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Preface

This is the second edition of my lecture notes for the first quarter of
a microeconomics course for PhD (or MA) economics students. The
lecture notes were developed over a period of 20 years during which I
taught the course at Tel Aviv, Princeton and New York universities.

I published the book for the first time in 2007 with some hesitation
since several superb books were already on the shelves. Foremost among
them is Kreps (1990), which pioneered the shift of the game theoretic
revolution from research papers into textbooks. His book covers the ma-
terial in depth and includes many ideas for future research. Mas-Colell,
Whinston and Green (1995) continued this trend with a very compre-
hensive and detailed textbook. There are three other books on my short
list: Bowles (2003), which brings economics back to its authentic polit-
ical economics roots; Jehle and Reny (1997), with its very precise style;
and the classic Varian (1984). These five books constitute an impres-
sive collection of textbooks for the standard advanced microeconomics
course. My book covers only the first quarter of the standard course.
It does not aim to compete with these books, but rather to supplement
them. I published it only because I think that some of the didactic ideas
presented might be beneficial to both students and teachers and it is to
this end that I insisted on retaining its lecture notes style.

Downloading updated versions:

The book is posted on the Internet and access is entirely free. I am
grateful to Princeton University Press for allowing it to be downloaded
for free right after publication. Since 2007, I have updated the book an-
nually, adding material and correcting mistakes. My plan is to continue
revising the book annually. To access the latest electronic version go to:
http://arielrubinstein.tau.ac.il .

Solution manual:

Teachers of the course can also get an updated solution manual. I do
my best to send the manual only to teachers of a graduate course in
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microeconomics. Requests for the manual should be made at:
http://gametheory.tau.ac.il/microtheory .

Gender:

Throughout the book I use only male pronouns. This is my deliberate
choice and does not reflect the policy of the editors or the publishers.
I believe that continuous reminders of the he/she issue simply divert
readers’ attention. Language is of course very important in shaping our
thinking and I don’t dispute the importance of the type of language we
use. But I feel it is more effective to raise the issue of discrimination
against women in the discussion of gender-related issues, rather than
raising flags on every page of a book on economic theory.

Acknowledgments:

I would like to thank all my teaching assistants, who made helpful com-
ments during the many years I taught the course: Rani Spiegler, Kfir
Eliaz, Yoram Hamo, Gabi Gayer and Tamir Tshuva at Tel Aviv Univer-
sity; Bilge Yilmaz, Ronny Razin, Wojciech Olszewski, Attila Ambrus,
Andrea Wilson, Haluk Ergin and Daisuke Nakajima at Princeton; and
Sophie Bade and Anna Ingster at NYU. Sharon Simmer and Rafi Aviav
helped me with the English editing. Special thanks to Rafi Aviav and
Benjamin Bachi for their devoted work in producing the revised versions
of the book.



Introduction

As a new graduate student, you are at the beginning of a new stage of
your life. In a few months you will be overloaded with definitions, con-
cepts, and models. Your teachers will be guiding you into the wonders
of economics and will rarely have the time to stop to raise fundamen-
tal questions about what these models are supposed to mean. It is not
unlikely that you will be brainwashed by the professional-sounding lan-
guage and hidden assumptions. I am afraid I am about to initiate you
into this inevitable process. Still, I want to use this opportunity to pause
for a moment and alert you to the fact that many economists have strong
and conflicting views about what economic theory is. Some see it as a
set of theories that can (or should) be tested. Others see it as a bag
of tools to be used by economic agents. Many see it as a framework
through which professional and academic economists view the world.

My own view may disappoint those of you who have come to this
course with practical motivations. In my view, economic theory is no
more than an arena for the investigation of concepts we use in thinking
about economics in real life. What makes a theoretical model “eco-
nomics” is that the concepts we are analyzing are taken from real-life
reasoning about economic issues. Through the investigation of these
concepts we indeed try to understand reality better, and the models
provide a language that enables us to think about economic interactions
in a systematic way. But I do not view economic models as an attempt
to describe the world or to provide tools for predicting the future. I
object to looking for an ultimate truth in economic theory, and I do not
expect it to be the foundation for any policy recommendation. Nothing
is “holy” in economic theory and everything is the creation of people
like yourself.

Basically, this course is about a certain class of economic concepts
and models. Although we will be studying formal concepts and models,
they will always be given an interpretation. An economic model differs
substantially from a purely mathematical model in that it is a combi-
nation of a mathematical model and its interpretation. The names of
the mathematical objects are an integral part of an economic model.
When mathematicians use terms such as “field” or “ring” which are in
everyday use, it is only for the sake of convenience. When they name a
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collection of sets a “filter,” they are doing so in an associative manner;
in principle, they could call it “ice cream cone.” When they use the term
“good ordering” they are not making an ethical judgment. In contrast
to mathematics, interpretation is an essential ingredient of any economic
model.

The word “model” sounds more scientific than “fable” or “fairy tale”
but I don’t see much difference between them. The author of a fable
draws a parallel to a situation in real life and has some moral he wishes
to impart to the reader. The fable is an imaginary situation which is
somewhere between fantasy and reality. Any fable can be dismissed
as being unrealistic or simplistic but this is also the fable’s advantage.
Being something between fantasy and reality, a fable is free of extraneous
details and annoying diversions. In this unencumbered state, we can
clearly discern what cannot always be seen from the real world. On our
return to reality, we are in possession of some sound advice or a relevant
argument that can be used in the real world. We do exactly the same
thing in economic theory. Thus, a good model in economic theory, like
a good fable, identifies a number of themes and elucidates them. We
perform thought exercises which are only loosely connected to reality
and which have been stripped of most of their real-life characteristics.
However, in a good model, as in a good fable, something significant
remains. One can think about this book as an attempt to introduce the
characters that inhabit economic fables. Here, we observe the characters
in isolation. In models of markets and games, we further investigate the
interactions between the characters.

It is my hope that some of you will react and attempt to change what
is currently called economic theory, and that you will acquire alternative
ways of thinking about economic and social interactions. At the very
least, this course should teach you to ask hard questions about economic
models and the sense in which they are relevant to real life economics. I
hope that you walk away from this course with the recognition that the
answers are not as obvious as they might appear.

Microeconomics

In this course we deal only with microeconomics, a collection of models
in which the primitives are details about the behavior of units called
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economic agents. Microeconomic models investigate assumptions about
economic agents’ activities and about interactions between these agents.
An economic agent is the basic unit operating in the model. When we
construct a model with a particular economic scenario in mind, we might
have some degree of freedom regarding whom we take to be the economic
agents. Most often, we do have in mind that the economic agent is an
individual, a person with one head, one heart, two eyes, and two ears.
However, in some economic models, an economic agent is taken to be
a nation, a family, or a parliament. At other times, the “individual”
is broken down into a collection of economic agents, each operating in
distinct circumstances and each regarded as an economic agent.

We should not be too cheerful about the statement that an economic
agent in microeconomics is not constrained to being an individual. The
facade of generality in economic theory might be misleading. We have
to be careful and aware that when we take an economic agent to be a
group of individuals, the reasonable assumptions we might impose on it
are distinct from those we might want to impose on a single individual.
For example, while it is quite natural to talk about the will of a person,
it is not clear what is meant by the will of a group when the members
of the group differ in their preferences.

An economic agent is described in our models as a unit that responds
to a scenario called a choice problem, where the agent must make a
choice from a set of available alternatives. The economic agent appears
in the microeconomic model with a specified deliberation process he uses
to make a decision. In most of current economic theory, the deliberation
process is what is called rational choice. The agent decides what action
to take through a process in which he

1. asks himself “What is desirable?”
2. asks himself “What is feasible?”
3. chooses the most desirable from among the feasible alternatives.

Note the order of the stages. In particular, the stage in which desires
are shaped precedes the stage in which feasible alternatives are recog-
nized and therefore the rational economic agent’s desires are independent
of the set of alternatives. Note that rationality in economics does not
contain judgments about desires. A rational agent can have preferences
which the entire world views as being against the agent’s interest.

Furthermore, economists are fully aware that almost all people, almost
all the time, do not practice this kind of deliberation. Nevertheless, until
very recently the practice of most economists was to make further as-
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sumptions which emphasize the materialist desires of the economic agent
and minimize the role of the psychological motives. This practice has
been somewhat changed in the last few years with the development of
the ”Economics and Psychology” approach. Still, we find the investiga-
tion of economic agents who follow the rational process to be important,
since we often refer to rational decision making in life as an ideal pro-
cess. It is meaningful to talk about the concept of “being good” even
in a society where all people are evil; similarly, it is meaningful to talk
about the concept of a “rational man” and about the interactions be-
tween rational economic agents even if all people systematically behave
in a nonrational manner.

Bibliographic Notes

For an extended discussion of my views about economic theory see Ru-
binstein (2006).
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LECTURE 1

Preferences

Preferences

Our economic agent will soon be advancing to the stage of economic
models. Which of his characteristics will we be specifying in order to
get him ready? We might have thought name, age and gender, personal
history, cognitive abilities and knowledge, as well as his mental state.
However, in most of economic theory, we specify an economic agent only
by his attitude towards the elements in some relevant set and usually
we assume that his attitude is expressed in form of preferences.

We begin the course with a modeling “exercise”: we seek to develop a
“proper” formalization of the concept of preferences. Although we are on
our way to constructing a model of rational choice, we will think about
the concept of preferences here independently of choice. This is quite
natural. We often use the concept of preferences not in the context
of choice. For example, we talk about an individual’s tastes over the
paintings of the masters even if he never makes a decision based on
those preferences. We refer to the preferences of an agent were he to
arrive tomorrow on Mars or travel back in time and become King David
even if he does not believe in the supernatural.

Imagine that you want to fully describe the preferences of an agent
toward the elements in a given set X . For example, imagine that you
want to describe your own attitude toward the universities you apply to
before finding out to which of them you have been admitted. What must
the description include? What conditions must the description fulfill?

We take the approach that a description of preferences should fully
specify the attitude of the agent toward each pair of elements in X . For
each pair of alternatives, it should provide an answer to the question of
how the agent compares the two alternatives. We present two versions
of this question. For each version we formulate the consistency require-
ments necessary to make the responses “preferences” and examine the
connection between the two formalizations.
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The Questionnaire Q

Let us think about the preferences on a set X as answers to a long
questionnaire Q which consists of all quiz questions of the type:

Q(x,y) (for all distinct x and y in X):
How do you compare x and y? Tick one and only one of the following

three options:

� I prefer x to y (this answer is denoted as x � y).
� I prefer y to x (this answer is denoted by y � x).
� I am indifferent (this answer is denoted by I).

A “legal” answer to the questionnaire is a response in which exactly
one of the boxes is ticked in each question. We do not allow refraining
from answering a question or ticking more than one answer. Further-
more, by allowing only the above three options we exclude responses
that demonstrate:

a lack of ability to compare, such as

� They are incomparable.
� I don’t know what x is.
� I have no opinion.
� I both prefer x over y and y over x.

a dependence on other factors, such as

� It depends on what my parents think.
� It depends on the circumstances (sometimes I prefer x but usually

I prefer y).

and most importantly, intensity of preferences, such as

� I somewhat prefer x.
� I love x and I hate y.

The constraints that we place on the legal responses of the agents
constitute our implicit assumptions. Particularly important are the as-
sumption that the elements in the set X are all comparable, and the
fact that we ignore the intensity of preferences.

A legal answer to the questionnaire can be formulated as a function
f which assigns to any pair (x, y) of distinct elements in X exactly one
of the three “values”: x � y or y � x or I, with the interpretation that
f(x, y) is the answer to the question Q(x, y). (Alternatively, we can use
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the notation of the soccer betting industry and say that f(x, y) must
be 1, 2, or × with the interpretation that f(x, y) = 1 means that x is
preferred to y, f(x, y) = 2 means that y is preferred to x and f(x, y) = ×
means indifference.)

Not all legal answers to the questionnaire Q qualify as preferences
over the set X . We will adopt two “consistency” restrictions:

First, the answer to Q(x, y) must be identical to the answer to Q(y, x).
In other words, we want to exclude the common “framing effect” by
which people who are asked to compare two alternatives tend to prefer
the first one.

Second, we require that the answers to Q(x, y) and Q(y, z) are con-
sistent with the answer to Q(x, z) in the following sense: If the answers
to the two questions Q(x, y) and Q(y, z) are “x is preferred to y” and
“y is preferred to z” then the answer to Q(x, z) must be “x is preferred
to z,” and if the answers to the two questions Q(x, y) and Q(y, z) are
“indifference” then so is the answer to Q(x, z).

To summarize, here is my favorite formalization of the notion of pref-
erences:

Definition 1

Preferences on a set X are a function f that assigns to any pair (x, y) of
distinct elements in X exactly one of the three “values” x � y, y � x or
I so that for any three different elements x, y and z in X , the following
two properties hold:

• No order effect : f(x, y) = f(y, x).
• Transitivity:

if f(x, y) = x � y and f(y, z) = y � z then f(x, z) = x � z and
if f(x, y) = I and f(y, z) = I then f(x, z) = I.

Note again that I, x � y, and y � x are merely symbols representing
verbal answers. Needless to say, the choice of symbols is not an arbitrary
one. (Why do I use the notation I and not x ∼ y?)

A Discussion of Transitivity

Transitivity is an appealing property of preferences. How would you
react if somebody told you he prefers x to y, y to z and z to x? You
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would probably feel that his answers are “confused.” Furthermore, it
seems that, when confronted with an intransitivity in their responses,
people are embarrassed and want to change their answers.

On some occasions before giving this lecture, I asked students to fill
out a questionnaire similar to Q regarding a set X that contains nine
alternatives, each specifying the following four characteristics of a travel
package: location (Paris or Rome), price, quality of the food, and qual-
ity of the lodgings. The questionnaire included only thirty six questions
since for each pair of alternatives x and y, only one of the questions,
Q(x, y) or Q(y, x), was randomly selected to appear in the question-
naire (thus the dependence on order of an individual’s response was not
checked within the experimental framework). Out of 458 students who
responded to the questionnaire, only 57 (that is, 12%) had no intran-
sitivities in their answers, and the median number of triples in which
intransitivity existed was almost 7. Many of the violations of transitiv-
ity involved two alternatives that were actually the same, but differed in
the order in which the characteristics appeared in the description: “A
weekend in Paris at a 4-star hotel with food quality Zagat 17 for $574,”
and “A weekend in Paris for $574 with food quality Zagat 17 at a 4-star
hotel.” All students expressed indifference between the two alternatives,
but in a comparison of these two alternatives to a third alternative—”A
weekend in Rome at a 5-star hotel with food quality Zagat 18 for $612”—
a quarter of the students gave responses that violated transitivity.

In spite of the appeal of the transitivity requirement, note that when
we assume that the attitude of an individual toward pairs of alternatives
is transitive, we are excluding individuals who base their judgments on
procedures that cause systematic violations of transitivity. The following
are two such examples.

1. Aggregation of considerations as a source of intransitivity. In some
cases, an individual’s attitude is derived from the aggregation of
more basic considerations. Consider, for example, a case where X =
{a, b, c} and the individual has three primitive considerations in mind.
The individual finds an alternative x better than an alternative y if
a majority of considerations support x. This aggregation process can
yield intransitivities. For example, if the three considerations rank
the alternatives as follows: a �1 b �1 c, b �2 c �2 a and c �3 a �3 b,
then the individual determines a to be preferred over b, b over c, and
c over a, thus violating transitivity.
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2. The use of similarities as an obstacle to transitivity. In some cases,
an individual may express indifference in a comparison between two
elements that are too “close” to be distinguishable. For example,
let X = R (the set of real numbers). Consider an individual whose
attitude toward the alternatives is “the larger the better”; however,
he finds it impossible to determine whether a is greater than b unless
the difference is at least 1. He will assign f(x, y) = x � y if x ≥ y + 1
and f(x, y) = I if |x− y| < 1. This is not a preference relation since
1.5 ∼ 0.8 and 0.8 ∼ 0.3, but it is not true that 1.5 ∼ 0.3.

Did we require too little? Another potential criticism of our definition
is that our assumptions might have been too weak and that we did
not impose some reasonable further restrictions on the concept of pref-
erences. That is, there are other similar consistency requirements we
may want to impose on a legal response to qualify it as a description of
preferences. For example, if f(x, y) = x � y and f(y, z) = I, we would
naturally expect that f(x, z) = x � z. However, this additional consis-
tency condition was not included in the above definition since it follows
from the other conditions: If f(x, z) = I, then by the assumption that
f(y, z) = I and by the no order effect, f(z, y) = I, and thus by transitiv-
ity f(x, y) = I (a contradiction). Alternatively, if f(x, z) = z � x, then
by no order effect f(z, x) = z � x, and by f(x, y) = x � y and transitiv-
ity f(z, y) = z � y (a contradiction).

Similarly, note that for any preferences f , we have that if f(x, y) = I

and f(y, z) = y � z, then f(x, z) = x � z.

The Questionnaire R

A second way to think about preferences is through an imaginary ques-
tionnaire R consisting of all questions of the type:

R(x,y) (for all x, y ∈ X , not necessarily distinct):
Is x at least as preferred as y? Tick one and only one of the

following two options:

� Yes
� No
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By a “legal” response we mean that the respondent ticks exactly one
of the boxes in each question. To qualify as preferences a legal response
must also satisfy two conditions:

1. The answer to at least one of the questions R(x, y) and R(y, x)
must be Yes. (In particular, the “silly” question R(x, x) which
appears in the questionnaire must get a Yes response.)

2. For every x, y, z ∈ X , if the answers to the questions R(x, y) and
R(y, z) are Yes, then so is the answer to the question R(x, z).

We identify a response to this questionnaire with the binary relation
� on the set X defined by x � y if the answer to the question R(x, y) is
Yes.

(Reminder : An n-ary relation on X is a subset of Xn. Examples:
“Being a parent of” is a binary relation on the set of human beings;
“being a hat” is an unary relation on the set of objects; “x+ y = z” is
a 3-ary relation on the set of numbers; “x is better than y more than
x′ is better than y′” is 4-ary relation on a set of alternatives, etc. An
n-ary relation on X can be thought of as a response to a questionnaire
regarding all n-tuples of elements of X where each question can get only
a Yes/No answer.)

This brings us to the traditional definition of preferences:

Definition 2

Preferences on a set X is a binary relation � on X satisfying:

• Completeness : For any x, y∈X , x � y or y � x.
• Transitivity: For any x, y, z∈X , if x � y and y � z, then x � z.

The Equivalence of the Two Definitions

We will now discuss the sense in which the two definitions of preferences
on the set X are equivalent. But first, it is useful to recall the following
definitions:

Definitions

The function f : X → Y is a one-to-one function (or injection) if f(x) =
f(y) implies that x = y.
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The function f : X → Y is an onto function (or surjection) if for every
y ∈ Y there is an x ∈ X such that f(x) = y.

The function f : X → Y is a one-to-one and onto function (or bijec-
tion, or one-to-one correspondence) if for every y ∈ Y there is a unique
x ∈ X such that f(x) = y.

When we think about the equivalence of two definitions in economics we
are thinking about much more than the existence of a one-to-one corre-
spondence: the correspondence also has to preserve the interpretation.
Note the similarity to the notion of an isomorphism in mathematics
where a correspondence has to preserve “structure”. For example, an
isomorphism between two topological spaces X and Y is a one-to-one
function from X onto Y that is required to preserve the open sets. In
economics, the analogue to “structure” is the less formal notion of in-
terpretation.

We will now construct a one-to-one and onto function, named Trans-
lation, between answers to Q that qualify as preferences by the first
definition and answers to R that qualify as preferences by the second
definition, such that the correspondence preserves the meaning of the
responses to the two questionnaires.

To illustrate, imagine that you have two books. Each page in the first
book is a response to the questionnaire Q which qualifies as preferences
by the first definition. Each page in the second book is a response to the
questionnaire R which qualifies as preferences by the second definition.
The correspondence matches each page in the first book with a unique
page in the second book, so that a reasonable person will recognize that
the different responses to the two questionnaires reflect the same mental
attitudes toward the alternatives.

Since we assume that the answers to all questions of the type R(x, x)
are “Yes,” the classification of a response to R as a preference only
requires the specification of the answers to questions R(x, y), where x �=
y. Table 1.1 presents the translation of responses.

This translation preserves the interpretation we have given to the
responses. That is, if the response to the questionnaire Q exhibits that
“I prefer x to y” then the translation to a response to the questionnaire
R contains the statement “I find x to be at least as good as y but I don’t
find y to be at least as good as x” and thus exhibits the same meaning.
Similarly, the translation of a response to Q which exhibits that “I am
indifferent between x and y” is translated into a response to R which
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Table 1.1

A response to: A response to:

Q(x, y) and Q(y, x) R(x, y) and R(y, x)

x � y Yes No
I Yes Yes

y � x No Yes

contains the statement “I find x to be at least as good as y and I find y
to be at least as good as x” and thus exhibits the same meaning.

The following observations provide the proof that Translation is in-
deed a one-to-one correspondence between the set of preferences, as given
by definition 1, and the set of preferences as given by definition 2.

By the assumption on Q of a no order effect, for any two alternatives
x and y, one and only one of the following three answers could have been
received for both Q(x, y) and Q(y, x): x � y, I and y � x. Thus, the
responses to R(x, y) and R(y, x) are well defined.

Next we verify that the response to R that we have constructed with
the table is indeed a preference relation (by the second definition).

Completeness: In each of the three rows, the answers to at least one
of the questions R(x, y) and R(y, x) is affirmative.

Transitivity: Assume that the answers to R(x, y) and R(y, z) are af-
firmative. This implies that the answer to Q(x, y) is either x � y or I,
and the answer to Q(y, z) is either y � z or I. Transitivity of Q implies
that the answer to Q(x, z) must be x � z or I, and therefore the answer
to R(x, z) must be affirmative.

To see that Translation is indeed a one-to-one function, note that for
any two different responses to the questionnaire Q there must be a ques-
tion Q(x, y) for which the responses differ; therefore, the corresponding
responses to either R(x, y) or R(y, x) must differ.

It remains to be shown that the range of the Translation function
includes all possible preferences as defined by the second definition. Let
� be preferences in the traditional sense (a response to R). We have to
specify a function f , a response to Q, which is converted by Translation
to �. Read from right to left, the table provides us with such a function
f .

By the completeness of �, for any two elements x and y, one of the
entries in the right-hand column is applicable (the fourth option, that
the two answers to R(x, y) and R(y, x) are “No,” is excluded), and thus
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the response to Q is well defined and by definition satisfies no order
effect.

We still have to check that f satisfies the transitivity condition. If
f(x, y) = x � y and f(y, z) = y � z, then x � y and not y � x and y � z

and not z � y. By transitivity of �, x � z. In addition, not z � x since
if z � x, then the transitivity of � would imply z � y. If f(x, y) = I

and f(y, z) = I, then x � y, y � x, y � z and z � y. By transitivity of
�, both x � z and z � x, and thus f(x, z) = I.

Summary

I could have replaced the entire lecture with the following two sentences:
“Preferences onX are a binary relation � on a setX satisfying complete-
ness and transitivity. Notate x � y when both x � y and not y � x, and
x ∼ y when x � y and y � x.” However, the role of this chapter was not
just to introduce a formal definition of preferences, but also to conduct
a modeling exercise and to make two methodological points:

1. When we introduce two formalizations of the same verbal concept,
we have to make sure that they indeed carry the same meaning.

2. When we construct a formal concept, we make assumptions beyond
those explicitly mentioned. Being aware of the implicit assumptions
is important for understanding the concept and is useful in coming
up with ideas for alternative formalizations.

Bibliographic Notes

Recommended readings. Kreps 1990, 17–24; Mas-Colell et al. 1995,
chapter 1, A–B.

Fishburn (1970) contains a comprehensive treatment of preference re-
lations.



Problem Set 1

Problem 1. (Easy)

Let � be a preference relation on a set X. Define I(x) to be the set of all

y ∈ X for which y ∼ x.

Show that the set (of sets!) {I(x)|x ∈ X} is a partition of X, i.e.,

• For all x and y, either I(x) = I(y) or I(x)∩ I(y) = ∅.
• For every x ∈ X, there is y ∈ X such that x ∈ I(y).

Problem 2. (Standard)

Kreps (1990) introduces another formal definition for preferences. His primi-

tive is a binary relation P interpreted as “strictly preferred”. He requires P

to satisfy:

• Asymmetry : For no x and y do we have both xPy and yPx.

• Negative Transitivity : For all x, y and z ∈ X, if xPy, then for any z

either xPz or zPy (or both).

Explain the sense in which Kreps’ formalization is equivalent to the tradi-

tional definition.

Problem 3. (Difficult. Based on Kannai and Peleg (1984).)

Let Z be a finite set and let X be the set of all nonempty subsets of Z. Let

� be a preference relation on X (not Z).

Consider the following two properties of preference relations on X:

1. If A � B and C is a set disjoint to both A and B, then A ∪ C � B ∪ C,

and

if A � B and C is a set disjoint to both A and B, then A ∪ C � B ∪ C.

2. If x ∈ Z and {x} � {y} for all y ∈ A, then A ∪ {x} � A, and

if x ∈ Z and {y} � {x} for all y ∈ A, then A � A ∪ {x}.
a. Discuss the plausibility of the properties in the context of interpreting

� as the attitude of the individual toward sets from which he will have

to make a choice at a “second stage”.

b. Provide an example of a preference relation that (i) Satisfies the two

properties. (ii) Satisfies the first but not the second property. (iii) Sat-

isfies the second but not the first property.
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c. Show that if there are x, y and z ∈ Z such that {x} � {y} � {z}, then

there is no preference relation satisfying both properties.

Problem 4. (moderately difficult)

Let � be an asymmetric binary relation on a finite set X that does not have

cycles. Show (by induction on the size of X) that � can be extended to

a complete ordering (that is, a complete, asymmetric and transitive binary

relation).

Problem 5. (Fun)

Listen to the illusion called the Shepard Scale. (You can find it on the internet.

Currently, it is available at http://asa.aip.org/demo27.html.)

Can you think of any economic analogies?





LECTURE 2

Utility

The Concept of Utility Representation

Think of examples of preferences. In the case of a small number of
alternatives, we often describe a preference relation as a list arranged
from best to worst. In some cases, the alternatives are grouped into
a small number of categories and we describe the preferences on X by
specifying the preferences on the set of categories. But, in my experience,
most of the examples that come to mind are similar to: “I prefer the
taller basketball player,” “I prefer the more expensive present,” “I prefer
a teacher who gives higher grades,” “I prefer the person who weighs less.”
Common to all these examples is that they can naturally be specified by
a statement of the form “x � y if V (x) ≥ V (y)” (or V (x) ≤ V (y)), where
V : X → R is a function that attaches a real number to each element in
the set of alternativesX. For example, the preferences stated by “I prefer
the taller basketball player” can be expressed formally by: X is the set
of all conceivable basketball players, and V (x) is the height of player x.

Note that the statement x � y if V (x) ≥ V (y) always defines a prefer-
ence relation since the relation ≥ on R satisfies completeness and tran-
sitivity.

Even when the description of a preference relation does not involve a
numerical evaluation, we are interested in an equivalent numerical repre-
sentation. We say that the function U : X → R represents the preference
� if for all x and y ∈ X , x � y if and only if U(x) ≥ U(y). If the func-
tion U represents the preference relation �, we refer to it as a utility
function and we say that � has a utility representation.

It is possible to avoid the notion of a utility representation and to
“do economics” with the notion of preferences. Nevertheless, we usually
use utility functions rather than preferences as a means of describing
an economic agent’s attitude toward alternatives, probably because we
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find it more convenient to talk about the maximization of a numerical
function than of a preference relation.

Note that when defining a preference relation using a utility function,
the function has an intuitive meaning that carries with it additional
information. In contrast, when the utility function is formed in order
to represent an existing preference relation, the utility function has no
meaning other than that of representing a preference relation. Abso-
lute numbers are meaningless in the latter case; only relative order has
meaning. Indeed, if a preference relation has a utility representation,
then it has an infinite number of such representations, as the following
simple claim shows:

Claim:

If U represents �, then for any strictly increasing function f : R → R,
the function V (x) = f(U(x)) represents � as well.

Proof:

a � b

iff U(a) ≥ U(b) (since U represents �)
iff f(U(a)) ≥ f(U(b)) (since f is strictly increasing)
iff V (a) ≥ V (b).

Existence of a Utility Representation

If any preference relation could be represented by a utility function, then
it would “grant a license” to use utility functions rather than preference
relations with no loss of generality. Utility theory investigates the possi-
bility of using a numerical function to represent a preference relation and
the possibility of numerical representations carrying additional meanings
(such as, a is preferred to b more than c is preferred to d).

We will now examine the basic question of “utility theory”: Under
what assumptions do utility representations exist?

Our first observation is quite trivial. When the set X is finite, there
is always a utility representation. The detailed proof is presented here
mainly to get into the habit of analytical precision. We start with a
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lemma regarding the existence of minimal elements (an element a ∈ X

is minimal if a � x for any x ∈ X).

Lemma:

In any finite set A ⊆ X there is a minimal element (similarly, there is
also a maximal element).

Proof:

By induction on the size of A. If A is a singleton, then by completeness
its only element is minimal. For the inductive step, letA be of cardinality
n+ 1 and let x ∈ A. The set A−{x} is of cardinality n and by the
inductive assumption has a minimal element denoted by y. If x � y,
then y is minimal in A. If y � x, then by transitivity z � x for all
z ∈ A−{x} and thus x is minimal.

Claim:

If � is a preference relation on a finite set X , then � has a utility
representation with values being natural numbers.

Proof:

We will construct a sequence of sets inductively. Let X1 be the subset
of elements that are minimal in X . By the above lemma, X1 is not
empty. Assume we have constructed the sets X1, . . . , Xk. If X = X1 ∪
X2 ∪ . . . ∪Xk we are done. If not, define Xk+1 to be the set of minimal
elements in X −X1 −X2 − · · · −Xk. By the lemma Xk+1 �= ∅. Since
X is finite we must be done after at most |X | steps. Define U(x) = k if
x ∈ Xk. Thus, U(x) is the step number at which x is “eliminated.” To
verify that U represents �, let a � b. Then a /∈ X1 ∪X2 ∪ · · ·XU(b) and
thus U(a) > U(b). If a ∼ b then clearly U(a) = U(b).

Without any further assumptions on the preferences, the existence
of a utility representation is guaranteed when the set X is countable
(recall that X is countable and infinite if there is a one-to-one function
from the natural numbers onto X , namely, it is possible to specify an
enumeration of all its members {xn}n=1,2,...).
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Claim:

If X is countable, then any preference relation on X has a utility repre-
sentation with a range (−1, 1).

Proof:

Let {xn} be an enumeration of all elements in X . We will construct
the utility function inductively. Set U(x1) = 0. Assume that you have
completed the definition of the values U(x1), . . . , U(xn−1) so that xk �
xl iff U(xk) ≥ U(xl). If xn is indifferent to xk for some k < n, then assign
U(xn) = U(xk). If not, by transitivity, all numbers in the non-empty
set {U(xk)| xk ≺ xn} ∪ {−1} are below all numbers in the non-empty
set {U(xk)| xn ≺ xk} ∪ {1}. Choose U(xn) to be between the two sets.
This guarantees that for any k < n we have xn � xk iff U(xn) ≥ U(xk).
Thus, the function we defined on {x1, . . . , xn} represents the preference
on those elements.

To complete the proof that U represents �, take any two elements, x
and y ∈ X . For some k and l we have x = xk and y = xl. The above
applied to n = max{k, l} yields xk � xl iff U(xk) ≥ U(xl).

Lexicographic Preferences

Lexicographic preferences are the outcome of applying the following pro-
cedure for determining the ranking of any two elements in a set X . The
individual has in mind a sequence of criteria that could be used to com-
pare pairs of elements in X . The criteria are applied in a fixed order
until a criterion is reached that succeeds in distinguishing between the
two elements, in that it determines the preferred alternative. Formally,
let (�k)k=1,...,K be a K-tuple of preferences over the set X . The lexico-
graphic preferences induced by those preferences are defined by x �L y

if (1) there is k∗ such that for all k < k∗ we have x ∼k y and x �k∗ y or
(2) x ∼k y for all k. Verify that �L is a preference relation.

