,  fap, (assuming that f is increasing).

Now consider increasing the input price: let p and p′ be price vectors s.t. py′  py
and pa′  pa. Similarly, For all a if py′ fa − pa′ a ≥  then pyfa − paa   and for   0
small enough also pyfa  , . . . , − paa  , . . . ,  . Therefore,
fap, ≥ fap′,  , . . . ,  fap′, (assuming that f is increasing).

a(p)input

p’

output

p

a(p’)

f(a(p’))

f(a(p))

pa<pa’
py =py’



c. what can you say about the change in the producer behavior as 
increases (in the range where he does indeed produce)?

Intuitively, as  increases, keeping the prices the same, we shift the price line
with same slope up. Due to convexity of the production technology this will lead to
less production.

Formally, assume ′  . For all a if pyfa − paa ≥ ′ then pyfa − paa   and
for   0 small enough also pyfa  , . . . , − paa  , . . . ,  . Therefore,
fap, ≥ fap,′  , . . . ,  fap,′.

d. Any other observations you can think of (and prove...)?



Problem Set 8 - Expected Utility
Problem 1. Consider the following preference relations that were

described in the text: “the size of the support” and “comparing the most
likely prize".

a. Check carefully whether they satisfy axioms I and C.
Both preference relations violate both axioms:
the size of the support
Let pt be the lottery: ptz1  t and ptz2  1 − t.
not I: z1  p1/2, but for 1    0, z1 ⊕ 1 − p1/2  p1/2.
not C: For any 1/n  0, p1/n  p1/2, but in the limit z1  p1/2.
comparing the most likely prize
Assume that z1 is better than z2 and that "ties are broken in favor" of z1:
not I: z1  z2, but p 1

4
 z2.

not C: 0.5 − 1/n, 0. 5  1/n  z2 for all n but in the limit p1/2  z2.
b. These preference relations are not immune to a certain "framing

problem". Explain.
Both preference relations strictly prefer the lottery $100 with probability 0.4 and

$50 with probability 0.6 to the lottery $100 with probability 0.4, one blue note of $50
with probability 0.3 and one green note of $50 with probability 0.3, even though the
lotteries seem to be the "same".



Problem 2. One way to construct preferences over lotteries with monetary
prizes is by evaluating each lottery L on the basis of two numbers: ExL, the
expectation of L, and varL, L’s variance. Such a construction may or may
not be consistent with vNM assumptions.

a. Show that uL  ExL − 1/4varL induces a preference relation that is
not consistent with the vNM assumptions.

1  0.50 ⊕ 0.54 since u1  u0.50 ⊕ 0.54  1.
However, for   1/2:
1  1 − 0.50 ⊕ 0.52  0.50 ⊕ 0.54  1 − 0.50 ⊕ 0.52
since the utility of the left lottery, 7/8, is greater than the utility of the right lottery,

13/16.
b. Show that uL  ExL − ExL2 − varL is consistent with vNM

assumptions.
Using the formula varX  ExX2 − ExX2 we get

uL  ExL − ExL2 − varL 
ExL − ExL2 − ∑z∈Z Lzz

2 − ExL2  ∑z∈Z Lzz − z
2

is an expected utility function with vNM value vz  z − z2.



Problem 3. A decision maker has a preference relation  over the space of
lotteries LZ having a set of prizes Z. On Sunday he learns that on Monday
he will be told whether he has to choose between L1 and L2 (probability
1    0) or between L3 and L4 (probability 1 − ). He will make his choice at
that time. Let us compare between two possible approaches the decision
maker can take.

Approach 1: He delays his decision to Monday (“why bother with the
decision now when I can make up my mind tomorrow.”).

Approach 2: He makes a contingent decision on Sunday regarding what
he will do on Monday, that is, he decides what to do if he faces the choice
between L1 and L2 and what to do if he faces the choice between L3 and L4

(“On Monday morning I will be so busy. . .”).
a. Formulate Approach 2 as a choice between lotteries.
The DM chooses one of the four “compound” lotteries in the set

Li ⊕ 1 − Lj ∣ i ∈ 1,2, j ∈ 3,4.

b. Show that if the preferences of the decision maker satisfy the
independence axiom, then his choice under Approach 2 will always be the
same as under Approach 1.

Let Li (Lj) be the preferred lottery in L1,L2 (L3,L4), and L−i (L−j) be the other
lottery. Under approach 1, the DM selects Li (Lj) if the choice set on Monday is
L1,L2 (L3,L4). Let  be the DM’s preferences over the compound lotteries in
(a). By I,

Li ⊕ 1 − Lj  Li ⊕ 1 − L−j  L−i ⊕ 1 − L−j and
Li ⊕ 1 − Lj  L−i ⊕ 1 − Lj. Thus Li ⊕ 1 − Lj is the best of the
“compound” lotteries.



Problem 4. A decision maker is to choose an action from a set A. The set
of consequences is Z. For every action a ∈ A, the consequence z∗ is realized
with probability  and any z ∈ Z ∖ z∗ is realized with probability
ra, z  1 − qa, z.

a. Assume that after making his choice he is told that z∗ will not occur and
is given a chance to change his decision. Show that if the decision maker
obeys the Bayesian updating rule and follows vNM axioms, he will not
change his decision.

By the vNM Theorem, preferences exhibit expected utility representation.
Before learning the information, the DM solves

max
a∈A

∑
z∈Z∖z∗

ra, zvz  vz∗ .

After learning that z∗ will not occur, the DM updates his beliefs so that
r′a, z  ra, z/1 −   qa, z for z ∈ Z ∖ z∗ and the DM solves
maxa∈A ∑z∈Z∖z∗ r

′a, zvz, which yields the same solution.

b. Give an example where a decision maker who follows nonexpected
utility preference relation or obyes a non-Bayesean updating rule is not time
consistent.

Example 1. Assume the DM has a “worst case” preference relation, where z1 is
the best prize, z2 is the second best and z∗ is the worst. Let action a1 yield z1 for
sure and action a2 yield z1 and z2 with equal probability, conditional on z∗ not
occurring. Then the DM will initially be indifferent between a1 and a2, but will strictly
prefer a1 after the information is revealed.

Example 2. Assume that Z  1,2,3, z∗  0 and that vz  z. Assume that
initially his beliefs are: qa1, 2  1, qa2, 3  0.4 and qa2, 1  0.6. Contingentally
the DM chooses a1. If he updates his beliefs and after he was lucky to avoid z∗ he
believes that he will be fortunate again, that is q′a2, 3  1, then he will change his
mind and choose a2.



Problem 5. Assume there is a finite number of income levels. An income
distribution specifies the proportion of individuals at each level. Thus, an
income distribution has the same methematical structure as a lottery.
Consider the binary relation "one distribution is more egalitarian than
another”.

a. Why is the von Neumann-Morgenstern independence axiom
inappropriate for characterizing this type of relation?

Assigning all members of the society the income 1 is as egalaterian as
assigning all of them the income 2 and under the independence axiom,
0.51 ⊕ 0.52 should be as egalaterian as 1, but our intuition is that
0.51 ⊕ 0.52 is less egalitarian than assigning equal income to all members of the
society.

b. Suggest and formulate a property that is appropriate, in your opinion,
as an axiom for this relation. Give two examples of preference relations that
satisfy this property.

If p and q are identical distributions, except that the highest (lowest) income
level in p is less (more) than in q, then p is more egaletrian than q.

Example 1: p  q if Varp ≤ Varq.
Example 2: p  q if maxz∈supp pz z − minz∈supp pz z ≤ maxz∈supp qz z − minz∈supp qz z.



Problem 6. A decision maker faces a trade-off between longevity and
quality of life. His preference relation ranks lotteries on the set of all certain
outcomes of the form q, t defined as “a life of quality q and length t” (where
q and t are nonnegative numbers). Assume that the preference relation
satisfies von Neumann-Morgenstern assumptions and that it also satisfies
the following:

(i) There is indifference between any two certain lotteries q, 0 and
q′, 0.

(ii) Risk neutrality with respect to life duration: an uncertain lifetime of
expected duration T is equally preferred to a certain lifetime duration T when
q is held fixed.

(iii) Whatever quality of life, the longer the life the better.
a. Show that the preference relation derived from maximizing the

expectation of the function vqt, where vq  0 for all q, satisfies the
assumptions.

(i) If t  0, then vqt  0 for all q.
(ii) Let p be a lottery over t with expectation T. Then

∑ t
ptvqt  vq∑ t

tpt  vqT.

(iii) vqt ′  vqt for all t ′  t.
b. Show that all preference relations satisfying the above assumptions

can be represented by an expected utility function of the form vqt, where v
is a positive function.

Since  satisfies the v-NM axioms, then  is represented by an expected utility
function with values wq, t.

By the second property, wq, t is a affine tranformation of t, that is wq, t  vqt
bq.

By propery (i) it must be that bq  b as otherwise for some q and q′ we would
have wq, 0 ≠ wq′, 0.

By (iii) vq  0 for all q.



Problem 7. Consider a decision maker who systematically calculates that
2  3  6. Construct a ”money pump“ argument against him. Discuss the
argument.

Tell the DM: “If you pay me $5.99, I will give you two checks, one for $2 and
another for $3.” The DM will take the offer since he thinks he profits $0.01. Then
buy from him the checks for $2.01 and $3.01 and so on...



Problem Set 9 – Risk Aversion
Problem 1.
a. Show that a sequence of numbers a1, . . ,aK satisfies that∑akxk ≥ 0 for

all vectors x1, . . ,xK such that xk  0 for all k iff ak ≥ 0 for all k.
If ak∗  0 then consider take xk∗  1 and xk    0 then for  small enough

∑akxk  0.
If ak ≥ 0 for all k then∑akxk ≥ 0 for all vectors x1, . . ,xK such that xk ≥ 0.

b. Show that a sequence of numbers a1, . . ,aK satisfies that∑akxk ≥ 0 for

all vectors x1, . . ,xK such that x1  x2 . . .xK  xK1  0 iff∑k1
l ak ≥ 0 for all l.

It follows, like in part (a), from the equality:
∑akxk  ∑k1

K ak∑ lk
K xl − xl1  ∑ l1

K xl − xl1∑k1
l ak.

Problem 2. We say that p second-order stochastically dominates q and
denote this by pD2q if p  q for all preferences  satisfying the vNM
assumptions, monotonicity and risk aversion.

a. Explain why pD1q implies pD2q.
If pD1q, then p  q for all preferences satisfying the vNM assumptions and

monotonicity. Thus p  q for all preferences satisfying the vNM assumptions,
monotonicity and risk aversion.

b. Let p and  be lotteries. Define p   to be the lottery that yields the
prize t with the probability∑t p. Interpret p  . Show that if  is a

lottery with expectation 0, then for all p, pD2p  .
p   is the combination of two independent lotteries p and . Let the agent

satisfy vNM assumptions, monotonicity and risk aversion. Then

Up   ∑
∈Z

p∑
∈Z

u  

≤ ∑
∈Z

pu∑
∈Z

   by u concave

∑
∈Z

pu by Ex  0

 Up.

c. Show that pD2q iff for all t  K,∑k0
t Gp,xk1 − Gq,xk1xk1 − xk ≥ 0,

where x0 . . . xK are all the prizes in the support of either p or q and



Gp,x  ∑z≥x pz.

Let  satisfy the vNM axioms, monotonicity and risk aversion. Then  is
represented by Up  ∑k0

K uxkpxk, with u increasing and concave. Define

k 
uxk1−uxk
xk1−xk if k  K

0 if k  K

By u increasing and concave, k ≥ k1 for all k. Then

Up − Uq ∑
k0

K

pxk − qxkuxk

∑
k0

K−1

Gp,xk1 − Gq,xk1uxk1 − uxk by algebra

∑
k0

K−1

Gp,xk1 − Gq,xk1xk1 − xkk by def. of k

∑
k0

K−1

Gp,xk1 − Gq,xk1xk1 − xk∑
tk

K−1

 t −  t1 telescopic sum and K  0

∑
t0

K−1

 t −  t1∑
k0

t

Gp,xk1 − Gq,xk1xk1 − xk by algebra

≥ 0 by  t ≥  t1 and∑
k0

t

Gp,xk1 − Gq,xk1xk1 − xk ≥ 0.

By contradiction, assume∑k0
T Gp,xk1 − Gq,xk1xk1 − xk  0 for some

T  K. Let  ∈ 0,1 and define

ux 
x if x ≤ xT1

xT1  x − xT1 if x  xT1.

By the above Up  Uq for  small enough.



Problem 3. Consider a phenomenon called preference reversal. Let
L1  8/94 ⊕ 1/90 and L2  1/940 ⊕ 8/90.

Discuss the phenomenon that many people prefer L1 to L2 but when asked
to evaluate the certainty equivalence of these lotteries they attach a lower
value to L1 than to L2.

