
CHAPTER 11


PRODUCTION FUNCTIONS 
Because the problems in this chapter do not involve optimization (cost minimization principles are not presented until Chapter 12) they tend to be rather uninteresting ones.  Computation of marginal and average productivity functions is stressed along with a few applications of Euler's theorem.  Instructors may want to assign one or two of these problems for practice with specific functional forms, but the focus for Part III problems should probably be on those in Chapters 12 and 13.

Comments on Problems
11.1
Simple single-input production function.  Instructors may wish to point out that this function could represent a short-run Cobb-Douglas function with fixed capital input.

11.2
Some practice with graphing isoquants and marginal productivity relationships.

11.3
Illustrates the isoquant map for fixed proportions production functions.  Parts (c) and (d) show how variable proportions situations might be viewed as limiting cases of a number of fixed proportions technologies.

11.4
More graphing practice for the Cobb-Douglas case.

11.5
Some mathematical practice with the Cobb-Douglas production function.  Although the notion that, in the constant returns to scale case, the output elasticities also represent factor shares is not developed until Chapter 20, instructors may wish to mention that result here.

11.6
An examination of the marginal productivity relations for the CES production function.

11.7
A Leontief production function.  Provides a two-input illustration of the general case.  The general case is treated in the extensions.

11.8
Application of Euler's theorem to analyze what are sometimes termed the "stages" of the average-marginal productivity relationship.  The terms "extensive" and "intensive" margin of production might also be introduced here, although that usage appears to be archaic.

11.9
Another simple application of Euler's theorem that shows in some cases cross second-order partials in production functions may have determinable signs.

11.10
Examines production functions that are homogeneous of any arbitrary degree.  Also develops the connections between such functions and homothetic isoquant maps.

Solutions
11.1
a.


[Figure 11.1a goes here]

b.
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[Figure 11.1b goes here]

c.
Graph above.

Since the APL  is decreasing everywhere, then each additional worker must be contributing less than the average of the existing workers, bringing the average down.  Therefore, the marginal productivity must be lower than the average.

11.2
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a.
When K = 10, q = 10L  80  .2L2.

To graph marginal productivity =  
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To graph this curve:   
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When L = 20, q = 40, APL = 0 where L = 10, 40.


[Figure 11.2 goes here]

b.
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See above graph.

c.
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MPL = 20 - .4L,     = 0 at L = 50.

d.
Doubling of K and L here multiplies output by 4 (compare a and c).  Hence the function exhibits increasing returns to scale.

11.3
a., b.


[Figure 11.3a goes here]

function 1:  use 10K, 5L
function 2:  use  8K, 8L
c.
Function 1:       2K + L =  8,000

       2.5(2K + L) = 20,000

       5.0K + 2.5L = 20,000

Function 2:        K + L =  5,000

                   4(K + L) = 20,000

                    4K + 4L = 20,000

Thus, 9.0K, 6.5L is on the 40,000 isoquant

Function 1:    3.75(2K + L) = 30,000

             


        7.50K + 3.75L = 30,000

Function 2:       2(K + L) = 10,000

                      2K + 2L = 10,000

Thus, 9.5K, 5.75L is on the 40,000 isoquant

Functions of K and L represent fractions of hours using whole units of capital and labor.

d.


[Figure 11.3d goes here]

11.4
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b.
K = 100          
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[Figure 11.4b goes here]

c.
K = 100          
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It is unusual that MPL never actually reaches zero.

d.



[Figure 11.4d goes here]

e.
K = 10, L = 10          RTS = 1

K = 25, L = 4           RTS = 6.25

K = 4,  L = 25          RTS =  .16

Yes, it does exhibit diminishing RTS.
11.5
a.
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b.
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c.
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also RTS diminishes as 
[image: image21.wmf].
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11.6
a.
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Similar manipulations yield 
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b.
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c.
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Putting these over a common denominator yields
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 which shows constant returns to scale.

d.
Since σ = 
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11.7
a.
If 
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b.
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which are homogeneous of degree zero with respect to K and L and exhibit diminishing marginal productivities.

c.
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which clearly varies for different values of K, L.

11.8
q = /(K, L) exhibits constant returns to scale.  Thus, for any m > 0

/(mK, mL) = m/(K, L).
Euler's theorem states 

m/(K, L) = /1K + /2L.
Here we apply the theorem for the case where m = 1:

hence, q = /(K, L) =/K  K + /L . L
     MPL = /L, APL = q/L.
If /L > q/L, then /L  L > q (assuming L > 0).  Consequently, for the equality q = /K   K + /L  L to hold, /K must be negative (again assuming there is no such thing as negative K).

