
Lecture 5

Economic Analysis of Behavior

under Risk

This chapter presents the economic modeling of decision-making under risk.

Choices under risk occur when the probability distribution of the outcomes are

objectively known to the decision-maker. Choices under uncertainty occur when

no objective probability distribution is given to the agent. This chapter focuses on

decision-making under risk1.

5.1 Introduction: an overview

The traditional approach to modeling behavior under risk is through the use of

the expected utility approach. The expected utility model was suggested by

Von-Neumann and Morgenstern in The Theory of Games and Economic Behavior

(1944). Expected utility theory describes the relationship between an individual's

scale of preferences for a set of acts and their associated consequences. Given certain

postulates about rational choice, Von-Neumann and Morgenstern developed a set

of axioms about the ordering, continuity, and independence of individual choice and

used this as a base to derive the properties of the expected utility function, thus

describing the conditions under which an individual's preferences under random

choices correspond to maximization under the expected utility model.

Friedman and Savage's paper (1948) is the �rst where the expected utility ap-

proach is applied to explain economic behavior. The utility function is de�ned on

wealth, where diversi�cation and general risk aversion are explained by the func-

tion's concavity. Moreover, an S-shaped speci�cation for the utility function ex-

1For a discussion on modeling choice under uncertainty, see Savage (1948).
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plains why an individual may be risk averse for some choices but prefer risk for

other choices.

Arrow (1971) and Pratt (1964) introduced measures of risk aversion. They

de�ned:

RA = �
U 00

U 0 , a measure of absolute risk aversion and

RR = �
U 00

U 0 W , a measure of relative risk aversion,

where U 00 and U 0 indicate, respectively, the second and �rst derivative of the von

Neumann-Morgenstern utility function and W is wealth.

They established that, under the expected utility hypothesis, there exists a one-

to-one relationship between preferences over random income (or wealth) and the

measures of risk aversion. They claim that, as income grows, one cares less about

one `unit' of risk |the measure of absolute risk aversion is declining|, but cares

equally about the risk involving a given share of his wealth |the measure of relative

risk aversion may be constant and perhaps even equal to 1.

The next step in the theory of decision{making under risk was the development

of models and concepts for measuring risk. The �rst e�orts in this direction used

statistical indexes as mean and variance of the random outcome as arguments of

the utility functions. Recognizing that variance is not always a good measure of

risk, Rothschild and Stiglitz (1970), Hancock and Levy (year?), and Radar and

Russell (1969) developed models and concepts that are useful for a more general

comparison of risky prospects. These approaches use probability distributions and

are independent of the decision-maker's utility function. Concepts such as themean-

preserving spread and stochastic dominance fall under this rubric and have been used

in much recent work.

In the following section we will discuss some of the main approches currently

used to measure risk and their implications in terms of economic analysis.

5.2 Measures of Risk Aversion and Their Interpreta-

tion

What does it mean to say that an individual is risk averse in the context of expected

utility? How can we measure people's attitudes towards risk? Kenneth Arrow (1971)

developed answers to these questions. Working from the de�nition of a risk-averse

individual as one who \starting from a position of certainty, is unwilling to take a

bet which is actuarially fair", Arrow derives a series of quantitative measures of risk

attitudes. The most important of these are the absolute and relative risk-aversion
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coe�cients, which can be derived from the Von Neumann-Morgenstern utility func-

tion. Arrow also hypothesized that individuals would exhibit decreasing absolute

risk aversion and increasing relative risk aversion under most circumstances. These

hypotheses have critical implications for the empirical speci�cation of utility func-

tions. Some of the most simply formulated utility functions do not exhibit the risk

preference structure postulated by Arrow.

5.2.1 Absolute Risk Aversion

De�nition:

Absolute risk aversion: Ra = �
U 00(w)

U 0(w)

where w is wealth, U(�) is the Von Neumann-Morgenstern utility function which

is bounded and twice di�erentiable, U 0 is the marginal utility of wealth, and U 00

is the rate of change of marginal utility with respect to wealth. The coe�cient

of absolute risk aversion directly measures how much over fair odds an individual

requires before accepting a bet.

Absolute Risk Aversion with a Discrete Probability Distribution

Suppose a risk-averse individual is o�ered, for a small amount h, the following

gamble:

win h with probability P or lose h with probability 1� P .