People often prefer L1, but they are not willing to pay $4 to play. Nevertheless,
some people are willing to pay $4 to play L2. It seems that people tend to over
estimate small probabilities when they evaluate a lottery. See
http://www.encyclopedia.com/doc/1O87-preferencereversal.html.

Problem 4. Consider a consumer’s preference relation over K-tuples
describing quantities of K uncertain assets. Denote the random return on the
kth asset by Zk. Assume that the random variables Z1, . . . ,ZK are
independent and take positive values with probability 1. If the consumer
buys the combination of assets x1, . . . ,xK and if the vector of realized returns
is z1, . . . , zK, then the consumer’s total wealth is∑k

xkzk. Assume that the

consumer satisfies vNM assumptions, that is, there is a function v (over the
sum of his returns) so that he maximizes the expected value of v. Assume
that v is increasing and concave. The consumer preferences over the space
of the lotteries induce preferences on the space of investments. Show that
the induced preferences are monotonic and convex.

Monotonic: Let x ≥ x ′. Whenever the random variable∑k
xkZk gets a certain

value the random variable∑k
xk
′Zk an higher value and thus

Ev∑k
xkZk ≥ Ev∑k

xk
′Zk.

Convex: Let x,x ′ be two investment combinations,  ∈ 0,1 and
x ′′  x  1 − x ′. By the concavity of v, vx ′′  z ≥ vx  z  1 − vx ′  z for all z,
and thus Ev∑k

xk
′′Zk ≥ Ev∑k

xkZk  1 − Ev∑k
xk
′Zk. The expectation of v is

thus quasi-concave, and preferences are convex.



Problem 5. Adam lives in the Garden of Eden and eats only apples. Time
in the garden is discrete (t  1,2, . . . ) and apples are eaten only in discrete
units. Adam possesses preferences over the set of streams of apple
consumption. Assume that:

a) Adam likes to eat up to 2 apples a day and cannot bear to eat 3 apples a
day.

b) Adam is impatient. He would be delighted to increase his consumption
on day t from 0 to 1 or from 1 to 2 apples at the expense of an apple he is
promised a day later.

c) In any day in which he does not have an apple, he prefers to get one
apple immediately in exchange for two apples tomorrow.

d) Adam expects to live for 120 years.
Show that if (poor) Adam is offered a stream of 2 apples starting in day 4

for the rest of his expected life, he would be willing to exchange that offer for
one apple right away.

The following is a sequence of streams, in an increasing ordering:
(0,0,0,2,2,......,2)
(0,0,1,0,2,......,2). and continuing in this way until:
(0,0,1,1,1,......1,0)
(0,0,2,0,2,0...,2,0,0)
(0,1,0,1,0,....1,0,1,0,0,0) and "folding from the end":
(0,1,0,1,0,.1,0..2,0,0,0,0,0)
(0,1,0,1,0,.1,1,0,0,0,0,0,0)...until we reach:
(0,2,0,...0)
(1,0,....)



Problem 6. In this problem you will encounter Quiggin and Yaari’s
functional, one of the main alternatives to expected utility theory.

Recall that expected utility can be written as Up  ∑k1
K pzkuzk where

z0  z1 . . . zK are the prizes in the support of p. Let
Wp  ∑k1

K fGpzkzk − zk−1, where f : 0,1 → 0,1 is a continuous

increasing function and Gpzk  ∑ j≥k pzj. (pz is the probability that the

lottery p yields z and Gp is the “anti-distribution” of p.)
a. The literature often refers to W as the dual expected utility operator. In

what sense is W dual to U?
Recall that Exp  ∑k1

K pzkzk  ∑k1
K Gpzkzk − zk−1

While the expected utility functional transforms the prize numbers whereas
Quiggin-Yaari functional transofrms the anti-distribution numbers.

b. Show that W induces a preference relation on LZ which satisfies the
continuity axiom but may not satisfy the independence axiom.

Preferences are continuous because U is clearly continuous.
Let K  2, fx  x2, z0  0, z1  1 and z2  4. Define lotteries p . 75z0 ⊕. 25z2

and p′ . 5z0 ⊕. 5z1. Then

Up  4f 1
4
  1

4
 f 1

2
  Up′

but
U 1

2 p ⊕
1
2 z1  f 5

8   3f 1
8  

28
64  9

16  f 3
4   U

1
2 p

′ ⊕ 1
2 z1.

c. What are the difficulties with a functional form of the type∑z
fpzuz?

(See Handa (1977))
(1) If the DM is indifferent between prizes z1 and z2, then z1 and

0.5z1 ⊕ 0.5z2 need not be indifferent. If f1/2 ≠ 1/2, then
Uz1 ≠ U0.5z1 ⊕ 0.5z2.

(2) The DM might be “worse” off if probability weight is shifted to a more
preferred alternative:

if f1/2  1/2, 0.51 −  ⊕ 0.51  1 for   0 small enough while and–
if f1/2  1/2, 0.51   ⊕ 0.51  1 for   0 small enough.



Problem 7. The two envelopes paradox
Assume that a number 2n is chosen with probability 2n/3n1 and the

amounts of money 2n, 2n1 are put into two envelopes. One envelope is
chosen randomly and given to you and the other is given to your friend.
Whatever the amount of money in your envelope, the expected amount in
your friend’s envelope is larger (verify it). Thus, it is worthwhile for you to
switch envelopes with him even without opening the envelope! What do you
think about this paradoxical conclusion?

Note that this is indeed a probability distribution:
∑n0
 2n

3n1  1
3 ∑n0

 2
3

n  1
3

1
1− 2

3

 1.

Assume that in your envelope the sum of money is 2n. For any n ≥ 1 this can be
either the smaller amount or the larger one. If it is the smaller, then the other
envelope contains 2n1 and changing envelopes means a gain of 2n. The probability
for this event is 2n/3n1. If your amount is the larger one, then the other envelope
contains 2n−1 and changing means a loss of 2n−1. The probability for this event is
2n−1/3n. Hence, the expected gain when changing envelopes is
2n2n/3n1−2n−12n−1/3n

2n/3n12n−1/3n
 2n

10 which is positive for any n. For n  0, your envelope is surely

the smaller one, hence changing envelopes is profitable for any n ≥ 0. Thus, we
can conclude that you should change envelopes without even opening yours.

Note that the random expected amount of money in any envelope, your own
and the other one, is 1

3 ∑n1
 2n  5  2n−1

3n1  . It is possible to show that if the

problem is constructed such that the expected value of each envelope is finite, this
paradox does not arise.

Random variables with infinite expectation create many paradoxes. For
example, after every draw of such a random variable the decision maker who is risk
neutral would prefer to replace the outcome in hand with another draw...



Problem Set 10 – Social Choice
1. Assume that the set of social alternatives, X, includes only two

alternatives. Define a social welfare function to be a function that attaches a
preference to any profile of preferences (allow indifference for the SWF and
the individuals’ preference relations). Consider the following axioms:

Anonymity: If  is a permutation of N and if p  i i∈N and p′  i′ i∈N are
two profiles of preferences on X so that i′ i , then  p  p′.

Neutrality: For any preference i , define − i  as the preference
satisfying x− i y iff y i x. Then,  − i i∈N  −  i i∈N.

Positive Responsiveness: If the profile i′ i∈N is identical to i i∈N with
the exception that for one individual j either x j y and x j′ y) or (y j x and

x j′ y) and if x  y, then x ′ y.
a. Interpret the axioms.
A: The social aggregation treats any two individuals symmetrically.
N: The social aggregation treats the two alternatives symmetrically.
PR: The fact that one individual changed his mind in favor of an alternative

cannot harm (and in some cases is required to improve) the social status of that
alternative.

b. Show that majority rule satisfies all of them.
A: trivially satisfied.
N: Let Nx,p be the number of individuals that strictly prefer x to y in profile p. If

x  py, then Nx,p ≥ Ny,p, and thus y  −px, proving N.
PR: p′ is identical to p, except that one individual “increases” his preference for

x, and Nx,p ≥ Ny,p then Nx,p′  Ny,p′, and thus x  p′y.

c. Prove May’s theorem by which the majority rule is the only SWF
satisfying the above axioms.

Assume Nx,p  Ny,p. Let  be a permutation such that i’s preference is
the reverse of i’s preference. Let p′  i′ i∈N be a profile so that i′ i . By A

x  py iff x  p′y. Since p′  −p by N x  p′y iff y  px and thus x  py.
Assume p a profile such that Nx,p  Ny,p. Assume y  px. We can move

from p to a profile p′ by changing the preferences of Nx,p − Ny,p individuals who
prefer x to y to indifference. By PR we would get y  p′x although
Nx,p′  Ny,p′, a contradiction.

d. Are the above three axioms independent?
Yes.
A and N, but not PR: x  py for all p.
A and PR, but not N: Let X  a,b. a  pb if Na,p  Nb,p  1, otherwise

b  pa .
N and PR, but not A: For any profile of preferences we attach the



“lexicographic” preferences with some fixed priority of the individuals (For example,
x  py if [x 1 y] or [x 1 y and x 2 y] and so on...)



2. Assume that the set of alternatives, X, is the interval 0,1 and that each
individual’s preference is single-peaked, i.e., for each i there is an alternative
ai∗ such that if ai∗ ≥ b  c or c  b ≥ ai∗, then b i c. Show that for any odd n, if
we restrict the domain of preferences to single-peaked preferences, then the
majority rule induces a “well-behaved” SWF.

Let x  py and y  pz. By contradiction, assume that z  px.
(i) x  y  z. If a majority find x as good as y then all those strictly prefer y to z

and there is a majority who strictly prefer x over z.
(i) x  z  y. If a majority find y as good as z then all those strictly prefer z to x

and there is a majority who strictly prefer y over x.
(i) z  x  y. If a majority find z as good as x then all those strictly prefer x to y

and there is a majority who strictly prefer z over y.



3. Each of N individuals chooses a single object from among a set X,
interpreted as his recommendation for the social action. We are interested in
functions that aggregate the individuals’ recommendations (not preferences,
just recommendations!) into a social decision (i.e., F : XN → X). Discuss the
following axioms:

Par: If all individuals recommend x∗, then the society chooses x∗.
I: If the same individuals support an alternative x ∈ X in two profiles of

recommendations, then x is chosen in one profile if and only if it chosen in
the other.

a. Show that if X includes at least three elements, then the only
aggregation method that satisfies P and I is a dictatorship.

L1: For any recommendation profile x1, . . . ,xN, Fx1, . . . ,xN ∈ x1, . . ,xN.
Otherwise, by I, Fc, , , .c  Fx1, . . . ,xN for any c ≠ Fx1, . . . ,xN, contradicting P.
L2: If Fx1, . . . ,xN  a and for all G  i| xi  a ⊂ i| yi  a then

Fy1, . . . ,yN  a.
If not than by L1 Fy1, . . . ,yN  b ≠ a where b is one of the alternatives in y.
Let c be a third alternative. Let z1, . . . , zN be the same as y with any i ∉ G with

yi  a is changed to zi  c. Then, i| yi  b  i| zi  band i| xi  a  i| zi  a
thus by I Fz should be both b and a. A contradiction.

Let us say that G is decisive with respect to x∗ ∈ X, if [for all i ∈ G, xi  x∗] then
[Fx1, . . . ,xN  x∗].

By L2 if Fx1, . . ,xN  a then i| xi  a is decisive with respect to a.
L3: If G is decisive with respect to a with |G|≥ 2, then for any b there exists

∅ ⊂ G′ ⊂ G such that G′ is decisive with respect to a or b.
Let c be a third alternative. Since G is decisive with respect to a then

Fx1, . . . ,xN  a where xi  a for i ∈ G and xi  c otherwise
Let G1, G2 be a partition of G and

yi 

a if i ∈ G1

b if i ∈ G2

c if i ∈ N ∖ G

By I Fy1, . . . ,yN is not c and by L1 it is either a or b . Thus, by L2 either G1 or G2

are decisive with respect to a or b.
L4: There is a singleton i∗ who is decisive with respect to some alterative a.
L5: i∗ is decisive regarding any alterative b.
Let xi∗  a and xi  c for all other i. By I, Fx  a.
Let yi∗  b and yi  c for all other i, By I Fy ≠ c and by L1 Fy  b and by L2

it is decisive regarding b.
b. Show the necessity of the three conditions P, I, and |X|≥ 3 for this

conclusion.
Choosing the most popular recommendation (with pre-specified tie breaking

rule) satisfies P and I when |X| 2.
When |X|≥ 3, the most popular recommendation (with pre-specified tie breaking



rule)satisfies P but fails I.
Always choosing action x∗ ∈ X, regardless of recommendation, satisfies I but

fails P.



4. Who is an economist? Departments of economics are often sharply
divided over this question. Investigate the approach according to which the
determination of who is an economist is treated as an aggregation of the
views held by department members on this question.