Example:

Let X be the unit square, i.e., X = [0, 1] × [0, 1]. Let x �k y if xk ≥
yk. The lexicographic preferences �L induced from �1 and �2 are:
(a1, a2) �L (b1, b2) if a1 > b1 or both a1 = b1 and a2 ≥ b2. (Thus, in
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this example, the left component is the primary criterion while the right
component is the secondary criterion.)

We will now show that the preferences �L do not have a utility rep-
resentation. The lack of a utility representation excludes lexicographic
preferences from the scope of standard economic models although they
are derived from a simple and commonly used procedure.

Claim:

The lexicographic preference relation �L on [0, 1]× [0, 1], induced from
the relations x �k y if xk ≥ yk (k = 1, 2), does not have a utility repre-
sentation.

Proof:

Assume by contradiction that the function u : X → R represents �L . For
any a ∈ [0, 1], (a, 1) �L (a, 0) we thus have u(a, 1) > u(a, 0). Let q(a) be
a rational number in the nonempty interval Ia = (u(a, 0),
u(a, 1)). The function q is a function from [0, 1] into the set of rational
numbers. It is a one-to-one function since if b > a then (b, 0) �L (a, 1)
and therefore u(b, 0) > u(a, 1). It follows that the intervals Ia and Ib
are disjoint and thus q(a) �= q(b). But the cardinality of the rational
numbers is lower than that of the continuum, a contradiction.

Continuity of Preferences

In economics we often take the set X to be an infinite subset of a Eu-
clidean space. The following is a condition that will guarantee the ex-
istence of a utility representation in such a case. The basic intuition,
captured by the notion of a continuous preference relation, is that if a is
preferred to b, then “small” deviations from a or from b will not reverse
the ordering.

In what follows we will refer to a ball around a in X with radius r > 0,
denoted as B(a, r), as the set of all points in X which are distanced less
than r from a.
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Figure 2.1
Two definitions of continuity of preferences.

Definition C1:

A preference relation � on X is continuous if whenever a � b (namely,
it is not true that b � a), there are balls (neighborhoods in the relevant
topology) Ba and Bb around a and b, respectively, such that for all
x ∈ Ba and y ∈ Bb, x � y. (See fig. 2.1.)

Definition C2:

A preference relation � on X is continuous if the graph of � (that is, the
set {(x, y)|x � y} ⊆ X ×X) is a closed set (with the product topology);
that is, if {(an, bn)} is a sequence of pairs of elements in X satisfying
an � bn for all n and an → a and bn → b, then a � b. (See fig. 2.1.)

Claim:

The preference relation � on X satisfies C1 if and only if it satisfies C2.

Proof:

Assume that � on X is continuous according to C1. Let {(an, bn)} be
a sequence of pairs satisfying an � bn for all n and an → a and bn → b.
If it is not true that a � b (that is, b � a), then there exist two balls
Ba and Bb around a and b, respectively, such that for all y ∈ Bb and
x ∈ Ba, y � x. There is an N large enough such that for all n > N ,
both bn ∈ Bb and an ∈ Ba. Therefore, for all n > N , we have bn � an,
which is a contradiction.
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Assume that � is continuous according to C2. Let a � b. Recall that
B(x, r) is the set of all elements in X distanced less than r from x.
Assume by contradiction that for all n there exist an ∈ B(a, 1/n) and
bn ∈ B(b, 1/n) such that bn � an. The sequence (bn, an) converges to
(b, a); by the second definition (b, a) is within the graph of � , that is,
b � a, which is a contradiction.

Remarks

1. If � on X is represented by a continuous function U , then � is
continuous. To see this, note that if a � b then U(a) > U(b). Let
ε = (U(a) − U(b))/2. By the continuity of U , there is a δ > 0 such
that for all x distanced less than δ from a, U(x) > U(a) − ε, and for
all y distanced less than δ from b, U(y) < U(b) + ε. Thus, for x and
y within the balls of radius δ around a and b, respectively, x � y.

2. The lexicographic preferences which were used in the counterexample
to the existence of a utility representation are not continuous. This is
because (1, 1) � (1, 0), but in any ball around (1, 1) there are points
inferior to (1, 0).

3. Note that the second definition of continuity can be applied to any
binary relation over a topological space, not just to a preference re-
lation. For example, the relation = on the real numbers (R1) is
continuous while the relation �= is not.

Debreu’s Theorem

Debreu’s theorem, which states that continuous preferences have a con-
tinuous utility representation, is one of the classic results in economic
theory. For a complete proof of Debreu’s theorem see Debreu 1954, 1960.
Here we prove only that continuity guarantees the existence of a utility
representation.

Lemma:

If � is a continuous preference relation on a convex set X ⊆ R
n, and if

x � y, then there exists z in X such that x � z � y.
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Proof:

Assume not. Let I be the interval that connects x and y. By the
convexity of X , I ⊆ X . Construct inductively two sequences of points in
I, {xt} and {yt}, in the following way. First define x0 = x and y0 = y.
Assume that the two points, xt and yt are defined, belong to I and
satisfy xt � x and y � yt. Consider the middle point between xt and
yt and denote it by m. According to the assumption, either m � x or
y � m. In the former case define xt+1 = m and yt+1 = yt, and in the
latter case define xt+1 = xt and yt+1 = m. The sequences {xt} and {yt}
are converging, and they must converge to the same point z since the
distance between xt and yt converges to zero. By the continuity of �
we have z � x and y � z and thus, by transitivity, y � x, contradicting
the assumption that x � y.

Comment on the Proof:

Another proof could be given for the more general case, in which the as-
sumption that the set X is convex is replaced by the weaker assumption
that it is a connected subset of R

n. (Remember that a connected set
cannot be covered by two non empty disjoint open sets.) If there is no z
such that x � z � y, then X is the union of two disjoint sets {a|a � y}
and {a|x � a}, which are open by the continuity of the preference rela-
tion, contradicting the connectedness of X .

We say that the set Y is dense in X if every open set B ⊂ X contains
an element in Y . Any set X ⊆ R

m has a countable dense subset. To see
this note that the standard topology in R

m has a countable base. That
is, any open set is the union of subset of the countable collection of open
sets: {B(a, 1/n)| all the components of a ∈ R

m are rational numbers; n
is a natural number}. For every set B(q, 1/n) that intersects X , pick a
point yq,n ∈ X ∩B(q, 1/n). Let Y be the set containing all the points
{yq,n}. This is a countable dense set in X .

Proposition:

Assume that X is a convex subset of R
n. If � is a continuous preference

relation on X , then � has a utility representation. (Actually, there is
a utility representation which is continuous but we will not prove this
part.)
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Proof:

Denote by Y a countable dense set in X . By a previous claim we know
that there exists a function v : Y → (−1, 1), which is a utility represen-
tation of the preference relation � restricted to Y . For every x ∈ X ,
define U(x) = sup{v(z)|z ∈ Y and x � z}. Define U(x) = −1 if there is
no z ∈ Y such that x � z, which means that x is the minimal element
in X . (Note that it could be that U(z) < v(z) for some z ∈ Y .)

If x ∼ y, then x � z iff y � z. Thus, the sets on which the supremum
is taken are the same and U(x) = U(y).

If x � y, then by the lemma there exists z in X such that x � z � y.
By the continuity of the preferences � there is a ball around z such that
all the elements in that ball are inferior to x and superior to y. Since
Y is dense, there exists z1 ∈ Y such that x � z1 � y. Similarly, there
exists z2 ∈ Y such that z1 � z2 � y. Finally,
U(x) ≥ v(z1) (by the definition of U and x � z1),
v(z1) > v(z2) (since v represents � on Y and z1 � z2), and
v(z2) ≥ U(y) (by the definition of U and z2 � y).

Bibliographic Notes

Recommended readings. Kreps 1990, 30–32; Mas-Colell et al. 1995,
chapter 3, C.

Fishburn (1970) covers the material in this lecture very well. The
example of lexicographic preferences originated in Debreu (1959) (see
also Debreu (1960), in particular Chapter 2, which is available online at
http://cowles.econ.yale.edu/P/cp/p00b/p0097.pdf.)
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Problem 1. (Easy)

The purpose of this problem is to make sure that you fully understand the

basic concepts of utility representation and continuous preferences.

a. Is the statement “if both U and V represent � then there is a strictly

monotonic function f : R → R such that V (x) = f(U(x))” correct?

b. Can a continuous preference relation be represented by a discontinuous

utility function?

c. Show that in the case of X = R, the preference relation that is repre-

sented by the discontinuous utility function u(x) = [x] (the largest inte-

ger n such that x ≥ n) is not a continuous relation.

d. Show that the two definitions of a continuous preference relation (C1

and C2) are equivalent to

Definition C3: For any x ∈ X, the upper and lower contours {y| y �
x} and {y| x � y} are closed sets in X,

and to

Definition C4: For any x ∈ X, the sets {y| y � x} and {y| x � y}
are open sets in X.

Problem 2. (Moderately difficult)

Give an example of preferences over a countable set in which the preferences

cannot be represented by a utility function that returns only integers as values.

Problem 3. (Easy)

Let � be continuous preferences on a set X ⊆ R
n which contains the interval

connecting the points x and z. Show that if y ∈ X and x � y � z, then there

is a point m on the interval connecting x and z such that y ∼ m.

Problem 4. (Moderately difficult)

Consider the sequence of preference relations (�n)n=1,2,.., defined on R
2
+

where �n is represented by the utility function un(x1, x2) = xn
1 + xn

2 . We

will say that the sequence �n converges to the preferences �∗ if for every x
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and y, such that x �∗ y, there is an N such that for every n > N we have

x �n y. Show that the sequence of preference relations �n converges to the

preferences �∗ which are represented by the function max{x1, x2}.

Problem 5. (Moderately difficult)

The following is a typical example of a utility representation theorem:

Let X = R
2
+. Assume that a preference relation � satisfies the following three

properties:

ADD : (a1, a2) � (b1, b2) implies that (a1 + t, a2 + s) � (b1 + t, b2 + s) for all t

and s.

SMON : If a1 ≥ b1 and a2 ≥ b2, then (a1, a2) � (b1, b2); in addition, if either

a1 > b1 or a2 > b2, then (a1, a2) � (b1, b2).

CON : Continuity.

a. Show that if � has a linear representation (that is, � is represented by

a utility function u(x1, x2) = αx1 + βx2 with α > 0 and β > 0), then �
satisfies ADD, SMON and CON.

b. Show that for any pair of the three properties there is a preference rela-

tion that does not satisfy the third property.

c. (This part is difficult) Show that if � satisfies the three properties, then

it has a linear representation.

d. (This part is also difficult) Characterize the preference relations which

satisfy ADD, SMON and an additional property MUL:

MUL: (a1, a2) � (b1, b2) implies that (λa1, λa2) � (λb1, λb2) for any pos-

itive λ.

Problem 6. (Moderately difficult)

Let X be a finite set and let (�,��) be a pair where � is a preference

relation and �� is a transitive sub-relation of � (by sub-relation, we mean

that x �� y implies x � y.)

We can think about the pair as representing the responses to the question-

naire A where A(x, y) is the following question:

How do you compare x and y? Tick one of the following five options:

� I very much prefer x over y (x �� y).

� I prefer x over y (x � y).

� I am indifferent (I).

� I prefer y over x (y � x).

� I very much prefer y over x (y �� x).

Assume that the pair satisfies extended transitivity:

If x �� y and y � z, or if x � y and y �� z, then x �� z.

We say that a pair (�,��) is represented by a function u if:
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u(x) = u(y) iff x ∼ y,

u(x) − u(y) > 0 iff x � y and

u(x) − u(y) > 1 iff x �� y.

Show that every extended preference (�,��) is represented by a function

u.

Problem 7. (Moderately difficult)

Utility is a numerical representation of preferences. One can think about the

numerical representation of other abstract concepts. Here, you will try to

come up with a possible numerical representation of the concept “approxi-

mately the same” (see Luce (1956) and Rubinstein (1988)). For simplicity, let

X be the interval [0, 1].

Consider the following six properties of the binary relation S:

(S-1) For any a ∈ X, aSa.

(S-2) For all a, b ∈ X, if aSb then bSa.

(S-3) Continuity (the graph of the relation S in X × X is a closed set).

(S-4) Betweenness: If d ≥ c ≥ b ≥ a and dSa then also cSb.

(S-5) For any a ∈ X there is an open interval around a such that xSa for

every x in the interval.

(S-6) Denote M(a) = max{x|xSa} and m(a) = min{x|aSx}. Then, M and

m are (weakly) increasing functions and are strictly increasing whenever

they do not have the values 0 or 1.

a. Do these assumptions capture your intuition about the concept “approx-

imately the same”?

b. Show that the relation Sε, defined by aSεb if |b − a| ≤ ε (for positive ε),

satisfies all assumptions.

c. (Difficult) Let S be a binary relation that satisfies the above six proper-

ties and let ε be a strictly positive number. Show that there is a strictly

increasing and continuous function H : X → R such that aSb if and only

if |H(a) − H(b)| ≤ ε .

Problem 8. (Further reading)

Read Kahneman (2000) and discuss his distinction between the different types

of “psychological utilities”.



LECTURE 3

Choice

Choice Functions

Until now we have avoided any reference to behavior. We have talked
about preferences as a summary of the decision maker’s mental attitude
toward a set of alternatives. But economics is about action, and therefore
we now move on to modeling “agent behavior”. By a description of
agent behavior we will refer not only to his actual choices, made when
he confronts a certain problem, but to a full description of his behavior
in all scenarios we imagine he might confront in a certain context.

Consider a grand set X of possible alternatives. We view a choice
problem as a nonempty subset of X , and we refer to a choice from
A ⊆ X as specifying one of A’s members.

Modeling a choice scenario as a set of alternatives implies assumptions
of rationality according to which the agent’s choice does not depend on
the way the alternatives are presented. For example, if the alternatives
appear in a list, he ignores the order in which they are presented and
the number of times an alternative appears in the list. If there is an
alternative with a default status, he ignores that as well. As a rational
agent he considers only the set of alternatives available to him.

In some contexts, not all choice problems are relevant. Therefore we
allow that the agent’s behavior be defined only on a set D of subsets of
X . We will refer to a pair (X,D) as a context.

Examples:

1. Imagine that we are interested in a student’s behavior regarding his
selection from the set of universities to which he has been admitted. Let
X = {x1, . . . , xN} be the set of all universities with which the student is
familiar. A choice problem A is interpreted as the set of universities to
which he has been admitted. If the fact that the student was admitted
to some subset of universities does not imply his admission outcome for
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other universities, then D contains the 2N − 1 nonempty subsets of X .
But if, for example, the universities are listed according to difficulty in
being admitted (x1 being the most difficult) and if the fact that the stu-
dent is admitted to xk means that he is admitted to all less “prestigious”
universities, that is, to all xl with l > k, then D will consist of the N
sets A1, . . . , AN where Ak = {xk, . . . , xN}.

2. Imagine a scenario in which a decision maker is choosing whether
to remain with the status quo s or choose an element in some set Y .
We formalize such a scenario by defining X = Y ∪ {s} and identifying
the domain of the choice function D as the set of all subsets of X that
contain s.

We think about an agent’s behavior as a hypothetical response to a
questionnaire that contains questions of the following type, one for each
A ∈ D:

Q(A): Assume you must choose from a set of alternatives A. Which
alternative do you choose?

A permissible response to this questionnaire requires that the agent
select a unique element in A for every question Q(A). We implicitly
assume that the agent cannot give any other answer such as “I choose
either a or b”; “the probability of my choosing a ∈ A is p(a)”; “I don’t
know”, etc.

Formally, given a context (X,D), a choice function C assigns to each
set A ∈ D a unique element of A with the interpretation that C(A) is
the chosen element from the set A.

Our understanding is that a decision maker behaving in accordance
with the function C will choose C(A) if he has to make a choice from a set
A. This does not mean that we can actually observe the choice function.
At most we might observe some particular choices made by the decision
maker in some instances. Thus, a choice function is a description of
hypothetical behavior.

Rational Choice Functions

It is typically assumed in economics that choice is an outcome of “ratio-
nal deliberation.” Namely, the decision maker has in mind a preference
relation � on the setX and, given any choice problemA inD, he chooses
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an element in A which is � optimal. Assuming that it is well defined,
we define the induced choice function C� as the function that assigns
to every nonempty set A ∈ D the �-best element of A. Note that the
preference relation is fixed, that is, it is independent of the choice set
being considered.

Rationalizing

Economists were often criticized for making the assumption that decision
makers maximize a preference relation. The most common response to
this criticism is that we don’t really need this assumption. All we need
to assume is that the decision maker’s behavior can be described as if
he were maximizing some preference relation.

Let us state this “economic defense” more precisely. We will say that
a choice function C can be rationalized if there is a preference relation �
on X so that C = C� (that is, C(A) = C�(A) for any A in the domain
of C).

We will now identify a condition under which a choice function can
indeed be presented as if derived from some preference relation (i.e., can
be rationalized).

Condition α:

We say that C satisfies condition α if for any two problems A,B ∈ D, if
A ⊂ B and C(B) ∈ A then C(A) = C(B). (See fig. 3.1.)

Note that if � is a preference relation on X , then C� (defined on a
set of subsets of X that have a single most preferred element) satisfies
condition α.

As an example of a choice procedure which does not satisfy condition
α, consider the second-best procedure: the decision maker has in mind an
ordering � of X (that is, a complete, asymmetric and transitive binary
relation) and for any given choice problem set A chooses the element
from A, which is the �-maximal from the nonoptimal alternatives. If
A contains all the elements in B besides the �-maximal, then C(B) ∈
A ⊂ B but C(A) �= C(B).



28 Lecture Three

Figure 3.1
Violation of condition α.

We will now show that condition α is a sufficient condition for a choice
function to be formulated as if the decision maker is maximizing some
preference relation.

Proposition:

Assume that C is a choice function with a domain containing at least
all subsets of X of size 2 or 3. If C satisfies condition α, then there is a
preference � on X so that C = C�.

Proof:

Define � by x � y if x = C({x, y}).
Let us first verify that the relation � is a preference relation.
Completeness : Follows from the fact that C({x, y}) is always well

defined.
Transitivity: If x � y and y � z, then C({x, y}) = x and C({y, z}) =

y. If C({x, z}) �= x then C({x, z}) = z. By condition α and C({x, z}) =
z , C({x, y, z}) �= x. By condition α and C({x, y}) = x, C({x, y, z}) �= y,

and by condition α and C({y, z}) = y, C({x, y, z}) �= z. A contradiction
to C({x, y, z}) ∈ {x, y, z}.

We still have to show that C(B) = C�(B). Assume that C(B) = x

and C�(B) �= x. That is, there is y ∈ B so that y � x . By definition of
�, this means C({x, y}) = y, contradicting condition α.
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Dutch Book Arguments

Some of the justifications for the assumption that choice is determined
by “rational deliberation” are normative, that is, they reflect a percep-
tion that people should be rational in this sense and, if they are not, they
should convert to reasoning of this type. One interesting class of argu-
ments supporting this approach is referred to in the literature as “Dutch
book arguments.” The claim is that an economic agent who behaves ac-
cording to a choice function that is not induced from maximization of a
preference relation will not survive.

The following is a “sad” story about a monkey in a forest with three
trees, a , b, and c. The monkey is about to pick a tree to sleep in. Assume
that the monkey can only assess two alternatives at a time and that his
choice function is C({a, b}) = b, C({b, c}) = c, C({a, c}) = a. Obviously,
his choice function cannot be derived from a preference relation over the
set of trees. Assume that whenever he is on tree x it comes to his mind
occasionally to jump to one of the other trees, namely, he makes a choice
from a set {x, y} where y is one of the two other trees. This induces the
monkey to perpetually jump from one tree to another - not a particularly
desirable mode of behavior in the jungle.

Another argument – which is more appropriate to human beings –
is called the “money pump” argument. Assume that a decision maker
behaves like the monkey with respect to three alternatives a, b, and c.
Assume that, for all x and y, the choice C(x, y) = y is strong enough so
that whenever he is about to choose alternative x and somebody gives
him the option to also choose y, he is ready to pay one cent for the
opportunity to do so. Now, imagine a manipulator who presents the
agent with the choice problem {a, b, c}. Whenever the decision maker
is about to make the choice a, the manipulator allows him to revise his
choice to b for one cent. Similarly, every time he is about to choose b
or c, the manipulator sells him for one cent the opportunity to choose c
or a accordingly. The decision maker will cycle through the intentions
to choose a, b and c until his pockets are emptied or until he learns his
lesson and changes his behavior.

The above arguments are open to criticism. In particular, the elimi-
nation of patterns of behavior which are inconsistent with rationality
require an environment in which the economic agent is indeed con-
fronted with the above sequence of choice problems. The arguments
are presented here as interesting ideas and not necessarily as convincing
arguments for rationality.
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What Is an Alternative

Some of the cases where rationality is violated can be attributed to the
incorrect specification of the space of alternatives. Consider the following
example taken from Luce and Raiffa (1957): A diner in a restaurant
chooses chicken from the menu {steak tartare, chicken} but chooses
steak tartare from the menu {steak tartare, chicken, frog legs}. At
first glance it seems that he is not rational (since his choice conflicts
with condition α). Assume that the motivation for the choice is that
the existence of frog legs is an indication of the quality of the chef. If
the dish frog legs is on the menu, the cook must then be a real expert,
and the decision maker is happy ordering steak tartare, which requires
expertise to make. If the menu lacks frog legs, the decision maker does
not want to take the risk of choosing steak tartare.

Rationality is “restored” if we make the distinction between “steak
tartare served in a restaurant where frog legs are also on the menu (and
the cook must then be a real chef)” and “steak tartare in a restaurant
where frog legs are not served (and the cook is likely a novice).” Such
a distinction makes sense since the steak tartare is not the same in the
two choice sets.

Note that if we define an alternative to be (a,A), where a is a physical
description and A is the choice problem, any choice function C can be
rationalized by a preference relation satisfying (C(A), A) � (a,A) for
every a ∈ A.

The lesson to be learned from the above discussion is that care must
be taken in specifying the term “alternative.” An alternative a must
have the same meaning for every A which contains a.

Choice Functions as Internal Equilibria

The choice function definition we have been using requires that a sin-
gle element be assigned to each choice problem. If the decision maker
follows the rational-man procedure using a preference relation with in-
differences, the previously defined induced choice function C�(A) might
be undefined because for some choice problems there would be more
than one optimal element. This is one of the reasons that in some cases
we use the alternative following concept to model behavior.

A choice correspondence C is required to assign to every nonempty
A ⊆ X a nonempty subset of A, that is, ∅ �= C(A) ⊆ A. According to
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our interpretation of a choice problem, a decision maker has to select a
unique element from every choice set. Thus, C(A) cannot be interpreted
as the choice made by the decision maker when he has to make a choice
from A. The revised interpretation of C(A) is the set of all elements in
A that are satisfactory in the sense that if the decision maker is about
to make a decision and choose a ∈ C(A), he has no desire to move away
from it. In other words, the induced choice correspondence reflects an
“internal equilibrium”: If the decision maker facing A considers an alter-
native outside C(A), he will continue searching for another alternative.
If he happens to consider an alternative inside C(A), he will take it.

A related interpretation of C(A) involves viewing it as the set of all el-
ements in A which may be chosen under any of many possible particular
circumstances not included in the description of the set A. Formally, let
(A, f) be an extended choice set where f is the frame which accompanies
the set A (like the default alternative or the order of the alternatives).
Let c(A, f) be the choice of the decision maker from the choice set A
given the frame f . The (extended) choice function c induces a choice
correspondence by C(A) = {x|x = c(A, f) for some f}.

Given a preference relation � we define the induced choice function
(assuming it is never empty) as C�(A) = {x ∈ A | x � y for all y ∈ A}.

When x, y ∈ A and x ∈ C(A) we say that x is revealed to be at least
as good as y. If, in addition, y /∈ C(A) we say that x is revealed to be
strictly better than y. Condition α is now replaced by condition WA
which requires that if x is revealed to be at least as good as y then y is
not revealed to be strictly better than x.

The Weak Axiom of Revealed Preference (WA):

We say that C satisfies WA if whenever x, y ∈ A ∩B, x ∈ C(A) and
y ∈ C(B), it is also true that x ∈ C(B) (fig. 3.2).

The Weak Axiom trivially implies two properties: Condition α: If
a ∈ A ⊂ B and a ∈ C(B), then a ∈ C(A). Condition β: If a, b ∈ A ⊂ B,
a ∈ c(A) and b ∈ C(B), then a ∈ C(B).

Notice that if C(A) contains all elements which are maximal according
to some preference relation, then C satisfies WA. Also, verify that con-
ditions α and WA are equivalent for any choice function with a domain
satisfying that if A and B are included in the domain, then so is their
intersection. Note also that for the next proposition, we could make do
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Figure 3.2
Violation of the weak axiom.

with a weaker version of WA which makes the same requirement only
for any two sets A ⊂ B where A is a set of two elements.

Proposition:

Assume that C is a choice correspondence with a domain that includes
at least all subsets of size 2 or 3. Assume that C satisfies WA. Then,
there is a preference � so that C = C�.

Proof:

Define x � y if x ∈ C({x, y}). We will now show that the relation is a
preference:

Completeness : Follows from C({x, y}) �= ∅.
Transitivity: If x � y and y � z then x ∈ C({x, y}) and y ∈

C({y, z}). Therefore, by condition β if y ∈ C({x, y, z}) then x ∈ C({x, y, z})
and if z ∈ C({x, y, z}) then y ∈ C({x, y, z}). Thus, in any case, x ∈
C({x, y, z}). By condition α x ∈ C({x, z}) and thus x � z.

It remains to be shown that C(B) = C�(B).
Assume that x ∈ C(B) and x /∈ C�(B). That is, there is y ∈ B so

that it is not true that x � y, or in other words, C({x, y}) = {y}, thus
contradicting condition α.

Assume that x ∈ C�(B) and x /∈ C(B). Let y ∈ C(B). By condition β
x /∈ C({x, y}) and thus C({x, y}) = {y}. Therefore y � x, contradicting
x ∈ C�(B).
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The Satisficing Procedure

The fact that we can present any choice function satisfying condition α
(or WA) as an outcome of the optimization of some preference relation
provides support for the view that the scope of microeconomic models
is wider than simply models in which agents carry out explicit optimiza-
tion. But, have we indeed expanded the scope of economic models?

Consider the following “decision scheme,” named satisficing by Her-
bert Simon. Let v : X → R be a valuation of the elements in X , and
let v∗ ∈ R be a threshold of satisfaction. Let O be an ordering of the
alternatives in X . Given a set A, the decision maker arranges the ele-
ments of this set in a list L(A,O) according to the ordering O. He then
chooses the first element in L(A,O) that has a v-value at least as large
as v∗. If there is no such element in A, the decision maker chooses the
last element in L(A,O).

Let us show that the choice function induced by this procedure satisfies
condition α. Assume that a is chosen from B and is also a member of
A ⊂ B. The list L(A,O) is obtained from L(B,O) by eliminating all
elements in B −A. If v(a) ≥ v∗ then a is the first satisfactory element
in L(B,O), and is also the first satisfactory element in L(A,O). Thus,
a is chosen from A. If all elements in B are unsatisfactory, then a must
be the last element in L(B,O). Since A is a subset of B, all elements
in A are unsatisfactory and a is the last element in L(A,O). Thus, a is
chosen from A.

Note, however, that even a “small” variation in this scheme can lead
to a variation of the procedure such that it no longer satisfies condition
α. For example:

Satisficing using two orderings : Let X be a population of university
graduates who are potential candidates for a job. Given a set of actual
candidates, count their number. If the number is smaller than 5, order
them alphabetically. If the number of candidates is above 5, order them
by their social security number. Whatever ordering is used, choose the
first candidate whose undergraduate average is above 85. If there are
none, choose the last student on the list.

Condition α is not satisfied. It may be that a is the first candidate
with a satisfactory grade in a long list of students ordered by their
social security numbers. Still, a might not be the first candidate with a
satisfactory grade on a list of only three of the candidates appearing on
the original list when they are ordered alphabetically.

To summarize, the satisficing procedure, though it is stated in a way
that seems unrelated to the maximization of a preference relation or
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utility function, can be described as if the decision maker maximizes a
preference relation. I know of no other examples of interesting general
schemes for choice procedures that satisfy condition α other than the
“rational man” and the satisficing procedures. However, later on, when
we discuss consumer theory, we will come across several other appeal-
ing examples of demand functions that can be rationalized though they
appear to be unrelated to the maximization of a preference relation.

Psychological Motives Not Included within the Frame-
work

The more modern attack on the standard approach to modeling eco-
nomic agents comes from psychologists, notably from Amos Tversky
and Daniel Kahneman. They have provided us with beautiful examples
demonstrating not only that rationality is often violated, but that there
are systematic reasons for the violation resulting from certain elements
within our decision procedures. Here are a few examples of this kind
that I find particularly relevant.

Framing

The following experiment (conducted by Tversky and Kahneman 1986)
demonstrates that the way in which alternatives are framed may affect
decision makers’ choices. Subjects were asked to imagine being con-
fronted by the following choice problem:

An outbreak of disease is expected to cause 600 deaths in the US. Two
mutually exclusive programs are expected to yield the following results:

a. 400 people will die.
b. With probability 1/3, 0 people will die and with probability 2/3,

600 people will die.

In the original experiment, a different group of subjects was given the
same background information and asked to choose from the following
alternatives:

c. 200 people will be saved.
d. With probability 1/3, all 600 will be saved and with probability

2/3, none will be saved.
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While 78% of the first group chose b, only 28% of the second group
chose d. These are “problematic” results since by any reasonable crite-
rion a and c are identical alternatives, as are b and d. Thus, the choice
from {a, b} should be consistent with the choice from {c, d}.

Both questions were presented in the above order to 1, 200 students
taking Game Theory courses with the result that 73% chose b and 49%
chose d. It seems plausible that many students kept in mind their answer
to the first question while responding to the second one and therefore
the level of incosistency was reduced. Nonetheless, a large proportion of
students gave different answers to the two problems, which makes the
findings even more problematic.

Overall, the results expose the sensitivity of choice to the framing of
the alternatives. What is more basic to rational decision making than
taking the same choice when only the manner in which the problems are
stated is different?

Simplifying the Choice Problem and the Use of Similarities

The following experiment was also conducted by Tversky and Kahne-
man. One group of subjects was presented with the following choice
problem:

Choose one of the two roulette games a or b. Your prize is the one
corresponding to the outcome of the chosen roulette game as specified
in the following tables:

(a)

Color White Red Green Yellow

Chance % 90 6 1 3

Prize $ 0 45 30 −15

(b)

Color White Red Green Yellow

Chance % 90 7 1 2

Prize $ 0 45 −10 −15

A different group of subjects was presented the same background in-
formation and asked to choose between:

(c)

Color White Red Green Blue Yellow

Chance % 90 6 1 1 2

Prize $ 0 45 30 −15 −15



36 Lecture Three

and

(d)

Color White Red Green Blue Yellow

Chance % 90 6 1 1 2

Prize $ 0 45 45 −10 −15

In the original experiment, 58% of the subjects in the first group chose
a, while nobody in the second group chose c. When the two problems
were presented, one after the other, to about 1, 350 students, 52% chose
a and 7% chose c. Interestingly, the median response time among the
students who answered a was 53 seconds, whereas the median response
time of the students who answered b was 90 seconds.

The results demonstrate a common procedure people practice when
confronted with a complicated choice problem. We often transfer the
complicated problem into a simpler one by “canceling” similar elements.
While d clearly dominates c, the comparison between a and b is not as
easy. Many subjects “cancel” the probabilities of White, Yellow and
Red and are left with comparing the prizes of Green, a process that
leads them to choose a.