When will the individual be indi�erent to the gamble? Suppose that the initial

wealth level is w0. Comparing the expected utility of taking the gamble with the

utility achieved with no gamble we obtain:

PU(w0 + h) + (1� P )U(w0 � h) = U(w0) (5.1)

Estimating a Taylor's series approximation around h:

U(w0 + h) = U(w0) + U 0(w0)h+
1

2
U 00(w0)h

2

U(w0 � h) = U(w0)� U 0(w0)h+
1

2
U 00(w0)h

2

Substituting these approximations into (5.1), we get:

PU(w0 + h) + (1� P )U(w0 � h) � U(w0) + (2P � 1)U 0(w0)h+
1

2
U 00(w0)h

2
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Canceling like terms and rearranging terms, we obtain:

(2P � 1)U 0(w0)h = �
1

2
U 00(w0)h

2

(2P � 1) =
1

2
RA(w0)h

P =
1

2
+
1

4
RA(w0)h

dP

dh
=

1

4
RA(w0)

Therefore, the coe�cient of absolute risk aversion RA tells how much the odds

of winning have to be a�ected to induce a risk-averse individual to take a constant

sum gamble. For a risk-averse individual, this coe�cient should be positive. As the

amount gambled increases, a higher probability of winning is needed in order for an

individual to be indi�erent between gambling and certainty.

Absolute Risk Aversion with a Continuous Probability Distribution

Consider a small gamble x with mean � and variance �2. If we express this gamble

in terms of the �rst two moments of the distribution and use a Taylor's series

approximation around the mean, we get:

EfU(w0 + �) + U 0(w0 + �)(x� �) +
1

2
U 00(W0 + �)(x� �)2g (5.2)

De�ning a constant z as the certainty equivalent of X such that:

EU(w0 + x) = U(w0 + z)

and taking the expectations operator through (5.2), we obtain:

EU(w0 + x) � U(w0 + �) +
1

2
U 00(w0 + �)�2 = U(w0 + z)

Since both � and z are small, we can make the following approximations:

U 0(w0) � U 0(w0 + �) � U 0(w0 + z)

and

U 00(w0) � U 00(w0 + �)

Therefore, we can approximate U 0(w0) with the following equation:

U(w0 + x) � U(w0) + U 0(w0)�+
1

2
U 00(w0)�

2 = U(w0) + U 0(w0)z
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Solving for z:

U 0(w0)�+
1

2
U 00(w0)�

2 = U 0(w0)z

z = �+
1

2
RA�

2

Finally, expressing the risk-aversion coe�cient in terms of the moments of the

distribution:

RA =
�� z
1
2
�2

For risk-averse individuals, � is greater than z, so that RA is positive.

5.2.2 Relative Risk Aversion

De�nition

Relative risk aversion: RR = �
U 00

U 0
w = RA(w) � w

Relative risk aversion is a measure of risk proportional to the level of wealth. It

can be thought of as the elasticity of risk aversion. Consider a discrete probability

distribution with a gamble to win a fraction of t of wealth with probability P or

lose it with probability 1� P . When an individual is indi�erent to the gamble,

PU [w(1 + t)] + (1� P )U [w(1 � t)] = U(w)

Following a similar procedure as with the absolute risk aversion coe�cient, we

can derive the following equation:

U(w) + (2P � 1)U 0(w)tw +
1

2
U 00(w)t2w2 = U(w)

Dividing through by U"tw and canceling like terms, we obtain:

(2P � 1) = �
1

2

U 00

U 0
tw =

1

2
RRt

The higher the relative risk aversion coe�cient, RR, the higher must be the

probability of winning for the individual to be indi�erent, for a given share of

wealth at stake, t.
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5.2.3 Hypotheses about Risk Preferences

In his 1971 essay, Ken Arrow put forward two hypotheses about the behavior of the

measures of risk aversion. These are decreasing absolute risk aversion (DARA) and

increasing relative risk aversion (IRRA). Decreasing absolute risk aversion implies

that the willingness of individuals to take small bets of �xed size increases with

wealth. Increasing relative risk aversion implies that, as wealth increases, the pro-

portion of wealth the individual is willing to risk declines. An example of behavior

which exhibits DARA and IRRA is as follows: Ross Perot will be more likely to

accept a $10 bet than you or I (assuming no obscenely rich readers!), but he will be

less likely to wager 10 percent of his wealth.

Going back to the derivations above, note that the assumption of decreasing

absolute risk aversion is associated with:

dP

dW
=

1

4

@RA

@W0

< 0

From the derivation of the measure of relative risk aversion, we can obtain
@P
@t

> 0; and if we assume @RR
@W

> 0, then @P
@W

> 0. We are likely to have an

increasing relative risk aversion while we have decreasing absolute risk aversion.

5.2.4 The Implications of Risk Preferences for Empirical Speci�-

cation of Utility Functions

Empirical applications of the expected utility framework may require speci�cation

of the utility function. In order to achieve a reasonable depiction of reality with a

tractable form, it is desirable that the speci�c utility function U(W ), where W is

wealth (or income), will have some of the following characteristics:

1. Simplicity.

2. Positive and decreasing marginal utility (U 0 > 0, U 00 < 0).

3. Decreasing (or at least non{increasing) absolute risk aversion (@RA
@W

� 0, where

RA = �
U 00(W )

U 0(W )
)

4. Non-decreasing relative risk aversion (@RR
@W

� 0, where RR = �
U 00(W )W

U 0(W )
). If

RR is constant, it is preferably near 1.