Let N  1, . . . ,n be a group of individuals (n ≥ 3). Each i ∈ N “submits” a
set Ei, a proper non empty subset of N, which is interpreted as the set of
“real economists” in his view. An aggregation method F is a function that
assigns a proper non empty subset of N to each profile Eii1,...,n of proper
subsets of N. FE1, . . . ,En is interpreted as the set of all members of N who
are considered by the group to be economists. (Note that we require that all
opinions be proper subsets of N.) Consider the following axioms on F:

Consensus: If j ∈ Ei for all i ∈ N, then j ∈ FE1, . . . ,En and if j ∉ Ei for all
i ∈ N, then j ∉ FE1, . . . ,En.

Independence: If E1, . . . ,En and G1, . . . ,Gn are two profiles of views so
that for all i ∈ N, j ∈ Ei iff j ∈ Gi, then j ∈ FE1, . . . ,En iff j ∈ FG1, . . . ,Gn.

a. Interpret the two axioms.
C: If all individuals include (omit) an economist from their list, then that option is

included (omitted) from the aggregation.
I: If all individuals in profiles Ei and Gi have the same opinion regarding j,

then j is either included or excluded in both aggregations.

b. Find one aggregation method that satisfies C but not I and one that
satisfies I but not C.

Select the set with the smallest number of elements suggested by one of the
members (for tie breaking rule, from among the sets with minimal number of
individuals choose the one suggested by the member with the smallest index) This
methods satisfies C but not I.

Always selecting FE1, . . . ,En  1 satisfies I but not C.

c. Provide a proof similar to that of Arrow’s Impossibility Theorem of the
claim that the only aggregation methods that satisfy the above two axioms
are those for which there is a member i∗ such that FE1, . . . ,En  Ei∗ .

L1: Assume that G is almost decisive regarding j (that is j is an economist
whenever the group of people who consider j an economist is precisely G) then it is
almost decisive regarding any h (and thus will be almost decisive).

Consider the profile where the supporters of j are the members of G, the
supporters of i (a third member) are N − G and everybody supports all other
members. By C those must be in E and since E is a proper subset and j ∈ E, it
must be that i is not.

Now consider the profile where the set of supporters of h is G, the supporters of
i are N − G and nobody considers any other member to be an economist. By C all
those members besides i and h are not in E. By I i is not in E. Since E is a proper
subset it must be that h is in E. Thus, G is almost decisive regarding h.

L2: If G is almost decisive and contains more than one element then there is a



proper subset of G which is almost decisive.
Partition G to G1 and G2. Consider the profile where 1 is considered an

economist by exactly the members of G1, 2 is considered an economist by exactly
the members of G2 and all other individuals are considered economists by the
members of N − G only. As we have seen in L1, since G is almost decisive then
N − G is not and thus all individuals besides 1 and 2 are not determined by the
aggregator to be economists. It follows that either 1 or 2 must be an economist and
thus (using I) either G1 or G2 is almost decisive in regard 1 and 2 and by L1 at least
one of them is almost decisive.

L3: There is an i∗ who is almost decisive.
L4: If i is supported by G which contains i∗ then i is an economist.
Consider the profile where i is supported by G, j by N − i∗ and all the rest by

no one. By C all members N − i∗, j are not economists. From the argument
above neither is j so i must be an economist with respect to this profile and by I
with respect to any profile.



Review Problems
A. Choice:

Problem A1 (Princeton 1997)

A decision maker forms preferences over the set X of all possible distributions
of a population over two categories (such as living in two locations). An element in
X is a vector x1,x2 where xi ≥ 0 and x1  x2  1. The decision maker has two
considerations in mind:

He thinks that if x  y, then for any z, the mixture of  ∈ 0,1 of x with 1 −  of z
should be at least as good as the mixture of  of y with 1 −  of z.

He is indifferent between a distribution that is fully concentrated in location 1
and one that is fully concentrated in location 2.

a. Show that the only preference relation that is consistent with the two
principles is the degenerate indifference relation (x  y for any x,y ∈ X).

Let x  1,0, y  0,1 and , 1 −  be an arbitrary distribution, 0 ≤  ≤ 1. By
the second consideration, x  y, and in particular x  y. By the first consideration,
the mixture  of x and 1 −  of y is at least as good as the mixture  of y and
1 −  of y (choosing z to be y). Thus, , 1 −   y. Similarly, the mixture  of x
and 1 −  of x is at least as good as the mixture  of x and 1 −  of y (choosing z
to be x). Thus, x  , 1 − . Hence, any distribution , 1 −  is indiffernet to x and
y, since x  , 1 −   y.

b. The decision maker claims that you are wrong because his preference
relation is represented by a utility function |x1 − 1/2|. Why is he wrong?

The preferences represented by the utility function ux1,x2  |x1 − 1
2 | satisfy the

first consideration, since u1,0  |1 − 1
2 | |0 − 1

2 | u0,1. However, these

preferences fail to satisfy the second consideration: although 1,0  0,1, mixing
both sides with   1

2 of 0,1 yields  1
2 , 1

2   0,1, since u 1
2 , 1

2  
| 1

2 −
1
2 | |0 − 1

2 | u0,1.

Problem A2 (Princeton 2000. Based on Fishburn and Rubinstein (1982).)

Let X    0,1,2,…, where x, t is interpreted as receiving $x at time t. A
preference relation on X has the following properties:

(i) There is indifference between receiving $0 at time 0 and receiving $0 at any
other time.

(ii) It is better to receive any positive amount of money as soon as possible.
(iii) Money is desirable.
(iv) The preference between x, t and y, t  1 is independent of t.
(v) Continuity.
a. Define formally the continuity assumption for this context.
For any x, t and y, s with x, t  y, s, there is   0 such that for any x ′ such

that |x − x ′|  and any y ′ such that |y − y ′| , x ′, t  y ′, s.



b. Show that the preference relation has a utility representation.
Claim 1: For any pair x, t, there is a unique number vx, t ∈  such that

x, t  vx, t, 0.
Proof: By (iii) it is enough to show that for every x, t there is y with

x, t  y, 0.
For x  0, by (i) 0, t  0,0.
For any pair x, t with x ≠ 0, define the set Bx, t  z ∈ |x, t  z, 0. By (i)

and (iii), 0 ∈ Bx, t. By (ii) and (iii) Bx, t is bounded above by x. Let
x∗  supBx, t.Then by continuity x, t  x∗, 0.

Claim 2: The preference relation is represented by ux, t  vx, t.
Proof:

ux, t ≥ uy, s  vx, t ≥ vy, s

 vx, t, 0  vy, s, 0 (by (ii))

 x, t  y, s (by def of v. and transitivity)

c. Verify that the preference relation represented by the utility function
vx, t  uxt (with   1 and u continuous, increasing and u0  0) satisfies the
above properties.

(i): For all t, t ′, v0, t  u0 t  0  u0s  v0, s. Thus, 0, t  0, s.
(ii): For any x and t  s, vx, t  tux  sux  vx, s. Thus, x, t  x, s.
(iii): This holds since u is increasing.
(iv): For all x,y, t, s,

x, t  y, t  1   tux   t1uy

 sux  s1uy

 x, s  y, s  1

(v): Continuity follows from u being continuous.
d. Formulize a concept “one preference relation is more impatient than

another”.
1 is more impatient than 2 if for any x, t, and any y, s with s  t, y  x

y, s 1 x, t  y, s 2 x, t.

e. Discuss the claim that preferences represented by u1x1
t are more impatient

than preferences represented by u2x2
t if and only if 1  2.

This would be true when u1  u2  u: then for any s  t, y  x,
1
s uy ≥ 1

t ux  1
s−t ≥ ux/uy implying 2

s−t ≥ ux/uy  2
s uy ≥ 2

t ux
However, the claim is not necessarily true if u1 ≠ u2. For instance, suppose

u1x  lnx, u2x  x, 1  1/2 and 2  1/ 3  1/2. Then person 2 is indifferent
between getting $1 at time 0 and $3 at time 2, since

2
2u23  1  2

0u21

However, person 1, the supposedly more impatient (lower ) person, prefers to wait



for the $3:

1
2u13  1/4 ln3  1

0u11  ln1.

Problem A3 (NYU 2005, inspired by Chen, M.K., V. Lakshminarayanan and L.
Santos (2005).)

In an experiment, a monkey is given m  12 coins which he can exchange for
apples or bananas. The monkey faces m consecutive choices in which he gives a
coin either to an experimenter holding a apples or another experimenter holding b
bananas.

1. Assume that the experiment is repeated with different values of a and b and
that each time the monkey trades the first 4 coins for apples and the next 8 coins
for bananas.

Show that the monkey’s behavior is consistent with the classical assumptions of
consumer behavior (namely, that his behavior can be explained as the
maximization of a monotonic, continuous and convex preference relation on the
space of bundles).

We can model the problem of the monkey as the following. It has wealth m and
can buy two commodities, apples and bananas. The price of one apple is pa  1/a
and the price of one banana is pb  1/b. What the experiment shows is that the
monkey always spends 1/3 of its wealth on apples and 2/3 on bananas. This
behavior is consistent with Cobb-Douglas preferences with weights 1/3 and 2/3.

2. Assume that it was later observed that when the monkey holds an arbitrary
number of coins, m. Then, irrespective of the values of a and b, he exchanges the
first 4 coins for apples and the remaining m − 4 coins for bananas. Is this behavior
consistent with the rational consumer model?

No. Assume, by contradiction, that  is monotonic and rationalizes the monkey
behavior.

Let m  4, a  2 and b  4. In this case the monkey would buy the following
bundle 8,0. Since the monkey could also buy 4,8, it must be the case that
8,0  4,8. Monotonicity of  implies that 9,1  4,8  4,6.

Now let’s look at the monkey’s choice when m  10, a  1 and b  1. In this
case the monkey would chose 4,6 though 9,1 is feasible. A contradiction.

Problem A4 (NYU 2005)

Let X be a finite set containing at least three elements. Let C be a choice
correspondence. Consider the following axiom:

If A,B ⊆ X, B ⊆ A and CA ∩ B ≠ ∅, then CB  CA ∩ B.
1. Show that the axiom is equivalent to the existence of a preference relation 

such that CA  x ∈ A | x  a for all a ∈ A.
It’s enough to show that the Choice Axiom in the question is equivalent to the



Weak Axiom.
Choice Axoim  WA. Let x ∈ CA, y ∈ CB and x,y ∈ A ∩ B. Define B ′  A ∩ B.

Clearly, CA ∩ B ′ ≠ ∅ and CB ∩ B ′ ≠ ∅, so the Choice Axiom implies that
CA ∩ B  CA ∩ B ′  CB ′  CB ∩ B ′  CB ∩ A. But x clearly is in CA ∩ B,
which implies that x ∈ CB ∩ A, which itself implies that x ∈ CB.

WA  Choice Axiom. Let B ⊆ A and CA ∩ B ≠ ∅. Let x ∈ CB and
y ∈ CA ∩ B. Clearly, x,y ∈ A ∩ B. But then the WA implies that x ∈ CA, and
therefore, x ∈ CA ∩ B and y ∈ CB. But this means that CB ⊆ CA ∩ B and
CA ∩ B ⊆ CB, which is equivalent to CB  CA ∩ B.

2. Consider a weaker axiom:
If A,B ⊆ X, B ⊆ A and CA ∩ B ≠ ∅, then CB ⊆ CA ∩ B.
Is this sufficient for the above equivalence?
No, it’s not sufficient. Consider the following example. Let X  a,b,c. Suppose

CX  X, Ca,b  a, Cb,c  b, Ca,c  c. If there was a
preference  such that CA  x ∈ A | x  a for all a ∈ A then a  b, b  c and
c  a , a contradiction.

Problem A5 (NYU 2006)

Consider a world with balls of K different colors. An object is called a bag and is
specified by a vector x  x1, . . ,xK (where xk is a non-negative integer indicating
the number of balls of color k). For convenience denote by nx  ∑ xk the number
of balls in bag x.

An individual has a preference relation over bags of balls.
1. Suggest a context where it will make sense to assume that:
i. For any integer , x  x.
ii. If nx  ny, then x  y iff x  z  y  z.
Suppose that the decision maker chooses a ball from bag x, and he gets a prize

depending on the color of the ball he chose. Then we can identify a bag x with a
lottery px in which the prize associated with the color k is received with probability
xk/nx. Since px  px, we should expect x  x. Moreover, ii would follow in
this case from the independence axiom.

2. Show that any preference relation which is represented by
Ux  ∑ xkvk/nx for some vector of numbers v1, . . ,vk satisfies the two axioms.

A1: For any natural number ,

Ux ∑
k

xk
nx

vk ∑
k

xk
nx

vk  Ux.

A2: If nx  ny, then



Ux ≥ Uy  ∑
k

xkvk ≥ ∑
k

ykvk

∑
k

xk  zkvk ≥ ∑
k

yk  zkvk

 Ux  z ≥ Uy  z

where in the last equivalence we use that fact that nx  z  ny  z.
3. Find a preference relation which satisfies the two properties that cannot be

represented in the form suggested in (2).
Let K  3 and let L be the usual lexicographic relation on 3. Define the

preference relation  on X as

x  y  x1/nx,x2/nx,x3/nx L y1/ny,y2/ny,y3/ny.