Incidentally, several times in the past, when I presented these choice
problems in class, I have had students (some of the best students, in fact)
who chose c. They explained that they identified the second problem
with the first and used the procedural rule: “I chose a from {a, b}. The
alternatives c and d are identical to the alternatives a and b, respectively.
It is only natural then, that I choose c from {c, d}.” This observation
brings to our attention the fact that the model of rational-man does not
allow dependence of choice from B on the previous choices made by the
decision maker.

Reason-Based Choice

Making choices sometimes involves finding reasons to pick one alterna-
tive over the others. When the deliberation involves the use of rea-
sons strongly associated with the problem at hand (“internal reasons”),
we often find it difficult to reconcile the choice with the rational man
paradigm.

Imagine, for example, a European student who would choose Princeton
if allowed to choose from {Princeton, LSE} and would choose LSE if
he had to choose from {Princeton, Chicago, LSE}. His explanation is
that he prefers an American university so long as
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he does not have to choose between American schools — a choice he
deems harder. Having to choose from {Princeton, Chicago, LSE}, he
finds it difficult deciding between Princeton and Chicago and therefore
chooses not to cross the Atlantic. His choice does not satisfy condition
α, not because of a careless specification of the alternatives (as in the
restaurant’s menu example discussed previously), but because his rea-
soning involves an attempt to avoid the difficulty of making a decision.

A better example was suggested to me by a student Federico Filippini:
”Imagine there’s a handsome guy called Albert, who is looking for a date
to take to a party. Albert knows two girls that are crazy about him, both
of whom would love to go to the party. The two girls are called Mary
and Laura. Of the two, Albert prefers Mary. Now imagine that Mary
has a sister, and this sister is also crazy about Albert. Albert must now
choose between the three girls, Mary, Mary’s sister and Laura. With
this third option, I bet that if Albert is rational, he will be taking Laura
to the party.”

Another example follows Huber, Payne, and Puto (1982):

Let a = (a1, a2) be “a holiday package of a1 days in Paris and a2

days in London.” Choose one of the four vectors a = (7, 4), b = (4, 7),
c = (6, 3), and d = (3, 6).

All subjects in the experiment agreed that a day in Paris and a day
in London are desirable goods. Some of the subjects were requested to
choose between the three alternatives a, b, and c; others had to choose
between a, b, and d. The subjects exhibited a clear tendency toward
choosing a out of the set {a, b, c} and choosing b out of the set {a, b, d}.

A related experiment is reported in Shafir, Simonson and Tversky
(1993). A group of subjects was asked to imagine having to choose be-
tween a camera priced $170 and a better camera, by the same producer,
which costs $240. Another group of subjects was asked to imagine hav-
ing to choose between three cameras - the two described above and a
third, much more sophisticated camera, priced at $470. The addition of
the third alternative significantly increased the proportion of subjects
who chose the $240 camera. The common sense explanation for this
choice is that subjects faced a conflict between two desires, to buy a
better camera and to pay less. They resolved the conflict by choosing
the “compromise alternative.”

To conclude, decision makers look for reasons to prefer one alternative
over the other. Typically, making decisions by using “external reasons”
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(which do not refer to the properties of the choice set) will not cause
violations of rationality. However, applying “internal reasons” such as “I
prefer the alternative a over the alternative b since a clearly dominates
the other alternative c while b does not” might cause conflicts with
condition α.

Mental Accounting

The following intuitive example is taken from Kahneman and Tversky
(1984). Members of one group of subjects were presented with the fol-
lowing question:

1. Imagine that you have decided to see a play and paid the admission
price of $10 per ticket. As you enter the theater, you discover that you
have lost the ticket. The seat was not marked and the ticket cannot be
recovered. Would you pay $10 for another ticket?

Members of another group were asked to answer the following ques-
tion:

2. Imagine that you have decided to see a play where the admis-
sion is $10 per ticket. As you arrive at the theater, you discover that
you have lost a $10 bill. Would you still pay $10 for a ticket for the play?

If the rational man only cares about seeing the play and his wealth,
he should realize that there is no difference between the consequence of
replying “Yes” to question 1 and replying “Yes” to question 2 (in both
cases he will own a ticket and will be poorer by $20). Similarly, there
is no difference between the consequence of replying “No” to question
1 and replying “No” to question 2. Thus, the rational man should give
the same answer to both questions. Nonetheless, only 46% said they
would buy another ticket after they had lost the first one while 88%
said they would buy a ticket after losing the banknote. In the data
I collected (among 1200 subjects) the gap is much smaller: 64% and
80%, accoridngly.It is likely that in this case subjects have conducted
a calculation where they compared the “mental price” of a ticket to its
subjective value. Many of those who decided not to buy another ticket
after losing the first one attributed a price of $20 to the ticket rather
than $10. This example demonstrates that decision makers may conduct
“mental calculations” which are inconsistent with rationality.
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Modeling Choice Procedures

There is a large body of evidence showing that decision makers systemat-
ically use procedures of choice that violate the classical assumptions and
that the rational man paradigm is lacking. The accumulated evidence
has had an effect on the development of economic theory and in recent
years we have seen the introduction of more and more economic models
in which economic agents are assumed to follow alternative procedures
of choice. In this section, we focus on one particular line of research that
attempts to incorporate such decision makers into economic models.

Classical models have characterized economic agents using a choice
function. The statement c(A) = a means that the decision maker se-
lects a when choosing from the set of alternatives A. We are about to
enrich the concept of a choice problem such that it will include not only
the set of alternatives but additional information as well. This addi-
tional information is considered to be irrelevant to the interests of the
decision maker but may nevertheless affect his choice. Here, we will
be dealing with a case in which the additional information consists of
a default option. The statement c(A, a) = b means that when facing
the choice problem A with a default alternative a the decision maker
chooses the alternative b. Experimental evidence and introspection tell
us that a default option is often viewed positively by decision makers, a
phenomenon known as the status quo bias which will play a role in the
following discussion.

LetX be a finite set of alternatives. Define an extended choice function
to be a function that assigns a unique element in A to every pair (A, a)
where A ⊆ X and a ∈ A.

A default bias procedure is an extended choice function characterized
by a utility function u and a ”bias function” b which assigns a non-
negative number to each alternative. The function u is interpreted as
representing the ”true” preferences. The number b(x) is interpreted as
the bonus attached to x when it is a default alternative. Given an ex-
tended choice problem (A, a), the procedure denoted by DBPu,b, selects:

DBPu,b(A, a) =

⎧⎨
⎩

x ∈ A− {a} if u(x) > u(a) + b(a) and u(x) > u(y)
for any y ∈ A− {a, x}

a if u(a) + b(a) > u(x), ∀x ∈ A− {a}
.

Our aim is to characterize the set of extended choice functions that
can be described as DBPu,b for some u and b. We will adopt two as-
sumptions:
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The Weak Axiom (WA)

We say that an extended choice function c satisfies the Weak Axiom if
there are no sets A and B, a, b ∈ A ∩B, a �= b and x, y /∈ {a, b} (x and
y are not necessarily distinct) such that:

1. c(A, a) = a and c(B, a) = b or
2. c(A, x) = a and c(B, y) = b.

The Weak Axiom states that:

1. If a is revealed to be better than b in a choice problem where a is
the default, then there cannot be any choice problem in which b is
revealed to be better than a when a is the default.

2. If a is revealed to be better than b in a choice problem where neither
a nor b is a default, there cannot be any choice problem in which
b is revealed to be better than a when again neither a nor b is the
default.

Comment:

WA implies that for every a there is a preference relation �a such that
c(A, a) is the �a-maximal element in A. To see this let
Ya = {x| x �= a and there exists a set B such that c(B, a) = x}.

Consider the choice function on the grand set Ya defined by D(Y ) =
c(Y ∪ {a}, a) for any Y ⊆ Ya. By applying WA regarding the extended
choice function c, the choice function D on Ya satisfies condition α and
thus there is an ordering �a on Ya such that D(Y ) is the �a-maximum
in Y . Extend �a so that a will be just below all the elements in Ya and
above all elements outside Ya, that can be ordered in any way, to obtain
the conclusion.

Default Tendency (DT)

If c(A, x) = a, then c(A, a) = a.

The second assumption states that if the decision maker chooses a from
a set A when x �= a is the default, he does not change his mind if x is
replaced by a as the default alternative.

Proposition:

An extended choice function c satisfies WA and DT if and only if it is a
default-bias procedure.
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Proof:

Consider a default-bias procedure c characterized by the functions u and
b. It satisfies:

DT: if c(A, x) = a and x �= a, then u(a) > u(y) for any y �= a in A.
Thus, also u(a) + b(a) > u(y) for any y �= a in A and c(A, a) = a.

WA: 1. if c(A, a) = a and c(B, a) = b, then we would have both u(a) +
b(a) > u(b) and u(b) > u(a) + b(a); and

2. if c(A, x) = a and c(B, y) = b (x, y /∈ {a, b}), then we would have
both u(a) > u(b) and u(b) > u(a).

In the other direction, let c be an extended choice function satisfying
WA and DT. Define a relation � on X × {0, 1} as follows:

• For any pair (A, x) for which c(A, x) = x, define (x, 1) � (y, 0) for
all y ∈ A− {x}.

• For any pair (A, x) for which c(A, x) = y �= x, define (y, 0) � (x, 1)
and (y, 0) � (z, 0) for all z ∈ A− {x, y}.

• Extend the relation so that (x, 1) � (x, 0) for all x ∈ X .

The relation is not necessarily complete or transitive but by WA it is
asymmetric. We will see that � can be extended to a full ordering over
X × {0, 1} denoted by �∗. Using problem 4 in Problem Set 1 we only
need to show that the relation does not have cycles.

Assume that � has a cycle and consider a shortest cycle. By WA
there is no cycle of length two and thus the shortest cycle has to be at
least of length three. Steps (a) and (b) establish that it is impossible
that the shortest cycle will contain a consecutive pair (x, 0) � (y, 0).

a. Assume that the cycle contains a consecutive segment (x, 0) �
(y, 0) � (z, 1).
If z = x, we obtain a contradiction to DT: ((x, 0) � (y, 0) implies
that there is a set A containing x and y and a third alternative a
such that c(A, a) = x. Then, also c(A, x) = x and (x, 1) � (y, 0).)
If z �= x, then there is a set A such that c(A, z) = y. Since (x, 0) �
(y, 0), c(A ∪ (x}, z) = x and (x, 0) � (z, 1). Thus, we can shorten
the cycle.

b. Assume that the cycle contains a consecutive segment of the type
(x, 0) � (y, 0) � (z, 0). By WA, the three elements are distinct.
Since (y, 0) � (z, 0), there exists a set A containing y and z and
a ∈ A such that c(A, a) = y. If a �= x, then c(A ∪ {x}, a) = x and
(x, 0) � (z, 0) allowing us to shorten the cycle. If a = x, i.e.,if
c(A, x) = y, then (x, 0) � (y, 0) � (x, 1), thus contradicting DT.
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It remains to show that it is impossible for the shortest cycle to contain
a consecutive segment of the following types:

c. (x, 0) � (y, 1) � (z, 0) and y �= z .
If this were the case, then c({x, y, z}, y) = x and (x, 0) � (z, 0),
thus allowing us to shorten the cycle.

d. (x, 0) � (y, 1) � (y, 0) � (z, 1). By DT z �= x and by definition z �=
y. Consider c{{x, y, z}, z}. By WA and (y, 0) � (z, 1) it cannot be
z. If it is x then (x, 0) � (y, 0) and we can shorten the cycle. If it
is y then (y, 0) � (x, 0) and we can shorten the cycle.

We can conclude that � does not have a cycle.
Now, let v be a utility function representing �∗. Define u(x) = v(x, 0)

and b(x) = v(x, 1) − v(x, 0) to obtain the result.

1. If c(A, a) = a, then (a, 1) � (x, 0) for all x ∈ A− {a) and thus u(a) +
b(a) > u(x) for all x, i.e., c(A, a) = DBPu,b(A, a).

2. If c(A, a) = x, then (x, 0) � (a, 1) and (x, 0) � (y, 0) for all y ∈
A− {a, x) and therefore u(x) > u(a) + b(a) and u(x) > u(y) for all
y ∈ A− {a, x). Thus, c(A, a) = DBPu,b(A, a).

Comments on the significance of axiomatization

1. There is something aesthetically attractive about the axiomatiza-
tion, however... I doubt that such an axiomatization is necessary in
order for an economist to develop a model in which the procedure
will appear. As with other conventions in the profession, this prac-
tice appears to be a barrier to entry which places an unnecessary
burden on researchers.

2. A necessary condition for an axiomatization of this type to be of
importance is (in my opinion) that we can come up with exam-
ples of sensible procedures of choice that satisfy the axioms and
are not specified explicitly in the language of the procedure we are
axiomatizing. Can you find such a procedure for the above axiom-
atization? I am unable to. Indeed, many of the axiomatizations in
this field lack such examples and thus, in spite of their aesthetic
value, I find them to be futile exercises.
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Problem Set 3

Problem 1. (Easy)

The following are descriptions of decision making procedures. Discuss whether

the procedures can be described in the framework of the choice model dis-

cussed in this lecture and whether they are compatible with the “rational

man” paradigm.

a. The decision maker has in mind a ranking of all alternatives and chooses

the alternative that is the worst according to this ranking.

b. The decision maker chooses an alternative in order to maximize another

person’s suffering.

c. The decision maker asks his two children to rank the alternatives and

then chooses the alternative that is the best on average.

d. The decision maker has an ideal point in mind and chooses the alternative

that is closest to it.

e. The decision maker looks for the alternative that appears most often in

the choice set.

f. The decision maker always selects the first alternative that comes to his

attention.

g. The decision maker has an ordering in mind and always chooses the

median element.

Problem 2. (Moderately difficult)

Let’s say that you are to make a choice from a set A. Consider two procedures:

(a) You choose from the entire set or (b) You first partition A into the subsets

A1 and A2, then make a selection from each of the subsets and finally make a

choice from the two selected elements.

a. Formulate a “path independence” property (for single-valued choice func-

tions).

b. Show that the rational decision maker satisfies the property.

c. Find examples of choice procedures that do not satisfy this property.

d. Show that if a choice function satisfies path independence, then it is

consistent with rationality.

e. Find an example of a choice correspondence satisfying path independence

which cannot be rationalized.
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Problem 3. (Easy)

Let X be a finite set. Check whether the following three choice correspon-

dences satisfy WA:

C(A) = {x ∈ A| the number of y ∈ X for which V (x) ≥ V (y) is at least

|X|/2}, and if the set is empty then C(A) = A.

D(A) = {x ∈ A| the number of y ∈ A for which V (x) ≥ V (y) is at least

|A|/2}.
E(A) = {x ∈ A|x �1 y for every y ∈ A or x �2 y for every y ∈ A} where

�1 and �2 are two orderings over X.

Problem 4. (Moderately difficult)

Consider the following choice procedure: A decision maker has a strict ordering

� over the set X and assigns to each x ∈ X a natural number class(x) to be

interpreted as the “class” of x. Given a choice problem A, he chooses the best

element in A from those belonging to the most common class in A (i.e., the

class that appears in A most often). If there is more than one most common

class, he picks the best element from the members of A that belong to a most

common class with the highest class number.

a. Is the procedure consistent with the “rational man” paradigm?

b. Define the relation: xPy if x is chosen from {x, y}. Show that the

relation P is a strict ordering (complete, asymmetric and transitive).

Problem 5. (Moderately difficult. Based on Kalai, Rubinstein, and Spiegler

2002)

Consider the following two choice procedures. Explain the procedures and try

to persuade a skeptic that they “make sense.” Determine for each of them

whether they are consistent with the rational-man model.

a. The primitives of the procedure are two numerical (one-to-one) functions

u and v defined on X and a number v∗. For any given choice problem A,

let a∗ ∈ A be the maximizer of u over A and let b∗ be the maximizer of v

over A. The decision maker chooses a∗ if v(a∗) ≥ v∗ and b∗ if v(a∗) < v∗.
b. The primitives of the procedure are two numerical (one-to-one) functions

u and v defined on X and a number u∗. For any given choice problem

A, the decision maker chooses the element a∗ ∈ A that maximizes u if

u(a∗) ≥ u∗, and the element b∗ ∈ A that maximizes v if u(a∗) < u∗.

Problem 6. (Moderately difficult. Based on Rubinstein and Salant (2006).)

The standard economic choice model assumes that choice is made from a set.

Let us construct a model where the choice is assumed to be made from a list.

(Note that the list < a, b > is distinct from < a, a, b > and < b, a >).
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Let X be a finite grand set. A list is a nonempty finite vector of elements

in X. In this problem, consider a choice function C to be a function that

assigns a single element from {a1, . . . , aK} to each vector L =< a1, . . . , aK >.

Let < L1, . . . , Lm > be the concatenation of the m lists L1, . . . , Lm (note that

if the length of Li is ki , the length of the concatenation is Σi=1,...,mki). We

say that L′ extends the list L if there is a list M such that L′ =< L, M >.

We say that a choice function C satisfies Property I if for all L1, . . . , Lm,

C(< L1, . . . , Lm >) = C(< C(L1), . . . , C(Lm) >).

a. Interpret Property I . Give two examples of choice functions that satisfy

I and two examples that do not.

b. Define formally the following two properties of a choice function:

Order Invariance: A change in the order of the elements in the list does

not alter the choice.

Duplication Invariance: Deleting an element that appears elsewhere in

the list does not change the choice.

c. Characterize the choice functions that satisfy the following three prop-

erties together: Order Invariance, Duplication Invariance, and property

I .

Assume now that at the back of the decision maker’s mind there is a value

function u defined on the set X (such that u(x) �= u(y) for all x �= y). For any

choice function C, define vC(L) = u(C(L)).

We say that C accommodates a longer list if whenever L′ extends L, vC(L′) ≥
vC(L) and there is a pair of lists L′ and L such that L′ extends L and

vC(L′) > vC(L).

d. Give two interesting examples of choice functions that accommodate a

longer list.

e. Give two interesting examples of choice functions which satisfy property

I but do not accommodate a longer list.

Problem 7. (Difficult. Based on Rubinstein and Salant (2006).)

We say that a choice function c is lexicographically rational if there exists

a profile of preference relations {�a}a∈X (not necessarily distinct) and an

ordering O over X such that for every set A ⊂ X, c(A) is the �a-maximal

element in A, where a is the O -maximal element in A.

A decision maker who follows this procedure is attracted by the most no-

table element in the set (as described by O). If a is that element, he applies

the ordering �a and chooses the �a-best element in the set.

We say that c satisfies the reference point property if for every set A, there

exists a ∈ A such that if a ∈ A′′ ⊂ A′ ⊂ A and c(A′) ∈ A′′, then c(A′′) = c(A′).

a. Show that a choice function c is lexicographically rational if and only if

it satisfies the reference point property.
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b. Try to come up with a procedure satisfying the reference point axiom

which is not stated explicitly in the language of the lexicographically

rational choice function (No idea about the answer).

Problem 8. (Difficult. Based on Cherepanov, Fedderson and Sandroni (2008).)

Consider a decision maker who has in mind a set of rationales and a pref-

erence relation and chooses the best alternative that he can rationalize.

Formally, we say that a choice function c is rationalized if there is an asym-

metric complete relation � (not necessarily transitive!) and a set of partial

orderings (asymmetric and transitive) {�k}k=1...K (called rationales) such

that c(A) is the � -maximal alternative from among those alternatives found

to be maximal in A by at least one rationale (given a binary relation � we say

that x is � -maximal in A if x � y for all y ∈ A). Assume that the relations

are such that the procedure always leads to a solution.

We say that a choice function c satisfies The Weak Weak Axiom of Re-

vealed Preference (WWARP) if for all {x, y} ⊂ B1 ⊂ B2 (x �= y) and c{x, y} =

c(B2) = x, then c(B1) �= y.

a. Show that a choice function satisfies WWARP if and only if it is ratio-

nalized. For the proof, construct rationales, one for each choice problem,

that are asymmetric binary relations and allow that � will not necessar-

ily be transitive.)

b. What do you think about the axiomatization?

Consider the ”warm-glow” procedure: The decision maker has two orderings

in mind: one moral �M and one selfish �S . He chooses the most moral

alternative m as long as he doesn’t ”lose” too much by not choosing the most

selfish alternative. Formally, for every alternative s there is some alternative

l(s) such that if the most selfish alternative is s then he is willing to choose

m as long as m �S l(s). If l(s) �S m, he chooses s.

The function l satisfies s �S l(s) and s �S s′ iff l(s) �S l(s′).

c. Show that WWARP is satisfied by this procedure.

d. Show directly that the warm-glow procedure is rationalized (in the sense

of the definition in this problem).





LECTURE 4

Consumer Preferences

The Consumer’s World

Up to this point we have dealt with the basic economic model of rational
choice. In this lecture we will discuss a special case of the rational man
paradigm: the consumer. A consumer is an economic agent who makes
choices between available combinations of commodities. As usual, we
have a certain image in mind: a lady goes to the marketplace with
money in hand and comes back with a bundle of commodities.

As before, we will begin with a discussion of consumer preferences and
utility, and only then discuss consumer choice. Our first step is to move
from an abstract treatment of the set X to a more detailed structure.
We takeX to be R

K
+ = {x = (x1, . . . , xK)| for all k, xk ≥ 0}. An element

of X is called a bundle. A bundle x is interpreted as a combination of
K commodities where xk is the quantity of commodity k.

Given this special interpretation of X , we impose some conditions on
the preferences in addition to those assumed for preferences in general.
The additional three conditions use the structure of the space X : mono-
tonicity uses the orderings on the axis (the ability to compare bundles
by the amount of any particular commodity); continuity uses the topo-
logical structure (the ability to talk about closeness); convexity uses the
algebraic structure (the ability to speak of the sum of two bundles and
the multiplication of a bundle by a scalar). It will be useful to demon-
strate properties of the consumer’s preferences by referring to the map
of indifference curves, where an indifference curve is a set of the type
{y|y ∼ x} for some bundle x (see problem 1 in Problem Set 1).
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Monotonicity

Monotonicity is a property that gives commodities the meaning of “goods.”
It is the condition that more is better. Increasing the amount of some
commodities cannot hurt, and increasing the amount of all commodities
is strictly desired. Formally,

Monotonicity:

The relation � satisfies monotonicity at the bundle y if for all x ∈ X ,
if xk ≥ yk for all k, then x � y, and
if xk > yk for all k, then x � y.

The relation � satisfies monotonicity if it satisfies monotonicity at
every y ∈ X .

In some cases, we will further assume that the consumer is strictly
happier with any additional quantity of any commodity.

Strong Monotonicity:

The relation � satisfies strong monotonicity at the bundle y if for all
x ∈ X

if xk ≥ yk for all k and x �= y, then x � y.

The relation � satisfies strong monotonicity if it satisfies strong mono-
tonicity at every y ∈ X .

Of course, in the case that preferences are represented by a utility
function, preferences satisfying monotonicity (or strong monotonicity)
are represented by monotonic increasing (or strong monotonic increas-
ing) utility functions.

Examples:

• The preferences represented by min{x1, x2} satisfy monotonicity
but not strong monotonicity.

• The preferences represented by x1 + x2 satisfy strong monotonic-
ity.

• Denote by d(x, y) =
√∑

(xk − yk)2 ) the standard distance func-
tion on the Euclidean space. A property related to monotonicity
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that is sometimes used in the literature is called nonsatiation. A
preference is said to be nonsatiated at the bundle y if for any ε > 0
there is some x ∈ X that is less than ε away from y so that x � y.
The preference relation represented by u(x) = d(x, x∗) does not
satisfy monotonicity but is nonsatiated at every bundle except 0.
Every preference relation that is monotonic at a bundle y is also
nonsatiated at y, but the reverse is, of course, not true.

Continuity

We will use the topological structure of R
K
+ (with the standard distance

function d, defined above) to apply the definition of continuity discussed
in Lecture 2. We say that the preferences � satisfy continuity if for all
a, b ∈ X , a � b implies that there is an ε > 0 such that x � y for any x
and y such that d(x, a) < ε and d(y, b) < ε.

Existence of a Utility Representation

Debreu’s theorem guarantees that any continuous preference relation is
represented by some (continuous) utility function. If we assume mono-
tonicity as well, we then have a simple and elegant proof:

Claim:

Any consumer preference relation satisfying monotonicity and continuity
can be represented by a utility function.

Proof:

Let us first show that for every bundle x, there is a bundle on the main
diagonal (having equal quantities of all commodities), such that the con-
sumer is indifferent between that bundle and the bundle x. (See fig. 4.1.)
The bundle x is at least as good as the bundle 0 = (0, . . . , 0). On the
other hand, the bundle M = (maxk{xk}, . . . ,maxk{xk}) is at least as
good as x. Both 0 and M are on the main diagonal. By continuity,
there is a bundle on the main diagonal that is indifferent to x (see prob-
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Figure 4.1

lem set 2). By monotonicity this bundle is unique; we will denote it by
(t(x), . . . , t(x)). Let u(x) = t(x). To see that the function u represents
the preferences, note that by transitivity of the preferences x � y iff
(t(x), . . . , t(x)) � (t(y), . . . , t(y)), and by monotonicity this is true iff
t(x) ≥ t(y).

Convexity

Consider, for example, a scenario in which the alternatives are candi-
dates for some political post. The candidates are positioned in a left-
right array as follows:
—–a—b—–c—–d——e—.

Under normal circumstances, if we know that a voter prefers b to d,
then we tend to conclude that:

• he prefers c to d, but not necessarily a to d (the candidate a may
be too extreme).

• he prefers d to e (namely, we do not find it plausible that he views
moving both right and left as improvements upon d).

The notion of convex preferences captures two similar intuitions that
are suitable for situations where there exists a “geography” of the set of
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Figure 4.2
Two definitions of convexity.

alternatives in the sense that we can talk about one alternative being
between two others:

• If x is preferred to y, then going part of the way from y to x is
also an improvement upon y.

• If z is between x and y then it is impossible that both x and y are
better than z.

Convexity is appropriate for a situation in which the argument “if a
move is an improvement so is any move part of the way” is legitimate,
while the argument “if a move is harmful then so is a move part of the
way” is not.

Following are two formalizations of these two intuitions.

Convexity 1:

The preference relation � satisfies convexity 1 if x � y and α ∈ (0, 1)
implies that αx + (1 − α)y � y (fig. 4.2).

Convexity 2:

The preference relation � satisfies convexity 2 if for all x, y and z such
that z = αx + (1 − α)y for some α ∈ (0, 1), either z � x or z � y.
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Another definition of convexity, which uses the notion of a convex set,
follows. Recall that a set A is convex if for all a, b ∈ A and for all
λ ∈ [0, 1], λa+ (1 − λ)b ∈ A.

Convexity 3:

The preference relation � satisfies convexity 3 if for all y, the set
AsGoodAs(y) = {z ∈ X |z � y} is convex (fig. 4.2).

This captures the intuition that if both z1 and z2 are better than y,
then the average of z1 and z2 is definitely better than y.

We proceed to show that the three definitions are equivalent.

Claim:

If the preference relation � satisfies one of the conditions convexity 1,
convexity 2 or convexity 3, it satisfies the other two.

Proof:

Assume that � satisfies convexity 1 and let x, y, z ∈ X such that z =
αx+ (1 − α)y for some α ∈ (0, 1). Without loss of generality, assume
x � y. By convexity 1 we have z � y. Thus, � satisfies convexity 2.

Assume that � satisfies convexity 2 and let z, z′ ∈ AsGoodAs(y).
Then, by convexity 2, αz + (1 − α)z′ is at least as good as either z
or z′ (or both). In any case, by transitivity, αz + (1 − α)z′ � y, that is
αz + (1 − α)z ∈ AsGoodAs(y) and thus, � satisfies convexity 3.

Assume that � satisfies convexity 3. If x � y, then both x and y are
in AsGoodAs(y) and thus αx+ (1 − α)y ∈ AsGoodAs(y), which means
that αx+ (1 − α)y � y. Thus, � satisfies convexity 1.

Convexity also has a stronger version:

Strict Convexity:

The preference relation � satisfies strict convexity if a � y, b � y, a �= b

and λ ∈ (0, 1) imply that λa+ (1 − λ)b � y.

Examples:
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The preferences represented by
√
x1 +

√
x2 satisfy strict convexity. The

preference relations represented by min{x1, x2} and x1 + x2 satisfy con-
vexity but not strict convexity. The lexicographic preferences satisfy
strict convexity. The preferences represented by x2

1 + x2
2 do not satisfy

convexity.

We now look at the properties of the utility representations of convex
preferences.

Quasi-Concavity:

A function u is quasi-concave if for all y the set {x|u(x) ≥ u(y)} is con-
vex.

The notion of quasi-concavity is similar to concavity in that for any
function f that is either quasi-concave or concave, the set {x|f(x) ≥
f(y)} is convex for any y. (Recall that u is concave if for all x, y, and
λ ∈ [0, 1], we have u(λx+ (1 − λ)y) ≥ λu(x) + (1 − λ)u(y).)

Obviously, if a preference relation is represented by a utility function,
then it is convex iff the utility function is quasi-concave. However, the
convexity of � does not imply that a utility function representing �
is concave. Furthermore, there are examples of continuous and convex
preferences which do not have a utility presentation by any concave
function.

Special Classes of Preferences

Usually in economics, we discuss a consumer with some variations of
Monotonicity, Continuity and Convexity. We will refer to such a con-
sumer as a “classical consumer”. Often, we assume that the consumer
possesses preferences belonging to a narrower class, characterized by ad-
ditional special properties. Following are some examples of “popular”
classes of preference relations discussed in the literature.

The Class of Homothetic Preferences
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Figure 4.3
Homothetic preferences.

A preference � is homothetic if x � y implies αx � αy for all α ≥ 0.
(See fig. 4.3.)

The preferences represented by Πk=1,...,Kx
βk

k , where βk is positive,
are homothetic. More generally, any preference relation represented by
a utility function u that is homogeneous of any degree λ (that is u(αx) =
αλu(x)) is homothetic. This is since x � y iff u(x) ≥ u(y) iff αλu(x) ≥
αλu(y) iff u(αx) ≥ u(αy) iff αx � αy. Lexicographic preferences are also
homothetic.

Claim:

Any homothetic, continuous, and monotonic preference relation on the
commodity bundle space can be represented by a continuous utility func-
tion that is homogeneous of degree one.

Proof:

We have already proven that any bundle x has a unique bundle (t(x),
. . . , t(x)) on the main diagonal so that x ∼ (t(x), . . . , t(x)), and that the
function u(x) = t(x) represents �. By the assumption that the prefer-
ences are homothetic, αx ∼ (αt(x), . . . , αt(x)) and thus u(αx) = αt(x) =
αu(x). The proof that u is continuous is left as an exercise.
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Figure 4.4
Quasi-linear (in good 1) preferences.

The Class of Quasi-Linear Preferences

A preference is quasi-linear in commodity 1 (referred to as the “nu-
meraire”) if x � y implies (x+ εe1) � (y + εe1) (where e1 = (1, 0, . . . ,
0) and ε > 0). (See fig. 4.4.)

The indifference curves of preferences that are quasi-linear in com-
modity 1 are parallel to each other (relative to the first commodity
axis). That is, if I is an indifference curve, then the set Iε = {x| there
exists y ∈ I such that x = y + (ε, 0, . . . , 0)} is an indifference curve as
well. Any preference relation represented by x1 + v(x2, . . . , xK) for some
function v is quasi-linear in commodity 1. Furthermore:

Claim:

Any continuous preference relation satisfying strong monotonicity (at
least in commodity 1) and quasi-linearity in commodity 1 can be repre-
sented by a utility function of the form x1 + v(x2, . . . , xK).

For the proof we need the following Lemma:

Lemma:

Let � be a preference relation that is monotonic, continuous, quasi-linear
and strongly monotonic in commodity 1. Then, for every (x2, ..., xK)
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there is a number v(x2, .., xK) such that (0, x2, ..., xK) ∼ (v(x2, .., xK), 0,
.., 0).

Proof of the Lemma:

The general proof is left to the problem set, but here let’s prove the case
of K = 2.

