
CHAPTER 6

DEMAND RELATIONSHIPS AMONG GOODS  
Two types of demand relationships are stressed in the problems to Chapter 6:  cross-price effects and composite commodity results.  The general goal of these problems is to illustrate how the demand for one particular good is affected by economic changes that directly affect some other portion of the budget constraint.  Several examples are introduced to show situations in which the analysis of such cross-effects is manageable.

Comments on Problems
6.1
Another use of the Cobb-Douglas utility function which shows that cross-price effects are zero.  Explaining why they are zero helps to illustrate the substitution and income effects that arise in such situations.

6.2
Shows how some information about cross-price effects can be derived from studying budget constraints alone.  In this case, Giffen's Paradox implies that spending on all other goods must decline when the price of a Giffen good rises.

6.3
A simple case of how goods consumed in fixed proportion can be treated as a single commodity (buttered toast).

6.4
An illustration of the composite commodity theorem. Use of Cobb-Douglas utility produces quite simple results.

6.5
An examination of how the composite commodity theorem can be used to study the effects of transportation or other transactions charges.  The analysis here is fairly intuitive--for more detail consult the Borcherding-Silverberg reference.

6.6
Illustrations of some of the applications of the results of Problem 6.5

6.7
Demonstrates a special case in which uncompensated cross-price effects are symmetric.

6.8
Proof of Hicks' observation that "most" goods are net substitutes for one another.

6.9
An illustration of the constraints imposed by assuming separability of utility.

6.10
Examines cross-substitution effects in a three good CES function.

Solutions
6.1
a.
As for all Cobb-Douglas applications, first-order

conditions show
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b.
Because indifference curves are rectangular hyperboles (M  S = constant) own substitution and cross- substitution effects are of the same proportional size, but in opposite directions.  Because indifference curves are homothetic, income elasticities are 1.0 for both goods, so income effects are also of same proportionate size.  Hence, substitution and income effects of changes in PM on S are precisely balanced.

6.2
Since  
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 a rise in PR means PR  R rises.

Hence, 
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 must fall, so J must fall.  Hence, 
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6.3
a.
Yes, 
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b.
Since 
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c.
Since changes in PB or PT affect only PBT , these derivatives are also zero.

6.4
a.
Amount spent on ground transportation
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b.
Maximize U(B, T, P) subject to PPP + PBB + PTT = I.

This is equivalent to

Max U(G, P) = G2P
Subject to

PPP + PBG = I
c.
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d.
Given PBG, choose

PBB = PBG/2        PTT = PBG/2.

6.5
a.
Composite commodity = 
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b.
Relative price 
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Relative price < 1 for t = 0

Approaches 1 as t  .     

Hence, increases in t raise relative price of X2.

c.
Might think increases in t would reduce expenditures on the composite commodity although theorem does not apply directly because, as part (b) shows, changes in t also change relative prices.

d.
Rise in t should reduce relative spending on X2 since this raises its relative price (but see Borcherding and Silberberg analysis).

6.6
a.
Transport charges make low-quality produce relatively more expensive at distant locations.  Hence buyers will have a preference for high quality.

b.
Increase in baby-sitting expenses raises relative price of cheap meals.

c.
High-wage individuals have higher value of time and lower relative price of Concorde flights.

d.
Increasing search costs lower relative price of expensive items.

6.7
Xi = aiI          Xj = ajI

Hence:
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so income effects (in addition to substitution effects) are symmetric.

6.8
a.
A doubling of all prices does not change relative prices so does not change tangency to a given indifference curve.

b.
Direct application of Euler's Theorem.

c.
Follows directly from (b).  Since weighted sum is positive (because of the known negativity of the own substitution effect), "most" derivatives must be positive.