A1: Note that for any x and any natural number , xi/nx  xi/nx for all i.
Hence, x  x.

A2: x  y and nx  ny iff x1,x2,x3 L y1,y2,y3 iff
x1  z1,x2  z2,x3  z3 L y1  z1,y2  z2,y3  z3 iff x  z  y  z (since
nx  z  ny  z).

To see that  does not admit a representation of the form given in part (2),
suppose to the contrary that Ux represents . Note that 1,0,n  0,1,0 for all n.
Hence, v1/n  1  v3n/n  1  v2 for all n. Passing to limit as n →  gives v3 ≥ v2.
On the other hand, 0,1,0  0,0,1 implies v2  v3, a contradiction.



Problem A6 (NYU 2007. Based on Plott (1973).)

Let X be a set and C be a choice correspondence defined on all non-empty
subsets of X.

We say that C satisfies Path Independence (PI) if for every two disjoint sets A
and B, we have CA  B  CCA  CB.

We say that C satisfies Extension (E) if x ∈ A and x ∈ Cx,y for every y ∈ A
implies that x ∈ CA for all sets A.

1. Interpret PI and E.
PI: The agent’s choice set is identical, regardless if he (1) chooses directly from

the set A or (2) first partitions A into two subsets, chooses from each of the subsets
and then makes a subsequent choice from these two choice sets.

E: If x ∈ A is chosen when compared (pairwise) with every other alternative in A,
then x is in the choice set of A.

2. Show that if C satisfies both PI and E, then there exists a binary relation 
that is complete, reflexive and satisfies x  y and y  z implies x  z, such that
CA  x ∈ A | for no y ∈ A is y  x.

For all x,y ∈ X, define x  y if x ∈ Cx,y. Clearly,  is complete and reflexive.
By contradiction, assume x  y and y  z, but z  x, that is, Cx,y  x,
Cy, z  y, and z ∈ Cx, z. Define A  x,y, z, and note that PI implies that

CA  CCx,y  Cz  Cx, z  z ∈ CA and

CA  CCx  Cy, z  Cx,y  z ∉ CA,

a contradiction. Therefore, x  z.
Finally, if x  y for all y ∈ A, then x ∈ CA by E, and thus

CA ⊇ x ∈ A ∣ for no y ∈ A,y  x. Conversely, if there exists a y ∈ A such that
y  x, then by PI

CA  CCx,y  CA ∖ x,y  Cy  CA ∖ x,y,

and thus x ∉ CA. Thus, CA  x ∈ A ∣ for no y ∈ A,y  x.

3. Give one example of a choice correspondence satisfying PI but not E, and
one satisfying E but not PI.

Let  be an ordering over X.
PI and not E: Define CA to equal the best and second best elements in A

according to .
Satisfies PI: The best and second best elements of A  B are contained in

CA  CB, and thus CCA  CB equals these first and second best elements
in A  B.

Fails E: Every x ∈ A is in Cx,y for all y ∈ A. Nevertheless, only the two best
elements in A are included in CA.

PI and not E: Define CA to be the best element in A if A ≠ X, and CX  X.
Satisfies E: If x ∈ Cx,y for all y ∈ A, then there is no y  x, and thus



x ∈ CA.
Fails PI: Let A and B be a partition of X. Then CX ≠ CCA  CB.

Problem A7 (NYU 2008) (based on work of Kfir Eliaz, Michael Richter, and Ariel
Rubinstein)

Let X be a (finite) set of alternatives. Given any choice problem A (where |A|≥ 2),
the decision maker chooses a set DA ⊆ A of two alternatives which he wants to
examine more carefully before making the final decision.

The following are two properties of D:

A1: If a ∈ DA and a ∈ B ⊂ A then a ∈ DB.
A2: If DA  x,y and a ∈ DA − x for some a different than x and y, then

a ∈ DA − y.

Answer the following four questions. A full proof is required only for the last
question:

1. Find an example of a D function which satisfies both A1 and A2.
Let  be a strict preference relation on X. Let DA be the set of the two –best

elements in A.
2. Find a function D which satisfies A1 and not A2.
Let  be a strict preference relation on X. Let DA be the set containing the

–best element and the –worst element in A.
3. Find a function D which satisfies A2 and not A1.
Let  be a strict preference relation on X. Let DA be the set containing the

second and third –best elements in A (if |A|≥ 3) and DA  A otherwise.
4. Show that for any function D satisfying A1 and A2 there exists an ordering 

of the elements of X s.t. DA is the set of the two –best elements in A.
Proof: Let D be a choice correspondence satisfying the three axioms. Let us

construct inductively a count of all elements in X.
Let DX  x1,x2.
Assume we constructed the sequence x1,x2, . . ,xK,xK1,xK2 such that

DX − x1,x2. . . ,xk  xk1,xk2 for all 0 ≤ k ≤ K.
By A1 xK2 ∈ DX − x1,x2, . . ,xK,xK1. Define xK3by

DX − x1,x2, . . ,xK1  xK2,xK3.
Define xi  xj if i  j.
For any set A let xiA and xjA be the two -top elements in A. The set DA

must contain the -top element in A since by definition
DX − x1, . . ,xiA−1  xiA,xiA1 and as A ⊆ X − x1, . . ,xiA−1 then by A1
xiA ∈ DA.

Assume by contradiction that there exists a set A such that DA contains xiA,
but not xjA. Consider such a set A with minimum jA − iA. We will show that
jA − iA  1 which leads to contradiction (since by construction
Dxk|k ≥ iA  xiA,xiA1 and by A1 DA  xiA,xiA1).



If jA  iA  1 consider the set B  A  xiA1. Let DA  xiA,xhA (and
jA  hA). By construction Dxk|k ≥ iA  xiA,xiA1 and by A1
DB  xiA,xiA1. By A1 xiA1 ∈ DB − xiA. Since
xhA ∈ DB − xiA1  DA. Let C  B − xiA. By A2 DC  xiA1,xh.
Since iC  iA  1 and jC  jA we have jC − iC  jA − iA.



Problem A8 (Tel Aviv 2009. Inspired by Mandler, Manzini and Mariotty, (2010)).

Consider a decision maker who is choosing an alternative from subsets of a
finite set X using the following procedure:

Following a fixed list of properties (a checklist), he examines one property at a
time and deletes from the set all the alternatives that do not satisfy this property.
When only one alternative remains, he chooses it.

1. Show that if this procedure induces a choice function, then it is consistent
with the rational man model.

Let a ∈ B ⊂ A such that a is the chosen alternative from A. Any other alternative
in A, and in B in particular, fails to satisfy at least one of the first m properties that a
does satisfy. Therefore, a is the surviving alternative also in B and condition 
holds.

2. Show that any rational decision maker can be described as if he follows this
procedure.

Order all the alternatives in X in ascending order. For each alternative x ∈ X,
define the property "not being x" and order the properties according to the same
order. Clearly, the only alternative for which "not being x" does not hold is x itself.

Let A ⊂ X be the set from which the individual chooses. In the first stage, he
deletes from A the worst element in X, if it belongs to A, and does nothing
otherwise. Similarly, at any subsequent stage, if the alternative is not in A he
continues to the next stage and if it does belong to A he deletes it. Hence, at each
stage he deletes the worst alternative from his choice set. This process continues
until he is left with the best alternative in A.



Problem A9 (Tel Aviv 2010)

A decision maker has a preference relation over 
n . A vector x1,x2 is

interpreted as an income combination where xi is the dollar amount the decision
maker receives at period i.

Let P be the set of all preference relations satisfying:
(i) Strong Monotonicity (SM) in x1 and x2 .

(ii) Present preference (PP): x1  ,x2 −   x1,x2 for all   0.
Define x1,x2Dy1,y2 if x1,x2  y1,y2 for all ∈ P.
1. Interpret the relation D. Is it a preference relation?
D is a domination relation: x dominates y if for every monotonic present biased

preference relation, x is considered at least as good as y.
D is not a preference relation: although it is transitive, it is not complete.
2. Is it true that 1,4D3,3? What about 3,3D1,4?
1,4D3,3 is false: consider the preference relation represented by the utility

function ux1,x2  x1  x2. It satisfies the two properties, but 1,4  3,3.
3,3D1,4 is true:.for any preference relation which satisfies the two

properties, by PP 3,3  1.5,4.5 and by SM, 1.5,4.5  1,4
3. Find and prove a proposition of the following type:
x1,x2Dy1,y2 if and only if [put here a condition on x1,x2 and y1,y2].
Proposition: x1,x2Dy1,y2 Iff x1 ≥ y1 and x1  x2 ≥ y1  y2.
Proof:
 Assume x1 ≥ y1 and x1  x2 ≥ y1  y2.
Let ∈ P, i.e. a preference relation satisfying SM and PP. If x2 ≥ y2, by SM

x  y. If y2  x2 let   y2 − x2.
It follows that x1 ≥ y1  . By SM x1,x2  y1  ,x2 and by PP

y1  ,x2  y1  ,y2 −   y1,y2.
 Assume x1,x2Dy1,y2.
The condition x1 ≥ y1 is necessary: let a and b be two vectors such that aDb and

a1  b1. Consider the preferences t represented by ux1,x2  tx1  x2 where
t  1. Obviously they satisfy PP and SM. For t large enough ta1  a2  tb1  b2 and
thus b t a.

The condition x1  x2 ≥ y1  y2 is necessary: let a and b be two vectors such that
aDb and a1  a2  b1  b2. Then b 1 a.

Problem A10 (Tel Aviv 2003. Based on Gilboa and Schmeidler (1995).)

An agent must decide whether to do something, Y, or not to do it, N.
A history is a sequence of results for past events in which the agent chose Y;

each result is either a success S or a failure F. For example, S,S,F,F,S is a history
with five events in which the action was carried out. Two of them (events 3 and 4)
ended in failure while the rest were successful.

The decision rule D is a function that assigns the decision Y or N to every
possible history.



Consider the following properties of decision rules:
A1 : After every history that contains only successes, the decision rule will

dictate Y and after every history that contains only failures, the decision rule will
dictate N.
A2 : If the decision rule dictates a certain action following some history, it will

dictate the same action following any history that is derived from the first history by
reordering its members. For example, DS,F,S,F,S  DS,S,F,F,S.
A3 : If Dh  Dh′, then this will also be the decision following the

concatenation of h and h′. (Reminder: The concatenation of h  F,S and
h′  S,S,F is F,S,S,S,F).

1. For every i  1,2,3, give an example of a decision rule that does not fulfill
property Ai but does fulfill the other two properties.

A2 and A3 but not A1: Choose always Y. A1 is violated since DF  Y.
A1 and A3 but not A2: Choose Y if the first experience was S and choose N

otherwise. A2 is violated since DS,F  Y while DF,S  N.
A1 and A2 but not A3: Choose Y after S or if the experience does not contain

two failures. A3 is violated since DF,S  Y but DF,S,F,S  N.

2. Give an example of a decision rule that fulfills all three properties.
For a given   0, choose Y iff at least  of the cases in the experience were S.

3. (Difficult) Characterize the decision rules that fulfill the three properties.
Claim: A decision rule D satisfies the three axioms iff there is 1 ≥  ≥ 0, such

that it chooses Y if the proportion of S is above  and chooses N if the proportion of
S is below .

Proof: Denote by qh the proportion of S in the history h, let nh be its length
and let kh be the replication of h, k times. Assume by contradiction that there are
two histories x and y such that qx ≥ qy, Dy  Y and Dx  N.

Using A3 Dnyx  N, Dnxy  Y and the length of the two histories is the
same (nxny). Thus, we can assume that nx  ny.

By A2 we can also assume WLOG that all the failures appear in the sequences
at the end of the sequences. Thus we get something like
x  S,S,S,S,S,F,F
y  S,S,S,F,F,F,F.
The number of S’s in x is larger by k  0 than in y. Thus by A3 Dx,kF  N and

DkS,y  Y though x,kF  kS,y a contradiction.
Note that for any  ∈ , the decision rule has to specify also a choice for the

case when the proportion of S is exactly . For 1    0, the decision rule can be
either Y or N, for   1 it has to be Y and for   0 it has to be N. Since the
proportion of S is a rational number, it will never be equal to  if  ∉ .



Problem A11 (Tel Aviv 2011.)

You have read an article in a "prestigious" journal about a decision maker (DM)
whose mental attitude towards elements in a finite set X is represented by a binary
relation , which is a-symmetric and transitive but not necessarily complete. The

incompleteness is the result of an assumption that a DM is sometimes unable to
compare between alternatives.