11.9
If q = /K  K + /L  L, partial differentiation by L yields

/L = /KL   K + /LL   L + /L.  Because /LL < 0, /KL must be positive.  That is, with only two inputs and constant returns to scale, an increase in one input must increase the marginal productivity of the other input.

11.10

a.
If /(tK,tL) = tk/(K,L)
Differentiation with respect to K (or L) yields

t/K(tK,tL) = tk/K(K,L)
or /K(tK,tL) = tk-1/K(K,L) .
b.
Let t = 1/L in part a.  If k = 1, this shows /K is a function of K/L only.

c.
Follows from b since RTS = /L//K .
d.
Follows from a since the factors in tk-1 cancel in constructing RTS.
e.
A monotonic transformation would be g(q), g > 0, but the marginal productivity functions for such  transformations would be g/K , q/L , so g would cancel in forming the RTS ratio.

CHAPTER 12

COSTS OF PRODUCTION 

The problems in this chapter focus mainly on the relationship between production and cost functions.  Most of the examples developed are based on the Cobb-Douglas function (or its CES generalization) although a few of the easier ones employ a fixed proportions assumption.  Two of the problems (12.6 and 12.10) make some use of Shephard's Lemma since it is in describing the relationship between cost functions and input demands that this envelope-type result is most often encountered.

Comments on Problems
12.1
Famous example of Viner's draftsman.  Use for historical interest or as a way of stressing the tangencies inherent in envelope relationships .

12.2
An introduction to “economies of scope”. This problem illustrates the connection between that concept and the notion of increasing returns to scale.

12.3
A simplified numerical Cobb-Douglas example in which one of the inputs is held fixed.

12.4
A fixed proportion example.  Very easy algebra may help to solidify ideas.

12.5
An exhaustive exploration of the Cobb-Douglas Cost function.  The problem can be simplified a bit by assuming constant returns to scale (α + β = 1) or by assigning specific numeral values to α and β.

12.6
Cost curves for the Cobb-Douglas production function with one fixed input.  Very simple calculations.

12.7
Generalization of Problem 12.6 to develop long-run envelope curves.  Graphs in part (d) closely resemble those in the numerical example for the chapter.

12.8
Another example based on the Cobb-Douglas with fixed capital.  Shows that in order to minimize costs, marginal costs must be equal at each production facility.  Might discuss how this principle is applied in practice by, say, electric companies with multiple generating facilities.

12.9
Shows students that the process of deriving cost functions from production functions can be reversed.  Might point out, therefore, that parameters of the production function (returns to scale, elasticity of substitution, factor shares) can be derived from cost functions as well--if that is more convenient.

12.10
Illustrates a cost function that can be shown to arise from a very simple CES production function.  

Solutions
12.1
Support the draftsman.  It's geometrically obvious that SATC cannot be at minimum because it is tangent to LATC at a point with a negative slope.

12.2
a.  By definition total costs are lower when both q1 and q2 are produced by the same firm than when the same output levels are produced by different firms [TC(q1,0) simply means that a firm produces only q1].


b.  Let q = q1+q2, where both q1 and q2 >0.
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Similarly
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Summing yields
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which proves economies of scope.

12.3
a.
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J = 100     q = 300

                                         
J = 225     q = 450

b.
cost = 12J = 12q2/900
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12.4
q = min(5K, 10L)    v = 1    w = 3    TC = vK + wL = K + 3L
a.
In the long run, keep 5K = 10L,    K = 2L
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b.
K = 10    q = min(50, 10L)
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If L > 5, q = 50    TC = 10 + 3L    
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MC is infinite for q > 50.

MC10 = MC50 = .3.

MC100 is infinite.

12.5
a.
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cost min:  
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b.
C = wL + vK
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c.
If α + β = 1, C = Bqwβvα .  This becomes a Cobb-Douglas cost function.

Cost is proportional to q for given values of w and v.

d.
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Using the concept that exponents represent elasticities yields:
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12.6
a.
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b.
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If q = 50, STC = 100 + 
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If q = 100, STC = 100 + 
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If q = 200, STC = 100 + 
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4

 

=

 

50

200

 

=

 

     SMC

2.50

 

=

 

100

200

 

+

 

200

100

 

=

 

SAC


c.