6.9
a.
This functional form assumes UXY = 0.  That is, the marginal utility of X does not depend on the amount of Y consumed.  Though unlikely in a strict sense, this independence might hold for large consumption aggregates such as "food" and "housing."

b.
Because utility maximization requires MUX / PX = MUY /PY , an increase in income with no change in PX or PY must cause both X and Y to increase to maintain this equality (assuming Ui > 0 and Uii < 0).

c.
Again, using MUX / PX = MUY /PY , a rise in PX will cause X to fall, MUX to rise.  So the direction of change in MUX / PX is indeterminate.  Hence, change in Y is also indeterminate.

d.
If 
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Hence, the first case is not separable, the second is.

6.10
a.
Example 6.3 gives
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 so these are gross complements.

b.
Slutsky Equation shows
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 could be positive or negative.  Because of symmetry of Y and Z here, the results of Problem 6.8 suggest 
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CHAPTER 7

MARKET DEMAND

Problems for this chapter stress the elasticity concept and illustrate some of the difficulties involved in aggregating demand relationships across individuals.  Because some of the topics here concern what are primarily issues in empirical implementation, some instructors may wish to focus only on those theoretical problems that expand on the elasticity concepts in the chapter (7.4-7.10).  Still, the empirical problems do offer students some insights about what it means to add up individuals' demands and at least one of the easier ones (e.g., 7.3) might be assigned.

Comments on Problems
7.1
This problem offers some algebraic practice in summing demand functions.  That process is a bit complicated because the functions are nonlinear.  The final part of the problem asks for some simple elasticity computations.

7.2
An example of aggregation theory and of one problem posed by such aggregation when demand is log linear.

7.3
Another aggregation problem--probably the most intuitive example because of the very simple linear forms used for each individual's demand.

7.4
A rather simple problem that is perhaps best done intuitively rather than mathematically (here a mathematical solution is given).  A common mistake in the mathematical solution is to substitute 
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 before differentiation.  Students should be shown why this is incorrect (because, when the substitution is made early, taking the derivative 
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 incorrectly  changes both 
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7.5
A simple graphic trick for computing the elasticity at any point on a linear demand curve.  This is a good way to illustrate the fact that price elasticities change along such a curve.  The result also applies locally to non-linear demand as can be shown by drawing tangencies.

7.6
Easy application of elasticity concept which shows that the existence of a budget constraint implies some relationships among elasticities.

7.7
Introduces the “expenditure elasticity”, a concept frequently reported in empirical work.

7.8
Illustrates aggregation of price elasticities.  Instructors might introduce specific numerical values here (e.g., if 
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 explain how substitution and income effects must work in this case).

7.9
Shows how price elasticities for compensated demand curves are related to the elasticity of substitution.

7.10
Examines a formal definition of the elasticity of substitution and shows how this applies in the CES case.

Solutions
7.1
Market demand for 
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a.
For PX = PY = 1,   IP = IB = 16,   IA = 25,  IR = 100

          X = 23/2 = 11.5.
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eX,I cannot be computed without knowing whose income changes (see part [b]).

b.
If PX doubles   X = 23/4 = 5.75

If IP = 8       X = 10.91

If IR = 50      X = 10.04

If PY = 2       X = 16.26

If Y taxed at 100%, demand for X increases by factor of 
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c.
Now X = 10

If IP or IR = 12.5     X = 9.27

d.
Now 
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At prior income levels, X = 56.5.

Elasticities now depend on the income levels of the various individuals.

If PZ = 2     X = 31.5.

7.2
Market demand for Q = 
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Hence, at any given P,Q elasticity is the same regardless of Ii or P'.

If ln Qi = ln ai  + bi ln P + ci ln Ii + di ln P'
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and the market demand function has a complex form.  Elasticities now do depend on Ii and P'.

7.3
a.   

 
  Tom 
Dick     
Harry         Total
P =
50  
     0      
  0          
  0              0

  = 
35
    30         
 20          
  0             50

  = 
25  
    50         
 60         
 25            135

  = 
10  
    80        
120        
100            300

  =  
 0         100        
160  

150            410

b.
"Total" column in (a).

c,d.


[Figure 7.3 goes here]

7.4
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b.
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If PH = 2PC then
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If use Slutsky Equation
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But 
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   (since all income is spent on H + C sandwiches).