Another, presumingly stronger, assumption made in the article is that the DM
uses the following procedure: he has n criteria in mind, each represented by an
ordering (a-symmetric, transitive and complete ) i (i  1, . . . ,n). The DM decides

that x  y if and only if x i y for every i.
1.Verify that the relation  generated by this procedure is a-symmetric and

transitive. Try to convince a reader of the paper that this is an attractive assumption
by giving a "real life" example in which it is "reasonable" to assume that a DM uses
such a procedure in order to compare between alternatives.
 is a-symmetric: If x  y then by definition, x i y for every i. Since i are

a-syemmtric, y ̸i x for all i, and by definition also y ̸ x.
 is transitive: Let x  y and y  z. By definition, x i y and y i z for every i.

Since i are transitive, also x i z for all i, and by definition x  z.
An example: A parent who considers destinations for a family vacation who

ranks the different destinations according to the orderings of his children: he
prefers A to B iff all his children prefer A to B.

It can be claimed that the additional assumption regarding the procedure that
generates  is not a "serious" one since given any asymmetric and transitive

relation, , one can find a set of complete orderings 1 , . . . ,n such that x  y iff

x i y for every i.
2. Demonstrate this claim for the relation on the set X  a,b,c according to

which only a  b and the comparison between [b and c] and [a and c] are not
determined.

Let a 1 b 1 c and c 2 a 2 b. The two relations agree only on a i b.
3. (Main part of the question) Prove this claim for the general case.
Guidance (for c): given an asymmetric and transitive relation  on an arbitrary X,

define a set of complete orderings i  and prove that x  y iff for every i, x i y.
First, note that if X is a finite set and P is a asymmetric and transitive relation on

X then P does not have any cycles and thus P can be extended to a complete
ordering of X (see Problem Set 1).

Let  be the set of all complete orderings which extends . We will see that
a  b if and only if a i b for all i ∈ :

(i) If a  b, then a i b for all i since any i ∈  is an extension of .
(ii) If not a  b, then let ∗ be the relation  extended to include also b ∗ a.

The relation ∗ does not have cycles: if there is a cycle x1 ∗ . . .∗ xn  x1 then
(a) if for some i we have xi  b ∗ a  xi1 then since

a  xi1 ∗ xi2. . .∗ xn  x1 ∗ . . .∗ xi  b by transitivity a  b contradicting the
assumption.



(b) otherise, by thranstivity x1  x2 but also x2  x1 conradicting asymettry.
Thus, ∗ can be extended to a complete ordering ′ which will be an extension

of  as well. Hence, there is an extension ′ ∈  for which not a ′ b.



B. The Consumer and The Producer

Problem B1 (Princeton 2002)

Consider a consumer with a preference relation in a world with two goods, X (an
aggregated consumption good) and M (“membership in a club,” for example), which
can be consumed or not. In other words, the consumption of X can be any
nonnegative real number, while the consumption of M must be either 0 or 1.
Assume that the consumer’s preferences are strictly monotonic, continuous and
satisfy the following property:

Property E: For every, x there is y such that y, 0  x, 1 (that is, there is always
some amount of the aggregated consumption good that can compensate for the
loss of membership).

a. Show that any consumer’s preference relation can be represented by a
utility function of the type:

ux,m 
x if m  0

x  gx if m  1
.

For any x let hx satsfies x, 1  hx, 0. Notice that such hx always exists
and it is unique. This is because 0,0  x, 1 by monotonicity and y, 0  x, 1 for
some y by property E so continuity implies that x, 1  z, 0 for some z. Also, it
must be unique because of monotonicity. The function h is increasing.

Let gx  hx − x.
Let’s verify that u actually represents .
Case 1 x, 0  x ′, 0, iff x ≥ x ′ iff ux, 0  x ≥ x ′  ux ′, 0
Case 2 x, 1  x ′, 1 iff x ≥ x ′ iff hx ≥ hx ′ iff ux, 1  hx ≥ hx ′  ux ′, 1
Case 3 x, 1  x ′, 0 iff hx, 0  x ′, 0 iff hx ≥ x ′ iff

ux, 1  hx ≥ ≤x ′  ux ′, 0
Therefore, u represents .

b. (Less easy) Show that the consumer’s preference relation can also be
represented by a utility function of the type:

ux,m 
fx if m  0

fx  v if m  1
.

Define h0x  x and hn1x  hhnx. Since x, 1  hx, 0  x, 0,
hn1x  hnx for all n.

(1) For x ∈ 0,h0 let fx be an arbitrary increasing function with f0  0. Let
v  fh0.

(2) Continue inductively: assume that fx has been already defined for
x ∈ 0,hn−10 such that fx is increasing in the region h0,hn−10 and
fhk0  kv for all k ≤ n − 1.Define fx for x ∈ hn−10,hn0, such that
fx  v  fh−1x. Since h is an increasing function, h−1 exists, increasing and



h−1x ∈ 0,h0. The function f is increasing in x ∈ hn−10,hn0 and
fhn0  nv.

(3) Let ux, 0  fx and ux, 1  fx  v.
We have to make sure that f is actually defined for all s ≥ 0. Since hn0 is an

increasing sequence, fx is not defined twice or more in the above steps.
Therefore, it is sufficient to show that limn→ hn0  .

Suppose this is not, since hn0 is an increasing sequence, let supnhn0  K
and hn0  K for all n. This means that hn0, 1  hn10, 0  K, 0 for all n
where the first indifference comes from the definition of h and the second
preference comes from monotonicity. By continuity and since hn0 → K,
K, 1  K, 0, contradicting monotonicity.

Finally, we need to confirm that this u actually represents . Notice that u
represents  correctly between x, 0 and x ′, 0 (or x, 1 and x ′, 1) because f is an
increasing function. Therefore, we need to show that x, 1  x ′, 0 if and only if
fx  v ≥ fx ′.

Suppose that x, 1  x ′, 0. Then, by the definition of h, hx ≥ x ′. Since f is
increasing, we have uhx, 0  fhx ≥ fx ′  ux ′, 0. By construction of f, we
have fhx  v  fh−1hx  v  fx  ux, 1. Therefore, ux, 1 ≥ ux ′, 0. The
same argument can be applied for the case when x, 1  x ′, 0. Hence, we
conclude that u defined above actually represents .

c. Explain why continuity and strong monotonicity (without prperty E) are
not sufficient for (a)

Consider the lexicographic preference  which gives a priority to M. (so
x,m  x ′,m′ if and only if m  m′ or "m  m′ and x  x ′").

This is clearly strictly monotonic both in x and m.
Continuity: To see this, take any x,m  x ′,m′.
Suppose m  1 and m′  0. Take   1/2, then a,n ∈ Bx,m implies n  1

and a′,n′ ∈ Bx ′,m′ implies n′  0. Therefore, a,n  a′,n′. WHen m  m′ (so
x  x ′) let   x − x ′/3. Then, a,n ∈ Bx,m and a′,n′ ∈ Bx ′,m′ imply that
n  n′  m but a  a′, so we have a,n  a′,n′.

However,  cannot be represented by a utility function with the form given in (A)
since (0,1) would be indifferent to g0, 0.

d. Calculate the consumer’s demand function.
For simplicity assume px  1. By monotonicity, the consumer always spends all

wealth on X or M. If pm ≤ w, his choice is between “buying M and spending all the
remaining wealth on X” and “Spending all wealth on X” . If pm  w, he has no choice
except “spending all the wealth on X”. Therefore, his demand function is
characterized by

xp,w,mp,w 
w, 0 if w, 0  w − pm/px, 1 or pm  w

w − pm, 1 if w, 0  w − pm/px, 1 and pm ≤ w
.



e. Taking the utility function to be of the form described in (1), derive the
consumer’s indirect utility function. For the case where the function g is
differentiable, verify Roy’s identity with respect to commodity M.

If the consumer’s utility function is given by a differentiable utility function as in
part (A), then his/her indirect utility function is

vp,w 
w if w ≥ w − pm  gw − pm or pm  w

w − pm  gw − pm if w, 0 ≤ w − pm, 1 and pm ≤ w

In the first case,

∂v/∂pm
∂v/∂w

 0  mp,w

and in the second case,

∂v/∂pm
∂v/∂w

 − −1 − g′w − pm
1  g′w − pm

 1  mp,w

so the Roy equality holds.



Problem B2 (Princeton 2001)

(a) Define a formal concept for “1 and 0 are closer than 2 and 0”.
Let us say that 1 and 0 are closer than 2 and 0 if x 2 y and x 0 y imply

x 1 y, and x 2 y and x 0 y imply x 1 y.
(b) Apply your definition to the class of preference relations represented by

U1  tU2  1 − tU0, where the function Ui represents i i  0,1,2.
Let 0 ≤ t ≤ 1. If U2x ≥ U2y and U0x ≥ U0y, then

U1x  tU2x  1 − tU0x ≥ tU2y  1 − tU0y  U1y. So the preferences
represented by U1 and the preferences represented by U0 are closer than the
preferences represented by U2 and the preferences represented by U0.

(c) Consider the above definition in the consumer context. Denote by xk
i p,w

the demand function of i for good k. Show that 1 and 0 may be closer than
2 and 0, and nevertheless |xk

1p,w − xk0p,w| |xk
2p,w − xk0p,w| for some

commodity k, price vector p and wealth level w.
Let K  3, U0x  minx1,x2 and U2x  minx2,x3 and let U1 be defined as

in (b) with t  1/2. Then for p  1,1,1 and w  1, the demands associated with U0,
U1 and U2 are x0  1/2,1/2,0, x1  1/3,1/3,1/3 and x2  0,1/2,1/2 respectively.
By (b), the preferences induced by U1 and the preferences induced by U0 are
colser than the preferences induced by U2 and the preferences induced by U0, but
|x2

1 − x2
0| 1/6  0  |x2

2 − x2
0|.



Problem B3 (Tel Aviv 2003)

Consider the following consumer problem: There are two goods, 1 and 2. The
consumer has a certain endowment. His preferences satisfy monotonicity and
continuity. Before the consumer are two “exchange functions”: he can exchange x
units of good 1 for fx units of good 2, or he can exchange y units of good 2 for
gy units of good 1. Assume the consumer can only make one exchange.

1. Show that if the exchange functions are continuous, then a solution to the
consumer problem exists.

Denote by w the initial endowment. the budget set includes x1,x2| x1 ≤ w1 and
x2 − w2  fw1 − x1, or, x1 ≥ w1 and x1 − w1  gw2 − x2. This is a compact
set and thus the consumer’s preferences has a maximum point.

2. Explain why strong convexity of the preference relation is not sufficient to
guarantee a unique solution if the functions f and g are increasing and convex.

Take, for example, w  4,4, fx  2x and gy  2y. Consider the utility
function ux1,x2  x1x2. Clearly both 6,3and 3,6are solutions.

3. Interpret the statement “the function f is increasing and convex”.
The more units the consumer will exchange of commodity 1 the better will be is

exchange rate.
4. Suppose both functions f and g are differentiable and concave and that the

product of their derivatives at point 0 is 1. Suppose also that the preference relation
is strongly convex. Show that under these conditions, the agent will not find two
different exchanges, one exchanging good 1 for good 2, and one exchanging good
2 for good 1, optimal.

Since f ′0  1/g′0, the consumer’s budget line is differentiable at w1,w2,
which is his original endowment (note that f is a function from good 1 to good 2
while g is a function from good 2 to good 1). The functions f and g are both
concave, thus the budget line is convex. Assume, in contradiction, that the
consumer finds two exchanges to be optimal, one that yields the consumption
bundle x1,x2 and one that yields y1,y2. Since the budget line is convex, the
bundle  x1y1

2 , x2y2

2  is in the consumer’s budget set. Since the consumer is

indifferent between x1,x2 and y1,y2, by the strict convexity of his preference
relation he would strictly prefer the bundle  x1y1

2 , x2y2

2 , in contradiction to x1,x2
and y1,y2 being optimal.

If it would be the case it would mean that there are two exchanges −a,fa
and gb,−b which are better than 0,0. By the concavity of f and g, fa  a and
gb  b. Let /1 −   b/a. By convexity the change
−a  1 − gb,fa − 1 − b is improving but
−a  1 − gb  −a  1 − b  0 and fa − 1 − b  a − 1 − b  0 a
contradiction to the monotonicity of the preferences.

5. Now assume fx  ax and gy  by. Explain this assumption. Find a
condition that will ensure it is not profitable for the consumer to make more than
one exchange.

If the consumer sells one unit of the first commodity he gets a of the second and
exchanging it back to commodity 2 he will get ab units of commodity 1. It is



necessary that ab  1. Of course if ab  1 he would be able to reach any bundle.



Problem B4 (Tel Aviv 1998)

A consumer with wealth w  10 “must” obtain a book from one of three stores.
Denote the prices at each store as p1,p2,p3. All prices are below w in the relevant
range. The consumer has devised a strategy: he compares the prices at the first
two stores and purchases the book from the first store if its price is not greater than
the price at the second store. If p1  p2, he compares the prices of the second and
third stores and purchases the book from the second store if its price is not greater
than the price at the third store. He uses the remainder of his wealth to purchase
other goods.

