LECTURE #6

 

Decision Making Under Uncertainty

The basic notion that underlies decision making under uncertainty, is the idea of a lottery. A lottery is specified by a list of outcomes X1,...,Xn and well defined probabilities associated with them [image: image1.wmf],
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 is the probability associated with X1  , [image: image3.wmf]2
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 P2 is the probability associated with X2 and so on.

 

Because these are probabilities, they have to be greater than or equal to zero and less than or equal to one. It does not make any sense to talk about a probability being negative.
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In addition, the probabilities must sum to 1. 
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That means that you are getting a complete list of the outcomes. One of these outcomes must happen.

 

Other examples of lotteries are the purchase of a stock or getting into graduate school. Since you can get into more than one school at a time, in order to make it into a lottery form, you cannot say that X1 is getting into school 1, X2 is getting into school 2 and so on. Instead, we must look at all the possible combinations of schools and each combination will be treated as an outcome. Any decision making under uncertainty can fit into this lottery format. The way economists look at this problem is using expected utility.

 

Expected utility
Let V(X1), ....V(Xn) be the utilities associated with each of the outcomes. V is called the felicity function (to distinguish it from the utility function). The expected utility is:
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The idea is that you take a weighted average of the felicity function where the weights are the probabilities of each outcome.  

 

Say there is a lottery where there is a 0.1 probability that you get a million dollars and a 0.9 probability that you get nothing. The expected utility of this lottery is not obtained by multiplying the probabilities of each outcome and adding them up. What we are doing here is multiplying the probabilities times the felicity of each outcome.

 

Let’s look at a compound lottery where the prize of the first lottery is a ticket for a second lottery. For example let’s say we have two lotteries:
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But first there is a third lottery to determine which lottery you participate in. The third lottery pays a ticket in L1 with probability ( and a ticket in L2 with probability 1-(. For example, to get the outcome X1 you have to first win the ticket for lottery L1 (which has probability () and then win X1 (which has probability [image: image8.wmf]1

P

). So in the case of this compound lottery the probability that you get each outcome is as follows.
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The value of the lottery to you only depends on what are the prizes and what are the probabilities of the prizes. We assume you only care about the final prizes and probabilities. We are assuming in our formulation, that you feel that a single lottery with the probabilities just mentioned is the same as a compound lottery that gives you in the first run, a ticket for the second run. The notation for this compound lottery is
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To maximize expected utility, what we care about here is the expected utility we get from the final prizes and probabilities. We need to make some assumptions about people behavior in order to be able to expect that people will in fact try to maximize their expected utility or at least act like if they were trying to maximize it. The following axioms guarantee that people will try to behave that way.

 


Von Neumann-Morgenstern theorem. Suppose an individual has a preference over lotteries that satisfies the following reasonably looking properties.

 

1) Completeness. Given any pair of lotteries, you can say which one you like better. For example, given L1 and L2 either L1 (L2 or L2 (L1 or both (if it is both then you are indifferent between the two of them).

 

2) Transitivity. If L1 (L2 and L2 (L3 then L1 (L3.

 

3) Continuity. Given three lotteries L1, L2, and L3, we take compound lotteries of the first two and compare them to all three. Let’s look at the sets:

{(([0,1]: (L1 + (1-() L2 ( L3} is closed

{(([0,1]: L3 ( ( L1 + (1-()  L2} is closed

 

This property, in conjunction with the first property, is saying that if L1 ( L3 ( L2 , then there exists a ( such that: L3 ~ ( L1 + (1-()  L2.

 

In other words, if you like L1 better than L3 and L3 better than L2, there is some combination of L1 and L2 that you like exactly as much as L3.

 

4) Independence. This property takes the relationship between two lotteries and combines them with a third lottery. For example, given L1, L2, and L3, then 

L1 ( L2 ( (L1 + (1-()L3  (  (L2 + (1- ()L3
 

Independence says that the only thing that matters in order to be able to rank the two compound lotteries on the right is whether I like L1 better than L2 (note that the probabilities of the compound lotteries on the right is the same except that in the first one we have L1 and L3 and in the second one we have L2 and L3).