For both H and C
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7.5
Use simple algebra:

P = aQ + b
at P*, P* = aQ* + b
where b is the P-intercept.

At E, elasticity = 
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but, from the graph,  
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so elasticity = 
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7.6
If both goods are luxuries and income is increased by 10%:  Spending on both X and Y will increase by more than 10%.  Hence, total expenditures will increase by more than 10%, which is impossible.

7.7
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but 
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7.8
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7.9
a.
Slutsky Equations for X and Y are
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Adding yields
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but by equation 7.23
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If σ = 1,  
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b.
If σ > 1 demands will be relatively price elastic(they will sum to less than –2); if σ < 1 demands will be relatively price inelastic (they will sum to greater than –2).

7.10
a.
σ is the percentage change in the Y/X ratio for a one percent change in the MRS.  Because utility maximization requires MRS = PX / PY , another interpretation would be the percentage change in Y / X for each percent change in relative prices (holding utility constant).

b.
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CHAPTER 8


EXPECTED UTILITY AND RISK AVERSION
Most of the problems in this chapter focus on the concept of risk aversion.  That is, they assume that individuals have concave utility of wealth functions and therefore dislike any variance in their wealth.  A difficulty with this focus is that, in general, students will not have been exposed to the statistical concepts of a random variable and its moments (mean, variance, etc.).  Most of the problems here do not assume such knowledge, but the Extensions do show how understanding statistical concepts is crucial to reading applications on this topic.

Comments on Problems
8.1
Reverses the risk-aversion logic to show that observed behavior can be used to place bounds on subjective probability estimates.

8.2
Graphic introduction to the idea of risk-taking behavior.  The Friedman-Savage analysis of coexisting insurance purchases and gambling could be presented here.

8.3
A nice, homey problem about diversification.  Can be done graphically although instructors could introduce variances into the problem if desired.

8.4
A graphic introduction to the economics of health insurance that examines cost-sharing provisions.  The problem is extended in Problem 9.3.  

8.5
Some simple numerical calculations involving risk aversion and insurance.  The problem is extended to consider moral hazard in Problem 9.2.  

8.6
A rather difficult problem as written.  It can be simplified by using a particular utility function (e.g., U(W) = ln W).  With the logarithmic utility function, one cannot use the Taylor approximation until after differentiation, however.  If the approximation is applied before differentiation, concavity (and risk aversion) is lost.  This problem can, with specific numbers, also be done graphically, if desired.  The notion that fines are more effective can be contrasted with the criminologist's view that apprehension of law-breakers is more effective and some shortcomings of the economic argument (i.e., no disutility from apprehension) might be mentioned.

8.7
An simple illustration of diversification.  Also shows how insurance provisions can affect diversification.

8.8
Shows the close connection between the relative risk-aversion parameter and the elasticity of substitution.  Good problem for building an intuitive understanding of risk-aversion in the state preference model.  Part d uses the CRRA utility function to examine the “equity-premium puzzle”.

8.9
Provides an illustration of investment theory in the state preference framework.

8.10
A continuation of Problem 8.9 that analyzes the effect of taxation on risk-taking behavior.

Solutions
8.1
p must be large enough so that expected utility with bet is greater than or equal to that without bet:

p ln(1,100,000) + (1  p)ln(900,000)  ln(1,000,000)

13.9108p + 13.7102(1  p)  13.8155

.2006p  .1053

p  .525

8.2


[Figure 8.2 goes here]

This would be limited by the individual's resources: he or she could run out of wealth since unfair bets are continually being accepted.

8.3
a.
Strategy One          
Outcome          
Probability

                           12 Eggs
               .5

                            0 Eggs
               .5

Expected Value  =     .5   12 + .5   0 = 6

Strategy Two          
Outcome          
Probability

                           

12 Eggs 
              .25

                            

 6 Eggs       

     .5

                            0 Eggs 
              .25

     Expected Value =      .25 (12 + .5 ( 6 + .25(  0

                  =      3 + 3 = 6

b.