Let T = {t | (0, t) � (x1, 0) for all x1}. Assume T �= ∅ and denote
m = inf T . We distinguish between two cases:

(i) m ∈ T . Then m > 0 and (1,m) � (0,m). By continuity, there
is an ε > 0 such that (1,m− ε) � (0,m), and thus (1,m− ε) � (x1 +
1, 0) for all x1. Since m = inf T , then there exists an x∗1 such that
(x∗1, 0) � (0,m− ε), and by the quasi-linearity in commodity 1, (x∗1 +
1, 0) � (1,m− ε), a contradiction.

(ii) m /∈ T . Then (x∗1, 0) ∼ (0,m) for some x∗1. By the strong mono-
tonicity of commodity 1, (x∗1 + 1, 0) � (0,m). By continuity, there is
an ε > 0 such that (x∗1 + 1, 0) � (0, x∗2), for any m+ ε ≥ x∗2 ≥ m, con-
tradicting m=inf T .

Consequently, T = ∅ and for every x2 there is an x1 such that (x1, 0) �
(0, x2) � (0, 0), and thus, by continuity (v(x2), 0) ∼ (0, x2) for some num-
ber v(x2). This completes the proof of the Lemma.

Note that the above claim is incorrect without the quasi-linearity as-
sumption. The utility function u(x1, x2) = x2 − 1/(x1 + 1) represents
strongly monotonic and continuous preferences for which m = 1.

Proof of the Claim:

Now, by the Lemma, for every (x2, . . . , xK) there is some number v(x2, . . . , xK)
so that (v(x2, . . . , xK), 0, . . . , 0) ∼ (0, x2, . . . , xK). Then, from quasi-
linearity in commodity 1, for every bundle x,
(x1 + v(x2, . . . , xK), 0, . . . , 0) ∼ (x1, x2, . . . , xK), and thus by strong
monotonicity in the first commodity, the function x1 + v(x2, . . . , xK)
represents �.

Thus, we used the quasi linearity for two purposes. First, we showed
that for every bundle x there is a quantity of the first good u(x) such
that x ∼ (u(x), 0, ..., 0). By the strong monotonicity in the first com-
modity this allows us to use u(x) as a utility function represneting the
consumer’s preferences. Second, the quasi linearity is used to show that
this function u has the structure of x1 + v(x2, .., xK).
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The above claim shows that any continuous preference relation which
is quasi-linear in the first commodity is consistent with a procedure
according to which the consumer asks himself what is the value (in
terms of the first commodity) of the combination of goods 2 . . . k, and
that evaluation is independent of the quantity of the first commodity.

Claim:

Any continuous preference relation � on R
K
+ satisfying strong mono-

tonicity and quasi-linearity in all commodities can be represented by a
utility function of the form

∑K
k=1 αkxk.

Here I present two proofs for the case of K = 2 only. The general proof
for any K is left for the problem set.

Proof 1:

Using the previous claim, we have that the preference relation over the
bundle space is represented by the function u(x1, x2) = x1 + v(x2) where
(0, x2) ∼ (v(x2), 0). Let (0, 1) ∼ (c, 0).

It is sufficient to show that v(x2) = cx2.
Assume that for some x2 we have v(x2) > cx2 (a similar argument

applies for the case v(x2) < cx2). Choose two integers S and T such
that v(x2)/c > S/T > x2.

Let us note that if (a, 0) ∼ (0, b) then all points (ka, lb) for which k +
l = n reside on the same indifference curve. The proof is by induction on
n. By the inductive step ((n− 1)a, 0) ∼ ((n− 2)a, b) and by the quasi
linearity in commodity 1 (na, 0) ∼ ((n− 1)a, b). By the inductive step
for all j ≥ 0 we have ((n− j − 1)a, jb) ∼ ((n− j − 2)a, (j + 1)b) and by
the quasi linearity in commodity 1 ((n− j)a, jb) ∼ ((n− j − 1)a, (j +
1)b) for all j ≥ 0.

Thus, (0, Tx2) ∼ (Tv(x2), 0) and (0, S) ∼ (Sc, 0). However, since S >
Tx2 we have (0, Tx2) ≺ (0, S), and since Tv(x2) > Sc we have (Tv(x2), 0)
� (Sc, 0) which is a contradiction.

Proof 2:

We will see that v(a+ b) = v(a) + v(b) for all a and b. By definition
of v, (0, a) ∼ (v(a), 0) and (0, b) ∼ (v(b), 0). By the quasi-linearity in
good 1, (v(b), a) ∼ (v(a) + v(b), 0) and by the quasi-linearity of good 2
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(0, a+ b) ∼ (v(b), a). Thus, (0, a+ b) ∼ (v(a) + v(b), 0) and v(a+ b) =
v(a) + v(b).

Let v(1) = c. Then for any natural numbersm and n we have v(m/n) =
cm/n. Since v(0) = 0 and v is an increasing function, it must be that
v(x) = cx for all x.

(The equation v(a+ b) = v(a) + v(b) is called Cauchy’s functional equa-
tion and without further assumptions, like monotonicity, there are non
linear functions which satisfy it.)

Differentiable Preferences (and the Use of Derivatives in
Economic Theory)

We often assume in microeconomics that utility functions are differ-
entiable and thus use standard calculus to analyze the consumer. In this
course I (almost) avoid calculus. This is part of a deliberate attempt to
steer you away from a “mechanistic” approach to economic theory.

Can we give the differentiability of a utility function an “economic”
interpretation? In this section a non conventional definition of differen-
tiable preferences is introduced. Basically, differentiability of preferences
will be taken as the requirement that the directions for improvement can
be calculated by “personal local prices”.

Let us confine ourselves to preferences satisfying monotonicity and
convexity. For any vector x we say that the vector z ∈ R

K is an improve-
ment if x+ z � x. We say that d ∈ R

K is an improvement direction at
x if any small move from x in the direction of d is an improvement,
that is there is some λ∗ such that for all λ∗ > λ > 0 the vector λd is an
improvement.

Let D(x) be the set of all improvement directions at x. Note that:

1. If d ∈ D(x) then λd ∈ D(x).
2. If the preferences are strictly convex then any improvement is also

an improvement direction.
3. If the preferences satisfy strong monotonicity, continuity and con-

vexity then any improvement is also an improvement direction.
To see it, assume x+ d � x. Take λ∗ = 1. For any 1 > λ > 0
we will show that x+ λd = λ(x + d) + (1 − λ)x � x. By con-
tinuity, there is a vector z � x with zk ≤ (x+ d)k for all k and
with strict inequality for every k for which (x + d)k > 0. For all k
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Figure 4.5
Differentiable preferences.

we have (x+ λd)k ≥ (λz + (1 − λ)x)k and x+ λd �= λz + (1 − λ)x.
By strong monotonicity x+ λd � λz + (1 − λ)x. Finally, convexity
λz + (1 − λ)x � x. Thus, x+ λd � x.

4. Given monotonicity, if dk > 0 for all k then d ∈ D(x).

We say that a consumer’s preferences � are differentiable at the bundle
x if there is a vector v(x) of K non-negative numbers so that D(x) =
{d ∈ R

K |dv(x) > 0} (dv(x) is the inner product of the two vectors d
and v(x)). The vector of numbers (v1(x), . . . , vK(x)) is interpreted as
the vector of “subjective values” of the commodities. Starting from x,
any small move in a direction that is evaluated by this vector as positive
is an improvement. We say that � is differentiable if it is differentiable
at any bundle x (see fig. 4.5).

Examples:

• The preferences represented by 2x1 + 3x2 are differentiable. At
each point x, v(x) = (2, 3).

• The preferences represented by min{x1, . . . , xK} are differentiable
only at points where there is a unique commodity k for which xk <

xl for all l �= k (verify). For example, at x = (5, 3, 8, 6), v(x) =
(0, 1, 0, 0).
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Let us see now that when the preferences � are represented by a util-
ity function u which is differentiable with positive partial derivative and
quasi-concave, the preferences are differentiable. Most examples of util-
ity functions which are used in the economic literature are differentiable.

Let us add some notation. Given a differentiable utility function u, let
du/dxk(x) be the partial derivative of u with respect to the commodity
k at point x. Let ∇u(x), the gradient, be the vector of these partial
derivatives. Recall that the meaning of differentiability of u at a point
x is that the rate of change of u when moving from x at any direction d
is d · ∇u(x). That is, limε→0

u(x+εd)−u(x)
ε = d · ∇u(x).

Now, let v(x) = ∇u(x). We will show that D(x) = {d ∈ R
K | dv(x) >

0}.
We first show that D(x) ⊆ {d ∈ R

K | dv(x) > 0}. By contradiction,
let d ∈ D(x) where d · v(x) ≤ 0. Without loss of generality, let x+ d � x,
since otherwise d can be re-scaled. Let e = (1, .., 1). By continuity, for all
small enough ε > 0 we have x+ (d− εe) � x. By convexity and strong
monotonicity of the preferences (which followed from the quasi-concavity
and positive partial derivatives of u) (d− εe) ∈ D(x). However, (d−
εe) · v(x) < 0 and thus by by the differentiability of u, for δ small enough,
u(x+ δ(d− εe)) < u(x). A contradiction.

The other direction, D(x) ⊇ {d ∈ R
K | dv(x) > 0}, follows immedi-

ately from the differentiability of u since dv(x) > 0 implies u(x+ εd) >
u(x) for ε small enough. That is, d ∈ D(x).

Bibliographic Notes

Recommended readings. Kreps 1990, 32–37; Mas-Colell et al. 1995,
Chapter 3, A–C.

The material in this lecture up to the discussion of differentiability
is fairly standard and closely parallels that found in Arrow and Hahn
(1971).
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Problem 1. (Easy)

Consider the preference relations on the interval [0, 1] which are continuous.

What can you say about those preferences which are also strictly convex?

Problem 2. (Standard)

Show that if the preferences � satisfy continuity and monotonicity, then the

function u(x), defined by x ∼ (u(x), . . . , u(x)), is continuous.

Problem 3. (Standard)

In a world with two commodities, consider the following condition:

The preference relation � satisfies convexity 4 if for all x and ε > 0

(x1, x2) ∼ (x1 − ε, x2 + δ1) ∼ (x1 − 2ε, x2 + δ1 + δ2) implies δ2 ≥ δ1.

Interpret convexity 4 and show that for strong monotonic and continuous

preferences, it is equivalent to the convexity of the preference relation.

Problem 4. (Standard)

Complete the proof (for all K) of the claim that any continuous preference

relation satisfying strong monotonicity and quasi-linearity in all commodities

can be represented by a utility function of the form
∑K

k=1 αkxk where αk > 0

for all k.

Problem 5. (Difficult)

Show that for any consumer’s preference relation � satisfying continuity,

monotonicity, strong monotonicity with respect to commodity 1 and quasi-

linearity with respect to commodity 1, there exists a number v(x) such that

x ∼ (v(x), 0, . . . , 0) for every vector x.

Problem 6. (Easy)

We say that a preference relation satisfies separability if it can be represented

by an additive utility function, that is, a function of the type u(x) = Σkvk(xk).
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a. Show that such preferences satisfy condition S: for any subset of com-

modities J , and for any bundles a, b, c, d, we have:

(aJ , c−J ) � (bJ , c−J ) ⇔ (aJ , d−J ) � (bJ , d−J) ,

where (xJ , y−J) is the vector that takes the components of x for any

k ∈ J and takes the components of y for any k /∈ J .

b. Show that for K = 2 such preferences satisfy the ”Hexagon-condition”:

If (a, b) � (c, d) and (c, e) � (f, b) then (a, e) � (f, d).

c. Give an example of a continuous preference relation which satisfies con-

dition S and does not satisfy separability.

Problem 7. (Difficult)

a. Show that the preferences represented by the utility function min{x1, .., xK}
are not differentiable.

b. Check the differentiability of the lexicographic preferences in R
2.

c. Assume that � is monotonic, convex and differentiable such that for

every x we have D(x) = {d|(x + d) � x}. What can you say about �?

d. Assume that � is a monotonic, convex and differentiable preference re-

lation. Let E(x) = {d ∈ R
K | there exists ε∗ > 0 such that x + εd ≺ x

for all ε ≤ ε∗}. Show that {−d| d ∈ D(x)} ⊆ E(x) but not necessarily

{−d| d ∈ D(x)} = E(x).

e. Consider the consumer’s preferences in a world with two commodities

defined by:

u(x1, x2) =

{
x1 + x2 if x1 + x2 ≤ 1

1 + 2x1 + x2 if x1 + x2 > 1
.

Show that these preferences are not continuous but nevertheless are dif-

ferentiable according to our definition.



LECTURE 5

Demand: Consumer Choice

The Rational Consumer’s Choice from a Budget Set

In Lecture 4 we discussed the consumer’s preferences. In this lecture we
adopt the “rational man” paradigm in discussing consumer choice.

Given a consumer’s preference relation � on X = R
K
+ , we can talk

about his choice from an arbitrary set of bundles. However, since we
are laying the foundation for “price models,” we are interested in the
consumer’s choice in a particular class of choice problems called budget
sets. A budget set is a set of bundles that can be represented asB(p, w) =
{x ∈ X |px ≤ w}, where p is a vector of positive numbers (interpreted
as prices) and w is a positive number (interpreted as the consumer’s
wealth).

Obviously, any set B(p, w) is compact (it is closed since it is defined by
weak inequalities, and bounded since for any x ∈ B(p, w) and for all k,
0 ≤ xk ≤ w/pk). It is also convex since if x, y ∈ B(p, w), then px ≤ w ,
py ≤ w, xk ≥ 0, and yk ≥ 0 for all k. Thus, for all α ∈ [0, 1], p[αx+ (1 −
α)y] = αpx+ (1 − α)py ≤ w and αxk + (1 − α)yk ≥ 0 for all k, that is,
αx+ (1 − α)y ∈ B(p, w).

We will refer to the problem of finding the �-best bundle in B(p, w)
as the consumer problem.

Claim:

If � is a continuous relation, then all consumer problems have a solution.

Proof:

If � is continuous, then it can be represented by a continuous utility func-
tion u. By the definition of the term “utility representation,” finding an
� optimal bundle is equivalent to solving the problem maxx∈B(p,w)u(x).
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Since the budget set is compact and u is continuous, the problem has a
solution.

To emphasize that a utility representation is not necessary for the cur-
rent analysis and that we could make do with the concept of preferences,
let us go through a direct proof of the previous claims, that avoids the
notion of utility.

Direct Proof:

For any x ∈ B(p, w) define the set Inferior(x) = {y ∈ X |x � y}. By
the continuity of the preferences, every such set is open. Assume there
is no solution to the consumer problem of maximizing � on B(p, w).
Then, every z ∈ B(p, w) is a member of some set Inferior(x), that is,
the collection of sets {Inferior(x) | x ∈ B(p, w)} covers B(p, w). A col-
lection of open sets that covers a compact set has a finite subset of
sets that covers it. Thus, there is a finite collection Inferior(x1 ), . . . ,
Inferior(xn) that covers B(p, w). Letting xj be the optimal bundle
within the finite set {x1 , . . . , xn}, we obtain that xj is an optimal bundle
in B(p, w), a contradiction.

Claim:

1. If � is convex, then the set of solutions for a choice from B(p, w)
(or any other convex set) is convex.

2. If � is strictly convex, then every consumer problem has at most
one solution.

Proof:

1. Assume that both x and y maximize � given B(p, w). By the con-
vexity of the budget set B(p, w) we have αx+ (1 − α)y ∈ B(p, w)
and, by the convexity of the preferences, αx+ (1 − α)y � x � z

for all z ∈ B(p, w). Thus, αx+ (1 − α)y is also a solution to the
consumer problem.

2. Assume that both x and y (where x �= y) are solutions to the con-
sumer problemB(p, w). Then x ∼ y (both are solutions to the same
maximization problem) and αx + (1 − α)y ∈ B(p, w) (the budget
set is convex). By the strict convexity of �, αx+ (1 − α)y � x,
which is a contradiction of x being a maximal bundle in B(p, w).
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The consumer problem with Differentiable Preferences

When the preferences are differentiable, we are provided with a “useful”
condition for characterizing the optimal solution: The “value per dollar”
at the point x∗ of the k-th commodity (which is consumed) must be as
large as the “value per dollar” of any other commodity.

Claim:

Assume that the consumer’s preferences are differentiable with v1(x∗),
. . . , vK(x∗) the “subjective value numbers” (see the definition of differ-
entiable preferences in Lecture 4). If x∗ is an optimal bundle in the
consumer problem and k is a consumed commodity (i.e., x∗k > 0), then
it must be that vk(x∗)/pk ≥ vj(x∗)/pj for all other j.

Proof:

Assume that x∗ is a solution to the consumer problem B(p, w) and that
x∗k > 0 and vj(x∗)/pj > vk(x∗)/pk (see fig. 5.1). A “move” in the di-
rection of reducing the consumption of the k-th commodity by 1 and
increasing the consumption of the j-th commodity by pk/pj is an im-
provement since vj(x∗)pk/pj − vk(x∗) > 0. As x∗k > 0, we can find ε > 0
small enough such that decreasing k’s quantity by ε and increasing j’s
quantity by εpk/pj is feasible. This brings the consumer to a strictly
better bundle, contradicting the assumption that x∗ is a solution to the
consumer problem.

Claim:

If x∗ is a solution to the consumer problem B(p, w) and both x∗k > 0
and x∗j > 0, then the ratio vk(x∗)/vj(x∗) must be equal to the price ra-
tio pk/pj.

From the above you can derive the “classic” necessary conditions on
the consumer’s maximization when the preferences are represented by a
differentiable utility function u, with positive partial derivatives, using
the equality vk(x∗) = ∂u/∂xk(x∗).

In order to establish sufficient conditions for maximization, we require
also that the preferences be convex.
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Figure 5.1
(a) x∗ is a solution to the con-

sumer problem B(p,w).
(b) x∗ is not a solution to the con-

sumer problem B(p,w).

Claim:

If � is strongly monotonic, convex, continuous, and differentiable, and
if at x∗

• px∗ = w,
• for all k such that x∗k > 0, and for any commodity j, vk(x∗)/pk ≥

vj(x∗)/pj,

then x∗ is a solution to the consumer problem.

Proof:

If x∗ is not a solution, then there is a bundle y such that py ≤ px∗ and
y � x∗. By continuity we can assume that yk > 0 for all k.

Let μ = vk(x∗)/pk for all k with x∗k > 0. Now,

0 ≥ p(y − x∗) =
∑

pk(yk − x∗k) ≥
∑

vk(x∗)(yk − x∗k)/μ

since: (1) y is feasible, (2) for a good k with x∗k > 0 we have pk =
vk(x∗)/μ, and (3) for a good k with x∗k = 0, (yk − x∗k) ≥ 0 and pk ≥
vk(x∗)/μ. Thus, 0 ≥ v(x∗)(y − x∗), in contradiction to (y − x∗) being
an improvement direction.
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The Demand Function

We have arrived at an important stage on the way to developing a market
model in which we derive demand from preferences. Assume that the
consumer’s preferences are such that for any B(p, w), the consumer’s
problem has a unique solution. Let us denote this solution by x(p, w).
The function x(p, w) is called the demand function. The domain of the
demand function is R

K+1
++ whereas its range is R

K
+ .

Example:

Consider a consumer in a world with two commodities having the fol-
lowing lexicographic preference relation, attaching the first priority to
the sum of the quantities of the goods and the second priority to the
quantity of commodity 1:
x � y if x1 + x2 > y1 + y2 or both x1 + x2 = y1 + y2 and x1 ≥ y1.

This preference relation is strictly convex but not continuous. It in-
duces the following noncontinuous demand function:

x((p1, p2), w) =
{

(0, w/p2) if p2 < p1

(w/p1, 0) if p2 ≥ p1
.

We now turn to studying some properties of the demand function.

Claim:

x(p, w) = x(λp, λw) (i.e., the demand function is homogeneous of degree
zero).

Proof:

This follows (with no assumptions about the preference relations) from
the basic equality B(λp, λw) = B(p, w) and the assumption that the be-
havior of the consumer is “a choice from a set.”

This claim should not be interpreted as implying that “uniform infla-
tion does not matter”. We assumed, rather than concluded, that choice
is made from a set independently of the way that the choice set is framed.
Our model of choice is static and the consumer is assumed not to be af-
fected in one decision from his choice in a previous decision. Inflation
will affect behavior in a model where this strong assumption is relaxed.
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Claim (Walras’s law):

If the preferences are monotonic, then any solution x to the consumer
problem B(p, w) is located on its budget curve (and thus, px(p, w) = w).

Proof:

If not, then px < w. There is an ε > 0 such that p(x1 + ε, . . . , xK + ε) <
w. By monotonicity, (x1 + ε, . . . , xK + ε) � x, thus contradicting the
assumption that x is optimal in B(p, w).

Claim:

If � is a continuous preference, then the demand function is continuous
in prices (and also in w, see problem set).

Proof:

Once again, we could use the fact that the preferences have a continu-
ous utility representation and apply a standard “maximum theorem.”
(Let f(x) be a continuous function over X . Let A be a subset of
some Euclidean space and B a function that attaches to every a in
A a compact subset of X such that its graph, {(a, x)| x ∈ B(a)}, is
closed. Then the graph of the correspondence h from A into X , defined
by h(a) = {x ∈ B(a) | f(x) ≥ f(y) for all y ∈ X}, is closed.) However, I
prefer to present another proof, that does not use the notion of a utility
function:

Assume not. Then, there is a sequence of price vectors pn converging
to p∗ such that x(p∗, w) = x∗, and x(pn, w) does not converge to x∗.
Thus, we can assume that (pn) is a sequence converging to p∗ such that
for all n the distance d(x(pn, w), x∗) > ε for some positive ε.

All numbers pn
k are greater than some positive number m. Therefore,

all vectors x(pn, w) belong to some compact set (the hypercube of bun-
dles with no quantity above w/m) and thus, without loss of generality
(choosing a subsequence if necessary), we can assume that x(pn, w) → y∗

for some y∗ �= x∗.
Since pnx(pn, w) ≤ w for all n, it must be that p∗y∗ ≤ w, that is,

y∗ ∈ B(p∗, w). Since x∗ is the unique solution for B(p∗, w), we have
x∗ � y∗. By the continuity of the preferences, there are neighborhoods
Bx∗ and By∗ of x∗ and y∗ in which the strict preference is preserved.
For sufficiently large n, x(pn, w) is in By∗ . Choose a bundle z∗ in the
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neighborhood Bx∗ so that p∗z∗ < w. For all sufficiently large n, pnz∗ <
w; however, z∗ � x(pn, w), which is a contradiction.

Comment:

The above proposition applies to the case in which for every budget set
there is a unique bundle maximizing the consumer’s preferences. The
maximum theorem applied to the case in which some budget set has
more than one maximizer states: If � is a continuous preference, then
the set {(x, p, w) | x � y for every y ∈ B(p, w)} is closed.

Rationalizable Demand Functions

As in the general discussion of choice, we will now examine whether
choice procedures are consistent with the rational man model. We can
think of various possible definitions of rationalization.

One approach is to look for a preference relation (without imposing
any restrictions that fit the context of the consumer) such that the cho-
sen element from any budget set is the unique bundle maximizing the
preference relation in that budget set. Thus, we say that the preferences
� fully rationalize the demand function x if for any (p, w) the bundle
x(p, w) is the unique � maximal bundle within B(p, w).

Alternatively, we could say that “being rationalizable” means that
there are preferences such that the consumer’s behavior is consistent
with maximizing those preferences, that is, for any (p, w) the bundle
x(p, w) is a � maximal bundle (not necessarily unique) within B(p, w).
This definition is “empty” since any demand function is consistent with
maximizing the “total indifference” preference. This is why we usually
say that the preferences � rationalize the demand function x if they are
monotonic and for any (p, w), the bundle x(p, w) is a � maximal bundle
within B(p, w).

Of course, if behavior satisfies homogeneity of degree zero and Walras’s
law, it is still not necessarily rationalizable in any of those senses:
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Example 1:

Consider the demand function of a consumer who spends all his wealth
on the “more expensive” good:

x((p1, p2), w) =
{

(0, w/p2) if p2 ≥ p1

(w/p1, 0) if p2 < p1

This demand function is not entirely inconceivable, and yet it is not
rationalizable. To see this, assume that it is fully rationalizable or
rationalizable by �. Consider the two budget sets B((1, 2), 1) and
B((2, 1), 1). Since x((1, 2), 1) = (0, 1/2) and (1/2, 0) is an internal bun-
dle in B((1, 2), 1), by any of the two definitions of rationalizability, it
must be that (0, 1/2) � (1/2, 0). Similarly, x((2, 1), 1) = (1/2, 0) and
(0, 1/2) is an internal bundle in B((2, 1), 1). Thus, (0, 1/2) ≺ (1/2, 0), a
contradiction.

Example 2:

A consumer chooses a bundle (z, z, . . . , z), where z satisfies zΣpk = w.
This behavior is fully rationalized by any preferences according to

which the consumer strictly prefers any bundle on the main diagonal
over any bundle that is not (because, for example, he cares primarily
about purchasing equal quantities from all sellers of the K goods), while
on the main diagonal his preferences are according to “the more the
better”. These preferences rationalize his behavior in the first sense but
are not monotonic.

This demand function is also fully rationalized by the monotonic
preferences represented by the utility function u(x1, . . . , xK) = min{x1,

. . . , xK}.
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Example 3:

Consider a consumer who spends αk of his wealth on commodity k

(where αk ≥ 0 and ΣK
k=1αk = 1). This rule of behavior is not formulated

as a maximization of some preference relation. It can however be fully
rationalized by the preference relation represented by the Cobb-Douglas
utility function u(x) = ΠK

k=1x
αk

k , a differentiable function with strictly
positive derivatives in all interior points. A solution x∗ to the consumer
problem B(p, w) must satisfy x∗k > 0 for all k (notice that u(x) = 0 when
xk = 0 for some k). Given the differentiability of the preferences, a nec-
essary condition for the optimality of x∗ is that vk(x∗)/pk = vl(x∗)/pl

for all k and l where vk(x∗) = du/dxk(x∗) = αku(x∗)/x∗k for all k. It
follows that pkx

∗
k/plx

∗
l = αk/αl for all k and l and thus x∗k = αkw/pk

for all k.

Example 4:

LetK = 2. Consider the behavior of a consumer who allocates his wealth
between commodities 1 and 2 in the proportion p2/p1 (the cheaper
the good, the higher the share of the wealth devoted to it). Thus,
x1p1/x2p2 = p2/p1 and xi(p, w) = (pj/(pi + pj))w/pi. This demand func-
tion satisfies Walras’s law as well as homogeneity of degree zero.

To see that this demand function is fully rationalizable, note that
xi/xj = p2

j/p
2
i (for all i and j) and thus p1/p2 =

√
x2/

√
x1. The quasi-

concave function
√
x1 +

√
x2 satisfies the condition that the ratio of its

partial derivatives is equal to
√
x2/

√
x1. Thus, for any (p, w), the bundle

x(p, w) is the solution to the maximization of
√
x1 +

√
x2 in B(p, w).

The Weak and Strong Axioms of Revealed Preferences

We now look for general conditions that will guarantee that a demand
function x(p, w) can be fully rationalized. A similar discussion could
apply to another (probably more common in the textbooks) definition
of rationalizability which requires that the bundle x(p, w) maximizes
a monotonic preference relation over B(p, w). Of course, as we have
seen, one does not necessarily need these general conditions to determine
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whether a particular demand function is rationalizable. Guessing is often
an excellent strategy.

In the general discussion of choice functions, we saw that condition
α was necessary and sufficient for a choice function to be derived from
some preference relation. In the proof, we constructed a preference re-
lation out of the choices of the decision maker from sets containing two
elements. However, in the context of a consumer, finite sets are not
within the scope of the choice function.

As in Lecture 3 we will use the concept of ”revealed preferences”.
Define x � y if there is (p, w) so that both x and y are in B(p, w) and
x = x(p, w). In such a case we will say that x is revealed to be better
than y. As in Lecture 3 we will say that a preference relation � satisfies
the Weak Axiom of Revealed Preferences if it is impossible that x is
revealed to be better than y and y is revealed to be better than x. In
the context of the consumer model the Weak Axiom can be written as:
if x(p, w) �= x(p′, w′) and px(p′, w′) ≤ w then p′x(p, w) > w′.

The Weak Axiom says that the defined binary relation � is asym-
metric. However, the relation is not necessarily complete: there can be
two bundles x and y such that for any B(p, w) containing both bundles,
x(p, w) is neither x nor y. Furthermore, in the general discussion, we
guaranteed transitivity by looking at the union of a set in which a was
revealed to be better than b and a set in which b was revealed to be as
good as c. However, when the sets are budget sets, their union is not
necessarily a budget set. (See fig. 5.2.)

Apparently the Weak Axiom is not a sufficient condition for extending
the binary relation �, as defined above, into a complete and transitive
relation (an example with three goods from Hicks 1956 is discussed in
Mas-Colell et al. 1995). A necessary and sufficient condition for a de-
mand function x satisfying Walras’s law and homogeneity of degree zero
to be rationalized is the following:

Strong Axiom of Revealed Preference:

The Strong Axiom is a property of the demand function which states
that the relation �, derived from the demand function as before, is
acyclical. This leaves open the question of whether � can be extended
into preferences. (Note that its transitive closure still may not be a
complete relation.) The fact that it is possible to extend the relation
� into a full-fledged preference relation is a well known result in Set
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Figure 5.2
(a) Satisfies the weak axiom. (b) Does not satisy the weak axiom.

Theory. In any case, the Strong Axiom is somewhat cumbersome and
using it to determine whether a certain demand function is rationalizable
may not be a trivial task.

Comment:

The more standard definition of rationalizability requires finding mono-
tonic preferences � such that for any (p, w), x(p, w) � y for all y ∈
B(p, w). Proceeding to elicit preferences from the demand function we
infer from the existence of a budget set B(p, w) for which x = x(p, w)
and y ∈ B(p, w), only that x is weakly preferred to y. If, however, also
py < w, we infer further that x is strongly preferred to y.

Decreasing Demand

A theoretical model is usually evaluated by the reasonableness of its
implications. If we find that a model yields an absurd conclusion, we
reconsider its assumptions. However, we should also be alert when we
find that a model fails to yield highly intuitive properties, indicating
that we may have assumed “too little”.

In the context of the consumer model, we might wonder whether the
intuition that demand for a good falls when its price increases is valid.
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Figure 5.3

We shall now see that the standard assumptions of rational consumer
behavior do not guarantee that demand is decreasing. The following
is an example of a preference relation which induces demand that is
nondecreasing in the price of one of the commodities.

An Example in Which Demand for a Good May Increase with Price

Consider the preferences represented by the following utility function:

u(x1, x2) =
{

x1 + x2 if x1 + x2 < 1
x1 + 4x2 if x1 + x2 ≥ 1

.

These preferences might reflect reasoning of the following type: “In
the bundle x there are x1 + x2 units of vitamin A and x1 + 4x2 units
of vitamin B. My first priority is to get enough vitamin A. However,
once I satisfy my need for 1 unit of vitamin A, I move on to my second
priority, which is to consume as much as possible of vitamin B.” (See
fig 5.3.)

Consider x((p1, 2), 1). Changing p1 is like rotating the budget lines
around the pivot bundle (0, 1/2). At a high price p1 (as long as p1 > 2),
the consumer demands (0, 1/2). If the price is reduced to within the
range 2 > p1 > 1, the consumer chooses the bundle (1/p1, 0). So far,
the demand for the first commodity indeed increased when its price
fell. However, in the range 1 > p1 > 1/2 we encounter an anomaly: the
consumer buys as much as possible from the second good subject to the
“constraint” that the sum of the goods is at least 1, i.e., x((p1, 2), 1) =
(1/(2 − p1), (1 − p1)/(2 − p1)).

The above preference relation is monotonic but not continuous. How-
ever, we can construct a close continuous preference that leads to de-
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mand that is increasing in p1 in a similar domain. Let αδ(t) be a contin-
uous and increasing function on [1 − δ, 1] where δ > 0, so that αδ(t) = 0
for all t ≤ 1 − δ and αδ(t) = 1 for all t ≥ 1. The utility function

uδ(x) = αδ(x1 + x2)(x1 + 4x2) + (1 − αδ(x1 + x2))(x1 + x2)

is continuous and monotonic. For δ close to 0, the function uδ = u except
in a narrow area below the set of bundles for which
x1 + x2 = 1.