[Figure 12.6 goes here]

d.
As long as the marginal cost of producing one more unit is below the average-cost curve, average costs will be falling.  Similarly, if the marginal cost of producing one more unit is higher than the average cost, then average costs will be rising.  Therefore, the SMC curve must intesect the SAC curve at its lowest point.

12.7
a.
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c.

[image: image73.wmf]v

 

qw

 

=

 

v

 

w

 

2

q

 

+

 

v

w

 

2

q

 

=

 

 wL

+

 

vK

 

=

 

TC

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

  (a special case of Problem 12.5)

d.
If w = 4     v = 1,    TC = 2q
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STC = TC for q = 100
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STC = TC for q = 200
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STC = TC for q = 400


[Figure 12.7 goes here]

12.8
a.
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b.
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c.
In the long run, can change K so it doesn't really matter.  Could split evenly or produce all output in one location, etc. 

LTC = K + L = 2q
LAC = 2 = LMC
d.
If there are decreasing returns to scale with identical production functions, then should let each firm have equal share of production.  LAC and LMC not constant anymore, becoming increasing functions of Q.

12.9
  From Shephard's Lemma

a.   
[image: image87.wmf]3

/

2

3

/

1

3

1

3

2

÷

ø

ö

ç

è

æ

=

¶

¶

=

÷

ø

ö

ç

è

æ

=

¶

¶

=

v

w

q

v

TC

K

w

v

q

w

TC

L




b.
Eliminating the w/v from these equations:
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which is a Cobb-Douglas production function.

12.10    As for many proofs involving duality, this one can be algebraically messy unless one sees the trick.  Here the trick is to let B = (v.5 + w.5).  With this notation, TC = .5B2q.


a.  Using Shephard’s lemma,
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b.  From part a,
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The production function then is
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c.  Referring back to Equation 11.35 shows that this is a CES production function with (=-1.  Hence, (=1/(1-()=0.5.  Comparison to Extension E12.2 shows the relationship between the parameters of the CES production function and its related cost function. 

CHAPTER 13

PROFIT MAXIMIZATION AND SUPPLY

Problems in this chapter consist almost exclusively of applications of the P = MC rule for profit maximization by a price-taking firm.  A few of the problems (13.2-13.5) ask students to derive marginal revenue concepts, but this concept is not really used in the monopoly context until Chapter 18.  The problems are also concerned only with the construction of supply curves since the details of price determination have not yet been developed in the text. 

Comments on Problems
13.1
A very simple application of the P = MC rule.  Results in a linear supply curve.

13.2
Easy problem that shows that a tax on profits will not affect the profit-maximization output choice unless it affects the relationship between marginal revenue and marginal cost.

13.3
Practice with calculating the marginal revenue curve for a constant elasticity demand curve.  The MR-MC equilibrium position is also calculated.

13.4
Shows alternative equilibria along a linear demand curve for differing firm goals.  Algebra here is quite straight-forward.

13.5
Develops some graphical results for the marginal revenue curves associated with different types of demand curves.  Useful for conceptualizing how the MR curve should look.

13.6
Uses the MR-MC condition to illustrate third degree price discrimination.  Instructors might point out the general result here (which is discussed more fully in Chapter 18) that, assuming marginal costs are the same in the two markets, marginal revenues should also be equal and that implies price will be higher in the market in which demand is less elastic.

13.7
An algebraic example of the supply function concept.  This is a good illustration of why supply curves are in reality only two-dimensional representations of multi-variable functions.

13.8
An introduction to the theory of supply under uncertainty.  This example shows that setting expected price equal to marginal cost does indeed maximize expected revenues, but that, for risk-averse firms, this may not maximize expected utility.  Part (d) asks students to calculate what is implicitly the value of better information.

13.9
Illustrates short-run producer surplus with a linear supply curve. 

13.10
A problem that develops the "profit function" concept.  Part d shows how that function can be integrated to yield producer surplus.  The concept is examined in more detail in the Extensions to this chapter.

Solutions
13.1
a.
MC =  TC/ q= .2q + 10

set MC = P = 20

yields q* = 50

b.
π = Pq  TC = 1000  800 = 200

c.


[Figure 13.1 goes here]

13.2

π(q) = R(q)  C(q)
Lump sum tax T         π(q) = R(q)  C(q)  T
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 MR = MC + t,     q is changed: a per unit tax does affect output.

13.3
a.