[Figure 8.3 goes here]

8.4
a.
E(L) = .50(10,000) = $5,000, so

Wealth = $15,000 with insurance, $10,000 or $20,000 without.

b.
Cost of policy is .5(5000) = 2500.  Hence, wealth is 17,500 with no illness, 12,500 with the illness.


[Figure 8.4 goes here]

8.5
a.
E(U) = .75ln(10,000) + .25ln(9,000) = 9.1840

b.
E(U) = ln(9,750) = 9.1850

Insurance is preferable.

c.
ln(10,000  P) = 9.1840

10,000  P = e9.1840 = 9,740

P = 260

8.6
Expected utility = PU(W  f) + (1  P)U(W).
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 by Taylor expansion,  

 fine is more effective.

If U(W) = ln W then Expected Utility = P ln (W  f) + (1  P) ln W.
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8.7
a.
U (wheat) = .5 ln(28,000) + .5 ln(10,000) = 9.7251

U (corn)  = .5 ln(19,000) + .5 ln(15,000) = 9.7340

Plant corn.

b.
With half in each

YNR = 23,500

YR = 12,500

U = .5 ln(23,500) + .5 ln(12,500) = 9.7491

Should plant a mixed crop.  Diversification yields an increased variance relative to corn only, but takes advantage of wheat's high yield.

c.
Let α = percent in wheat.

U = .5 ln[ (28,000) + (1  α  )(19,000)] 

+ .5 ln[α (10,000) + (1  α )(15,000)]

  = .5 ln(19,000 + 9,000α) + .5 ln(15,000  5,000α)
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45(150  50α) = 25(190 + 90α)

2,000 = 4500α

     α = .444

U = .5 ln(22,996) + .5 ln(12,780) = 9.7494.

This is a slight improvement over the 50-50 mix.

d.
If the farmer plants only wheat,

YNR = 24,000

YR = 14,000

U = .5 ln(24,000) + .5 ln(14,000) = 9.8163

so availability of this insurance will cause the farmer to forego diversification.

8.8

8.8

a.
A high value for 1  R implies a low elasticity of substitution between states of the world.  A very risk-averse individual is not willing to make trades away from the certainty line except at very favorable terms.


b.
R = 1 implies the individual is risk-neutral.  The elasticity of substitution between wealth in various states of the world is infinite.  Indifference curves are linear with slopes of 1.  If R = , the individual has an infinite relative risk-aversion parameter.  His or her indifference curves are L-shaped implying an unwillingness to trade away from the certainty line at any price.


c.
A rise in 
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 rotates the budget constraint counterclockwise about the 
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 intercept.  Both substitution and income effects cause 
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 to fall.  There is a substitution effect favoring an increase in 
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 but an income effect favoring a decline.  The substitution effect will be larger the larger is the elasticity of substitution between states (the smaller is the degree of risk-aversion).


d.i.  Need to find R that solves the equation:
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This yields an approximate value for R of –3.  A number consistent with some empirical studies.




ii.  A 2 percent premium roughly compensates for a (10 percent gamble.




That is:
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The “puzzle” is that the premium rate of return provided by equities seems to be much higher than this.

8.9
a.  See graph. 


[Figure 8.9 goes here]

Risk free option is R, risk option is R'.

b.
Locus RR' represents mixed portfolios.

c.
Risk-aversion as represented by curvature of indifference curves will determine equilibrium in RR' (say E).

d.
With constant relative risk-aversion, indifference curve map is homothetic so locus of optimal points for changing values of W will be along OE.

8.10
a.
Because of homothetic indifference map, a wealth tax will cause movement along OE (see Problem 8.9).

b.
A tax on risk-free assets shifts R inward to 
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 (see figure below).  A flatter 
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 choices are even more likely to be to the right of
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 implying greater investment in risky assets.