1. What is this consumer’s “demand function”?
Denote a bundle by m,x1,x2,x3 where m is remaining wealth, and xi is 1 if he

purchases the book from the i’th store and 0 otherwise.

The demand function xw,p1,p2,p3 is

w − p1, 1,0,0 if p1 ≤ p2

w − p2, 0,1,0 if p1  p2 ≤ p3

w − p3, 0,0,1 if p1  p2  p3

2. Does this consumer satisfy “rational man” assumptions?
No. Under the price vector 3,3,1, the consumer buys the book in the first shop

and his consumption bundle is w − 3,1,0,0 whereas w − 1,0,0,1 was feasible.
Under the price vector 3,2,1, the consumer buys the book in the third shop,

the bundle w − 1,0,0,1 whereas w − 3,1,0,0 was feasible.
3. Consider the function vp1,p2,p3  w − pi∗ , where i∗ is the store from which

the consumer purchases the book if the prices are p1,p2,p3. What does this
function represent?

Since the consumer must buy the book, his welfare is measured by the money
left in his pocket. Thus, v could be thought of as an indirect utility function.

4. Explain why v is not monotonically decreasing in pi. Compare with the
indirect utility function of the classic consumer model.

If p3  p1  p2 then an increase in p1 will improve the consumer’s welfare. In
contrast, an indirect utility function which is derived from a maximization of a utility
function is always non-increasing in a price.



Problem B5 (NYU 2005)

A consumer has preferences which satisfy monotonicity, continuity and strict
convexity, in a world of K goods. The goods are split into two categories, 1 and 2,
of K1 and K2 goods respectively (K1  K2  K). The consumer receives two types of
money: wi units of money of type i, which can only be exchanged for goods in the
i’th category given a price vector pi.

Define the induced preference relation over the two-dimensional space w1,w2.
Show that these preferences are monotonic, continuous and convex.

The consumer’s problem is to mximize the preferences  over the set x1,x2|
x1 ∈ K1 ,x2 ∈ K2 , p1x1 ≤ w1 and p2x2 ≤ w2. Denote its solution by xw1,w2.
Define the preference relation over the space w1,w2 as

w1,w2 ∗ w1
′ ,w2

′   xw1,w2  xw1
′ ,w2

′ 

Now let’s prove the properties of ∗ .
Monotonicity: Let w1

′ ,w2
′   w1,w2. This implies that

p1x1w1,w2  w1
′ and p2x2w1,w2  w2

′ .

The budget conatraints contain a bundle y which "dominates" xw1,w2. Therefore,
by Monotonicity of  we get xw1

′ ,w2
′   xw1,w2, that is w1

′ ,w2
′  ∗ w1,w2.

Convexity: Let w1
′ ,w2

′  ∗ w1,w2. This implies that xw1
′ ,w2

′   xw1,w2. Let
w  w1

′ ,w2
′   1 − w1,w2 and x  xw1

′ ,w2
′   1 − xw1,w2 for some

 ∈ 0,1. We know that

p1x1w1,w2 ≤ w1 and p2x2w1,w2 ≤ w2

p1x1w1
′ ,w2

′  ≤ w1
′ and p2x2w1

′ ,w2
′  ≤ w2

′

which implies that

p1x1
 ≤ w1

, p2x2
 ≤ w2

.

Moreover, convexity of  implies that x  xw1,w2. Therefore, it must be that
xw1

,w2
  x  xw1,w2, which implies that w1

,w2
 ∗ w1,w2.

Continuity: To show this we’ll first show that the demand function x is
continuous. So, let w1

n,w2
n → w1,w2. We need to show that xw1

n,w2
n → xw1,w2.

Note first that the sequence xw1
n,w2

n is inside of some compact set: define

w1  supw1
n,w2  supw2

n.

It’s clear that for any n we must have

xw1
n,w2

n ∈ x ∈ 
k1k2 : p1x1 ≤ w1and p2w2 ≤ w2.

So our sequence is indeed entirely contained in a compact set. Now suppose that
xw1

n,w2
n  xw1,w2. This implies that there exists a subsequence xw1

k ,w2
k, such

that xw1
k ,w2

k → y ≠ xw1,w2. The fact that xw1
k ,w2

k → y implies that

p1y1 ≤ w1, p2y2 ≤ w2.

By the strict convexity, xw1,w2  y1,y2. Continuity of  implies that there exists
z  xw1,w2 such that z  y1,y2. But then, continuity of  together with the fact
that p1z1  w1 and p2z2  w2 imply that for k large enough



p1z1  w1
k ,p2z2  w2

k , z  xw1
k ,w2

k

which contradicts the optimality of xw1
k ,w2

k.
Now that we know that the demand function is continuous we can easily show

that ∗ is continuous. Let w1
n,w2

n → w1,w2 and ŵ1
n,ŵ2

n → ŵ1,ŵ2 be such that
w1

n,w2
n ∗ ŵ1

n,ŵ2
n for all n. This implies that xw1

n,w2
n  xŵ1

n,ŵ2
n for all n. By

continuity of  and continuity of the demand function x, xw1,w2  xŵ1, ŵ2, which
is equivalent to w1,w2 ∗ ŵ1, ŵ2.



Problem B6 (NYU 2006)

Consider a consumer in a world of 2 commodities who has to make choices
from budget sets parametrized by p,w, with the additional constraint that the
consumption of good 1 is limited by some external bound c ≥ 0. That is, in his
world, a choice problem is a set of the form Bp,w,c  x|px ≤ w and x1 ≤ c.
Denote by xp,w,c the consumer’s choice from Bp,w,c.

1. Assume that pxp,w,c  w and x1p,w,c  min0.5w/p1,c. Show that this
behavior is consistent with the assumption that demand is derived from a
maximization of some preference relation.

Maximization the preferences  represented by the Cobb-Douglas utility
function ux  x1

0.5x2
0.5 leads to the given demand function xp,w,c. There are two

different cases to consider.
Case 1: 0.5w/p1 ≤ c
In this case, xp,w,c is equal to the point 0.5w/p1, 0.5w/p2, which is the unique

maximizer of u on the usual budget set Bp,w  x ∣ px ≤ w. In particular,
xp,w,c is the unique maximizer of u on Bp,w,c.

Case 2: 0.5w/p1  c
Suppose by contradiction that xp,w,c  c, w − p1c/p2 is not the unique

maximizer of u on Bp,w,c. Then there is a y ∈ Bp,w,c with y ≠ xp,w,c such that
y  xp,w,c. By strict monotonicity of u we must have y1  c, otherwise we would
have xp,w,c  y. Moreover, we can assume py  w. Define x  0.5w/p1, 0.5w/p2.
Now, since y1  c  0.5w/p1, xp,w,c can be written as a strict convex combination
of the points y and x. Since x is the unique maximizer of u on Bp,w, by strict
convexity of  we must have xp,w,c  y, a contradiction.

2. Assume that pxp,w,c  w and x1p,w,c  min0.5c,w/p1. Show that this
consumer’s behavior is inconsistent with preference maximization.

Suppose by contradiction that xp,w,c is consistent with maximization of a
preference relation . Fix a price vector p and wealth level w. Pick a c  w/p1, so
that xp,w,c  0.5c, w − p10.5c/p2. Now we can pick a c ′, sufficiently close to c,
such that

0.5c ′  c  c ′  w/p1.

Since 0.5c ′  w/p1, xp,w,c ′  0.5c ′, w − p10.5c ′/p2 ≠ xp,w,c. Moreover, since
0.5c ′  c, we have xp,w,c ′ ∈ Bp,w,c, and hence xp,w,c ′  xp,w,c, a
contradiction to the optimality of xp,w,c ′.

3. Assume that the consumer chooses his demand for x by maximizing the
utility function ux. Denote the indirect utility by Vp,w,c  uxp,w,c. Assume V
is “well-behaved”. Outline the idea of how one can derive the demand function from
the function V in case that ∂V/∂cp,w,c  0.

Fix a parameter vector t∗  p∗,w∗,c∗ and assume ∂Vt∗/∂c  0. We claim that
x1t∗  c∗.

Suppose by contradiction that x1t∗  c∗. However, since ∂Vt∗/∂c  0, there



exists an   0 such that Vp∗,w∗,c∗ −   Vt∗ and c∗ −   x1t∗. Since
p∗xt∗  w∗, it follows that xt∗ ∈ Bp∗,w∗,c∗ − . Hence,
Vt∗  uxt∗ ≤ Vp∗,w∗,c∗ − , a contradiction to ∂Vt∗/∂c  0.



Problem B7 (Tel Aviv 2006)

Imagine a consumer who lives in a world with K  1 commodities and behaves
in the following manner: The consumer is characterized by a vector D, consisting of
the commodities 1, . . ,K. If he can purchase D, he will consume it and spend the
rest of his income on commodity K  1. If he is unable to purchase D, he will not
consume commodity K  1 and will purchase the bundle tD (t ≤ 1) where t is as
large as he can afford.

1. Show that there exists a monotonic and convex preference relation which
explains this pattern of behavior.

Consider the preferences represnted by

ux 
1  xK1 if x ≥ D

minx1/d1, . . . ,xK/dK otehrwise

Since minx1/d1, . . . ,xK/dK ≤ 1 for all bundles in the second range, the
consumer will prefer to be in the first range so whenever he can purchase D he will
choose a bunlde in the first range where it is optimal for him to purchase as much
as possible on the K  1’th good. If he cannot afford D then his behvaior will be as
a amximizer of minx1/d1, . . . ,xK/dK and thus he will consume a bundle tD with the
highest t he can afford.

2. Show that there is no monotonic and continuous preference relation that
explains this pattern of behavior.

If there was such a preference relation it would have to satsify
d1, . . . ,dK,2  d1  1, . . . ,dK  1,0 . However, d1, . . . ,dK,0  d1 − ,d2, . . . ,dK,2
for all   0 , thus by continuity d1, . . . ,dK, 0  d1, . . . ,dK,2 contradicting
monotonicity.



Problem B8 (NYU 2007)

A consumer in a world of K commodities maximizes the utility function
ux  ∑k

xk
2.

1. Calculate the consumer’s demand function (whenever it is uniquely defined).
Demand is uniquely defined when there is a unique minimal price pk. The

consumer will set xkp,w  w
pk and xjp,w  0 for all j ≠ k.

2. Give another preference relation (not just a monotonic transformation of u)
which induces the same demand function.

Preferences represented by vx  ∑k
xk.

3. For the original utility function u, calculate the indirect preferences for K  2.
What is the relationship between the indirect preferences and the demand
function? (It is sufficient to answer for the domain where p1  p2.)

The indirect preferences are represented by vp,w   w
minp1,p2

2.

When p1  p2, demand can be induced from v as follows:

xp,w  − ∂vp,w/∂p1

∂vp,w/∂w
,− ∂vp,w/∂p2

∂vp,w/∂w
  − −2w/p1

2

2/p1
, 0   wp1

, 0.

4. Are the preferences in (1) differentiable (according to the definition given in
class)?

No. Let K  2 and consider the bundle 1,1. The vectors d  1,−1 and
d′  −1,1 are both improvement directions, but for any vector of values v, if
v  d  0, then v  d′  0.



Problem B9 (NYU 2008)

A decision maker has a preference relation over the pairs xme,xhim with the
interpretation that xme is an amount of money he will get and xhim is the amount of
money another person will get. Assume that

(i) for all a,b such that a  b the decision maker strictly prefers a,b over
b,a.

(ii) if a′  a then a′,b  a,b.
The decision maker has to allocate M between him and another person.
1. Show that these assumptions guarantee that he will never allocate to the

other person more than he gives to himself.
Let BM  a,b|a  b ≤ M be the set of feasible allocations, and

xM  x1,x2 be the chosen allocation from the feasible set, that is xM  a,b
for any a,b ∈ BM. For any a  b by (i) b,a  a,b, and b,a is feasible so that
a,b is not optimal. Therefore x1 ≥ x2.

2. Assume (i), (ii) and
(iii) The decision maker is indifferent between a,a and a − ,a  4 for all a

and   0.
Show that nevertheless he might allocate the money equally.

Suppose the preferences are represented by, for example

ux,y 
4x  y if y ≥ x

2x  3y if x ≥ y

These preferences satisfy monotonicity.
The preferences satisfy (iii) since ∀a,
ua,a  5a  4a −   a  4  ua − ,a  4.
They also satisfy (i) since if x2  x1, then
ux1,x2  4x1  x2  5x1  x2 − x1  5x1  2x2 − x1  2x2  3x1  ux2,x1.

In this case, the utility would be maximized by setting x  y  M
2 .

3. Assume (i), (ii), (iii) and
(iv) The decision maker’s preferences are also differentiable (according to the

definition given in class).
Show that in this case, he will allocate to himself (strictly) more than to the

other.
Assume by contradiction the DM chooses to allocate xM   M2 , M2 .

By differentiability of the preferences, vx  4,1 (i.e. the hyperplane separating
the improving directions would be the hyperplane 4x  y  M). But then 1,−1 is a
strictly improving direction, and the bundle  M2  , M2 −   

M
2 , M2   xM would

be affordable for small   0, a contradiction.