[Figure 13.3 goes here]

b.
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c.
MC = .001q = MR = 
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With q = 400, P = 0.8:  MR = MC = 0.4.

13.4
q = 100  2P        MC = AC = 10

a.
Max profits where  MR = MC       TR = Pq = (50  q/2)q = 50q  q2/2

MR = 50  q    MR = MC:
     50  q = 10, q = 40, P = 30, π = 800

b.
Maximum revenue:  MR = 0     50  q = 0

q = 50, P = 25, π = 750

c.
Constraint π = 768     50q  q2/2  10q = 768

Use quadratic formula or factor:  q = (32, 48)

but trying to max revenue so choose q = 48, P = 26.

d.



[Figure 13.4 goes here]

13.5
a.
q = a + bP
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Hence, q = (a + bMR)/2.

Because the distance between the vertical axis and the demand curve is q = 
a + bP, it is obvious that the marginal revenue curve bisects this distance for any line parallel to the horizontal axis.

b.
If 
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c.
Constant elasticity demand curve:  q = aPb, where b is the price elasticity of demand.
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Thus, vertical distance = P  MR  
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(which is positive because b < 0)

d.
If eq,P < 0 (downward sloping demand curve), then marginal revenue will be less than price.  Hence, vertical distance will be given by P  MR.
Since 
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is the slope of the tangent linear demand curve, the distance becomes 
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 as in Part (b).

e.


[Figure 13.5 goes here]

13.6
Total cost = .25q2 = .25(qA + qL)2
qA = 100  2PA          qL = 100  4PL
PA = 50  qA/2          PL = 25  qL/4
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MRA = 50  qA           MRL = 25  qL/2

MCA = .5(qA + qL)       MCL = .5(qA + qL)
MRA = MCA               MRL = MCL
50  qA = .5qA + .5qL        25  
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13.7
a.
Since q = 
[image: image108.wmf].
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Profit maximization requires P = MC = 2wq/4.

Solving for q yields q = 2P/w.
b.
Doubling P and w does not change profit-maximizing output level.

π = Pq  TC = 2P2/w  P2/w = P2/w
which is homogeneous of degree one in P and w.

c.
It is algebraically obvious that increases in w reduce quantity supplied at each given P.

13.8
a.
Expected profits = E(π) 

= .5[30q  TC(q)] + .5[20q  TC(q)] = 25q  TC(q).
Notice 25 = E(P).  
For Profit maximum set E(P) = MC = q + 5   so q = 20

E(π) = E(P)q  TC(q) = 500  400 = 100.

b.
In the two states of the world profits are

P = 30          π = 600  400 = 200

P = 20          π = 400  400 = 0

and expected utility is given by
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c.
Output levels between 13 and 19 all yield greater utility than does q = 20.  Reductions in profits from producing less when P is high are compensated for (in utility terms) by increases in profits when P is low.  Calculating true maximum expected utility is difficultCit is approximately q = 17.

d.
If can predict P, set P = MC in each state of the world.  

When P = 30  q = 25    = 212.5

P = 20  q = 15    = 12.5

        E(π) = 112.5
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 Ca substantial improvement.

13.9
a.
Since MC = 2q, P = MC implies q = 10, TR = 200, TC =125, π = 75.

b.
Producer surplus = SFC + π = 25 + 75 = 100.

c.
Since P = 2q, q = P/2


TR = P(P/2)
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Producer surplus = 
[image: image112.wmf]/4

 

P

 

=

 

/4

 

P

 

 

/2

 

P

2

2

2

-


Check:  P = 20
PS = 100.

Integration yields same result:
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13.10
a
Since 
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If P = SMC have 
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b.
q = π/P = 200P/w = 50 P (for w = 4).

c.
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d.
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If P* = 1, PS = 25.

e.
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CHAPTER 14


THE PARTIAL EQUILIBRIUM COMPETITIVE MODEL
The problems in this chapter focus on competitive supply behavior in both the short and long runs.  For short-run analysis, students are usually asked to construct the industry supply curve (by summing firms' marginal cost curves) and then to describe the resulting market equilibrium.  The long-run problems (14.5-14.8), on the other hand, make extensive use of the equilibrium condition P = MC = AC to derive results.  In most cases, students are asked to graph their solutions since, I believe, such graphs provide considerable intuition about what is going on.

Comments on Problems
14.1
Constructs a marginal cost curve from a cubic cost curve, then uses this to derive a supply curve and a supply-demand equilibrium.  The math is rather easy so this is a good starting problem.