[Figure 8.10 goes here]

c.
With a tax on both assets, budget constraint shifts in a parallel way to 
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 .  Even in this case (with constant relative risk aversion) the proportion of wealth devoted to risky assets will increase since the new optimum will lie along OE whereas a constant proportion of risky asset holding lies along 
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CHAPTER 9


THE ECONOMICS OF INFORMATION 
The problems in this chapter stress the economic value of information and illustrate some of the consequences of imperfect information.  Few of the problems involves complex calculations nor do they utilize calculus maximization techniques.  Rather, they are intended primarily to help clarify the conceptual material in the chapter.  

Comments on Problems
9.1
This problem illustrates the economic value of information and how that value is reduced if information is imperfect. 

9.2
This is a continuation of Problem 8.5 that illustrates moral hazard and why its existence may prompt individuals to forego insurance.

9.3
Another illustration of moral hazard and how it might be controlled through cost-sharing provisions in insurance contracts. 

9.4
This is an illustration of adverse selection in insurance markets.  It can serve as a nice introduction to the topic of optimal risk classifications and to some of the economic and ethical problems involved in developing such classifications.

9.5
This is a simple illustration of signaling in labor markets.  It shows that differential signaling costs are essential to maintaining a separating equilibrium.

9.6
An illustration of the economic value of price information.  Notice that the utility of owning the TV is already incorporated into the function U(Y) so all Molly wants to do is minimize the TV's cost.

9.7
A continuation of Problem 9.6 which uses material from the extensions to calculate the optimal number of stores to search.

9.8
A further continuation of Problems 9.6 and 9.7 that involves computation of an optimal reservation price.

9.9
Combines Figures 9.3 and 8.3 to show how greater risk-aversion may make separating equilibria more viable.

9.10
Introduces the notion of "resolution-seeking" behavior.  Here the notation is rather cumbersome (see the solutions for clarification).

Solutions
9.1
a.
Expected profits with no watering are

.5(1,000) + .5(500) = $750.

With watering, profits are $900 with certainty.  The farmer should water.

b.
If the farmer knew the weather with certainty, profits would be $1,000 with rain, $900 with no rain.  Expected profits are $950.  The farmer would pay up to $50 for the information.

c.
There are four possible outcomes with the following probabilities:

  Forecast

Rain


No Rain
Rain


37.5


12.5

Weather
No Rain

12.5


37.5

Profits in each case are (assuming farmer follows forecaster's advice):

   Forecast

Rain


No Rain
Rain


1000


900

Weather
No Rain

 500


900

Expected profits, therefore, are

.375(1000) + .125(900) + .125(500) + .375(900) = 887.5.

The forecaster's advice is therefore of negative value to the farmer relative to the strategy of planning on no rain.

9.2
Premium is now $300.  If she buys insurance, spending is 9700, utility = ln (9700) = 9.1799.  

This falls short of utility without insurance (9.1840), so here it is better to forego insurance in the presence of moral hazard.

9.3
A cost-sharing policy would now cost $1,750.  Wealth when sick would be 20,000 - 1,750  3,500 = 14,750.  Wealth when well would be 20,000  1,750 = 18,250.  Utility from this combination may exceed utility of a certain $15,000.

9.4
a.
Premium = (.8)(.5)(1,000) + (.2)(.5)(1,000) = 500

b.
For blue without insurance

E(U) = .8 ln 9,000 + .2 ln 10,000 = 9.1261.

With insurance

E(U) = ln (9,500) = 9.1590.

Will buy insurance.

For brown without insurance

E(U) = .2 ln (9,000) + .8 ln (10,000) = 9.1893.

Better off without insurance.

c.
Since only blue buy insurance, fair premium is 800. 

Still pays this group to buy insurance.

[E(U) = 9.1269]

Brown will still opt for no insurance.

d.
Blue premium = 800    E(U) = 9.1269

Brown premium = 200   E(U) = 9.1901

So Brown is better off under a policy that allows separate rate setting.