Now, when p1 = 2/3 the demand for the first commodity is 3/4,
whereas when p1 = 1 the demand is at least 1 − 2δ. Thus, for a small
enough δ the increase in p1 involves an increase in the demand.

“The Law of Demand”

We are interested in comparing demand in different environments. We
have just seen that the classic assumptions about the consumer do not
allow us to draw a clear conclusion regarding the relation between a
consumer’s demand when facing B(p, w) and his demand when facing
B(p+ (0, . . . , ε, . . . , 0), w).

A clear conclusion can be drawn when we compare the consumer’s de-
mand when he faces the budget set B(p, w) to his demand when facing
B(p′, x(p, w)p′). In this comparison we imagine the price vector chang-
ing from p to an arbitrary p′ and wealth changing in such a way that the
consumer has exactly the resources allowing him to consume the same
bundle he consumed at (p, w). (See fig. 5.4.) It follows from the follow-
ing claim that the compensated demand function y(p′) = x(p′, p′x(p, w))
satisfies the law of demand, that is, yk is decreasing in pk.

Claim:

Let x be a demand function satisfying Walras’s law and WA. If
w′ = p′x(p, w), then either x(p′, w′) = x(p, w) or [p′ − p][x(p′, w′) −
x(p, w)] < 0.

Proof:

Assume that x(p′, w′) �= x(p, w). By Walras’s law and the assumption
that w′ = p′x(p, w):
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Figure 5.4
A compensated price change from (p, w) to (p′, w′).

[p′ − p][x(p′, w′) − x(p, w)]
= p′x(p′, w′) − p′x(p, w) − px(p′, w′) + px(p, w)
= w′ − w′ − px(p′, w′) + w = w − px(p′, w′)

By WA the right-hand side of the equation is less than 0.

Bibliographic Notes

Recommended readings. Kreps 1990, 37–45, Mas-Colell et al. 1995,
Chapter 2, A–D, 3, D,J.

The material in this lecture, up to the discussion of differentiability,
is fairly standard and closely parallels that found in Arrow and Hahn
(1971) and Varian (1984).
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Problem 1. (Easy)

Verify that when preferences are continuous, the demand function x(p,w) is

continuous in prices and in wealth (and not only in p).

Problem 2. (Easy)

Show that if a consumer has a homothetic preference relation, then his demand

function is homogeneous of degree one in w.

Problem 3. (Easy)

Consider a consumer in a world with K = 2, who has a preference relation

that is convex and quasi-linear in the first commodity. How does the demand

for the first commodity change with w?

Problem 4. (Moderately Difficult)

Let � be a continuous preference relation (not necessarily strictly convex)

and w a number. Consider the set G = {(p, x) ∈ R
K × R

K | x is optimal in

B(p,w)}. (For some price vectors there could be more than one (p, x) ∈ G.)

Calculate G for the case of K = 2 and preferences represented by x1 + x2.

Show that for any preference relation, G is a closed set.

Problem 5. (Moderately difficult)

Determine whether the following consumer behavior patterns are fully ratio-

nalized (assume K = 2):

a. The consumer’s demand function is x(p,w) = (2w/(2p1 + p2),

w/(2p1 + p2)).

b. The consumer consumes up to the quantity 1 of commodity 1 and spends

his excess wealth on commodity 2.

c. The consumer chooses the bundle (x1, x2) which satisfies x1/x2 = p1/p2

and costs w. (Does the utility function u(x) = x2
1 + x2

2 rationalize the

consumer’s behavior?)
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Problem 6. (Moderately difficult)

In this question, we consider a consumer who behaves differently from the

classic consumer we talked about in the lecture. Once again we consider

a world with K commodities. The consumer’s choice will be from budget

sets. The consumer has in mind a preference relation that satisfies continuity,

monotonicity, and strict convexity; for simplicity, assume it is represented by

a utility function u.

The consumer maximizes utility up to utility level u0. If the budget set

allows him to obtain this level of utility, he chooses the bundle in the budget

set with the highest quantity of commodity 1 subject to the constraint that

his utility is at least u0.

a. Formulate the consumer’s problem.

b. Show that the consumer’s procedure yields a unique bundle.

c. Is this demand procedure rationalizable?

d. Does the demand function satisfy Walras’ law?

e. Show that in the domain of (p, w) for which there is a feasible bundle

yielding utility of at least u0 the consumer’s demand function for com-

modity 1 is decreasing in p1 and increasing in w.

f. Is the demand function continuous?

Problem 7. (Moderately difficult)

It’s a common practice in economics to view aggregate demand as being de-

rived from the behavior of a “representative consumer”. Give two examples of

“well-behaved” consumer preference relations that can induce average behav-

ior that is not consistent with maximization by a “representative consumer”.

(That is, construct two “consumers”, 1 and 2, who choose the bundles x1

and x2 out of the budget set A and the bundles y1 and y2 out of the budget

set B so that the choice of the bundle (x1 + x2)/2 from A and of the bundle

(y1 + y2)/2 from B is inconsistent with the model of the rational consumer.)

Problem 8. (Moderately difficult)

A commodity k is Giffen if the demand for the k′th good is increasing in pk.

A commodity k is inferior if the demand for the commodity decreases with

wealth. Show that if there is a vector (p, w) such that the demand for the k′th
commodity is rising after its price has increased, then there is a vector (p′, w′)
such that the demand of the k′th commodity is falling after the income has

increased (Giffen implies inferior).



LECTURE 6

Choice over Budget Sets and the Dual
Consumer

Indirect Preferences

As an introduction to the first topic in this lecture, let us go back to the
general choice function concept discussed in Lecture 3. Having in mind
a preference relation � on a set X , the decision maker may want to
construct a preference relation over the set D, the domain of his choice
function. When assessing a choice problem in D, the decision maker may
then ask himself which alternative he would choose if he had to choose
from that set. The “rational” decision maker will prefer a set A over a
set B if the alternative he intends to choose from A is preferable to that
which he intends to choose from B. This leads us to the definition of
�∗, the indirect preferences induced from �:

A �∗ B if C�(A) � C�(B).

The definition of indirect preferences ignores some considerations that
might be taken into account when comparing choice sets. Excluded are
considerations such as, “I prefer A− {b} to A even though I intend to
choose a in any case since I am afraid to make a mistake and choose b”
or “I will choose a from A whether b is available or not, however, since
I don’t want to have to reject b, I prefer A− {b} to A”.

Of course, if u represents � and the choice function is well defined,
v(A) = u(C�(A)) represents �∗. We will refer to v as the indirect utility
function.

Finally, note that sometimes (depending on the set D) one can recon-
struct the choice function C�(A) from the indirect preferences �∗. For
example, if a ∈ A and A �∗ A− {a}, then C�(A) = a.
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The Consumer’s Indirect Preferences

Let us return to the consumer who chooses bundles from budget sets. For
simplicity, let us assume that the consumer holds the preference relation
� and x(p, w) is always well-defined. The consumer might be interested
in formulating indirect preferences when choosing a market to live in or
when assessing the effect of tax reforms (affecting prices or wealth) on
his welfare. Since a budget set is characterized by the K + 1 parameters
(p, w), the above approach leads to the definition of the indirect pref-
erences �∗ on the set R

K+1
++ as (p, w) �∗ (p′, w′) if x(p, w) � x(p′, w′).

Interpreting p in the standard manner, as prices prevailing in the mar-
ket, defining indirect preferences in this way precludes considerations
such as, “I prefer to live in an area where alcohol is very expensive even
though I drink a lot”.

The following are basic properties of the indirect preferences �∗, in-
duced from the preferences � on the bundle space. The first is an
“invariance to presentation” property, which follows from the definition
of indirect preferences independently of the properties of the consumer’s
preferences. The other three properties are: monotonicity (using the
orders on the axis), continuity (using the topological structure), and
“anti-convexity” (using the algebraic structure).

1. (λp, λw) ∼∗ (p, w) (this follows from x(λp, λw) = x(p, w)).
2. �∗ is decreasing in pk and strictly increasing in w (reducing the

scope of the choice is never beneficial, and additional wealth makes
it possible to consume bundles containing more of all commodities).

3. Let � be a continuous preference relation, then x(p, w) is contin-
uous. If (p, w) �∗ (p′, w′) then y = x(p, w) � x(p′, w′) = y′. By
continuity there are balls By and By′ around y and y′ accordingly
such that for any z ∈ By and z′ ∈ By′ we have z � z′. By the
continuity of the demand function there is a neighborhood around
(p, w) such that the demand in this neighborhood is inside By and
there is a neighborhood around (p′, w′) such that the demand in
this neighborhood is inside By′ . For any two budget sets in these
two neighborhood �∗is preserved.

4. If (p1, w1) �∗ (p2, w2), then (p1, w1) �∗ (λp1 + (1 − λ)p2, λw1 +
(1 − λ)w2) for all 1 ≥ λ ≥ 0. (See fig. 6.1.) (Thus, if v repre-
sents �∗, then it is quasi-convex, that is, the set {(p, w)| v(p, w) ≤
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Figure 6.1
The indirect utility function is quasi-convex.

v(p∗, w∗)} is convex). To see this, let z be the best bundle in
the budget set B(λp1 + (1 − λ)p2, λw1 + (1 − λ)w2). Then (λp1 +
(1 − λ)p2)z ≤ λw1 + (1 − λ)w2 and therefore p1z ≤ w1 or p2z ≤
w2. Thus z ∈ B(p1, w1) or z ∈ B(p2, w2) and then x(p1, w1) � z

or x(p2, w2) � z. From x(p1, w1) � x(p2, w2) it follows that
x(p1, w1) � z.

Example:

In the single commodity case, each �∗-indifference curve is a ray. As-
suming monotonicity of �, the slope of an indifference curve through
(p1, w) is x1(p1, w) = w/p1.

Roy’s Identity

We will now look at a method of deriving the consumer demand function
from indirect preferences. The idea is that starting from a budget set
B(p∗, w∗), any B(p, w) for which px(p∗, w∗) = w cannot be inferior to
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B(p∗, w∗). The set of all (p, w) such that px(p∗, w∗) = w is a tangent
to the indifference curve of the indirect preferences through (p∗, w∗).
Thus, knowing the indifference curve through (p∗, w∗), we can uncover
the demand at (p∗, w∗).

Claim:

Assume that the demand function satisfies Walras’s law. Let H =
{(p, w)| (x(p∗, w∗),−1)(p, w) = 0} for some (p∗, w∗). The hyperplane
H is tangent to the �∗ indifference curve through (p∗, w∗).

Proof:

Of course (p∗, w∗) ∈ H . For any (p, w) ∈ H , the bundle x(p∗, w∗) ∈
B(p, w). Hence x(p, w) � x(p∗, w∗), and thus (p, w) �∗ (p∗, w∗).

In the case in which �∗ is represented by a differentiable function v, there
is a unique tangent to the indifference curve through (p∗, w∗) character-
ized by:

T = {(p, w)| (∂v/∂p1(p∗, w∗), . . . , ∂v/∂pK(p∗, w∗),

∂v/∂w(p∗, w∗))(p− p∗, w − w∗) = 0}.

From the above claim and since w∗ = p∗x(p∗, w∗) we have also that

H = {(p, w)| (x(p∗, w∗),−1)(p− p∗, w − w∗) = 0}.
is a tangent to the indifference curve through (p∗, w∗). Thus, T = H

and

(∂v/∂p1(p∗, w∗), . . . , ∂v/∂pK(p∗, w∗), ∂v/∂w(p∗, w∗))

is proportional to the vector

(x1(p∗, w∗), . . . , xK(p∗, w∗),−1).

Thus, we get the so called Roy identity:

−[∂v/∂pk(p∗, w∗)]/[∂v/∂w(p∗, w∗)] = xk(p∗, w∗).
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The Dual Consumer

In the standard model, a consumer is equipped with a preference relation
� and an initial bundle z. When facing the price vector p, he chooses to
consume the �-optimal bundle that can be obtained by exchanging the
goods according to those prices. We refer to the problem of choosing a
�-best bundle in the set {x | px ≤ pz} as the prime problem and denote
it by P (p, z). Assuming that a solution to the problem exists and is
unique, denote it by x(p, z). The function x is the standard demand
function.

Consider now another type of consumer. When holding a bundle z
and facing the price vector p, he chooses the cheapest bundle that is as
good as z. This behavior fits a context in which a consumer has a wel-
fare target and seeks to reduce the costs involved in reaching it. We will
refer to the problem minx{px | x � z} as the dual problem and denote it
by D(p, z). Assuming that a solution exists and is unique (which occurs,
for example, when preferences are strictly convex and continuous), we
denote the solution as h(p, z), which is called the Hicksian demand func-
tion. The function e(p, z) = ph(p, z) is called the expenditure function.
Note the duality between the expenditure function and the consumer’s
indirect utility function.

Following are some properties of the Hicksian demand function and
the expenditure function:

1. h(p, z) = h(λp, z). This follows from the fact that a bundle min-
imizes the function λpx in a set if and only if it minimizes the
function px over that same set. Thus, e(λp, z) = λe(p, z).

2. The Hicksian demand for the k’th commodity is decreasing in
pk. Note that ph(p′, z) ≥ ph(p, z) for every p′. This is because
h(p′, z) � z and the bundle h(p′, z) is not less expensive than h(p, z)
for the price vector p. Thus, (p′ − p)(h(p′, z) − h(p, z)) = (p′h(p′, z) −
p′h(p, z)) + (ph(p, z) − ph(p′, z)) ≤ 0 and if (p′ − p) = (0, ..., ε, ..., 0)
(with ε > 0), we obtain hk(p′, z)− hk(p, z) ≤ 0.
In addition, e(p, z) is increasing in pk: if p′k ≥ pk for all k then
e(p′, z) = p′h(p′, z) ≥ ph(p′, z) ≥ ph(p, z) = e(p, z).

3. By continuity, h(p, z) ∼ z. If h(p, z) � z, then there would be a
cheaper bundle at least as good as z near h(p, z).

4. By continuity h(p, z) is continuous (verify!), as is e(p, z).
5. The expenditure function is concave in p: Let x = h(λp1 + (1 −
λ)p2, z). By definition x � z. Thus, pix ≥ pih(pi, z) and , e(λp1 +
(1 − λ)p2, z) = (λp1 + (1 − λ)p2)x ≥ λe(p1, z) + (1 − λ)e(p1, z).
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6. (the Dual of Roy’s identity) The hyperplaneH = {(p, e) | e = ph(p∗, z)}
is tangent to the graph of the expenditure function at p∗. This fol-
lows from: (i) (p∗, e(p∗, z)) is in H and (ii) ph(p∗, z) ≥ ph(p, z) for
all p∗.

Duality

In daily discourse we consider the following two statements to be equiv-
alent:

1. The maximal distance a turtle can travel in 1 day is 1 km.
2. The minimal time it takes a turtle to travel 1 km is 1 day.

This equivalence in fact relies on two “hidden” assumptions:

a. For (1) to imply (2), we need to assume that the turtle travels
a positive distance in any period of time. Contrast this with the
case in which the turtle’s speed is 2 km/day but, after half a day,
it must rest for half a day. In this case, the maximal distance it
can travel in 1 day is 1 km but it can travel this distance in only
half a day.

b. For (2) to imply (1), we need to assume that the turtle cannot
“jump” a positive distance in zero time. Contrast this with the
case in which the turtle’s speed is 1 km/day but after a day of
traveling it can “jump” 1 km. Thus, it needs 1 day to travel 1 km
but within 1 day it can travel 2 km.

The assumptions that in any positive interval of time the turtle can
travel a positive distance and that the turtle cannot “jump” are sufficient
for the equivalence of (1) and (2). Let M(t) be the maximal distance
the turtle can travel in time t. Assume that the function M is strictly
increasing and continuous. Then, the statement, “The maximal distance
a turtle can travel in t∗ is x∗” is equivalent to the statement, “The
minimal time it takes a turtle to travel x∗ is t∗”.

If the maximal distance that the turtle can travel within t∗ is x∗ and if
it covers the distance x∗ in t < t∗ then, by the strict monotonicity of M ,
the turtle could cover a distance larger than x∗ in t∗, a contradiction.

If it takes t∗ for the turtle to cover the distance x∗ and if it travels
the distance x > x∗ in t∗, then by the continuity of M at some t < t∗

the turtle will already be beyond the distance x∗, a contradiction.
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With this intuition in mind, we return to the world of the consumer.
Given preferences satisfying monotonicity and continuity, a regular con-
sumer who holds x∗ is happy in the sense that he cannot exchange the
bundle for a better one if and only if a dual consumer who holds x∗ is
happy, in the sense that there is no cheaper bundle as good as x∗.

Claim:

A bundle x∗ is a solution to the problem P (p, x∗) if and only if it is a
solution to the dual problem D(p, x∗).

Proof:

1. If x∗ is not a solution to D(p, x∗), then there exists a strictly
cheaper bundle x for which x � x∗. For some positive vector ε
(that is, εk > 0 for all k), it still holds that p(x+ ε) < px∗. By
monotonicity x+ ε � x � x∗, contradicting the assumption that
x∗ is a solution to P (p, x∗).

2. If x∗ is not a solution to the problem P (p, x∗), then there exists
an x such that px ≤ px∗ and x � x∗. By continuity, for some non-
negative vector ε �= 0, x− ε is a bundle such that x− ε � x∗ and
p(x− ε) < px∗, contradicting the assumption that x∗ is a solution
to D(p, x∗).

Bibliographic Notes

Recommended readings. Kreps 1990, 45–63; Mas-Colell et al. 1995,
Chapter 2, E–F; 3, D–G, I–J.

Roy and Hicks are the sources for most of the material in this lecture.
Specifically, the concept of the indirect utility function is due to Roy
(1942); the concept of the expenditure function is due to Hicks (1946);
and the concepts of consumer surplus used in Problem 6 are due to
Hicks (1939). See also McKenzie (1957). For a full representation of the
duality idea, see, for example, Varian (1984) and Diewert (1982).
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Problem 1. (Easy)

In a world with two commodities, consider a consumer’s preferences that are

represented by the utility function u(x1, x2) = min{x1, x2}.
a. Calculate the consumer’s demand function.

b. Verify that the preferences satisfy convexity.

c. Calculate the indirect utility function v(p,w).

d. Verify Roy’s identity.

e. Calculate the expenditure function e(p, u) and verify the dual Roy’s

identity.

Problem 2. (Standard)

Imagine that you are reading a paper in which the author uses the indirect

utility function v(p1, p2, w) = w/p1 + w/p2. You suspect that the author’s

conclusions in the paper are the outcome of the “fact” that the function v

is inconsistent with the model of the rational consumer. Take the following

steps to make sure that this is not the case:

a. Use Roy’s identity to derive the demand function.

b. Show that if demand is derived from a smooth utility function, then the

indifference curve at the point (x1, x2) has the slope −√
x2/

√
x1.

c. Construct a utility function with the property that the ratio of the partial

derivatives at the bundle (x1, x2) is
√

x2/
√

x1.

d. Calculate the indirect utility function derived from this utility function.

Do you arrive at the original v(p1, p2, w)? If not, can the original indirect

utility function still be derived from another utility function satisfying

the property in (c)?

Problem 3. (Standard)

A consumer with wealth w is interested in purchasing only one unit of one of

the items included in a (finite) set A. All items are indivisible. The consumer

does not derive any “utility” from leftover wealth. The consumer evaluates

commodity x ∈ A by the number Vx (where the value of not purchasing any

of the goods is 0). The price of commodity x ∈ A is px > 0.

a. Formulate the consumer problem.
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b. Check the properties of the indirect preferences (homogeneity of degree

zero, monotonicity, continuity and quasi-convexity).

c. Calculate an indirect utility function for the case in which A = {a, b}
and Va > Vb > 0.

Problem 4. (Moderate)

Assume that the consumer’s preferences � satisfy monotonicity, continuity

and strict convexity. Show that the bundle x is the best element in B(p,w)

if and only if for all y ∈ B(p,w) different than x there exists a budget set

B(p′, w′) containing y and not x such that (p, w) �∗ (p′, w′).

Problem 5. (Moderately difficult)

Show that if the preferences are monotonic, continuous and strictly convex,

then the Hicksian demand function h(p, z) is continuous.

Problem 6. (Moderately difficult)

One way to compare budget sets is by using the indirect preferences which

involves comparing x(p,w) and x(p′, w).

Following are two other approaches to making such a comparison.

Define:

CV (p, p′, w) = w − e(p′, z) = e(p, z) − e(p′, z)

where z = x(p,w).

This is the answer to the question: What is the change in wealth that would

be equivalent, from the perspective of (p,w), to the change in price vector from

p to p′?
Define:

EV (p, p′, w) = e(p, z′) − w = e(p, z′) − e(p′, z′)

where z′ = x(p′, w).

This is the answer to the question: What is the change in wealth that would

be equivalent, from the perspective of (p′, w), to the change in price vector

from p to p′?

Now, answer the following questions regarding a consumer in a two-commodity

world with a utility function u:

a. For the case of preferences represented by u(x1, x2) = x1 + x2, calculate

the two consumer surplus measures.

b. Assume that the first good is a normal good (the demand is increasing

with wealth). What is the relation of the two measures to the “area below
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the demand function” (which is a standard third definition of consumer

surplus)?

c. Explain why the two measures are identical if the individual has quasi-

linear preferences in the second commodity and in a domain where the

two commodities are consumed in positive quantities.

Problem 7. (Moderately difficult)

a. Verify that you know the envelope theorem, which states conditions un-

der which the following is correct: Consider a maximization problem

maxx{u(x, α1, , .., αn) | g(x,α1, , .., αn) = 0}. Let V (α1, , .., αn) be the

value of the maximization. Then,
∂V
∂αi

(a1, , .., an) = ∂(u−λg)
∂αi

(x∗(a1, , .., αn), a1, , .., αn) where x∗(a1, , .., αn)

is the solution to the maximization problem and λ is the Lagrange mul-

tiplier associated with the solution of the maximization problem.

b. Derive the Roy’s identity from the envelope theorem (hint: show that in

this context ∂V/∂αi
∂V/∂αj

(a1, , .., an) = ∂g/∂αi
∂g/∂αj

(x∗(a1, , .., αn), a1, , .., αn)).

c. What makes it is easy to prove Roy’s identity without using the envelope

theorem?
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The Producer

The Producer

We now turn to a brief discussion of the basic concepts of producer
theory. Since only a few new modeling ideas are involved, we make do
with a short introduction to the basic concepts.

We think about a producer as an economic agent who has the ability
to transform one vector of commodities into another.

Technology

Let 1, ..,K be commodities. A vector z in R
K is interpreted as a pro-

duction combination; positive components in z are outputs and negative
components are inputs.

A producer’s choice set is called a technology and specifies the pro-
duction constraints.

The following restrictions are usually placed on the technology space
(fig. 7.1):

1. 0 ∈ Z (this is interpreted to mean that the producer can remain
“idle”).

2. There is no z ∈ Z ∩R
K
+ besides the vector 0 (no production with

no resources).
3. Free disposal : if z ∈ Z and z′ ≤ z, then z′ ∈ Z (nothing prevents

the producer from being inefficient in the sense that he uses more
resources than necessary to produce the same amount of commodi-
ties).

4. Z is a closed set.
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Figure 7.1

5. Z is a convex set. (This assumption embodies decreasing marginal
productivity. Together with the assumption that 0 ∈ Z, it implies
nonincreasing returns to scale: if z ∈ Z, then for all λ < 1, λz ∈ Z.)

The Production Function

Consider the case in which commodity K is produced from commodities
1, . . . ,K − 1, that is, for all z ∈ Z, zK ≥ 0 and for all k �= K, zk ≤ 0.
In this case, another way of specifying the technological constraints on
the producer is by a production function which specifies, for any positive
vector of inputs v ∈ R

K−1
+ , the maximum amount of commodity K that

can be produced.
If we start from technology Z, we can derive the production function

by defining

f(v) = max{x| (−v, x) ∈ Z}.
Alternatively, if we start from the production function f , we can

derive the “technology” by defining Z(f) = {(−w, x)| x ≤ y and w ≥
v for some y = f(v) } . If the function f satisfies the assumptions of
f(0) = 0, increasing, continuity, and concavity, then Z(f) satisfies the
above assumptions.
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The Producer’s Preferences

We think of the producer as an agent who chooses a point z in his
technology Z and cares about the outcome vector (z, π) where π are his
profits. For any given price vector p, the producer faces choice sets of
the type B(p) = {(z, π)| z ∈ Z and π = pz}. Essentially, the producer’s
preferences are modeled just like as any other preference relation over
the (z, π) space. With this formalization in mind, it is clear that the
standard assumption according to which the producer cares about profits
is a very special case.

For concreteness, let us focus on a producer who is able to produce a
single commodity (with its quantity denoted by y) using K inputs. De-
note a vector of input quantities by a = (a1, .., aK). Let y = f(a1, .., aK)
be the producer’s production function. A rational producer maximizes
a preference relation over all tuples (a1, .., aK , y, π) under the constraint
y = f(a) and π = pyy − paa where py is the price of the production good
and pa is a vector of input prices. It is worth mentioning several reason-
able alternative targets, each of which could serve as the starting point
of an alternative producer theory:

1. The producer maximizes production y given the constraint π ≥ 0.
2. The producer is committed to produce at least y∗ units of produc-

tion and maximizes profits given the constraint y ≥ y∗.
3. The producer maximizes the ratio between profits and costs. That

is, his maximisation problem is: max π
paa which is equivalent to

max π
pyf(a) .

4. The producer already employs a∗1 workers and will incur a cost c for
each worker he fires. Thus, he maximizes: π − cmax{0, a∗1 − a1}.

5. The producer divides his profits equally among the workers and
seeks to maximize the amount each of them receives: max[π/a1].

6. The producer maximizes a preference relation over (a1, .., aK , y)
and ignores profits.

7. The producer has a preference relation that balances between π and
the amount of pollution he creates (which is a function of inputs).

8. The producer knows that there exists an inelastic demand M for
his product. If he produces y, his competitor will produce M − y

and his profits will be π′ = py(M − y) − minf(a)=M−y paa. The
producer seeks to maximize π − π′.

9. The producer maximizes his profits, π....

The rest of the chapter presents a very basic analysis of the profit-
maximizing producer’s problem.
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The Supply Function of the Profit Maximizing Producer

We will now discuss the producer’s behavior. The producer’s problem
is defined as maxz∈Zpz.

The existence of a unique solution for the producer problem requires
some additional assumptions such as that Z be bounded from above (that
is, there is some bound B such that B ≥ zk for any z ∈ Z) and that Z
be strictly convex (that is, if z and z′ are in Z, then the combination
λz + (1 − λ)z′ is an internal point in Z for any 1 > λ > 0).

When the producer’s problem has a unique solution, we denote it by
z(p). We refer to the function z(p) as the supply function. Note that
it specifies both the producer’s supply of outputs and its demand for
inputs. Define the profit function by π(p) = maxz∈Zpz.

Recall that when discussing the consumer, we specified the preferences
and we described his behavior as making a choice from a budget set that
had been determined by prices. The consumer’s behavior (demand)
specified the dependence of his consumption on prices. In the case of
the producer, we specify the technology and we describe his behavior
as maximizing a profit function which is determined by prices. The
producer’s behavior (supply) specifies the dependence of output and the
consumption of inputs on prices.

In the case of the producer, preferences are linear and the constraint
is a convex set, whereas in the consumer model the constraint is a linear
inequality and preferences are convex. The structure (continuity and
convexity) is imposed on the producer’s choice set and on the consumer’s
preferences. Thus, the producer’s problem is similar to the consumer’s
dual problem. (See fig. 7.2.)

Properties of the Supply and Profit Functions

Let us turn to some of the properties of the supply and profit functions.
The properties and their proofs are analogous to the properties and
proofs in the discussion of the consumer’s dual problem.

Supply Function

1. z(λp) = z(p). (The producer’s preferences are induced by the price
vector p and are identical to those induced by the price vector λp.)
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Figure 7.2
Profit maximization.

2. z is continuous.
3. Assume the supply function is well defined. If z(p) �= z(p′), we have

(p− p′)[z(p) − z(p′)] = p[z(p) − z(p′)] + p′[z(p′) − z(p)] > 0. In par-
ticular, if (only) the kth price increases, zk increases; that is, if k is
an output (zk > 0), the supply of k increases; and if k is an input
(zk < 0), the demand for k decreases. Note that this result, called
the law of supply, applies to the standard supply function (unlike
the law of demand, which was applied to the compensated demand
function).

Profit Function

1. π(λp) = λπ(p). (Follows from z(λp) = z(p).)
2. π is continuous. (Follows from the continuity of the supply func-

tion.)
3. π is convex. (For all p,p′ and λ, if z maximizes profits with λp+

(1 − λ)p′ then π(λp+ (1 − λ)p′) = λpz + (1 − λ)p′z ≤ λπ(p) +
(1 − λ)π(p′).)

4. Hotelling’s lemma: For any vector p∗, π(p) ≥ pz(p∗) for all p.
Therefore, the hyperplane {(p, π) | π = pz(p∗)} is tangent to
{(p, π) | π = π(p)}, the graph of function π at the point (p∗,
π(p∗)). If π is differentiable, then dπ/dpk(p∗) = zk(p∗).

5. From Hotelling’s lemma it follows that if π is twice continuously
differentiable, then dzj/dpk(p∗) = dzk/dpj(p∗).
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Figure 7.3
Cost Minimization.

The Cost Function

If we are only interested in the firm’s behavior in the output market
(but not in the input markets), it is sufficient to specify the costs as-
sociated with the production of any combination of outputs as opposed
to the details of the production function. Thus, for a producer of the
commodities L+ 1, . . . ,K, we define c(p, y) to be the minimal cost as-
sociated with the production of the combination y ∈ R

K−L
+ given the

price vector p ∈ R
L
++ of the input commodities 1, . . . , L. If the model’s

primitive is a technology Z, we have c(p, y) = mina{pa| (−a, y) ∈ Z}.
(See fig. 7.3.)

Discussion

In the conventional economic approach we allow the consumer “general”
preferences but restrict producer goals to profit maximization. Thus, a
consumer who consumes commodities in order to destroy his health is
within the scope of our discussion, while a producer who cares about the
welfare of his workers or has in mind a target other than profit maxi-
mization is not. This is odd since there are various empirically plausible
alternative targets for a producer. For example, it seems that the goal
of some producers is to increase production subject to not incurring a
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loss. Some firms are managed so as to increase the managers’ salaries
with less regard for the level of profits.

I sometimes wonder why this difference exists between the generality
of consumer preferences and the narrowness of the producer objectives.
It might be that this is simply the result of mathematical convenience. I
don’t think this is a result of an ideological conspiracy. But, by making
profit maximization the key assumption about producer behavior, do
we not run the risk that students will interpret it to be the exclusive
normative criterion guiding a firm’s actions?

Bibliographic Notes

Recommended readings. Kreps 1990, Chapter 8; Mas-Colell et al.
1995, Chapter 5, A–D,G.

The material in this lecture (apart from the discussion) is standard
and can be found in any microeconomics textbook. Debreu (1959) is an
excellent source.
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Problem 1. (Easy)

Assume that technology Z and the production function f describe the same

producer who produces commodity K using inputs 1, . . . , K − 1. Show that Z

is a convex set if and only if f is a concave function.

Problem 2. (Boring)

Here is a very standard exercise (if you have not done it in the past, it may

be “fun” to do it “once in a lifetime”): Calculate the supply function z(p) for

each of the following production functions:

a. f(a) = aα
1 for α ≤ 1.

b. h(a) = min{a1, a2}.