14.2
Illustrates "interaction effects."  As industry output expands, the wage for diamond cutters rises, thereby raising marginal costs for all firms.

14.3
A simple, though at times tedious, problem that shows that any one firm's output decision has very little effect on market price.  That is shown to be especially true when other firms exhibit some supply response in reaction to price changes induced by the initial firm's altering its output.  That is, any one firm’s effect on price is moderated by the induced effect on other firms.

14.4
A tax-incidence problem.  Shows that the less elastic the supply curve, the greater the share of tax paid by the firm (for a given demand curve).  Issues of tax incidence are discussed further in Chapter 15.

14.5
A simple problem that uses only long-run analysis.  Once students recognize that the equilibrium price will always be $3.00 per bushel and the typical firm always produces 1,000 bushels, the calculations are trivial.

14.6
Similar to 14.5 but now introduces the short-run supply curve to examine differences in supply response over the short and long runs.

14.7
Introduces the concept of increasing costs by assuming that entrepreneurial wages are bid up as the industry expands.  Solving part (b) can be a bit tricky; perhaps an educated guess is the best way to proceed.

14.8
Analyzes an increase in cost that also shifts the low point of the typical firm's AC curve.  Here the increase in cost reduces the optimal size and has the seemingly odd effect of a cost rise leading to a fall in quantity demanded but an increase in the number of firms.

Solutions
14.1
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a.
Short run:  P = MC          P = .01q2 + .4q + 4

100P = q2 + 40q + 400 = (q + 20)2 = 100P,
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b.
Industry:  
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c.
Q = 200P + 8000          set = supply
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For each firm q = 30, C = 400, AC = 13.3,  π = 351.

14.2
C = q2 + wq 

a.
 w = 10         C = q2 + 10q
MC = 2q + 10 = P      q = P/2  5

Industry 
[image: image126.wmf]5000
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at 20, Q = 5000; at 21, Q = 5500

b.
Here, MC = 2q + .002Q          set = P
q = P/2  .001Q.

Total 
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P = 20, Q = 5000         
Supply is more steeply sloped in this case of

of interactions. 

P = 21, Q = 5250  

14.3
a.
Very short run, QS = (100)(1000) = 100,000.  Since there can be no supply response, this Q must be sold for whatever the market will bear:

160,000  10,000P = 100,000.             P* = 6

b.
For any one firm, quantity supplied by other firms is fixed at 99,900.  

Demand curve is q = 160,000  10,000P  99,900 = 60,100  10,000P.

c.
If quantity supplied is zero,

qS = 0 = qD = 60,100  10,000P.          P* = 6.01

If quantity supplied is 200,

qS = 200 = qD = 60,100  10,000P        P* = 5.99

d.
eQ,P = 
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For single firm:  eq,P = 
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Demand facing the single firm is "close to" infinitely elastic.

Now qi = 200 + 50P
a.
QS = 1000qi = 200,000 + 50,000P
Set supply = demand     

set = 160,000  10,000P        P* = 6

b.
For any one firm, find net demand by subtracting supply by other 999 firms.

qD = 160,000  10,000P  (199,800 + 49,950P)

    = 359,800  59,950P
c.
If 
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If 
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d.
Elasticity of the industry demand curve remains the same.  Demand curve facing the firm is even more elastic than in the fixed supply case:
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14.4
a.
QD = 100  2P          QS = 20 + 6P
At equilibrium, QD = QS.
100  2P = 20 + 6P     P* = $10, Q* = 80

b.
The consumer and firm are now faced with different P's, PF = PC  4.  Each will make decisions on quantity in regard to the price that it is faced with:

QD = 100  2PC      QS = 20 + 6PF = 20 + 6(PC  4).
The new equilibrium:  100  2PC = 20 + 6PC  24

                            8PC = 104,   PC = $13

     PF = $9, Q = 74

The burden of the tax is shared as consumers must pay $3 more for each frisbee while firms receive $1 less on each sale.

c.
QS = 70 + P
At equilibrium, QD = QS.
100  2P = 70 + P,     P* = $10,     Q* = 80

After tax:  QD = 100  2PC
               QS = 70 + PF = 70 + PC  4

     100  2PC = 70 + PC  4

              3PC = 34,  PC = 11.3,  PF = 7.3,  Q = 77.3

While burden is still shared, in this case the firm pays relatively more of the tax.