 

The Von Neumann-Morgenstern theorem says that if you satisfy these 4 axioms, then you will act as if you were maximizing expected utility. In other words, if these axioms are satisfied, then there is a felicity function V such that 
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Rough idea of proof
If we assume that there is a finite number of outcomes in a lottery, because of completeness and transitivity, there will be a best pure outcome and a worst pure outcome. We can order the pure outcomes such that [image: image13.wmf]  
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. We can arbitrarily set the felicity values for X1 and Xn as:
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And this will tell us what we assigned to every other Xi
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There will be a whole range of [image: image16.wmf]s
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 to be preferred or indifferent to Xi. When I take the minimum value I get the unique [image: image18.wmf]a
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Figure 1

 

 

Suppose an individual’s felicity function for income is strictly concave (see figure 1). The marginal utility strictly decreases (the more income you have the less value an additional dollar has to you). Say the individual has an income level of $1000. Then the individual is offered a lottery in which the individual receives an amount with probability 0.5 or the individual pays that same amount with probability 0.5. If the lottery is for $1000, then the lottery is: (-1000, 1000), (1/2 , 1/2). 

We want to know if the individual will participate in this lottery. Notice that the dollar pay off in expected value is zero. This may lead you to think that the individual is indifferent about participating in the lottery or not. However, this is not the case because the utility the individual gets if she does not participate in the lottery (that is V(Io)), is higher than the expected utility if the individual participates in the lottery (point E). 

 

Because V is concave, [image: image21.wmf]1
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. There are several ways of defining concave functions. If the function V is differentiable then we say V is concave if V’’<0 for all values of i. A more general definition is: a function is concave if when we join with a straight line any two points on the curve, the segment is below the curve.

In terms of economics, it means that each additional dollar is worth less to you than the previous one. In our example: the value of the $1,000 you lose is larger than the value of the $1,000 you gain.

 

In summary, this individual is offered the opportunity to participate in a fair lottery (we call it fair because its expected value is zero), however, the individual decides not to participate. We say that this individual is risk averse. 

 

Allais Paradox
Make sure you read about the measures of risk aversion in the book. I do not want to duplicate the material here. Instead, I will go through a thought example. Say we have two lotteries with three different prizes:


1st prize
2nd prize
3rd prize


 $2.5 m
  $0.5 m
    $0

 

The probabilities of each prize under each lottery are:

L1: ( 0,      1,        0   )  

L2: ( 0.1,  0.89,  0.01 )

 

Given this choice most people would choose L1 over L2
 

Let’s consider another pair of lotteries:

L3: ( 0,   0.11,  0.89 )  

L4: ( 0.1,   0,    0.9 )

 

Given this choice most people would choose L4 over L3. 

 

The problem with these results is that they cannot be rationalized with an expected utility maximization.  In general, in the first pair of lotteries people are attracted by the possibility of getting the $2.5 million as opposed to $0.5 million. However, the thought of actually ending up with zero is too awful.  They would feel very stupid.

 

In the second pair of lotteries the possibility of ending up with nothing is greater than in the first pair of lotteries. However, in the second pair of lotteries if you end up with nothing, you can rationalize it: you could have also ended up with nothing had you chosen L3. So you do not have the same type of regret.

 

The paradox is that most people would choose L1 over L2 and L4 over L3 and there is no felicity function such that maximizing expected utility leads to these choices. 

 

The expected utility of L1 must be greater than the expected utility of L2 and pair the expected utility of L3 must be smaller than the expected utility of L4. That is:

V($0.5 m) > 0.1 V($2.5m) + 0.89V($0.5m) + 0.01V($0)

0.11V($0.5m)+ 0.89V($0) < 0.1V($2.5m)+0.9V($0)

 

However these two equations are not consistent because the first one says that 

0.11V($0.5 m) > 0.1 V($2.5m) + 0.01V($0) while the second equation says that

0.11V($0.5 m) < 0.1 V($2.5m) + 0.01V($0). In other words, you do not behave the way economic theory assumes you behave.

 

In the same way that two physically identical commodities can be different if available at different time periods, two physically identical commodities can be different if available under different circumstances (under uncertainty).  We need to look at the underlying states of the world. People have a different view point towards a small probability of losing something than they do towards a small probability of gaining something. It really depends on how the question is framed. It is useful to think about what you get under different states as being separate commodities even if they are physically identical (see state preferences model towards the end of the book).

 