Problem 3. (Easy)

Consider a producer who uses L inputs to produce K − L outputs. Denote by

w the price vector of the L inputs. Let ak(w, y) be the demand for the k’th

input when the price vector is w and the output vector he wishes to produce

is y. Show the following:

a. C(λw, y) = λC(w, y).

b. C is nondecreasing in any input price wk.

c. C is concave in w.

d. Shepherd’s lemma: If C is differentiable, dC/dwk(w, y) = ak(w, y) (the

kth input commodity).

e. If C is twice continuously differentiable, then for any two commodities j

and k, dak/dwj(w, y) = daj/dwk(w, y).

Problem 4. (Moderately difficult. Based on Radner (1993).)

It is usually assumed that the cost function C is convex in the output vector.

Much of the research on production has been aimed at investigating conditions

under which convexity is induced from more primitive assumptions about the

production process. Convexity often fails when the product is related to the

gathering of information or data processing.

Consider, for example, a firm conducting a telephone survey immediately

following a TV program. Its goal is to collect information about as many
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viewers as possible within 4 units of time. The wage paid to each worker

is w (even when he is idle). In one unit of time, a worker can talk to one

respondent or be involved in the transfer of information to or from exactly

one colleague. At the end of the 4 units of time, the collected information

must be in the hands of one colleague (who will announce the results). Define

the firm’s product, calculate the cost function and examine its convexity.

Problem 5. (Moderately difficult)

Consider a firm producing one commodity using L inputs, which maximizes

production subject to the constraint of nonnegative profits. Show that under

reasonable assumptions, the firm’s supply function satisfies Homogeneity of

degree 0, monotonicity in prices and continuity.

Problem 6. (Standard)

An event that could have occurred with probability 0.5 either did or did not

occur. A firm must provide a report in the form of “the event occurred” or “the

event did not occur”. The quality of the report (the firm’s product), denoted

by q, is the probability that the report is correct. Each of k experts (input)

prepares an independent recommendation which is correct with probability

1 > p > 0.5. The firm bases its report on the k recommendations in order to

maximize q.

a. Calculate the production function q = f(k) for (at least) k = 1, 2, 3.

b. We say that a “discrete” production function is concave if the sequence

of marginal product is nonincreasing. Is the firm’s production function

concave?

Assume that the firm will get a prize of M if its report is actually correct.

Assume that the wage of each worker is w.

c. Explain why it is true that if f is concave, the firm chooses k∗ so that

the k∗th worker is the last one for whom marginal revenue exceeds the

cost of a single worker.

d. Is this conclusion true in our case?

Problem 7. (Moderately difficult)

Come up with a theory for the producer who maximizes production given

the constraint of achieving a level of profit ρ (and does not produce at all if

he cannot).

a. Show conditions under which the producer’s problem has a unique solu-

tion for every price vector.
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b. How does the supply of the good change with its price and the price of

any of the input goods?.

c. What can you say about the change in producer behavior as ρ increases

(in the range where he does indeed produce)?

d. Are there any other observations you can think of (and prove...)?
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Expected Utility

Lotteries

When thinking about decision making, we often distinguish between ac-
tions and consequences. An action is chosen and leads to a consequence.
The rational man has preferences over the set of consequences and is
supposed to choose a feasible action that leads to the most desired con-
sequence. In our discussion of the rational man, we have so far not
distinguished between actions and consequences since it was unneces-
sary for modeling situations where each action deterministically leads to
a particular consequence.

In this lecture we will discuss a decision maker in an environment in
which the correspondence between actions and consequences is not de-
terministic but stochastic. The choice of an action is viewed as choosing
a lottery where the prizes are the consequences. We will be interested
in preferences and choices over the set of lotteries.

Let Z be a set of consequences (prizes). In this lecture we assume that
Z is a finite set. A lottery is a probability measure on Z, i.e., a lottery
p is a function that assigns a nonnegative number p(z) to each prize
z, where Σz∈Zp(z) = 1. The number p(z) is taken to be the objective
probability of obtaining the prize z given the lottery p.

Denote by [z] the degenerate lottery for which [z](z) = 1. We will use
the notation αx ⊕ (1 − α)y to denote the lottery in which the prize x is
realized with probability α and the prize y with probability 1 − α.

Denote by L(Z) the (infinite) space containing all lotteries with prizes
in Z. Given the set of consequences Z, the space of lotteries L(Z) can
be identified with a simplex in Euclidean space: {x ∈ R

Z
+| Σxz = 1}

where R
Z
+ is the set of functions from Z into R+. The extreme points

of the simplex correspond to the degenerate lotteries, where one prize is
received in probability 1. We will discuss preferences over L(Z).
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An implicit assumption in the above formalism is that the decision
maker does not care about the nature of the random factors but only
about the distribution of consequences. To appreciate this point, con-
sider a case in which the probability of rain is 1/2 and Z = {z1, z2},
where z1 = “having an umbrella” and z2 = “not having an umbrella.” A
“lottery” in which you have z1 if it is raining and z2 if it is not, should
not be considered equivalent to the “lottery” in which you have z1 if it is
not raining and z2 if it is. Thus, we have to be careful not to apply the
model in contexts where the attitude toward the consequence depends
on the event realized in each possible contingence.

Preferences

Let us think about examples of “sound” preferences over a space L(Z).
Following are some examples:

• Preference for uniformity: The decision maker prefers the lottery
that is less disperse where dispersion is measured by Σz(p(z) −
1/|Z|)2.

• Preference for most likelihood : The decision maker prefers p to q
if maxzp(z) is greater than maxzq(z).

• The size of the support : The decision maker evaluates each lot-
tery by the number of prizes that can be realized with positive
probability, that is, by the size of the support of the lottery,
supp(p) = {z|p(z) > 0}. He prefers a lottery p over a lottery q

if |supp(p)| ≤ |supp(q)|.
These three examples are degenerate in the sense that the preferences

ignored the consequences and were dependent on the probability vectors
alone. In the following examples, the preferences involve evaluation of
the prizes as well.

• Increasing the probability of a “good” outcome: The set Z is parti-
tioned into two disjoint sets G and B (good and bad), and between
two lotteries the decision maker prefers the lottery p that yields
“good” prizes with higher probability.

• The worst case: The decision maker evaluates lotteries by the
worst possible case. He attaches a number v(z) to each prize z and
p � q if min{v(z)| p(z) > 0} ≥ min{v(z)| q(z) > 0}. This crite-
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rion is often used in Computer Science, where one algorithm is
preferred to another if it functions better in the worst case inde-
pendently of the likelihood of the worst case occurring.

• Comparing the most likely prize: The decision maker considers the
prize in each lottery which is most likely (breaking ties in some
arbitrary way) and compares two lotteries according to a basic
preference relation over Z.

• Lexicographic preferences: The prizes are ordered z1, . . . , zK and
the lottery p is preferred to q if (p(z1), . . . , p(zK)) ≥L (q(z1), . . . ,
q(zK)).

• Expected utility: A number v(z) is attached to each prize and a
lottery p is evaluated according to its expected v, that is, according
to Σzp(z)v(z). Thus,

p � q if U(p) = Σz∈Zp(z)v(z) ≥ U(q) = Σz∈Zq(z)v(z).

Note that the above examples constitute ingredients which could be
combined in various ways to form an even richer class of examples. For
example, one preference can be employed as long as it is “decisive” and
a second preference can be used to break ties when it is not.

The richness of examples calls for the classification of preference re-
lations over lotteries and the study of properties that these relations
satisfy. The methodology we follow is to formally state general princi-
ples (axioms) that may apply to preferences over the space of lotteries.
Each axiom carries with it a consistency requirement or involves a pro-
cedural aspect of decision making. When a set of axioms characterize a
family of preferences, we will consider the set of axioms as justification
for focusing on that specific family.

Von Neumann-Morgenstern Axiomatization

The version of the von Neumann-Morgenstern axiomatization presented
here uses two axioms, the independence and continuity axioms.

The Independence Axiom

In order to state the first axiom we require an additional concept, called
Compound lotteries (fig. 8.1): Given a K-tuple of lotteries (pk)k=1,...,K

and aK-tuple of nonnegative numbers (αk)k=1,...,K that sum up to 1, de-
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Figure 8.1
The compound lottery ⊕K

k=1αkpk.

fine ⊕K
k=1αkp

k to be the lottery for which (⊕K
k=1αkp

k)(z) = ΣK
k=1αkp

k(z).
Verify that ⊕K

k=1αkp
k is indeed a lottery. When only two lotteries p1

and p2 are involved, we use the notation α1p
1 ⊕ (1 − α1)p2.

We think of ⊕K
k=1αkp

k as a compound lottery with the following two
stages:

Stage 1 : It is randomly determined which of the lotteries p1, . . . , pK

is realized; αk is the probability that pk is realized.
Stage 2 : The prize received is randomly drawn from the lottery de-

termined in stage 1.

The random factors in the two stages are taken to be independent.
When we compare two compound lotteries, αp⊕(1 − α)r and
αq⊕(1 − α)r, we tend to simplify the comparison and form our pref-
erence on the basis of the comparison between p and q. This intuition
is translated into the following axiom:

Independence (I):

For any p, q, r ∈ L(Z) and any α ∈ (0, 1),

p � q iff αp⊕ (1 − α)r � αq ⊕ (1 − α)r.

The following property follows from I :

I∗:

Let {pk}k=1,..,K , be a vector lotteries, qk∗
a lottery and (αk)k=1,..,K an

array of non-negative numbers such that αk∗ > 0 and
∑

k αk = 1. Then,

⊕K
k=1αkp

k � ⊕K
k=1αkq

k when pk = qk for all k but k∗ iff pk∗ � qk∗
.
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To see it,

⊕k=1,...,Kαkp
k = αk∗pk∗ ⊕ (1 − αk∗)(⊕k �=k∗ [αk/(1 − αk∗)]pk) �

αk∗qk∗ ⊕ (1 − αk∗)(⊕k �=k∗ [αk/(1 − αk∗)]pk) = ⊕K
k=1αkq

k iff pk∗ � qk∗
.

The Continuity Axiom

Once again we will employ a continuity assumption that is basically
the same as the one we employed for the consumer model. Continuity
means that the preferences are not overly sensitive to small changes in
the probabilities.

Continuity (C):

If p � q, then there are neighborhoods B(p) of p and B(q) of q (when
presented as vectors in R

|Z|
+ ), such that

for all p′ ∈ B(p) and q′ ∈ B(q), p′ � q′.

Verify that the continuity assumption implies the following property
which sometimes is presented as an alternative definition of continuity:

C∗:
If p � q � r, then there exists α ∈ (0, 1) such that

q ∼ [αp⊕ (1 − α)r].

Let us check whether some of the examples we discussed earlier satisfy
these two axioms.

• Expected utility: Note that the function U(p) is linear:

U(⊕K
k=1αkp

k) =
∑
z∈Z

[⊕K
k=1αkp

k](z)v(z) =
∑
z∈Z

[
K∑

k=1

αkp
k(z)]v(z)

=
K∑

k=1

αk[
∑
z∈Z

pk(z)v(z)] =
K∑

k=1

αkU(pk).

It follows that any such preference relation satisfies I. Since the
function U(p) is continuous in the probability vector, it also satis-
fies C.

• Increasing the probability of a “good” consequence: Such a prefer-
ence relation satisfies the two axioms since it can be represented
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by the expectation of v where v(z) = 1 for z ∈ G and v(z) = 0 for
z ∈ B.

• Preferences for most likelihood : This preference relation is contin-
uous (as the function max{p1, . . . , pK} which represents it is con-
tinuous in probabilities). It does not satisfy I since, for example,
although [z1] ∼ [z2], [z1] = 1/2[z1] ⊕ 1/2[z1] � 1/2[z1] ⊕ 1/2[z2].

• Lexicographic preferences: Such a preference relation satisfies I
but not C (verify).

• The worst case: The preference relation does not satisfy C. In
the two-prize case where v(z1) > v(z2), [z1] � 1/2[z1] ⊕ 1/2[z2].
Viewed as points in R

2
+, we can rewrite this as (1, 0) � (1/2, 1/2).

Any neighborhood of (1, 0) contains lotteries that are not strictly
preferred to (1/2, 1/2) and thus C is not satisfied. The preference
relation also does not satisfy I ([z1] � [z2] but 1/2[z1] ⊕ 1/2[z2] ∼
[z2].)

Utility Representation

By Debreu’s theorem we know that for any relation � defined on the
space of lotteries that satisfies C, there is a utility representation U :
L(Z) → R, continuous in the probabilities, such that p � q iff U(p) ≥
U(q). We will use the above axioms to isolate a family of preference
relations which have a representation by a more structured utility func-
tion.

Theorem (vNM):

Let � be a preference relation over L(Z) satisfying I and C. There are
numbers (v(z))z∈Z such that

p � q iff U(p) = Σz∈Zp(z)v(z) ≥ U(q) = Σz∈Zq(z)v(z).

Note the distinction between U(p) (the utility number of the lottery
p) and v(z) (called the Bernoulli numbers or the vNM utilities). The
function v is a utility function representing the preferences on Z and
is the building block for the construction of U(p), a utility function
representing the preferences on L(Z). We often refer to v as a vNM
utility function representing the preferences � over L(Z).
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For the proof of the theorem, we need the following lemma:

Lemma:

Let � be a preference over L(Z) satisfying Axiom I. Let x, y ∈ Z such
that [x] � [y] and 1 ≥ α > β ≥ 0. Then

αx⊕ (1 − α)y � βx⊕ (1 − β)y.

Proof:

If either α = 1 or β = 0, the claim is implied by I. Otherwise, by I,
αx⊕ (1−α)y � [y]. Using I again we get: αx⊕ (1−α)y � (β/α)(αx ⊕
(1 − α)y) ⊕ (1−β/α)[y] = βx ⊕ (1−β)y.

Proof of the theorem:

Let M and m be a best and a worst certain lotteries in L(Z).
Consider first the case that M ∼ m. It follows from I∗ that p ∼ m for

any p and thus p ∼ q for all p,q ∈ L(Z). Thus, any constant utility func-
tion represents �. Choosing v(z) = 0 for all z we have Σ

z∈Z
p(z)v(z) = 0

for all p ∈ L(Z).
Now consider the case that M � m. By C∗ and the lemma, there is

a single number v(z) ∈ [0, 1] such that v(z)M ⊕ (1−v(z))m ∼ [z]. (In
particular, v(M) = 1 and v(m) = 0). By I∗ we obtain that

p ∼ (Σz∈Zp(z)v(z))M ⊕ (1 − Σz∈Zp(z)v(z))m.

And by the lemma p � q iff Σz∈Zp(z)v(z) ≥ Σz∈Zq(z)v(z).

The Uniqueness of vNM Utilities

The vNM utilities are unique up to positive affine transformation (namely,
multiplication by a positive number and adding any scalar) and are not
invariant to arbitrary monotonic transformation. Consider a preference
relation � defined over L(Z) and let v(z) be the vNM utilities represent-
ing the preference relation. Of course, defining w(z) = αv(z) + β for all z
(for some α > 0 and some β), the utility function W (p) = Σz∈Zp(z)w(z)
also represents �.
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Furthermore, assume that W (p) = Σzp(z)w(z) represents the prefer-
ences � as well. We will show that w must be a positive affine transfor-
mation of v. To see this, let α > 0 and β satisfy

w(M) = αv(M) + β and w(m) = αv(m) + β

(the existence of α > 0 and β is guaranteed by v(M) > v(m) andw(M) >
w(m)). For any z ∈ Z there must be a number p such that [z] ∼
pM ⊕ (1 − p)m, so it must be that

w(z) = pw(M) + (1 − p)w(m)
= p[αv(M) + β] + (1 − p)[αv(m) + β]
= α[pv(M) + (1 − p)v(m)] + β

= αv(z) + β.

The Dutch Book Argument

There are those who consider expected utility maximization to be a
normative principle. One of the arguments made to support this view
is the following Dutch book argument. Assume that L1 � L2 but that
αL⊕ (1 − α)L2 � αL⊕ (1 − α)L1. We can perform the following trick
on the decision maker:

1. Take αL⊕ (1 − α)L1 (we can describe this as a contingency with
random event E, which we both agree has probability 1 − α).

2. Take instead αL ⊕ (1 − α)L2, which you prefer (and you pay me
something. . .).

3. Let us agree to replace L2 with L1 in case E occurs (and you pay
me something now).

4. Note that you hold αL⊕ (1 − α)L1.
5. Let us start from the beginning. . .

A Discussion of the Plausibility of the vNM Theory

Many experiments reveal systematic deviations from vNM assumptions.
The most famous one is the Allais paradox. One version of it (see Kah-
neman and Tversky 1979) is the following:
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Choose first between

L1 = 0.25[3, 000]⊕ 0.75[0] and L2 = 0.2[4, 000]⊕ 0.8[0]

and then choose between

L3 = 1[3, 000] and L4 = 0.8[4, 000]⊕ 0.2[0].

Note that L1 = 0.25L3 ⊕ 0.75[0] and L2 = 0.25L4 ⊕ 0.75[0]. Axiom
I requires that the preference between L1 and L2 be respectively the
same as that between L3 and L4. However, in experiments a majority
of people express the preferences L1 ≺ L2 and an even larger majority
express the preferences L3 � L4. This phenomenon persists even among
graduate students in Economics. Among about 228 graduate students
at Princeton, Tel Aviv, and NYU, although they were asked to respond
to the above two choice problems on line one after the other, 68% chose
L2 while 78% chose L3. This means that at least 46% of the students
violated property I.

The Allais example demonstrates (again) the sensitivity of preference
to the framing of the alternatives. When the lotteries L1 and L2 are
presented as they are above, most prefer L2. But, if we present L1 and
L2 as the compound lotteries L1 = 0.25L3 ⊕ 0.75[0] and L2 = 0.25L4 ⊕
0.75[0], most subjects prefer L1 to L2.

Comment:

In the proof of the vNM theorem we have seen that the independence
axiom implies that if one is indifferent between z and z′, one is also
indifferent between z and any lottery with z and z′ as its prizes. This is
not plausible in cases in which one takes into account the fairness of the
random process that selects the prizes. For example, consider a parent
in a situation where he has one gift and two children, M and Y (guess
why I chose these letters). His options are to choose a lottery L(p) that
will award M the gift with probability p and Y with probability 1 − p.
The parent does not favor one child over the other. The vNM approach
“predicts” that he will be indifferent among all lotteries that determine
who receives the gift, while common sense tells us usually he will strictly
prefer L(1/2).
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Subjective Expected Utility (de Finetti’s )

In the above discussion, a lottery was a description of the probabilities
with which each of the prizes is obtained. In many contexts, an alterna-
tive induces an uncertain consequence which depends on certain events
though the probabilities of those events are not given. The attitude of
the decision maker to an alternative will depend on his assessment of
the likelihoods of those events. In this section, we will demonstrate the
basic idea of eliciting liabilities from preferences.

The major work is this area is Savage’s model. However, Savage’s
axiomatization is quite complicated and we will make do here with a
very simple model (due de Finetti) which demonstrates an important
component of the approach.

In this model, the notion of a lottery is replaced by a notion of a bet.
Think about someone betting on a race with K horses (and needless to
say the set of horses represents an exhaustive list of exclusive events).
A bet is a vector (x1, .., xK) with the interpretation that if horse k wins
the decision maker receives $xk (xk can be any real number). Let B be
the set of all bets. Assume that the better has a preference relation on
B.

We will consider three properties of the preference relation:

• Continuity: The standard continuity property we use on the Eu-
clidean space.

• Weak Monotonicity: If xk > yk, then x � y.
• Additivity: If x � y then x+ z � y + z for all z. (Note that this

implies that if x � y, then x+ z � y + z for all z.)

A possible interpretation of the additivity property is as follows: As-
sume that the wealth of the decision maker has two components: One
of them, z, is independent of the choice between the different bets. The
other depends on the bet he chooses: x or y. Additivity states that the
attitude of the decision maker to the bets x and y is independent of z.

Claim:

A preference relation � satisfies Continuity, Weak Monotonicity and
Additivity if and only if there is a probability vector (π1, ..., πK) such
that x � y if and only if

∑
πkxk ≥ ∑

πkyk.
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Proof:

Actually, we have already proved this claim for K = 2 (see Problem Set
2 Question 5). We will prove it now for an arbitrary K, using another
technique:

A preference relation represented by
∑
πkxk obviously satisfies all the

three properties.
In the other direction, assume that � satisfies the three properties.

First, consider the two sets U = {x| x � 0} and D = {x| 0 � x}. Both
are non-empty. By continuity U is closed and D is open. Furthermore,
both are convex. To see that U is convex, note that if x � 0 and y � 0,
then by Additivity x+ y � y � 0. Furthermore, by Additivity if x � 0
then for all λ = m/2n we have λx � 0 and by Continuity λx � 0 for all
λ. By the definition of a preference relation, the sets U and D provide
a partition of R

K , i.e., U ∪D = R
K and U ∩D = ∅.

Now use a separation theorem to conclude that there exists a non-zero
vector π = (π1, ..., πK) and a number c such that U = {x|πx ≥ c} and
D = {x|πx < c}. By Weak Monotonicity, it is easy to see that c = 0,
π �= 0 and πk ≥ 0 for all k. Thus, without loss of generality we can
assume

∑
πk = 1.

Now, x � y if and only if x− y � 0 if and only if π(x− y) ≥ 0 if and
only if πx ≥ πy.

Bibliographic Notes

Recommended readings. Kreps 1990, 72–81 (115–122); Mas-Colell et
al. 1995, chapter 6, A–B.

Expected utility theory is based on von Neumann and Morgenstern
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recent survey of theories of decision under uncertainty see Gilboa (2009).
Machina (1987) remains a recommended survey of alternative theories.
Kahneman and Tversky (1979) is a must read for psychological criticism
of expected utility theory. More recent material is covered in Kahneman
and Tversky (2000).



Problem Set 8

Problem 1. (Standard)

Consider the following preference relations that were described in the text:

“the size of the support” and “comparing the most likely prize”.

a. Check carefully whether they satisfy axioms I and C.

b. These preference relations are not immune to a certain “framing prob-

lem”. Explain.

Problem 2. (Standard. Based on Markowitz (1959).)

One way to construct preferences over lotteries with monetary prizes is by

evaluating each lottery L on the basis of two numbers: Ex(L), the expectation

of L, and var(L), L’s variance. Such a construction may or may not be

consistent with vNM assumptions.

a. Show that the function u(L) = Ex(L) − (1/4)var(L) induces a prefer-

ence relation that is not consistent with the vNM assumptions. (For ex-

ample, consider the mixtures of each of the lotteries [1] and 0.5[0] ⊕ 0.5[4]

with the lottery 0.5[0] ⊕ 0.5[2].)

b. Show that the utility function u(L) = Ex(L) − (Ex(L))2 − var(L) is

consistent with vNM assumptions.

Problem 3. (Standard)

A decision maker has a preference relation � over the space of lotteries L(Z)

having a set of prizes Z. On Sunday he learns that on Monday he will be

told whether he has to choose between L1 and L2 (probability 1 > α > 0) or

between L3 and L4 (probability 1 − α). He will make his choice at that time.

Let us compare between two possible approaches the decision maker can

take.

Approach 1 : He delays his decision to Monday (“why bother with the de-

cision now when I can make up my mind tomorrow. . .”).

Approach 2 : He makes a contingent decision on Sunday regarding what

he will do on Monday, that is, he decides what to do if he faces the choice

between L1 and L2 and what to do if he faces the choice between L3 and L4

(“On Monday morning I will be so busy. . .”).

a. Formulate Approach 2 as a choice between lotteries.
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b. Show that if the preferences of the decision maker satisfy the indepen-

dence axiom, then his choice under Approach 2 will always be the same

as under Approach 1.

Problem 4. (Difficult)

A decision maker is to choose an action from a set A. The set of consequences

is Z. For every action a ∈ A the consequence z∗ is realized with probability

α and any z ∈ Z − {z∗} is realized with probability r(a, z) = (1 − α)q(a, z).

a. Assume that after making his choice he is told that z∗ will not occur and

is given a chance to change his decision. Show that if the decision maker

obeys the Bayesian updating rule and follows vNM axioms, he will not

change his decision.

b. Give an example where a decision maker who follows a nonexpected

utility preference relation or obeys a non-Bayesian updating rule is not

time consistent.

Problem 5. (Standard)

Assume there is a finite number of income levels. An income distribution

specifies the proportion of individuals at each level. Thus, an income distri-

bution has the same mathematical structure as a lottery. Consider the binary

relation “one distribution is more egalitarian than another”.

a. Why is the von Neumann–Morgenstern independence axiom inappropri-

ate for characterizing this type of relation?

b. Suggest and formulate a property that is appropriate, in your opinion,

as an axiom for this relation. Give two examples of preference relations

that satisfy this property.

Problem 6. (Difficult. Based on Miyamoto, Wakker, Bleichrodt, and Peters

(1998).)

A decision maker faces a trade-off between longevity and quality of life. His

preference relation ranks lotteries on the set of all certain outcomes of the form

(q, t) defined as “a life of quality q and length t” (where q and t are nonneg-

ative numbers). Assume that the preference relation satisfies von Neumann–

Morgenstern assumptions and that it also satisfies the following:

• There is indifference between any two certain lotteries [(q, 0)] and
[(q′, 0)].

• Risk neutrality with respect to life duration: an uncertain lifetime
of expected duration T is equally preferred to a certain lifetime
duration T when q is held fixed.
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• Whatever quality of life, the longer the life the better.

a. Show that the preference relation derived from maximizing the expecta-

tion of the function v(q)t, where v(q) > 0 for all q, satisfies the assump-

tions.

b. Show that all preference relations satisfying the above assumptions can

be represented by an expected utility function of the form v(q)t, where

v is a positive function.

Problem 7. (Food for thought)

Consider a decision maker who systematically calculates that 2 + 3 = 6. Con-

struct a “money pump” argument against him. Discuss the argument.
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Risk Aversion

Lotteries with Monetary Prizes

We proceed to a discussion of a decision maker satisfying vNM assump-
tions where the space of prizes Z is a set of real numbers and a ∈ Z is
interpreted as “receiving $a.” Note that in Lecture 8 we assumed the set
Z is finite; here, in contrast, we apply the expected utility approach to
a set that is infinite. For simplicity we will still only consider lotteries
with finite support. In other words, in this lecture, a lottery p is a real
function on Z such that p(z) ≥ 0 for all z ∈ Z, and there is a finite set
Y such that

∑
z∈Y p(z) = 1. It is easy to extend the axiomatization

presented in Lecture 8 for this case.
We will make special assumptions that fit the interpretation of the

members of Z as sums of money. Recall [x] denotes the lottery that yields
the prize x with certainty. We will say that � satisfies monotonicity if
a > b implies [a] � [b].

From here on we focus the discussion on preference relations over
the space of lotteries for which there is a continuous function u, such
that the preference relation over lotteries is represented by the function
Eu(p) =

∑
z∈Z p(z)u(z). The function Eu assigns to the lottery p the

expectation of the random variable that receives the value u(x) with a
probability p(x).

The following argument, called the St. Petersburg Paradox, is some-
times presented as a justification for assuming that vNM utility func-
tions are bounded. Assume that a decision maker has an unbounded
vNM utility function u. Consider playing the following “trick” on him:

1. Assume he possesses wealth x0.
2. Offer him a lottery that will reduce his wealth to 0 with probability

1/2 and will increase his wealth to x1 with probability 1/2 so that
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u(x0) < [u(0) + u(x1)]/2. By the unboundedness of u, there exists
such an x1.

3. If he loses, you are happy. If he is lucky, a moment before you give
him x1, offer him a lottery that will give him x2 with probability 1/2
and 0 otherwise, where x2 is such that u(x1) < [u(0) + u(x2)]/2.

4. And so on. . .

Our (poor) decision maker will find himself with wealth 0 with proba-
bility 1!

First-Order Stochastic Domination

We say that p first-order stochastically dominates q (written as pD1q) if
p � q for any � on L(Z) satisfying vNM assumptions as well as mono-
tonicity in money. That is, pD1q if Eu(p) ≥ Eu(q) for all increasing u.
This is the simplest example of questions of the type: “Given a set of
preference relations on L(Z), for what pairs p, q ∈ L(Z) is p � q for all
� in the set?” In the problem set you will discuss another example of
this kind of question.

Obviously, pD1q if the entire support of p is to the right of the entire
support of q. But, we are interested in a more interesting condition on
a pair of lotteries p and q, one that will be not only sufficient, but also
necessary for p to first-order stochastically dominate q.

For any lottery p and a number x, define G(p, x) =
∑

z≥x p(z) (the
probability that the lottery p yields a prize at least as high as x). Denote
by F (p, x) the cumulative distribution function of p, that is, F (p, x) =∑

z≤x p(z).

Claim:

pD1q iff for all x, G(p, x) ≥ G(q, x) (alternatively, pD1q iff for all x,
F (p, x) ≤ F (q, x)). (See fig. 9.1.)
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Figure 9.1
p first-order stochastically dominates q.

Proof:

Let x0 < x1 < x2 < . . . < xK be the prizes in the union of the supports
of p and q. First, note the following alternative expression for Eu(p):

Eu(p) =
∑
k≥0

p(xk)u(xk) = u(x0) +
∑
k≥1

G(p, xk)(u(xk) − u(xk−1)).

Now, if G(p, xk) ≥ G(q, xk) for all k, then for all increasing u,

Eu(p) = u(x0) +
∑
k≥1

G(p, xk)(u(xk) − u(xk−1)) ≥

u(x0) +
∑
k≥1

G(q, xk)(u(xk) − u(xk−1)) = Eu(q).

Conversely, if there exists k∗ for which G(p, xk∗) < G(q, xk∗ ), then
we can find an increasing function u so that Eu(p) < Eu(q), by setting
u(xk∗) − u(xk∗−1) to be very large and the other increments to be very
small.

Risk Aversion

We say that � is risk averse if for any lottery p, [Ep] � p.
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We will see now that for a decision maker with preferences � obeying
the vNM axioms, risk aversion is closely related to the concavity of the
vNM utility function representing �.

First recall some basic properties of concave functions (if you are not
familiar with those properties, this will be an excellent opportunity for
you to prove them yourself):

1. An increasing and concave function must be continuous (but not
necessarily differentiable).

2. The Jensen Inequality: If u is concave, then for any finite sequence
(αk)k=1,...,K of positive numbers that sum up to 1,
u(

∑K
k=1 αkxk) ≥ ∑K

k=1 αku(xk).

3. The Three Strings Lemma: For any a < b < c we have

[u(c) − u(b)]/(c− b) ≤ [u(c) − u(a)]/(c− a) ≤ [u(b) − u(a)]/(b− a).

4. If u is twice differentiable, then for any a < c, u′(a) ≥ u′(c), and
thus u′′(x) ≤ 0 for all x.

Claim:

Let � be a preference on L(Z) represented by the vNM utility function
u. The preference relation � is risk averse iff u is concave.

Proof:

Assume that u is concave. By the Jensen Inequality, for any lottery p,
u(E(p)) ≥ Eu(p) and thus [E(p)] � p.

Assume that � is risk averse and that u represents �. For all α ∈
(0, 1) and for all x, y ∈ Z, we have by risk aversion [αx + (1 − α)y] �
αx⊕ (1 − α)y and thus u(αx+ (1 − α)y) ≥ αu(x) + (1 − α)u(y), that
is, u is concave.

Certainty Equivalence and the Risk Premium

Let E(p) be the expectation of the lottery p, that is, E(p) =
∑

z∈Z p(z)z.
Given a preference relation � over the space L(Z), the certainty equiva-
lence of a lottery p, CE(p), is a prize satisfying [CE(p)] ∼ p. (Verify the
existence of CE(p) is guaranteed by assuming that � is monotonic in the
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Figure 9.2
CE and risk premium.

sense that if pD1q then p � q and continuous in the sense that the sets
{c ∈ R | [c] � p} and {c ∈ R | p � [c]} are open). The risk premium of
p is the difference R(P ) = E(p) − CE(p). By definition, the preferences
are risk averse if and only if R(p) ≥ 0 for all p. (See fig. 9.2.)