Problem B10 (NYU 2009)

An economic agent is both a producer and a consumer. He has a0 units of good
1. He can use some of a0 to produce commodity 2. His production function f
satisfies monotonicity, continuity, strict concavity. His preferences satisfy
monotonicity, continuity and convexity. Given he uses a units of commodity 1 in
production he is able to consume the bundle a0 − a, fa for a ≤ a0. The agent has
in his "mind" three "centers":

*The pricing center declares a price vector p1,p2.
*The production center takes the price vector as given and operates according

to one of the following two rules
Rule 1: maximizing profits, p2fa − p1a.
Rule 2: maximizing production subject to the constraint of not making any

losses,, i.e. p2fa − p1a ≥ 0.
The output of the production center is a consumption bundle.
The consumption center takes a0 − a, fa as endowment, and finds the optimal

consumption allocation that it can afford according to the prices declared by the
pricing center.

The prices declared by the pricing center are chosen to create harmony
between the other two centers in the sense that the consumption center finds the
outcome of the production center’s activity, a0 − a, fa, optimal given the
announced prices.

1. Show that under Rule 1, the economic agent consumes the bundle
a0 − a∗, fa∗ which maximizes his preferences.

The solution corresponds to the point on the production possibility set where
preferences are maximized.

Since the production possibility set is strictly convex, and preferences are
convex we know that there is a unique maximum.

Now choose a price vector such that the price line is tangent to this set and the
indifference line exactly at the maximum.

By construction, profit is maximized given prices, and preferences are



maximized at the intersection point for given prices and endowment point
a0 − a∗, fa∗.

2. What is the economic agent’s consumption with Rule 2?
The economic agent chooses a0 − a∗, fa∗ with maximal a∗ subject to the

constraint that preferences are maximized at this point when we take the line
connecting this point to a0, 0 as the price line. By construction, production is
maximized here subject to the constraint that there are no losses with the given
prices. Also the point is chosen to guarantee that the consumer preferences are
maximized at the budget set with the same prices.

3. State and prove a general conclusion about the comparison between the
behavior of two individuals, one whose production center operates with Rule 1 and
one whose production center activates Rule 2.

Claim: Individual using Rule 2 will always produce more, i.e. for a1,p1 and a2,p2

denoting the solutions under Rule 1 and Rule 2, fa1 ≤ fa2.
Assume for contradiction that a1  a2. This means that the solution with Rule 2

is strictly to the right of the solution with Rule 1. Since f is strictly concave and
monotonic, if solution with Rule 2 is to the right of solution with Rule 1, we must

have p1
1

p2
1  p1

2

p2
2 .

Note that a0 − a1, fa1 affordable (and strictly interior) in the budget set defined
by p2. Also a0 − a2, fa2 is affordable (and strictly interior) in the budget set
defined by p1.

 a0 − a2, fa2  a0 − a1, fa1
 a0 − a1, fa1  a0 − a2, fa2



which is a contradiction.



Problem B11 (Tel Aviv 2010)

A basketball coach considers buying players from a set A. Given a budget w
and a price vector paa∈A the coach can purchase any set such that the total cost
of the players in it is not greater than w. Discuss the rationality of each of the
following choice procedures, defined for any budget level w and price vector P:

(P1) The consumer has in mind a fixed list of the players in A.: a1, . . . ,an.
Starting at the beginning of the list, when he arrives to the i ′s player he adds him to
the team if his budget allows him to after his past decisions, and then continues to
the next player on the list with his remaining budget. This continues until he runs
out of budget or has gone through the entire list.

Let 1, . . .n be the list of players. Identify a set B with a vector xB of 0’s and
1’s such that xBi  1 if i ∈ B and xBi  0 if i ∉ B. The consumer’s choice is
rationalized by the preferences: B  C if xB L xC, where L are the standard
lexicographic preferences on n.

(P2) He purchases the combination of players that minimize the excess budget
he is left with.

The procedure is NOT rationalizable since it is even does not induce a choice
from a choice set:

The choice set is a1,a2 for both sets of parameters:
p1  2, p2  3 and w  3
and
p1  3, p2  2 and w  3.
But in one case a1 is chosen and in the other a2.



Problem B12 (Tel Aviv 2011)

A consumer in a two commodity world operates in the following manner:
The consumer has a preference relation S on 

2 . His father has a preference
relation F on the space of his son’s consumption bundles. Both relations satisfy
strong monotonicity, continuity and strict convexity. The father does not allow his
son to purchase a bundle which is not as good (from his perspective) as the bundle
M, 0. The son, when choosing from a budget set, maximizes his own preferences
subject to the constraint imposed by his father. In the case that he cannot satisfy
his father’s wishes, he feels free to maximize his own preferences.

1. Prove that the behavior of the son is rationalizable.
Define  as follows: a  b iff (i) a F M, 0 and M, 0 F b, or (ii) both

a,b F M, 0 and a S b or (iii) both M, 0 F a,b and a S b.
 can easily be shown to be complete and transitive.
1. Prove that the preferences which rationalize this kind of behavior are

monotonic.
Take any x,y st. x1 ≥ y1 and x2 ≥ y2. Since S ,F are monotonic, x S y and

x F y. Thus by construction of , x  y.
1. Show that the preferences which rationalize this kind of behavior are not

necessarily continuous nor convex (you can demonstrate this diagrammatically).
To see possible violation of continuity and convexity consider the example

below.

Note that M, 0  0,2 since 0,2 is below the father’s indifference curve
passing through M, 0. However we can see from the son’s preferences that for
any  ∈ 0,1, 0,2  0,2  1 − M, 0 violating convexity and continuity.

4. (Bonus) Assume that the father’s instructions are that given the budget set
p,w the son is not to purchase any bundle which is F -worse than w/p1, 0. The
son seeks to maximize his preferences subject to satisfying his father’s wishes.
Show that the son’s behavior satisfies the Weak Axiom of Revealed Preferences.



Assume there is a violation of the WARP. Then there must be two overlapping
budget sets as shown above such that a is chosen from set A and b is chosen from
set B.

It must be that a F x2, 0 and b F x1, 0. By monotonicity, x2, 0 F x1, 0
and thus a F x1, 0 Since b is chosen over a in set B, b S a By monotonicity,
there exists z ∈ B st z S b S a Also by convexity z F x2, contracting a being
optimal in set A.



C. Uncertainty:

Problem C1 (Princeton 2001)

A consumer has to make a choice of a bundle before he is informed whether a
certain event, which is expected with probability  and affects his welfare, has
happened or not. He assigns a vNM utility vx to the consumption of the bundle x
when the event occurs, and a vNM utility v ′x to the consumption of x should the
event not occur. Having to choose a bundle the consumer maximizes his expected
utility vx  1 − v ′x. Both v and v ′ induce preferences on the set of bundles
satisfying the standard assumptions about the consumer. Assume also that v and
v ′ are concave.

(a)Show that the consumer’s preference relation is convex.
The function vx  1 − v ′x is a convex combination of concave functions,

thus it is quasi-concave and induces a preference relation which is convex.

(b) Find a connection between the consumer’s indirect utility function and the
indirect utility functions derived from v and v ′.

Let xp,w denote the demand and f, fv and fv′ the indirect utility functions. Then,
fp,w  vxp,w  1 − v ′xp,w ≤ fvp,w  1 − fv′p,w. The
interpretation of this property is that the decision maker is better off if he makes his
choice after rather than before the uncertainty is resoleved.

(c) A new commodity appears on the market: “A discrete piece of information
that tells the consumer whether or not the event occurred”. The commodity can be
purchased prior to the consumption decision. Use the indirect utility functions to
characterize the demand function for the new commodity.

Suppose that v and v ′ are continuous and monotonic so that f, fv and fv′ are
strictly increasing and continuous in w. Then for given p,w, by (b), there is a
unique ∗p,w that satisfies:

fp,w  fvp,w − ∗p,w  1 − fv′p,w − ∗p,w.

The demand for this good is 1 if its price is below ∗p,w and 0 otherwise.



Problem C2 (Tel Aviv 1999)

Tversky and Kahneman (1986) report the following experiment: each participant
receives a questionnaire asking him to make two choices, the first from a,b and
the second from c,d:

a. A sure profit of $240.
b. A lottery between a profit of $1000 with probability 25% and 0 with probability

75%.
c. A sure loss of $750.
d. A lottery between a loss of $1000 with probability 75% and 0 with probability

25%.
The participant will receive the sum of the outcomes of the two lotteries he

chooses. 73% of the participants chose the combination a and d. Is their behavior
sensible?

The combination of ad is the lottery 0.75−760$  0.25240 whereas the
combination bc is the lottery 0.75−750$  0.25250 which first order
stochastically dominates a  d.



Problem C3 (NYU 2007)

Identify a professor’s lifetime with the interval 0,1. There are K  1 academic
ranks, 0, . . ,K. All professors start at rank 0 and eventually reach rank K. Define a
career as a sequence t  t1, . . . . , tK where t0  0 ≤ t1 ≤ t2 ≤. . .≤ tK ≤ 1 with the
interpretation that tk is the time it takes to get the k’th promotion. (Note that a
professor can receive multiple promotions at the same time.) Denote by  the
professor’s preferences on the set of all possible careers.

For any   0 and for any career t such that tK ≤ 1 − , define t   to be the
career t  k  tk   for all k (i.e. all promotions are delayed by ).

Following are two properties of the professor’s preferences:

Monotonicity: For any two careers t and s, if tk ≤ sk for all k then t  s and if
tk  sk for all k, then t  s.

Invariance: For every   0 and every two careers t and s for which t   and
s   are well defined, t  s iff t    s  .

1. Formulate the set L of careers in which a professor receives all K promotions
at the same time. Show that if  satisfies continuity and monotonicity, then for every
career t there is a career s ∈ L such that s  t.
L  s ∣ s  , . . . . , for some  ∈ 0,1.
By monotonicity, 0, . . . , 0  t  1, . . . . , 1. By continuity, there exists a bundle s

on the interval connecting 0, . . . , 0 and 1, . . . , 1 such that s  t. Clearly, s ∈ L since
it is on the main diagonal.

2. Show that any preference which is represented by the function
Ut  −∑Δktk (for some Δk  0) satisfies Monotonicity, Invariance and Continuity.

MON: If tk ≤ sk for all k, then −Δktk ≥ −Δksk for all k. Consequently,
Ut  ∑−Δktk ≥ ∑−Δksk  Us, and thus t  s, and analogously in the strict case.

INV: t  s  −∑Δktk ≥ −∑Δksk  −∑Δktk − ∑Δk ≥ −∑Δksk − ∑Δk 
 −∑Δktk   ≥ −∑Δksk    t    s  .
CON: U is continuous, so  is continuous.

3. One professor evaluates a career by the maximum length of time one has to
wait for a promotion and the smaller this number the better. Show that these
preferences cannot be represented by the utility function described in (2).

. 2, . 8  . 1, . 7, and thus preferences fail monotonicity.



Problem C4 (NYU 2008)

An economic agent has to choose between projects. The outcome of each
project is uncertain. It might yield a failure or one of K “types of success”. Thus,
each project z can be described by a vector of K non-negative numbers, z1, . . . , zK
where zk stands for the probability that the project success will be of type k.

Let Z ⊂ 
K be the set of feasible projects. Assume Z is compact, convex and

satsifies “free disposal”.
The decision maker is an Expected Utility maximizer.
Denote by uk the vNM utility from the k–th type of success, and attach 0 to

failure. Thus the decision maker chooses a project (vector) z ∈ Z in order to
maximize∑ zkuk.

1. First, formalize the decision maker’s problem. Then, formalize (and prove)
the claim: If the decision maker suddenly values type k success higher than before,
he would choose a project assigning a higher probability to k.

The DM solves:

maxz∈Zz  u  maxz∈Z∑
k1

K

zkuk

Claim: Let ui′  ui for every i ≠ k, uk′  uk. Then zk
∗ ≤ zk∗ (where z∗ and z∗′ are the

solutions for u and u′ respectively.
Proof: Equivalent to the proof of “The Law of Demand (or Supply)”.

z∗ − z∗′  u − u′  z∗ − z∗′  u  z∗′ − z∗  u′ ≥ 0, since z∗  u ≥ z∗′  u, and
z∗′  u′ ≥ z∗  u′. Since u − u′  0,…, 0,uk − uk′ , 0,…, 0  0, then zk

∗ − zk∗′ ≤ 0 QED.
2. Apparently, the decision maker realizes that there is an additional

uncertainty. The world may go "one way or another". With probability  the vNM
utility of the k’th type of success will be uk and with probability 1 −  it will vk.
Failure remains 0 in both contingencies.

First, formalize the decision maker’s new problem. Then, formalize (and prove)
the claim: Even if the decision maker would obtain the same expected utility, would
he have known in advance the direction of the world, the existence of uncertainty
makes him (at least weakly) less happy.