9.5
a.
No separating equilibrium is possible since low-ability workers would always opt to purchase the educational signal identifying them as high-ability workers providing education costs less than $20,000.  If education costs more than $20,000, no one would buy it.

b.
A high-ability worker would pay up to $20,000 for a diploma.  It must cost a low-ability worker more than that to provide no incentive for him or her to buy it too.

9.6
a.
U (18,000) = 9.7981

b.
U (18,300) = 9.8147

c.
Utility of Trip = .5U (18,200) + .5U (17,900) = 9.8009.  So since expected utility from the trip exceeds the utility of buying from the known location, she will make the trip.

9.7
a.
Here 
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For 300  P  400 
F(P) = 0 for P < 300

F(P) = 1 for P > 400.

Expected minimum price (see footnote 1 of extension) is
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c.
Set 
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       n = 6.07  (i.e., 7 calls)

An intuitive analysis is:

With n = 6  
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With n = 8  
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So should stop at the 7th call.

9.8
According to E9.3 and footnote 2, the searcher should choose 
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9.9
With greater risk aversion, indifference curves in Figure 9.3  become more nearly L-shaped (see Figure 8.3).  This offers more possibilities for utility-improving options for low risk individuals that would be unattractive to very risk averse, high risk individuals.

9.10
a.
Expected value of utility = .5(10) + .5(5) = 7.5 regardless of when coin is flipped.

b.
If coin is flipped before day 1, there is no uncertainty at day 2.  From the perspective of day 1, utility = 10 or 5 with p = 2 so 

E1(U) = .5(10) + .5(5) = 7.5.

If the coin is flipped at day two,

E2(U) = 7.5 and E1[E2(U)]1 = 7.5 

so date of flip does not matter.

c.
With  α = 2, flipping at day 1 yields 100 or 25 with p = 2
E1(U) = .5(100) + .5(25) = 62.5.

Flipping at day 2 yields

E2(U) = .5(10) + .5(5) = 7.5 and [E2(U)]2 = 56.25 < E1(U).

Hence the individual prefers flipping at day 1.

d.
With α = .5, flipping at day 1 yields utility of
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E1(U) = 2.70.

Flipping at day 2 yields  E2(U) = .5(10) + .5(5) = 7.5 and

[E2(U)].5 = 2.74.

Hence, the individual prefers flipping at day 2.

e.
Utility is concave in C2, but expected utility is linear in utility outcomes if   α = 1.  Timing doesn't matter.

With  α  1, timing matters because utility values themselves are exponentiated with a day-1 flip, whereas expected utility values are exponentiated with a day-2 flip.  Values of α > 1 favor a day-1 flip, values of α < 1 favor a day-2 flip.


CHAPTER 10


GAME THEORY AND STRATEGIC EQUILIBRIUM
The problems for this chapter are intended to illustrate the concept of Nash equilibrium in a variety of contexts.  Many of them have only modest economic content, but are traditional game theory problems.  Economic applications of game theory, especially for issues of price determination, are stressed in the problems to Chapter 20.


Comments on Problems
10.1
An illustration of a game with no Nash equilibrium in pure strategies.  There is an equilibrium in mixed strategies, however.

10.2
Another example of a game with a mixed-strategy equilibrium.

10.3
The classic "Stag Hunt" game attributed to Rousseau.  The most interesting aspect of the game is the decline in the value of cooperation as the number of players expands.

10.4
A simple game with continuous strategies.

10.5
A continuation of Example 10.2 that shows how mixed strategy equilibria depend on the payoffs to "The Battle of the Sexes" game.

10.6
A convincing illustration of a non-credible threat.

10.7
A problem based on Becker's famous "Rotten Kid Theorem."  The problem provides a good illustration of backward induction.