The “More Risk Averse” Relation

We wish to formalize the statement “one decision maker is more risk
averse than another”. To understand the logic of the following defini-
tions let us start with an analogous phrase: “A is more war averse than
B”. One possible meaning of this phrase is that whenever A is ready to
go to war, B is as well. Another possible meaning is that when facing
the threat of war, A is ready to agree to a less attractive compromise
in order to prevent war than B. (Note that the assumption that A and
B share the same concepts of “war”and “peace”is implicit in these in-
terpretations.) The following two definitions are analogous to these two
interpretations. (See Fig. 9.2.)

1. The preference relation �1 is more risk averse than �2 if for any
lottery p and degenerate lottery c, p �1 c implies that p �2 c.

In case the preferences are monotonic, we have a second definition:
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Figure 9.3
1 is more risk averse than 2.

2. The preference relation �1 is more risk averse than �2 if CE1(p) ≤
CE2(p) for all p.

In case the preferences satisfy vNM assumptions, we have a third
definition:

3. Let u1 and u2 be vNM utility functions representing �1 and �2,
respectively. The preference relation �1 is more risk averse than
�2 if the function ϕ, defined by u1(t) = ϕ(u2(t)), is concave.

Note that definition (1) is meaningful in any space of prizes (not only
those in which consequences are numerical) and for a general set of
preferences (and not only those satisfying vNM assumptions).

Claim:

If both �1 and �2 are preference relations on L(Z) represented by in-
creasing and continuous vNM utility functions, then the three definitions
are equivalent.
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Proof:

• If (2), then (1).
Assume (2). If p �1 [c], then by transitivity [CE1(p)] �1 [c] and
by the monotonicity of �1 we have CE1(p) ≥ c, which implies also
that CE2(p) ≥ c, and by transitivity of �2, p �2 [c].

• If (3) then (2).
By definition, Eui(p) = ui(CEi(p)). Thus, CEi(p) = u−1

i (Eui(p)).
If ϕ = u1u

−1
2 is concave, then by the Jensen Inequality:

u1(CE2(p)) = u1(u−1
2 (Eu2(p)) = ϕ(

∑
k

p(xk)u2(xk)) ≥

(
∑

k

p(xk)ϕu2(xk)) =
∑

k

p(xk)u1(xk) = E(u1(p)) = u1(CE1(p)).

Since u1 is increasing, CE2(p) ≥ CE1(p).
• If (1), then (3).

Consider three numbers u2(x) < u2(y) < u2(z) in the range of u2

and let λ ∈ (0, 1) satisfy u2(y) = λu2(x) + (1 − λ)u2(z). Let us
prove that u1(y) ≥ λu1(x) + (1 − λ)u1(z).
If u1(y) < λu1(x) + (1 − λ)u1(z), then for some μ > λ we have
both u1(y) < μu1(x) + (1 − μ)u1(z) and u2(y) > μu2(x) + (1 − μ)u2(z),
that is y ≺1 μx⊕ (1 − μ)z and y �2 μx⊕ (1 − μ)z, which contra-
dicts (1). Thus, y �1 λx⊕ (1 − λ)z and u1(y) ≥ λu1(x) +
(1 − λ)u1(z), that is, ϕ(u2(y)) ≥ λϕ(u2(x)) + (1 − λ)ϕ(u2(z)). Thus,
ϕ is concave.

The Coefficient of Absolute Risk Aversion

The following is another definition of the relation “more risk averse” ap-
plied to the case in which vNM utility functions are twice differentiable:

4. Let u1 and u2 be twice differentiable vNM utility functions rep-
resenting �1 and �2, respectively. The preference relation �1 is
more risk averse than �2 if r1(x) ≥ r2(x) for all x, where ri(x) =
−u′′i (x)/u′i(x).

The number r(x) = −u′′(x)/u′(x) is called the coefficient of absolute
risk aversion of u at x. We will see that a higher coefficient of absolute
risk aversion means a more risk-averse decision maker.
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To see that (3) and (4) are equivalent, note the following chain of
equivalences:

• Definition (3) (that is, u1u
−1
2 is concave) is satisfied iff

• the function d/dt[u1(u−1
2 (t))] is nonincreasing in t iff

• u′1(u
−1
2 (t))/u′2(u

−1
2 (t)) is nonincreasing in t (since (ϕ−1)′(t) = 1/ϕ′(ϕ−1(t)))

iff
• u′1(x)/u

′
2(x) is nonincreasing in x (since u−1

2 (t) is increasing
in t) iff

• log[(u′1/u′2)(x)] = logu′1(x) − logu′2(x) is nonincreasing in x iff
• the derivative of logu′1(x) − logu′2(x) is nonpositive iff
• r2(x) − r1(x) ≤ 0 for all x where ri(x) = −u′′i (x)/u′i(x) iff
• definition (4) is satisfied.

For a better understating of the coefficient of absolute risk aversion,
it is useful to look at the preferences on the restricted domain of lot-
teries of the type (x1, x2) = px1 ⊕ (1 − p)x2, where the probability p is
fixed. Denote by u a continuously differentiable vNM utility function
that represents a risk-averse preference.

Let x2 = ψ(x1) be the function describing the indifference curve through
(t, t), the point representing [t]. Thus, ψ(t) = t.

It follows from risk aversion that all lotteries with expectation t, that
is, all lotteries on the line {(x1, x2)| px1 + (1 − p)x2 = t}, are not above
the indifference curve through (t, t). Thus, ψ′(x1) = −p/(1 − p).

By definition of u as a vNM utility function representing the pref-
erences over the space of lotteries, we have pu(x1) + (1 − p)u(ψ(x1)) =
u(t). Taking the derivative with respect to x1, we obtain pu′(x1) +
(1−p)u′(ψ(x1))ψ′(x1) = 0. Taking the derivative with respect to x1 once
again, we obtain

pu′′(x1) + (1−p)u′′(ψ(x1))[ψ′(x1)]2 + (1 − p)u′(ψ(x1))ψ′′(x1) = 0.

At x1 = t we have

pu′′(t) + u′′(t)p2/(1−p) + (1−p)u′(t)ψ′′(t) = 0.

Therefore,

ψ′′(t) = −u′′(t)/u′(t)[p/(1−p)2] = r(t)[p/(1−p)2].
Note that on this restricted space of lotteries, �1 is more risk averse

than �2 in the sense of definition (1) iff the indifference curve of �1

through (t, t), denoted by ψ1, is never below the indifference curve of �2
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Figure 9.4
1 is more risk averse than 2.

through (t, t), denoted by ψ2. Combined with ψ′
1(t) = ψ′

2(t), we obtain
that ψ′′

1 (t) ≥ ψ′′
2 (t) and thus r2(t) ≤ r1(t). (See fig. 9.4.)

The Doctrine of Consequentialism

Conduct the following “thought experiment”:
You have $2000 in your bank account. You have to choose between

1. a sure loss of $500
and

2. a lottery in which you lose $1000 with probability 1/2 and lose 0
with probability 1/2.

What is your choice?

Now assume that you have $1000 in your account and that you have
to choose between

3. a certain gain of $500
and

4. a lottery in which you win $1000 with probability 1/2 and win 0
with probability 1/2.

What is your choice?
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Of Kahneman and Tversky (1979)’s subjects, in the first case 69%
preferred the lottery to the certain loss (i.e. they chose (2)), while in
the second case 84% preferred the certain gain of $500 (i.e. they chose
(3)). These results indicate that about half of the population exhibit
a preference for (2) over (1) and (3) over (4). Such a preference does
not conflict with expected utility theory if we interpret a prize to reflect
a “monetary change.” However, if we assume that the decision maker
takes the final wealth levels to be his prizes, we have a problem: in terms
of final wealth levels, both choice problems are between a certain $1500
and a lottery that yields $2000 or $1000 with probability 1/2 each.

Incidentally, in the results from my site (using a somewhat different
framing of the question) only 35% of 846 subjects chose (2) over (1).
When the dollars were replaced with years of life, the proportion of
subjects who chose the lottery increased to 54%.

Nevertheless, in the economic literature it is usually assumed that a
decision maker’s preferences over wealth changes are induced from his
preferences with regard to “final wealth levels.” Formally, when starting
with wealth w, denote by �w the decision maker’s preferences over lot-
teries in which the prizes are interpreted as “changes” in wealth. By the
doctrine of consequentialism all relations �w are derived from the same
preference relation, �, defined over the “final wealth levels” by p �w q

iff w + p � w + q (where w + p is the lottery that awards a prize w + x

with probability p(x)). If � is represented by a vNM utility function u,
this doctrine implies that for all w, the function vw(x) = u(w + x) is a
vNM utility function representing the preferences �w.

Invariance to Wealth

We say that the preference relation � exhibits invariance to wealth (in
the literature it is often called constant absolute risk aversion) if the
induced preference relation �w is independent of w, that is, (w + L1) �
(w + L2) is true or false independent of w.

We will see that if u is a continuous vNM utility function representing
preferences �, which exhibit risk aversion and invariance to wealth, then
u must be exponential or linear.

Let us first confine ourselves to the Δ − grid prize space, Z = {x | x =
nΔ for some integer n}. This domain has a special meaning when we
take Δ to be the smallest (indivisible) unit of money.
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By continuity of u, for any wealth level x there is a number q such
that (1 − q)(x − Δ) ⊕ q(x+ Δ) ∼ x. By the invariance to wealth, q is
independent of x. Thus, we have u(x+ Δ) − u(x) = ((1 − q)/q)[u(x) −
u(x− Δ)] for all x. This means that the increments in the function u,
when x is increased by Δ, constitute a geometric sequence with a factor
of (1 − q)/q (where q might depend on Δ). Using the formula for the
sum of a geometric sequence, we conclude that the function u, defined
on the Δ − grid, must equal a− b(1−q

q )
x
Δ or a+ b x

Δ for some a and b.
Note, that the comparisons of the lottery [0] with the simple lotteries

involving a gain and loss of Δ are sufficient to characterize a unique
preference relation that is consistent with: (i) the doctrine of conse-
quentialism, (ii) the assumption that the preferences regarding lotteries
over changes in wealth are independent of the initial wealth and (iii) the
expected utility assumptions regarding the space of lotteries in which
the prizes are the final wealth levels. Many researchers have tried to
reveal the decision maker’s preferences experimentally under these as-
sumption using the question: ”What is the probability q that will make
you indifferent between a gain of $Δ with probability q and a loss of $Δ
with probability 1 − q?” The results vary. Moreover, asking individuals
different questions of this type is likely to lead to inconsistent answers.

Let us now return to the case of Z = R and look at the prefer-
ences over the restricted space of all lotteries of the type (x1, x2) =
px1 ⊕ (1 − p)x2 for some arbitrary fixed probability p ∈ (0, 1). De-
note the indifference curve through (t, t) by x2 = ψt(x1). Thus, [t] ∼
px1 ⊕ (1 − p)ψt(x1). Since � exhibits constant absolute risk aversion, it
must be that [0] ∼ p(x1 − t) ⊕ (1 − p)(ψt(x1) − t) and thus ψ0(x1 − t) =
ψt(x1) − t, or ψt(x1) = ψ0(x1 − t) + t. In other words, the indifference
curve through (t, t) is the indifference curve through (0, 0) shifted in the
direction of (t, t).

Assuming that the function u is differentiable, we derive that ψ′′
t (t) =

ψ′′
0 (0). We have already seen that ψ′′

t (t) = −[p/(1−p)2]
[u′′i (t)/u′i(t)] and thus there exists a constant α such that
−u′′(t)/u′(t) = α for all t. This implies that [logu′(t)]′ = −α for all t
and logu′(t) = −αt+ β for some β. It follows that u′(t) = e−αt+β . If
α = 0, the function u(t) must be linear (implying risk neutrality). If
α �= 0, it must be that u(t) = ce−αt + d for some c and d.

To conclude, if u is a vNM continuous utility function representing
preferences that are monotonic and exhibit both risk aversion and invari-
ance to wealth, then u is an affine transformation of either the function
t or a function −e−αt (with α > 0).
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Critique of the Doctrine of Consequentialism

Denote by 1/2(−D) ⊕ 1/2(+G) the lottery in which there is an equal
probability of gaining $G and losing $D. Consider a risk-averse decision
maker who likes money, obeys expected utility theory, and adheres to
the doctrine of consequentialism. Matthew Rabin noted that if such
a decision maker turns down the lottery L = 1/2(−10) ⊕ 1/2(+11), at
any wealth level between $0 and $5000 (a quite plausible assumption),
then at the wealth level $4000 he must reject the lottery 1/2(−100) ⊕
1/2(+71000) (a quite ridiculous conclusion).

The intuition for this observation is quite simple. Since L is rejected
at w + 10 we have that u(w + 10) ≥ [u(w + 21) + u(w)]/2. Therefore,
u(w + 10) − u(w) ≥ u(w + 21) − u(w + 10) or

10
11

(
u(w + 10) − u(w)

10

)
≥ u(w + 21) − u(w + 10)

11
.

By the concavity of u the right hand side of this equation is at least as
high as the marginal utility at w + 21 whereas the left hand side is at
most 10/11 times the marginal utility at w. Thus the marginal utility
at w + 21 is at most 10/11 the marginal utility at w.

Thus, the sequence of marginal utilities within the domain of wealth
levels in which L is rejected falls at least in a geometric rate. This
implies that for the lottery 1/2(−D) ⊕ 1/2(+G) to be accepted even for
a relatively low D, one would need a huge G.

What conclusions should we draw from this observation? In my opin-
ion, in contrast to what some scholars claim, this is not a refutation of
expected utility theory. Rabin’s argument relies on the doctrine of con-
sequentialism, which is not a part of expected utility theory. Expected
utility theory is invariant to the interpretation of the prizes. Indepen-
dently of the theory of decision making under uncertainty that we use,
the set of prizes should be the set of consequences in the mind of the de-
cision maker. Thus, it is equally reasonable to assume the consequences
are “wealth changes” or “final wealth levels.”

I treat Rabin’s argument as further evidence of the empirically prob-
lematic nature of the doctrine of consequentialism according to which
the decision maker makes all decisions having in mind a preference re-
lation over the same set of final consequences. It also demonstrates how
carefully we should tread when trying to estimate real life agents’ utility
functions. The practice of estimating an economic agent’s risk aversion
parameters for small lotteries might lead to misleading conclusions if
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such estimates are used to characterize the decision maker’s preferences
regarding lotteries over large sums.

Bibliographic Notes

Recommended readings. Kreps 1990, 81–98; Mas-Colell et al. 1995,
Chapter 6, C–D.
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The St. Petersburg Paradox was suggested by Daniel Bernoulli in
1738 (see Bernoulli 1954). The notion of stochastic domination was in-
troduced into the economic literature by Rothschild and Stiglitz (1970).
Rabin’s argument is based on Rabin (2000).
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Problem 1. (Standard)

a. Show that a sequence of numbers (a1, ..., ak) satisfies that
∑

akxk ≥ 0

for all vectors (x1, ..., xk) such that xk > 0 for all k iff ak ≥ 0 for all k.

b. Show that a sequence of numbers (a1, ..., ak) satisfies that
∑

akxk ≥ 0

for all vectors (x1, ..., xk) such that x1 > x2 > ... > xK > xK+1 = 0 iff∑l
k=1 ak ≥ 0 for all l.

Problem 2. (Standard. Based on Rothschild and Stiglitz (1970).)

We say that p second-order stochastically dominates q and denote this by pD2q

if p � q for all preferences � satisfying the vNM assumptions, monotonicity

and risk aversion.

a. Explain why pD1q implies pD2q.

b. Let p and ε be lotteries. Define p + ε to be the lottery that yields the

prize t with the probability Σα+β=tp(α)ε(β). Interpret p + ε. Show that

if ε is a lottery with expectation 0, then for all p, pD2(p + ε).

c. (More difficult) Show that pD2q if and only if for all t < K, Σt
k=0

[G(p, xk+1) − G(q, xk+1)][xk+1 − xk] ≥ 0 where x0 < . . . < xK are all the

prizes in the support of either p or q and G(p, x) = Σz≥xp(z).

Problem 3. (Standard. Based on Slovic and Lichtenstein (1968).)

Consider a phenomenon called preference reversal. Let L1 = 8/9[$4] ⊕ 1/9[$0]

and L2 = 1/9[$40] ⊕ 8/9[$0].

Discuss the phenomenon that many people prefer L1 to L2 but when asked

to evaluate the certainty equivalence of these lotteries they attach a lower

value to L1 than to L2.

Problem 4. (Standard)

Consider a consumer’s preference relation over K-tuples describing quantities

of K uncertain assets. Denote the random return on the kth asset by Zk.

Assume that the random variables (Z1, . . . , ZK) are independent and take

positive values with probability 1. If the consumer buys the combination of

assets (x1, . . . , xK) and if the vector of realized returns is (z1, . . . , zK), then

the consumer’s total wealth is
∑K

k=1 xkzk. Assume that the consumer satisfies
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vNM assumptions, that is, there is a function v (over the sum of his returns)

so that he maximizes the expected value of v. Assume that v is increasing

and concave. The consumer preferences over the space of the lotteries induce

preferences on the space of investments. Show that the induced preferences

are monotonic and convex.

Problem 5. (Standard. Based on Rubinstein (2002).)

Adam lives in the Garden of Eden and eats only apples. Time in the garden

is discrete (t = 1, 2, . . .) and apples are eaten only in discrete units. Adam

possesses preferences over the set of streams of apple consumption. Assume

that:

a. Adam likes to eat up to 2 apples a day and cannot bear to eat 3 apples

a day.

b. Adam is impatient. He would be delighted to increase his consumption

on day t from 0 to 1 or from 1 to 2 apples at the expense of an apple he

is promised a day later.

c. In any day in which he does not have an apple, he prefers to get one

apple immediately in exchange for two apples tomorrow.

d. Adam expects to live for 120 years.

Show that if (poor) Adam is offered a stream of 2 apples starting in day 4

for the rest of his expected life, he would be willing to exchange that offer for

one apple right away.

Problem 6. (Moderately difficult. Based on Yaari (1987).)

In this problem you will encounter Quiggin and Yaari’s functional, one of the

main alternatives to expected utility theory.

Recall that expected utility can be written as U(p) =
∑K

k=1 p(zk)u(zk) where

z0 < z1 < ... < zK are the prizes in the support of p. Let

W (p) =
∑K

k=1 f(Gp(zk))[zk − zk−1], where f : [0, 1] → [0, 1] is a continuous

increasing function and Gp(zk) =
∑

j≥k p(zj). (p(z) is the probability that

the lottery p yields z and Gp is the “anti-distribution” of p.)

a. The literature often refers to W as the dual expected utility operator.

In what sense is W dual to U?

b. Show that W induces a preference relation on L(z) which satisfies the

continuity axiom but may not satisfy the independence axiom.

c. What are the difficulties with a functional form of the type

Σzf(p(z))u(z)? (See Handa (1977).)
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Problem 7. (The two envelopes paradox)

Assume that a number 2n is chosen with probability 2n/3n+1 and the

amounts of money 2n, 2n+1 are put into two envelopes. One envelope is chosen

randomly and given to you and the other is given to your friend. Whatever

the amount of money in your envelope, the expected amount in your friend’s

envelope is larger (verify it). Thus, it is worthwhile for you to switch envelopes

with him even without opening the envelope! What do you think about this

paradoxical conclusion?
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Social Choice

Aggregation of Preference Relations

When a rational decision maker forms a preference relation, it is often
on the basis of more primitive relations. For example, the choice of a
PC may depend on considerations such as “size of memory”, “ranking
by PC magazine”, and “price”. Each of these considerations expresses
a preference relation on the set of PCs. In this lecture we look at some
of the logical properties and problems that arise in the formation of
preferences on the basis of more primitive preference relations.

Although the aggregation of preference relations can be thought of in
a context of a single individual’s decision making, the classic context in
which preference aggregation is discussed is “social choice”, where the
“will of the people” is thought of as an aggregation of the preference
relations held by members of society.

The foundations of social choice theory lie in the “Paradox of Voting”.
LetX = {a, b, c} be a set of alternatives. Consider a society that consists
of three members called 1, 2, and 3. Their rankings ofX are a �1 b �1 c,
b �2 c �2 a, and c �3 a �3 b. A natural criterion for the determination
of collective opinion on the basis of individuals’ preference relations is the
majority rule. According to the majority rule, a � b, b � c, and c � a,
which conflicts with the transitivity of the social preferences. Note that
although the majority rule does not induce a transitive social relation
for all profiles of individuals’ preference relations, transitivity might be
obtained when we restrict ourselves to a smaller domain of profiles (see
problem 3 in the problem set).

The interest in social choice in economics is motivated by the recogni-
tion that explicit methods for the aggregation of preference relations are
essential for doing any welfare economics. Social choice theory is also re-
lated to the design of voting systems, which are methods for determining
social action on the basis of individuals’ preferences.
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The Basic Model

A basic model of social choice consists of the following:

• X : a set of social alternatives.
• N : a finite set of individuals (denote the number of elements in N

by n).
• �i: individual i’s ordering on X (an ordering is a preference rela-

tion with no indifferences, i.e., for no x �= y, x ∼i y).
• Profile: An n-tuple of orderings (�1, . . . ,�n) interpreted as a cer-

tain “state of society”.
• SWF (Social Welfare Function): A function that assigns a single

(social) preference relation (not necessarily an ordering) to every
profile.

Note that

1. The assumption that the domain of an SWF includes only strict
preferences is made only for simplicity of presentation.

2. An SWF attaches a preference relation to every possible profile and
not just to a single profile.

3. The SWF is required to produce a complete preference relation. An
alternative concept, called Social Choice Function, attaches a social
alternative, interpreted as the society’s choice, to every profile of
preference relations.

4. An SWF aggregates only ordinal preference relations. The frame-
work does not allow us to make a statement, relevant in life for
determining social preferences, such as “the society prefers a to b
since agent 1 prefers b to a but agent 2 prefers a to b much more”.

5. In this model we cannot express a consideration of the type “I
prefer what society prefers”.

6. The elements in X are social alternatives. Thus, an individual’s
preferences may exhibit considerations of fairness and concern about
other individuals’ well-being.

Examples

Let us consider some examples of aggregation procedures.
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1. F (�1, . . . ,�n) = �∗ for some preference relation �∗ . (This is a
degenerate SWF that does not account for the individuals’ prefer-
ences.)

2. Define x→ z if a majority of individuals prefer x to z. Order the
alternatives by the number of “victories” they score, that is, x is
socially preferred to y if |{z|x→ z}| ≥ |{z|y → z}|.

3. For X = {a, b}, a � b unless 2/3 of the individuals prefer b to a.
4. “The anti-dictator”: There is an individual i so that x is preferred

to y if and only if y �i x.
5. Define d(�;�1, . . . ,�n) as the number of (x, y, i) for which x �i y

and y � x. The function d can be interpreted as the sum of the
distances between the preference relation � and the n preference
relations of the individuals. Choose F (�1, . . . ,�n) to be an order-
ing that minimizes d(�;�1, . . . ,�n) (ties are broken arbitrarily).

6. Let F (�1, . . . ,�n) be the ordering that is the most common among
(�1, . . . ,�n) (with ties broken in some predetermined way).

Axioms

Once again we use the axiomatization methodology. We suggest a set
of, hopefully sound, axioms on social welfare functions and study their
implications.

Let F be an SWF. We often use � as a short form of F (�1, . . . ,�n).

Condition Par (Pareto):

For all x, y ∈ X and for every profile (�i)i∈N , if x �i y for all i then
x � y.

The Pareto axiom requires that if all individuals prefer one alternative
over the other, then the social preferences agree with the individuals’.

Condition IIA (Independence of Irrelevant Alternatives):

For any pair x, y ∈ X and any two profiles ( �i)i∈N and ( �′
i )i∈N if for

all i, x �i y iff x �′
i y, then x � y iff x �′ y.

The IIA condition requires that if two profiles agree on the relative
rankings of two particular alternatives, then the social preferences at-
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tached to the two profiles also agree in their relative ranking of the two
alternatives.

Notice that IIA allows an SWF to apply one criterion when comparing
a to b and another when comparing c to d. For example, the simple social
preference between a and b can be determined according to majority rule
while that between c and d requires a 2/3 majority.

Condition IIA is sufficient for Arrow’s theorem. However, for the sake
of simplifying the proof in this presentation, we will make do with a
stronger requirement:

Condition I∗ (Independence of Irrelevant Alternatives + Neutrality):

For all a, b, c, d ∈ X , and for any two profiles (�i)i∈N and (�′
i)i∈N ,

if for all i, a �i b iff c �′
i d, then a � b iff c �′ d.

In other words, in addition to what is required by IIA, condition I∗

requires that the criterion that determines the social preference between
a and b be applied to any pair of alternatives.

Arrow’s Impossibility Theorem
Theorem (Arrow):

If |X | ≥ 3, then any SWF F that satisfies conditions Par and I∗ is dic-
tatorial, that is, there is some i∗ such that F (�1, . . . ,�n) ≡�i∗ .

We can break the theorem’s assumptions into four: Par, I∗, Transi-
tivity (of the social preferences), and |X | ≥ 3. Before we move on to
the proof, let us show that the assumptions are independent. Namely,
for each of the four assumptions, we give an example of a nondictatorial
SWF, demonstrating the theorem would not hold if that assumption
were omitted.

• Par: An anti-dictator SWF satisfies I∗ but not Par.
• I∗: Consider the Borda Rule. Let w(1) > w(2) > . . . > w(|X |) be

a fixed profile of weights. Say that i assigns to x the score w(k)
if x appears in the k’th place in �i. Attach to x the sum of the
weights assigned to x by the n individuals and rank the alternatives
by those sums. The Borda rule is an SWF satisfying Par but not
I∗.
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• Transitivity of the Social Order: The majority rule satisfies all
assumptions but can induce a relation which is not transitive.

• |X | ≥ 3: For |X | = 2 the majority rule satisfies Par and I∗ and
induces (a trivial) transitive relation.

Proof of Arrow’s Impossibility Theorem

Let F be an SWF that satisfies Par and I∗. Hereinafter, we write �
instead of F (�1, . . . ,�n).

Given the SWF we say that

• a coalition G is decisive if for all x,y, [for all i ∈ G, x �i y] implies
[x � y], and

• a coalition G is almost decisive if for all x,y, [for all i ∈ G, x �i y

and for all j /∈ G y �j x] implies [x � y].

Note that if G is decisive it is almost decisive since the “almost de-
cisiveness” refers only to the subset of profiles where all members of G
prefer x to y and all members of N −G prefer y to x.

Field Expansion Lemma:

If G is almost decisive, then G is decisive.

Proof:

Consider a profile (�1, ...,�n) and a pair of alternatives a, b such that
a �i b for all i ∈ G.

Let c be a third alternative. Consider any other profile (�∗
1, ...,�∗

n)
satisfying:

• for any i ∈ G: a �∗
i c �∗

i b

• for any i ∈ N −G for whom b �i a: c �∗
i b �∗

i a.
• for any i ∈ N −G for whom a �i b: c �∗

i a �∗
i b.

Let F (�1, ...,�n) =� and F (�∗
1, ...,�∗

n) =�∗.
Since G is almost decisive, a �∗ c. By Par, c �∗ b. By transitivity

a �∗ b. By I∗ (actually we use here only condition I) also a � b.
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Group Contraction Lemma:

If G is decisive and |G| ≥ 2, then there exists G′ ⊂ G such that G′ is
decisive.

Proof:

Let G = G1 ∪G2, where G1 and G2 are nonempty and G1 ∩G2 = ∅. By
the Field Expansion Lemma it is enough to show that G1 or G2 is almost
decisive.

Take three alternatives a, b, and c and a profile of preference relations
(�i)i∈N satisfying

• for all i ∈ G1, c �i a �i b, and
• for all i ∈ G2, a �i b �i c, and
• for all other i, b �i c �i a.

If G1 is not almost decisive, then there are x and y and a profile (�′
i

)i∈N such that x �′
i y for all i ∈ G1 and y �′

i x for all i /∈ G1, such that
F (�′

1, . . . ,�′
n) determines y to be at least as preferable as x. Therefore,

by I∗, b � c.
Similarly, ifG2 is not almost decisive, then c � a. Thus, by transitivity

b � a, but since G is decisive, a � b, a contradiction. Thus, G1 or G2 is
almost decisive.

Proof of the Theorem:

By Par, the set N is decisive. By the Group Contraction Lemma, every
decisive set that includes more than one member has a proper subset
that is decisive. Thus, there is a set {i∗} that is decisive, namely, F (�1

, . . . ,�n) ≡�i∗ .
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Comment:

Proving the theorem with conditions Par and IIA only requires a few
more steps. First, for every two alternatives x and y, define the notion
“G is decisive with regard to (x, y)” and “G is almost decisive with
regard to (x, y)”. Then, proceed through the following steps:

• If G is almost decisive with regard to (x, y), then G is almost
decisive with regard to (x, z). (Consider the profile in which for
every i ∈ G, x �i y �i z and for every i /∈ G, y �i z �i x.)

• If G is almost decisive with regard to (x, y) then G is almost deci-
sive with regard to (z, y). (Consider the profile in which for every
i ∈ G, z �i x �i y and for every i /∈ G, y �i z �i x.)

• If G is almost decisive with regard to (x, y), then G is decisive with
regard to (x, y).

• If G is decisive with regard to (x, y) and |G| ≥ 2, then there exists
G′ ⊂ G which is decisive with regard to (x, y).

• For every x and y, there is an individual i(x, y) such that {i(x, y)}
is decisive with regard to (x, y).
(The proof of the last three steps is very similar to that given
above.)

• Verify that i(x, y) = i(x′, y′) for every (x, y) and (x′, y′).

Related Issues

Arrow’s theorem was the starting point for a huge literature. We men-
tion three other impossibility results.

1. Monotonicity is another axiom that has been widely discussed in
the literature. Consider a “change” in a profile so that an alternative a,
which individual i ranked below b, is now ranked by i above b. Mono-
tonicity requires that there is no alternative c such that this change
deteriorates the ranking of a vs. c. Muller and Satterthwaite (1977)’s
theorem shows that the only SWF’s satisfying Par and monotonicity
are dictatorships.

2. An SWF specifies a preference relation for every profile. A so-
cial choice function attaches an alternative to every profile. The most
striking theorem proved in this framework is the Gibbard-Satterthwaite
theorem. It states that any social choice function C satisfying the condi-
tion that it is never worthwhile for an individual to mispresent his pref-
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erences, namely, it is never that C(�1, . . . ,�′
i, . . . ,�n) �i C(�1, . . . ,�i

, . . . ,�n), is a dictatorship.
3. Another related concept is the following.
Let Ch(�1, . . . ,�n) be a function that assigns a choice function to

every profile of orderings on X . We say that Ch satisfies unanimity
if for every (�1, . . . ,�n) and for any x, y ∈ A, if y �i x for all i then,
x �= Ch(�1, . . . ,�n)(A).

We say that Ch is invariant to the procedure if, for every profile (�1

, . . . ,�n) and for every choice set A, the following two “approaches” lead
to the same outcome:

a. Partition A into two sets A′ and A′′. Choose an element from A′

and an element from A′′ and then choose one element from the two
choices.

b. Choose an element from the unpartitioned set A.

Dutta, Jackson, and Le Breton (2001) show that only dictatorships sat-
isfy both unanimity and invariance to the procedure.

Bibliographic Notes

Recommended readings. Kreps 1990, chapter 5; Mas-Colell et al.
1995, chapter 21.

This lecture focuses mainly on Arrow’s Impossibility Theorem, one of
the most famous results in economics, proved by Arrow in his Ph.D. dis-
sertation and published in 1951 (see the classic book Arrow 1963). Social
choice theory is beautifully introduced in Sen (1970). The proof brought
here is one of many for Arrow’s Impossibility Theorem (see Kelly 1988).
Reny (2001) provides an elementary proof that demonstrates the strong
logical link between Arrow’s theorem and the Gibbard-Satterthwaite
theorem.
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Problem 1. (Moderately difficult. Based on May (1952).)

Assume that the set of social alternatives, X, includes only two alternatives.