The DM solves:

maxz∈Zz  u  1 − v  maxz∈Z∑
k1

K

zkuk  1 − vk

Claim: The maximal expected utility in the uncertain world is weakly less than
the maximal expected utility when the direction of the world is known.
Proof: Denote the DM’s chosen projects under the two seperate directions (with
vNM utility u or v) as zu and zv.
Then
maxz∈Zz  u  1 − v ≤ maxz′∈Zz′  u  1 − maxz′∈Zz′  v  zu  u  1 − zv  v
Even if zu  u  zv  v  E, we get maxz∈Zz  u  1 − v ≤ E.



Problem C5 (NYU 2009)

For any non negative integer n and a number p ∈ 0,1 let n,p be the lottery
which gets the prize $n with probability p and $0 with probability 1 − p. Let us call
those lotteries "simple lotteries". Consider preference relations on the space of
simple lotteries.

We say that such a preference relation satisfies Independence if p  q iff
p ⊕ 1 − r  q ⊕ 1 − r for any   0, and any simple lotteries p,q, r for which
the compound lotteries are also simple lotteries.

Consider a preference relation satisfying the Independence axiom, strictly
monotonic in money and continuous in p. Show that:

1. n,p is monotonic in p for n  0, i.e. for all p  p′ n,p  n,p′
Observation 1: By monotonicity, n, 1  m, 1 for all m  n.
Observation 2: For all n, n, 0  0,1 since both lotteries give 0 w.p. 1.
Proof of Claim:
By observation 1 and 2, n, 1  n, 0. By independence

p′/pn, 1 ⊕ 1 − p′/pn, 1  p′/pn, 0 ⊕ 1 − p′/pn, 1  n, 1  n,p′/p. Using
independence again, pn, 1 ⊕ 1 − pn, 0  pn,p′/p ⊕ 1 − pn, 0 
n,p  n,p′

2. For all n there is a unique vn such that 1,1  n, 1/vn
By observations above for n  1, n, 1  1,1  n, 0. Since n,p is

continuous, and monotonic in p, there exists a unique pn such that 1,1  n,pn.
Denote vn such that vn  1/pn, and v0  0, and naturally v1  1

3. It can be represented with the expected utility formula: that is there is an
increasing function v such that pvn is a utility function which represents the
preference relation.

Claim : For n  m, vn  vm
By monotonicity in money, n, 1  m, 1. By independence

n, 1/vn  1,1  m, 1/vn  m, 1/vm  m, 1/vn. By monotonicity in p,
1/vm  1/vn

Now lets check that un,p  vnp represents preferences over these lotteries.
Note that, n, 1/vn  m, 1/vm. By independence n,vm/vnq  m,q. Then
n,p relates to m,q like p relates to vm/vnq. Thus n,p  m,q iff
vnp  vmq.



D. Social Choice:

Problem D1 (Princeton 2000)

Consider the following social choice problem: a group has n members who must
choose from a set containing 3 elements A,B,L, where A and B are prizes and L
is the lottery which yields each of the prizes A and B with equal probability. Each
member has a strict preference over the three alternatives that satisfies vNM
assumptions.

1. Show that there is a non-dictatorial social welfare function which satisfies the
independence of irrelevant alternatives axiom (even the strict version I∗) and the
Pareto axiom (Par).

Since the preference relations is strict and sastifies vNM assumptions, each of
them must be of one of two types
A A L A B or B B L B A. Let  be the preference A  L  B (which also

satsifies the vNM assumptions).
The majority rule assigns the relation

A if i| i  A   i| i  B 

 if i| i  A   i| i  B 

B if i| i  B   i| i  A 

.

Clearly, this satisfies the Pareto axiom - if every individual prefers x to y, then so
does society, according to the majority rule.

It also satisfies IIA: consider two profiles i  and i′ , and pick two pairs of
alternatives a,b and x,y s.t. a i b iff x i′ y. Note that every preference relation
in the domain of the SWF corresponds to a distinct preference over any two
alternatives. Thus if a i b iff x i′ y then the relation ab where a ab b is most
popular iff the relation and xy where x xy y is most popular.

2. Reconcile this fact with Arrow’s Impossibility Theorem.
Arrow’s impossibility theorem says that if there are at least three alternatives,

then the only SWF with unrestricted domain satisfying the Pareto and IIA axioms is
the dictatorship. But here the domain is restricted to only two possible preference
relations.



Problem D2 (NYU 2009)

We will say that a choice function C is consistent with the majority vetoes a
dictator procedure if there are three preference relations 1 , 2 and 3 such that
cA is the 1 maximum unless both 2 and 3 agree on another alternative being
the maximum in A.

1. Show that such a choice function might not be rationalizable.
We will show that the choice function violates property . Consider the following

preferences on a,b,c:

a 1 b 1 c

b 2 a 2 c

c 3 b 3 a

According to these preferences

Ca,b,c  a

Ca,b  b

2. Show that such a choice function satisfies the following property: If cA  a,
cA − b  c for b and c different than a then cB  c for all B which contains c
and is a subset of A − b.

Claim: a is 1 maximal in A. Assume not for contradiction. Then, a must be 2

and 3 maximal in A. But since A − b is a subset of A, a must be 2 and 3

maximal there, too. But according to the majority veto dictator rule it must also be
chosen in A − b which contradicts cA − b  c.

By claim, and A − b ⊂ A, we know that a is 1 maximal in A − b. Since
cA − b  c, we know that c must be 2 and 3 maximal in A − b. (Otherwise
a would be chosen in A − b.) But c must be maximal 2 and 3 in any B which
contains c and is a subset of A − b . Then c must be chosen in any of these
subsets.

(c) Show that not all choice functions could be explained by the majority vetoes
a dictator procedure.

Any choice function satisfying Ca,b,c,d  a, Ca,c,d  c, and
Ca,c  a violates the property in part (2) and thus cannot be explained by the
majority vetoes a dictator procedure.



Problem D3 (Tel Aviv 2009. Inspired by Miller (2007)).
Lately we have been using the term a "reasonable reaction" quite frequently. In

this problem we assume that this term is defined according to the opinions of the
individuals in the society with regard to the question:"What is a reasonable
reaction?".

Assume that in a certain situation, the possible set of reactions is X and the set
of individuals in the society is N.

A "reasonability perception" is a non-empty set of possible reactions that are
perceived as reasonable.

The social reasonability perception is determined by a function f which attaches
a reasonability perception (a non-empty subset of X) to any profile of the
individuals’ reasonability perception (a vector of non-empty subsets of X).

1. Formalize the following proposition:
Assume that the number of reactions in X is larger than the number of

individuals in the society and that f satisfies the following four properties:
A. If in a certain profile all the individuals do not perceive a certain reaction as

reasonable, then neither does the society.
B. All the individuals have the same status.
C All the reactions have the same status.
D. Consider two profiles that are different only in one individual’s reasonability

perception. Any reaction that f determines to be reasonable in the first profile, and
regarding which the individual did not change his opinion from reasonable to
unreasonable in the second profile, remains reasonable.

Then f determines that a reaction is socially reasonable if and only if at least
one of the individuals perceives it as reasonable.

Denote by Si the reasonability perception of individual i.
Proposition:
Assume |X|  |N|. Let f be a function that satisfies:
A. ∀i ∈ N.x ∉ Si  x ∉ fSii∈N.
B. Let  be a permutation of N. If Sii∈N and Si

′
i∈N are two reasonability

perception profiles such that for every i: Si
′  Si then fSii∈N  fSi

′
i∈N.

C. Let  ′
be a permutation of X. If Sii∈N and Si

′
i∈N are two reasonability

perception profiles such that for every x and for every i it holds that x ∈
Si   ′x ∈ Si

′
, then x ∈ fSii∈N   ′x ∈ fSi

′
i∈N.

D. Let Sii∈N and Si
′
i∈N be two reasonability perception profiles such Si

′  Si
that for any i ≠ j. Let x ∈ fSii∈N. If x ≠ Sj or x ∈ Sj

′
, then x ∈ fSi

′
i∈N.

Then, x ∈ fSii∈N  ∃i such that x ∈ Si.
2. Show that all four properties are necessary for the proposition.
1. The fixed function f  X satisfies B, C and D but not A.
2. The function fSii∈N  Si for some fixed i (a dictatorship) satisfies A, C and

D but not B.
3. A function which determines that a reaction is reasonable if and only if at

least one of the individuals perceives it as such, except for one specific reaction for
which it is necessary that two individuals perceive it as reasonable, satisfies A, B



and D but not C.
4. A function which determines as reasonable the reaction(s) that the largest

number of individuals perceive as reasonable (the most popular reaction(s)),
satisfies A, B and C but not D.

3. Prove the proposition.

Let f be a function satisfying A, B, C and D. Let Sii∈N be a reasonability

perception profile. Let y be a reaction that is perceived as reasonable by at least
one individual, denoted by j.

Define the profile Tii∈N by arbitrarily assigning one alternative to each
individual, with no repetitions (that is Ti  xi and xi ≠ xk for any i ≠ k), such that
xj  y. This is possible since there are more alternatives than individuals.

Claim: In the profile Tii∈N, all reactions are determined to be socially
reasonable.

Proof: fTii∈N is non-empty and therefore for some x, x ∈ fTii∈N. By
property A, there is an individual k such that x  xk ∈ Tk. Let i ≠ k and let  be a
permutation of N that switches between i and k. Now xk  Ti and xi  Tk and
by property B, xk ∈ fTii∈N. Let  ′

be a permutation of X that switches between
xi and xk. By property C, xi is now socially reasonable, but in fact we are back to
the original profile Tii∈N. Therefore, for every i, it holds that xi ∈ fTii∈N.

The above claim implies that y ∈ fTii∈N.
Define Rii∈N such that for every i, Ri  Si  Ti. One can transform Tii∈N into

Rii∈N by adding one reaction to one individual at a time. By property D, in each of
these stages, the reaction y remains socially reasonable and thus y ∈ fRii∈N.

If for some individual i the reaction that we chose arbitrarily in Ti is not in the
original reasonability perception set Si, then subtract it from Ri. After a finite number
of subtractions, we will obtain the original profile Sii∈N. Since at no step did we
change the status of y in any reasonability perception set, y ∈ fSii∈N by D.


Trivial.



Problem D5 (Tel Aviv 2010)
Let  be a preference relation on Rn satisfying the following two properties:
Weak Pareto (WP): If xi ≥ yi for all i, then x  x1, . . ,xn  y  y1, . . ,yn and if

xi  yi for all i, then x1, . . ,xn  y1, . . ,yn.
Independence (IIA): Let a,b,c,d ∈ n be vectors such that in any coordinate

ai  bi, ai  bior ai  bi if and only if ci  di, ci  dior ci  d, accordingly. Then,
a  b iff c  d.

1. Find a preference relation different from those represented by
uix1, . . . ,xn  xi which satisfies the two properties.

Lexicographic preferences such as: x  y iff xi∗  yi∗ where i∗  mini|xi ≠ yi.
2. Show, for n  2, that there is an i such that ai  bi implies a  b.
Assume that 4,2  2,4. By Pareto 4,2  2,0.
Also 4,2  2,2 since by by Pareto 2,4  2,2.
Now, consider two vectors a  a1,a2 and b  b1,b2 such that a1  b1. By IIA

the preference between a and b when a2  b2, a2  b2 or a2  b2 is the same as
between 4,2 and 2,4, 2,2 or 2,0 respectively, namely a  b.

3. Provide a "social choice" interpretation for the result in (2). Explain how it
differs from Arrow’s Impossibility Theorem.

We can interpret a point in Rn as an allocation of a desirable good between n
individuals. The preferences of all individuals are fixed (each wants as much as
possible). The independence property expresses a requirement that the social
preference between any two alteratives a and b is a function of only the n
comparisons between ai and bi.

4. Expand (2) for any n.
Let A ⊆ 1, . . . ,n. We say that A is decisive if whenever for all i ∈ A, xi  yi then

x  y.
Let A ⊆ 1, . . . ,n. We say that A is almost decisive if whenever for all i ∈ A,

xi  yi and for all i ∉ A, yi  xi then x  y
First, if A is almost decisive then it is decisive: By the independence it is enough

to look at two vectors a and b such that ai  3 and bi  1 if i ∈ A, and all other aj
and bj are either 1 or 3.

Let ci  3 if i ∈ A and ci  1 otherwise and let di  1 if i ∈ A and di  3
otherwise.

By the almost decisiveness of A, c  d. By Pareto a  c and d  b, thus a  b.
Now let A be a decisive set. and let A1 and A2 be a partition of A. We will see

that either A1 or A2 is almost decisive.
Assume not. Consider the three vectors:

A1 A2 N − A
a 1 3 5

b 5 1 3

c 3 5 1



By A’s decisiveness, c  a. If A1 is not almost decisive then a  b and if A2 is not
almost decisive then b  c. A contradiction.

Thus, there is i such that i is decisive.