10.8
The "Chicken" game. This game illustrates the importance of credible threats and pre-commitments.

10.9
A game with three pure strategies and multiple Nash equilibria.

10.10
An illustration of an auction game.  Auctions are examined more extensively in Chapter 20.


Solutions
10.1


                                  
    B's Strategies

   H

   T
 A's Strategies     H     
   +1

   1

                 T     
   1

   +1

Payoffs are recorded from A's perspective.  Clearly, there is no Nash Equilibrium here in pure strategies.  If B knows what A will do, it can achieve +1, but A can see this by putting herself into B's position.  If each flips the coin, the expected outcome is zero.  This mixed strategy is a Nash Equilibrium.  If B knows A is following such a strategy, she could play H with probability P, T with probability 1  P.  Expected payoff is 

2(P )(+1) + 2(P )(1) + 2(1  P )(+1) + 2(1  P )(1) = 0

but any choice of P other than 2 gives A an incentive to depart from 2.  Let q be A's probability of heads.  Then her expected payoff is

Pq(+1) + P(1  q)(1) + (1  P) q(1) + (1  P)(1  q) (+ 1)

= Pq  P + Pq  q + Pq + 1  P  q + Pq
= 4Pq  2P  2q + 1.

If P > 2 A should choose q = 1 so expected payoff is 2P  1 > 0.

If P < 2 A should choose q = 0 and expected payoff is 1  2P > 0.

10.2
a.
Payoffs from Smith's perspective are +3, 1.

Jones' Strategies

 1

2

3
1


+3

2

1

Smith's

Strategy 
2


1

+3

1

3


1

1

+3

This game is similar to the one in Problem 10.1 in that it has no equilibrium pair.

b.
Expected payoff to mixed strategy is for Smith

 a(3) + a(1) + a(1) = a .
For Jones it is

a(3) + a(1) + a(1) = a .

This mixed strategy is an equilibrium since neither player has an incentive to depart from it even if he or she knows what the other is doing (assuming the strategy choices are truly random).

10.3
a.
Stag-Stag and Hare-Hare are both Nash equilibria.

b.
Let P = Probability A plays stag.  B's payoffs are

       Stag
2P + 0(1  P) = 2P
       Hare
P + (1  P) = 1

So Stag payoff > Hare if 2P > 1 or if P > 2.

c.
B's payoff to Stag with n players is 2P n 1 (since all must cooperate to catch a stag).  Hence B will play stag if 2P n 1 > 1 or if P n 1 > 2.

10.4
Payoffs are dA , dB if dA + dB  100, and 0 if dA + dB > 100.  All strategies for which dA + dB = 100 represent Nash equilibria since no player has an incentive to change given the other player's strategy.

10.5
Using notation from Example 10.2, expected utility for A is


UA = 1  s + r [(K + 1)s  1]

and for B

UB = K(1  r) + s [(K + 1)s  K].

Hence mixed strategy equilibrium is


s = 1/(K + 1)      r = K/(K + 1).

10.6
Clearly the detonation threat is non-credible.  B would not choose this even if A does not pay the $1.

10.7
This is solved through backward induction.  Parent's maximum for L requires
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Differentiation of parent's optimum with respect to r yields
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 which is precisely the condition required for r to maximize total income.

10.8
a.
There are two Nash equilibria here:

A: Chicken, B: Not Chicken; and A: Not Chicken, B: Chicken.

b.
The threat "Not Chicken"; is not credible against a firm commitment by one's opponent to Not Chicken.

c.
Such a commitment would achieve a desirable result assuming the opponent has not made such a commitment also.

10.9
a.
There are two Nash equilibria:  A:M, B:M, and A:D, B:R.
b.
If played twice, there are four subgame perfect equilibria:  (1) A:M,M, B:M,M; (2) A:M,D, B:M,R; (3) A:D,M, B:R,M; and (4) A:D,D, B:R,R.

c.
A:U, B:L is sustainable against A:D, B:R provided 
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against A:M, B:M provided 
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10.10
a.
Strategies here are continuous.  A = 500.01 dominates any strategy in which A bids more.  B = 500 dominates any strategy for which B bids more.  Any other strategies are not dominant.

b.
The only Nash equilibrium here is A = 500.01, B = 500.

c.
With imperfect information this becomes a Bayesian game.  See Example 20.5 for a discussion.
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