Define a social welfare function to be a function that attaches a preference to

any profile of preferences (allow indifference for the SWF and the individuals’

preference relations). Consider the following axioms:

• Anonymity If σ is a permutation of N and if p = { �i }i∈N and

p′ = { �′
i }i∈N are two profiles of preferences on X so that �′

σ(i)= �i,

then � (p) = � (p′).
• Neutrality For any preference �i define (− �i) as the preference

satisfying x(− �i)y iff y �i x. Then,

� ({− �i }i∈N) = − � ({ �i }i∈N ).

• Positive Responsiveness If the profile { �′
i }i∈N is identical to { �i }i∈N

with the exception that for one individual j either (x ∼j y and x �′
j y)

or (y �j x and x ∼′
j y) and if x � y, then x �′ y.

a. Interpret the axioms.

b. Show that the majority rule satisfies all of them.

c. Prove May’s theorem by which the majority rule is the only SWF satis-

fying the above axioms.

d. Are the above three axioms independent?

Problem 2. (Standard)

Assume that the set of alternatives, X, is the interval [0, 1] and that each

individual’s preference is single-peaked, i.e., for each i there is an alternative

a∗
i such that if a∗

i ≥ b > c or c > b ≥ a∗
i , then b �i c.

Show that for any odd n, if we restrict the domain of preferences to single-

peaked preferences, then the majority rule induces a “ well-behaved” SWF.

Problem 3. (Moderately difficult)

Each of N individuals chooses a single object from among a set X, interpreted

as his recommendation for the social action. We are interested in functions

that aggregate the individuals’ recommendations (not preferences, just recom-

mendations!) into a social decision (i.e., F : XN → X).

Discuss the following axioms:
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• Par: If all individuals recommend x∗, then the society chooses x∗.
• I : If the same individuals support an alternative x ∈ X in two profiles

of recommendations, then x is chosen in one profile if and only if it

chosen in the other.

a. Show that if X includes at least three elements, then the only aggregation

method that satisfies P and I is a dictatorship.

b. Show the necessity of the three conditions P , I , and |X| ≥ 3 for this

conclusion.

Problem 4. (Moderately difficult. Based on Kasher and Rubinstein (1997).)

Who is an economist? Departments of economics are often sharply divided

over this question. Investigate the approach according to which the determi-

nation of who is an economist is treated as an aggregation of the views held

by department members on this question.

Let N = {1, . . . , n} be a group of individuals (n ≥ 3). Each i ∈ N “submits”

a set Ei, a proper nonempty subset of N , which is interpreted as the set of

“real economists” in his view. An aggregation method F is a function that

assigns a proper nonempty subset of N to each profile (Ei)i=1,...,n of proper

subsets of N . F (E1, . . . , En) is interpreted as the set of all members of N who

are considered by the group to be economists. (Note that we require that all

opinions be proper subsets of N .)

Consider the following axioms on F :

• Consensus: If j ∈ Ei for all i ∈ N , then j ∈ F (E1, . . . En) and if j /∈ Ei

for all i ∈ N , then j /∈ F (E1, . . . En).

• Independence: If (E1, . . . , EL) and (G1, . . . , Gn) are two profiles of

views so that for all i ∈ N , [j ∈ Ei iff j ∈ Gi], then [ j ∈ F (E1, . . . , En)

iff j ∈ F (G1, . . . , Gn)].

a. Interpret the two axioms.

b. Find one aggregation method that satisfies Consensus but not Indepen-

dence and one that satisfies Independence but not Consensus.

c. (Difficult) Provide a proof similar to that of Arrows’ Impossibility The-

orem of the claim that the only aggregation methods that satisfy the

above two axioms are those for which there is a member i∗ such that

F (E1, . . . , En) ≡ Ei∗ .



Review Problems

The following is a collection of problems based on exams I have given at
Tel-Aviv, Princeton and New York universities.

A. Choice

Problem A1 (Princeton 1997)

A decision maker forms preferences over the setX of all possible distribu-
tions of a population over two categories (such as living in two locations).
An element in X is a vector (x1, x2) where xi ≥ 0 and x1 + x2 = 1. The
decision maker has two considerations in mind:

• He thinks that if x � y, then for any z, the mixture of α ∈ [0, 1] of x

with (1 − α) of z should be at least as good as the mixture of α of y

with (1 − α) of z.

• He is indifferent between a distribution that is fully concentrated in

location 1 and one that is fully concentrated in location 2.

1. Show that the only preference relation that is consistent with the
two principles is the degenerate indifference relation (x ∼ y for any
x, y ∈ X).

2. The decision maker claims that you are wrong because his prefer-
ence relation is represented by a utility function |x1 − 1/2|. Why
is he wrong?

Problem A2 (Princeton 2000. Based on Fishburn and Rubinstein (1982).)

Let X = R
+ × {0, 1, 2, . . .}, where (x, t) is interpreted as receiving $x

at time t. A preference relation on X has the following properties:
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• There is indifference between receiving $0 at time 0 and receiving $0 at

any other time.

• It is better to receive any positive amount of money as soon as possible.

• Money is desirable.

• The preference between (x, t) and (y, t + 1) is independent of t.

• Continuity.

1. Define formally the continuity assumption for this context.
2. Show that the preference relation has a utility representation.
3. Verify that the preference relation represented by the utility func-

tion u(x)δt (with δ < 1 and u continuous and increasing) satisfies
the above properties.

4. Formulize a concept “one preference relation is more impatient than
another”.

5. Discuss the claim that preferences represented by u1(x)δt
1 are more

impatient than preferences represented by u2(x)δt
2 if and only if

δ1 < δ2.

Problem A3 (NYU 2005, inspired by Chen, M.K., V. Lakshminarayanan

and L. Santos (2005).)

In an experiment, a monkey is givenm = 12 coins which he can exchange
for apples or bananas. The monkey faces m consecutive choices in which
he gives a coin either to an experimenter holding a apples or another
experimenter holding b bananas.

1. Assume that the experiment is repeated with different values of a
and b and that each time the monkey trades the first 4 coins for
apples and the next 8 coins for bananas.
Show that the monkey’s behavior is consistent with the classical
assumptions of consumer behavior (namely, that his behavior can
be explained as the maximization of a montonic, continuous and
convex preference relation on the space of bundles).

2. Assume that it was later observed that when the monkey holds an
arbitrary number m of coins, then, irrespective of the values of a
and b, he exchanges the first 4 coins for apples and the remaining
m− 4 coins for bananas. Is this behavior consistent with the
rational consumer model?
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Problem A4 (NYU 2005)

Let X be a finite set containing at least three elements. Let C be a
choice correspondence. Consider the following axiom:

If A,B ⊆ X , B ⊆ A and C(A) ∩B �= ∅, then C(B) = C(A) ∩B.

1. Show that the axiom is equivalent to the existence of a preference
relation � such that C(A) = {x ∈ A|x � a for all a ∈ A}.

2. Consider a weaker axiom:
If A,B ⊆ X , B ⊆ A and C(A) ∩B �= ∅, then C(B) ⊆ C(A) ∩B.
Is this sufficient for the above equivalence?

Problem A5 (NYU 2006)

Consider a world with balls of K different colors. An object is called
a bag and is specified by a vector x = (x1, .., xK) (where xk is a non-
negative integer indicating the number of balls of color k). For conve-
nience denote by n(x) =

∑
xk the number of balls in bag x.

An individual has a preference relation over bags of balls.

1. Suggest a context where it will make sense to assume that:
i. For any integer λ, x ∼ λx.
ii. If n(x) = n(y), then x � y iff x+ z � y + z.

2. Show that any preference relation which is represented by U(x) =∑
xkvk/n(x) for some vector of numbers (v1, .., vk) satisfies the two

axioms.
3. Find a preference relation which satisfies the two properties that

cannot be represented in the form suggested in (2).

Problem A6 (NYU 2007. Based on Plott (1973).)

Let X be a set and C be a choice correspondence defined on all non-
empty subsets of X . We say that C satisfies Path Independence (PI)
if for every two disjoint sets A and B, we have C(A ∪B) = C(C(A) ∪
C(B)). We say that C satisfies Extension (E) if x ∈ A and x ∈ C({x, y})
for every y ∈ A implies that x ∈ C(A) for all sets A.

1. Interpret PI and E.
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2. Show that if C satisfies both PI and E, then there exists a binary
relation � that is complete, reflexive and satisfies x � y and y � z

implies x � z, such that C(A) = {x ∈ A | for no y ∈ A is y � x}.
3. Give one example of a choice correspondence satisfying PI but not

E, and one satisfying E but not PI.

Problem A7 (NYU 2008. Based on work of Kfir Eliaz, Michael Richter

and Ariel Rubinstein.)

Let X be a (finite) set of alternatives. Given any choice problem A

(where |A| ≥ 2), the decision maker chooses a set D(A) ⊆ A of two
alternatives which he wants to examine more carefully before making
the final decision.
The following are two properties of D:
A1: if a ∈ D(A) and a ∈ B ⊂ A then a ∈ D(B).
A2: if D(A) = {x, y} and a ∈ D(A− {x}) for some a different then x

and y, then a ∈ D(A− {y}).
Answer the following four question. A full proof is required only for the
last question:

1. Find an example of a D function which satisfies both A1 and A2.
2. Find a function D which satisfies A1 and not A2.
3. Find a function D which satisfies A2 and not A1.
4. Show that for any function D satisfying A1 and A2 there exists an

ordering � of the elements of X s.t. D(A) is the set of the two �-
best elements in A.

Problem A8 (Tel Aviv 2009. Inspired by Mandler, Manzini and Mariotti,

(2010).)

Consider a decision maker who is choosing an alternative from subsets
of a finite set X using the following procedure:

Following a fixed list of properties (a checklist), he examines one prop-
erty at a time and deletes from the set all the alternatives that do not
satisfy this property. When only one alternative remains, he chooses it.

1. Show that if this procedure induces a choice function, then it is
consistent with the rational man model.
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2. Show that any rational decision maker can be described as if he
follows this procedure.

Problem A9 (Tel Aviv 2010)

A decision maker has a preference relation over R
n
+. A vector (x1, x2) is

interpreted as an income combination where xi is the dollar amount the
decision maker receives at period i. Let P be the set of all preference
relations satisfying:

(i) Strong Monotonicity (SM) in x1 and x2.
(ii) Present preference (PP): (x1 + ε, x2 − ε) � (x1, x2) for all ε > 0.

Define (x1, x2)D(y1, y2) if (x1, x2) � (y1, y2) for all �∈ P .

1. Interpret the relation D. Is it a preference relation?
2. Is it true that (1, 4)D(3, 3)? What about (3, 3)D(1, 4)?
3. Find and prove a proposition of the following type: (x1, x2)D(y1, y2)

if and only if [put here a condition on (x1, x2) and (y1, y2)].

Problem A10 (Tel Aviv 2003. Based on Gilboa and Schmeidler (1995).)

An agent must decide whether to do something, Y , or not to do it, N .
A history is a sequence of results for past events in which the agent

chose Y ; each result is either a success S or a failure F . For example,
(S, S, F, F, S) is a history with five events in which the action was carried
out. Two of them (events 3 and 4) ended in failure while the rest were
successful.

The decision rule D is a function that assigns the decision Y or N to
every possible history.

Consider the following properties of decision rules:

• A1 After every history that contains only successes, the decision rule

will dictate Y and after every history that contains only failures, the

decision rule will dictate N .

• A2 If the decision rule dictates a certain action following some

history, it will dictate the same action following any history that is

derived from the first history by reordering its members. For example,

D(S, F, S, F, S) = D(S, S, F, F, S).
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• A3 If D(h) = D(h′), then this will also be the decision following the

concatenation of h and h′. (Reminder: The concatenation of

h = (F, S) and h′ = (S, S, F ) is (F, S, S, S, F )).

1. For every i = 1, 2, 3, give an example of a decision rule that does
not fulfill property Ai but does fulfill the other two properties.

2. Give an example of a decision rule that fulfills all three properties.
3. (Difficult) Characterize the decision rules that fulfill the three prop-

erties.

Problem A11 (Tel Aviv 2011.)

You have read an article in a ”prestigious” journal about a decision
maker (DM) whose mental attitude towards elements in a finite set X
is represented by a binary relation �, which is a-symmetric and tran-
sitive but not necessarily complete. The incompleteness is the result
of an assumption that a DM is sometimes unable to compare between
alternatives.

Another, presumingly stronger, assumption made in the article is that
the DM uses the following procedure: he has n criteria in mind, each
represented by an ordering (a-symmetric, transitive and complete ) �i

(i = 1, ..., n). The DM decides that x � y if and only if x �i y for every
i.

1. Verify that the relation� generated by this procedure is a-symmetric
and transitive. Try to convince a reader of the paper that this is
an attractive assumption by giving a ”real life” example in which
it is ”reasonable” to assume that a DM uses such a procedure in
order to compare between alternatives.

It can be claimed that the additional assumption regarding the proce-
dure that generates � is not a ”serious” one since given any asymmet-
ric and transitive relation, �, one can find a set of complete orderings
�1, ...,�n such that x � y iff x �i y for every i.

2. Demonstrate this claim for the relation on the set X = {a, b, c}
according to which only a � b and the comparison between [b and
c] and [a and c] are not determined.

3. (Main part of the question) Prove this claim for the general case.
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Guidance (for c): given an asymmetric and transitive relation � on
an arbitrary X , define a set of complete orderings {�i} and prove
that x � y iff for every i, x �i y.

B. The Consumer and The Producer

Problem B1 (Princeton 2002)

Consider a consumer with a preference relation in a world with two
goods, X (an aggregated consumption good) and M (“membership in
a club,” for example), which can be consumed or not. In other words,
the consumption of X can be any nonnegative real number, while the
consumption of M must be either 0 or 1.

Assume that the consumer’s preferences are strictly monotonic, con-
tinuous and satisfy the following property:

Property E : For every x, there is y such that (y, 0) � (x, 1) (that
is, there is always some amount of the aggregated consumption
good that can compensate for the loss of membership).

1. Show that any consumer’s preference relation can be represented
by a utility function of the type:

u(x,m) =
{

x if m = 0
x+ g(x) if m = 1

.

2. (Less easy) Show that the consumer’s preference relation can also
be represented by a utility function of the type:

u(x,m) =
{

f(x) if m = 0
f(x) + v if m = 1

.

3. Explain why continuity and strong monotonicity (without
property E) are not sufficient for (1).

4. Calculate the consumer’s demand function.
5. Taking the utility function to be of the form described in (1), derive

the consumer’s indirect utility function. For the case where the
function g is differentiable, verify Roy’s identity with respect to
commodity M .
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Problem B2 (Princeton 2001)

1. Define a formal concept for “�1 and �0 are closer than �2 and
�0”.

2. Apply your definition to the class of preference relations repre-
sented by U1 = tU2 + (1 − t)U0, where the function Ui represents
�i (i = 0, 1, 2).

3. Consider the above definition in the consumer context. Denote by
xi

k(p, w) the demand function of �i for good k. Show that �1 and
�0 may be closer than �2 and �0, and nevertheless |x1

k(p, w) −
x0

k(p, w)| > |x2
k(p, w) − x0

k(p, w)| for some commodity k, price vec-
tor p and wealth level w.

Problem B3 (Tel Aviv 2003)

Consider the following consumer problem: there are two goods, 1 and
2. The consumer has a certain endowment. His preferences satisfy
monotonicity and continuity. Before the consumer are two “exchange
functions”: he can exchange x units of good 1 for f(x) units of good 2,
or he can exchange y units of good 2 for g(y) units of good 1. Assume
the consumer can only make one exchange.

1. Show that if the exchange functions are continuous, then a solution
to the consumer problem exists.

2. Explain why strong convexity of the preference relation is not suf-
ficient to guarantee a unique solution if the functions f and g are
increasing and convex.

3. Interpret the statement “the function f is increasing and convex”.
4. Suppose both functions f and g are differentiable and concave and

that the product of their derivatives at point 0 is 1. Suppose also
that the preference relation is strongly convex. Show that under
these conditions, the agent will not find two different exchanges,
one exchanging good 1 for good 2, and one exchanging good 2 for
good 1, optimal.

5. Now assume f(x) = ax and g(y) = by. Explain this assumption.
Find a condition that will ensure it is not profitable for the con-
sumer to make more than one exchange.



Review Problems 149

Problem B4 (Tel Aviv 1998)

A consumer with wealth w = 10 “must” obtain a book from one of three
stores. Denote the prices at each store as p1, p2, p3. All prices are be-
low w in the relevant range. The consumer has devised a strategy: he
compares the prices at the first two stores and purchases the book from
the first store if its price is not greater than the price at the second
store. If p1 > p2, he compares the prices of the second and third stores
and purchases the book from the second store if its price is not greater
than the price at the third store. He uses the remainder of his wealth to
purchase other goods.

1. What is this consumer’s “demand function”?
2. Does this consumer satisfy “rational man” assumptions?
3. Consider the function v(p1, p2, p3) = w − pi∗ , where i∗ is the store

from which the consumer purchases the book if the prices are
(p1, p2, p3). What does this function represent?

4. Explain why v(·) is not monotonically decreasing in pi. Compare
with the indirect utility function of the classic consumer model.

Problem B5 (NYU 2005)

A consumer has preferences which satisfy monotonicity, continuity and
strict convexity, in a world of K goods. The goods are split into two
categories, 1 and 2, of K1 and K2 goods respectively (K1 +K2 = K).
The consumer receives two types of money: wi units of money of type
i, which can only be exchanged for goods in the i’th category given a
price vector pi.

Define the induced preference relation over the two-dimensional space
(w1, w2). Show that these preferences are monotonic, continuous and
convex.

Problem B6 (NYU 2006)

Consider a consumer in a world of 2 commodities who has to make
choices from budget sets parametrized by (p, w), with the additional
constraint that the consumption of good 1 is limited by some external
bound c ≥ 0. That is, in his world, a choice problem is a set of the form
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B(p, w, c) = {x|px ≤ w and x1 ≤ c}. Denote by x(p, w, c) the consumer’s
choice from B(p, w, c).

1. Assume that px(p, w, c) = w and x1(p, w, c) = min{0.5w/p1, c}. Show
that this behavior is consistent with the assumption that demand
is derived from a maximization of some preference relation.

2. Assume that px(p, w, c) = w and x1(p, w, c) = min{0.5c, w/p1}. Show
that this consumer’s behavior is inconsistent with preference max-
imization.

3. Assume that the consumer chooses his demand for x by maximizing
the utility function u(x). Denote the indirect utility by V (p, w, c) =
u(x(p, w, c)). Assume V is “well-behaved”. Outline the idea of how
one can derive the demand function from the function V in case
that ∂V/∂c(p, w, c) > 0.

Problem B7 (Tel Aviv 2006)

Imagine a consumer who lives in a world with K + 1 commodities and
behaves in the following manner: The consumer is characterized by a
vectorD, consisting of the commodities 1, ..,K. If he can purchaseD, he
will consume it and spend the rest of his income on commodity K + 1.
If he is unable to purchase D, he will not consume commodity K + 1
and will purchase the bundle tD (t ≤ 1) where t is as large as he can
afford.

1. Show that there exists a monotonic and convex preference relation
which explains this pattern of behavior.

2. Show that there is no monotonic and continuous preference relation
that explains this pattern of behavior.

Problem B8 (NYU 2007)

A consumer in a world of K commodities maximizes the utility function
u(x) =

∑
k x

2
k.

1. Calculate the consumer’s demand function (whenever it is uniquely
defined).

2. Give another preference relation (not just a monotonic transforma-
tion of u) which induces the same demand function.
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3. For the original utility function u, calculate the indirect preferences
for K = 2. What is the relationship between the indirect prefer-
ences and the demand function? (It is sufficient to answer for the
domain where p1 < p2.)

4. Are the preferences in (1) differentiable (according to the definition
given in class)?

Problem B9 (NYU 2008)

A decision maker has a preference relation over the pairs (xme, xhim)
with the interpetation that xme is an amount of money he will get and
xhim is the amount of money another person will get. Assume that:

(i) for all (a, b) such that a > b the decision maker strictly prefers
(a, b) over (b, a).

(ii) if a′ > a then (a′, b) � (a, b).
The decision maker has to allocate M between him and another person.

1. Show that these assumptions guarantee that he will never allocate
to the other person more than he gives himself.

2. Assume (i), (ii) and
(iii) The decision maker is indifferent between (a, a) and (a− ε, a+
4ε) for all a and ε > 0.
Show that nevertheless he might allocate the money equally.

3. Assume (i), (ii), (iii) and
(iv) The decision maker’s preferences are also differentiable (ac-
cording to the definition given in class).
Show that in this case, he will allocate to himself (strictly) more
than to the other.

Problem B10 (NYU 2009)

An economic agent is both a producer and a consumer. He has a0 units of
good 1. He can use some of a0 to produce commodity 2. His production
function f satisfies monotonicity, continuity and strict concavity. His
preferences satisfy monotonicity, continuity and convexity. Given he
uses a units of commodity 1 in production he is able to consume the
bundle (a0 − a, f(a)) for a ≤ a0. The agent has in his “mind” three
“centers”:
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• The pricing center declares a price vector (p1, p2).
• The production center takes the price vector as given and operates

according to one of the following two rules:
Rule 1: maximizing profits, p2f(a) − p1a.
Rule 2: maximizing production subject to the constraint of not
making any losses, i.e. p2f(a) − p1a ≥ 0.
The output of the production center is a consumption bundle.

• The consumption center takes (a0 − a, f(a)) as endowment, and
finds the optimal consumption allocation that it can afford accord-
ing to the prices declared by the pricing center.

The prices declared by the pricing center are chosen to create harmony
between the other two centers in the sense that the consumption cen-
ter finds the outcome of the production center’s activity, (a0 − a, f(a)),
optimal given the announced prices.

1. Show that under Rule 1, the economic agent consumes the bundle
(a0 − a∗, f(a∗)) which maximizes his preferences.

2. What is the economic agent’s consumption with Rule 2?
3. State and prove a general conclusion about the comparison between

the behavior of two individuals, one whose production center op-
erates with Rule 1 and one whose production center activates Rule
2.

Problem B11 (Tel Aviv 2010)

A basketball coach considers buying players from a set A. Given a
budget w and a price vector (pa)a∈A the coach can purchase any set such
that the total cost of the players in it is not greater than w. Discuss the
rationality of each of the following choice procedures, defined for any
budget level w and price vector P :

(P1) The consumer has in mind a fixed list of the players in A:
a1, ..., an. Starting at the beginning of the list, when he arrives to the
i′th player he adds him to the team if his budget allows him to after his
past decisions, and then continues to the next player on the list with
his remaining budget. This continues until he runs out of budget or has
gone through the entire list.

(P2) He purchases the combination of players that minimize the excess
budget he is left with.
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Problem B12 (Tel Aviv 2011)

A consumer in a two commodity world operates in the following man-
ner: The consumer has a preference relation �S on R

2
+. His father has

a preference relation �F on the space of his son’s consumption bundles.
Both relations satisfy strong monotonicity, continuity and strict convex-
ity. The father does not allow his son to purchase a bundle which is
not as good (from his perspective) as the bundle (M, 0). The son, when
choosing from a budget set, maximizes his own preferences subject to
the constraint imposed by his father. In the case that he cannot satisfy
his father’s wishes, he feels free to maximize his own preferences.

1. Prove that the behavior of the son is rationalizable.
2. Prove that the preferences which rationalize this kind of behavior

are monotonic.
3. Show that the preferences which rationalize this kind of behavior

are not necessarily continuous nor convex (you can demonstrate
this diagrammatically).

4. (Bonus) Assume that the father’s instructions are that given the
budget set (p, w) the son is not to purchase any bundle which is
�F -worse than (w/p1, 0). The son seeks to maximize his prefer-
ences subject to satisfying his father’s wishes. Show that the son’s
behavior satisfies the Weak Axiom of Revealed Preferences.

C. Uncertainty

Problem C1 (Princeton 2001)

A consumer has to make a choice of a bundle before he is informed
whether a certain event, which is expected with probability α and affects
his welfare, has happened or not. He assigns a vNM utility v(x) to the
consumption of the bundle x when the event occurs, and a vNM utility
v′(x) to the consumption of x should the event not occur. Having to
choose a abundle the consumer maximizes his expected utility αv(x) +
(1 − α)v′(x). Both v and v′ induce preferences on the set of bundles
satisfying the standard assumptions about the consumer. Assume also
that v and v′ are concave.
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1. Show that the consumer’s preference relation is convex.
2. Find a connection between the consumer’s indirect utility function

and the indirect utility functions derived from v and v′.
3. A new commodity appears on the market: “A discrete piece of

information that tells the consumer whether or not the event oc-
curred”. The commodity can be purchased prior to the consump-
tion decision. Use the indirect utility functions to characterize the
demand function for the new commodity.

Problem C2 (Tel Aviv 1999)

Tversky and Kahneman (1986) report the following experiment: each
participant receives a questionnaire asking him to make two choices, the
first from {a, b} and the second from {c, d}:

a. A sure profit of $240.
b. A lottery between a profit of $1000 with probability 25% and 0

with probability 75%.

c. A sure loss of $750.
d. A lottery between a loss of $1000 with probability 75% and 0 with

probability 25%.

The participant will receive the sum of the outcomes of the two lotteries
he chooses. 73% of the participants chose the combination a and d. Is
their behavior sensible?

Problem C3 (NYU 2007)

Identify a professor’s lifetime with the interval [0, 1]. There are K + 1
academic ranks, 0, ..,K. All professors start at rank 0 and eventually
reach rank K. Define a career as a sequence t = (t1, ...., tK) where t0 =
0 ≤ t1 ≤ t2 ≤ ... ≤ tK ≤ 1 with the interpretation that tk is the time it
takes to get the k’th promotion. (Note that a professor can receive
multiple promotions at the same time.) Denote by � the professor’s
preferences on the set of all possible careers.

For any ε > 0 and for any career t such that tK ≤ 1 − ε, define t+ ε

to be the career (t+ ε)k = tk + ε (i.e. all promotions are delayed by ε).
Following are two properties of the professor’s preferences:



Review Problems 155

Monotonicity: For any two careers t and s, if tk ≤ sk for all k, then t � s

and if tk < sk for all k, then t � s.
Invariance: For every ε > 0 and every two careers t and s for which t+ ε

and s+ ε are well defined, t � s iff t+ ε � s+ ε.

1. Formulate the set L of careers in which a professor receives all K
promotions at the same time. Show that if � satisfies continuity
and monotonicity, then for every career t there is a career s ∈ L

such that s ∼ t.
2. Show that any preference which is represented by the function
U(t) = −∑

Δktk (for some Δk > 0) satisfies Monotonicity, Invari-
ance and Continuity.

3. One professor evaluates a career by the maximum length of time
one has to wait for a promotion and the smaller this number the
better. Show that these preferences cannot be represented by the
utility function described in (2).

Problem C4 (NYU 2008)

An economic agent has to choose between projects. The outcome of
each project is uncertain. It might yield a failure or one of K “types of
success”. Thus, each project z can be described by a vector of K non-
negative numbers, (z1, ..., zK), where zk stands for the probability that
the project success will be of type k. Let Z ⊂ R

K
+ be the set of feasible

projects. Assume Z is compact, convex and satisfies “free disposal”.
The decision maker is an Expected Utility maximizer. Denote by uk

the vNM utility from the k-th type of success, and attach 0 to failure.
Thus the decision maker chooses a project (vector) z ∈ Z in order to
maximize

∑
zkuk.

1. First, formalize the decision maker’s problem. Then, formalize
(and prove) the claim: If the decision maker suddenly values type
k success higher than before, he would choose a project assigning
a higher probability to k.

2. Apperantly, the decision maker realizes that there is an additional
uncertainty. The world may go “one way or another”. With prob-
ability α the vNM utility of the k’th type of success will be uk

and with probability 1 − α it will be vk. Failure remains 0 in both
contingencies.
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First, formalize the decision maker’s new problem. Then, formalize
(and prove) the claim: Even if the decision maker would obtain
the same expected utility, would he have known in advance the
direction of the world, the existence of uncertainty makes him (at
least weakly) less happy.

Problem C5 (NYU 2009)

For any non negative integer n and a number p ∈ [0, 1] let (n, p) be the
lottery which gets the prize $n with probability p and $0 with probability
1 − p. Let us call those lotteries simple lotteries. Consider preference
relations on the space of simple lotteries.

We say that such a preference relation satisfies Independence if p � q

iff αp⊕ (1 − α)r � αq ⊕ (1 − α)r for any α > 0, and any simple lotteries
p, q, r for which the compound lotteries are also simple lotteries.

Consider a preference relation satisfying the Independence axiom,
strictly monotonic in money and continuous in p. Show that:

1. (n, p) is monotonic in p for n > 0, i.e. for all p > p′ (n, p) � (n, p′)
2. For all n there is a unique v(n) such that (1, 1) ∼ (n, 1/v(n))
3. It can be represented with the expected utility formula: that is

there is an increasing function v such that pv(n) is a utility function
which represents the preference relation.

D. Social Choice

Problem D1 (Princeton 2000)

Consider the following social choice problem: a group has n members
who must choose from a set containing 3 elements {A,B,L}, where A
and B are prizes and L is the lottery which yields each of the prizes A
and B with equal probability. Each member has a strict preference over
the three alternatives that satisfies vNM assumptions. Show that there
is a non-dictatorial social welfare function which satisfies the indepen-
dence of irrelevant alternatives axiom (even the strict version I∗) and
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the Pareto axiom (Par). Reconcile this fact with Arrow’s Impossibility
Theorem.

Problem D2 (NYU 2009)

We will say that a choice function C is consistent with the majority
vetoes a dictator procedure if there are three preference relations �1, �2

and �3 such that c(A) is the �1 maximum unless both �2 and �3 agree
on another alternative being the maximum in A.

1. Show that such a choice function might not be rationalizable.
2. Show that such a choice function satisfies the following property: If
c(A) = a, c(A− {b}) = c for b and c different than a then c(B) = c

for all B which contains c and is a subset of A− {b}.
3. Show that not all choice functions could be explained by the ma-

jority vetoes a dictator procedure.

Problem D3 (Tel Aviv 2009. Inspired by Miller (2007).)

Lately we have been using the term a ”reasonable reaction” quite fre-
quently. In this problem we assume that this term is defined according
to the opinions of the individuals in the society with regard to the ques-
tion:”What is a reasonable reaction?”.

Assume that in a certain situation, the possible set of reactions is X
and the set of individuals in the society is N .

A ”reasonability perception” is a non-empty set of possible reactions
that are perceived as reasonable.

The social reasonability perception is determined by a function f

which attaches a reasonability perception (a non-empty subset of X)
to any profile of the individuals’ reasonability perception (a vector of
non-empty subsets of X).

1. Formalize the following proposition:
Assume that the number of reactions inX is larger than the number
of individuals in the society and that f satisfies the following four
properties:

a. If in a certain profile all the individuals do not perceive a
certain reaction as reasonable, then neither does the society.

b. All the individuals have the same status.
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c. All the reactions have the same status.
d. Consider two profiles that are different only in one individual’s

reasonability perception. Any reaction that f determines to
be reasonable in the first profile, and regarding which the
individual did not change his opinion from reasonable to un-
reasonable in the second profile, remains reasonable.

Then f determines that a reaction is socially reasonable if and only
if at least one of the individuals perceives it as reasonable.

2. Show that all four properties are necessary for the proposition.
3. Prove the proposition.

Problem D4 (Tel Aviv 2010)

Let � be a preference relation on R
n satisfying the following two prop-

erties:
Weak Pareto (WP): If xi ≥ yi for all i, then x = (x1, .., xn) � y =

(y1, .., yn) and if xi > yi for all i, then (x1, .., xn) � (y1, .., yn).
Independence (IIA): Let a, b, c, d ∈ R

n be vectors such that in any
coordinate ai > bi, ai = bi or ai < bi if and only if ci > di, ci = di or
ci < d, accordingly. Then, a � b iff c � d.

1. Find a preference relation different from those represented by ui(x1, ..., xn) =
xi which satisfies the two properties.

2. Show, for n = 2, that there is an i such that ai > bi implies a � b.
3. Provide a ”social choice” interpretation for the result in (2). Ex-

plain how it differs from Arrow’s Impossibility Theorem.
4. Expand (2) for any n.
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