14.5
a.
QD = 2,600,000  200,000P
In the long run, P = $3, so

QS = QD = 2,600,000  200,000(3) = 2,000,000.

Since QS = 2,000,000 bushels, there are

2,000,000 bushels  = 2,000 farms.

1,000 bushels/farm

b.
QS = QD = 3,200,000  200,000P
In the short run, QS = 2,000,000, so

2,000,000 = 3,200,000  200,000P
1,200,000 = 200,000P          P = $6/bushel

  = TR  TC = 1000(63) = $3,000.

c.
P = $3/bushel in the long run.

QS = QD = 3,200,000  200,000(3) = 2,600,000 bushels

There will be 
[image: image133.wmf].
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d.


[Figure 14.5 goes here]

14.6
a.
LR supply horizontal at P* = MC = AC = 10.

b.
Q* = 1500  50P* = 1000.  Each firm produces

q* = 20,  π = 0.  There are 50 firms.

c.
MC = q  10, AC = .5q  10 + 200/q
AC = min when AC = MC        .5q = 200/q, q = 20.

d.
P = MC = q  10.     q = P + 10,

for industry 
[image: image134.wmf].
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e.
Q = 2000  50P    if Q = 1000, P = 20.  Each firm produces q = 20, 

π = 20(20  10) = 200.

f.
50P + 500 = 2000  50P          P = 15,   Q = 1250.

Each firm produces q = 25,  π = 25(15  AC)

                                         = 25(15  10.5)

                             
     = 112.5.

g.
P* = 10 again, Q = 1500, 75 firms produce 20 each.

π = 0.

14.7
a.
C = .5q2  10q + 4N     Since w = 4N, where N = # of entrepreneurs, QS
MC = q  10
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In long run:    AC = MC
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Since N = # of entrepreneurs = # of firms,


[image: image138.wmf].
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Also, QD = 1500  50P
and    P = MC = q  10, or q = P + 10.

        Q = Nq = N(P + 10).

Have 3 equations in Q, N, P.
Since 
[image: image139.wmf]8N
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 and Q = N(P + 10), we have
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            N = 50 (= # of entrepreneurs)

            
[image: image144.wmf]1000
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             q = Q/N = 20

             P = q  10 = 10

  
    w = 4N = 200.

b.
Algebra as before, (N + 50) 
[image: image145.wmf]8N

 = 2928.

  N = 72

  Q = N
[image: image146.wmf]8N

  = 1728

  q = Q/N = 24

  P = q  10 = 14

  w = 4N = 288

c.


[Figure 14.7 goes here]

This curve is upward sloping because as new firms enter the industry the cost curves shift up:

AC = .5q  10 + 
[image: image147.wmf]q

4N

, as N increases, AC increases.

14.8
a.
TC = wq2 - 10q + 100.

If w = $1, TC = q2 - 10q + 100.

MC = 2q - 10        AC = q - 10 + 
[image: image148.wmf]q

100


In the long run, AC = MC
2q - 10 = q - 10 + 
[image: image149.wmf] 

,

q

100

 q2 = 100, q =10 = output for typical mushroom producer.

b.
Constant costs industry means that as new firms enter this low point of average, total cost remains unchanged, resulting in a horizontal supply curve at P = $10 (when q = 10, AC = $10).  Thus, long-run equilibrium 
P = $10 and Q = -1,000(10) + 40,000 = 30,000.  There will be 
[image: image150.wmf]10

30,000

 = 3,000 firms.

c.
If w = $4        TC = 4q2  10q + 100

   
  MC = 8q  10        AC = 4q  10 + 
[image: image151.wmf]q

100

.

In the long run      AC = MC

  8q  10 = 4q  10 +
[image: image152.wmf]q

100

, q2 = 25, q = 5.

Long-run equilibrium price = low point of AC,

  AC = 4q  10 +
[image: image153.wmf]q

100

 = 20  10 + 20 = $30

Thus, Q = 1,000(30) + 40,000 = 10,000.

There will be 
[image: image154.wmf]5

10,000

 = 2,000 firms.

d.
For part (a), still have optimal q = 10.

For part (b), now QD = 1,000(10) + 60,000 = 50,000

so 
[image: image155.wmf]5,000
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For part (c) 

q = 5, P = 30.  QD = 1,000(30) + 60,000 = 30,000


[image: image156.wmf]6,000
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For part (d) demand is less elastic so reduction in optimal size more than compensates for reduction in quantity demanded as a result of cost increase, so the number of firms rises.
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