Speci�c Cases
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� Quadratic Utility Functions: U(W ) = a+ bW �
1
2
CW 2, when W > b

c

This utility function may be objectionable because it implies increasing abso-

lute risk aversion [RA = c=(b� cW ); @RA
@W

= cRA=(b� cW )].

� Cobb-Douglas Utility Functions: U(W ) = AW�; 0 < � < 1

This utility implies constant relative risk aversion and decreasing absolute.

risk aversion with RR(W ) = 1� a. The de�ciencies of this function are:

1. RR = 1 when � = 0, and

2. the expectation of utility under this function, E(AW�), may result in

complex expressions.

� Logarithmic Utility Function: U(W ) = lnW

This function implies constant relative risk aversion with RR(W ) = 1 and

decreasing absolute risk aversion. This function is de�ned only for W > 0.

The expected value of this utility, E(lnW ), may be cumbersome in problems

where W is a linear function of decision variables.

� Exponential Utility Functions: U(W ) = 1� e�rW

This utility function implies constant absolute risk aversion with RA(W ) =

r. This functional form is easy to apply with distributions which can be

de�ned by their moment-generating functions. Moment-generating functions

are a function of the parameters of the distribution associated with random

variables For example, for the exponential utility function, EU(W ) = 1 �

E[e�rW ] and E[e�rW ] is a moment-generating function.

For examle, let z be a random variable. The moment-generating function for z is

Mz(t) = E(ezt). When W is a normally distributed random variable with E(W ) =

�, var(W ) = �2, the moment generating function to the second order gives:

EU(W ) = 1� e�r[��
1

2
r�2]

Since any solution that maximizes �� (1=2)r�2 also maximizes EU(W ) in this

case, when utility is exponential and the random variable is normally distributed,

maximization of a linear function of the mean and variance of income is equivalent

to expected utility maximization, i.e.,

max
X

EU(W ) = max
X

1� e�rW

Let

W =W0 + �PX"� C(X)

where:
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X = output

P = average price

" = random price variability, " � N(1; �2)

C(X) = cost function, C 0 > 0, C 00 > 0

Expected utility maximizing outcome in this case can be obtained solving

max
X

�PX � C(X)�
1

2
r�2 �P 2X2

The optimal solution in this case is obtained solving the FOC:

�P � C 0(X)� r�2 �P 2X = O

Suppose C(X) = cX. The �rst-order condition becomes

�P � c� r�2 �P 2X = 0

X =
�P � c

r�2 �P 2

Questions:

1. Can supply (X as a function of �P ) be negatively sloped in this case? Why?

2. Derive supply when price P follows a gamma distribution (see Yassour, Rausser

and Zilberman)

5.2.5 Estimation of Risk Aversion Coe�cient

The Arrow-Pratt measures of risk aversion and conceptual models such as Sand-

mo's have established a very rich theory of decision making under uncertainty in

agricultural production and resource use. However, little empirical work has been

done to test the theory. One of the challenges of applied econornics and agricultural

economics research is to develop such an empirical base. This section will identify

some of the problems and alternative approaches to address them.

The most di�cult problem in assessing empirical expected utility models is the

unobservable nature of an individual's evaluation of utility levels and the proba-

bilities associated with them. Expected utility models assume that choices under

uncertainty result from a mental process where the utility of many wealth levels

are assessed and multiplied with the right probabilities |resulting in the expected
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utility of each prospect. Expected utilities are then compared to obtain the op-

timal choice. Unfortunately, these evaluations of utility levels are not observable.

However, for standard economic analysis, we have to rely on observable variables.

These include choices, for example, to adopt or not to adopt a technology, as well as

characteristics of decision makers such as farm size, age, education, etc. Information

about the subjective probabilities of di�erent outcomes is also not available, which

makes the estimation of decision makers' parameters even more di�cult.

One approach for empirical estimation of expected utility is to reduce the un-

certainty of the researcher by conducting experiments where the decision maker is

presented with rewards and the probabilities of rewards is speci�ed. She has to make

choices between outcomes. In these cases, the researcher does not know the utility

functions but supposedly knows everything else associated with the decision. Such

experiments can be used to assess empirically to what extent the expected utility

model is realistic, and in the case where it is a realistic description of reality, what

the values of key parameters are |such as the measures of absolute and relative

risk aversion.

In later lectures we will discuss some of the experiments and tests of expected

utility hypothesis. In this lecture we will concentrate on models that try to estimate

risk aversion parameters and, in particular, to test whether there is decreasing

absolute risk aversion, increasing relative risk aversion, and if relative risk aversion

is around one.

Binswanger used experiments where farmers in India were given actual monetary

rewards as part of di�erent gambles. Binswanger recorded their individual choices

and elicited from them some of their risk{aversion parameters. Since the income

level of the individuals involved was relatively low, with a reasonable amount of

money, he was able to collect a large set of data. He found substantial variability in

the measures of risk aversions between individuals, who demonstrate heterogeneity

in risk preferences. He also found that, for any given individual the measure of

partial relative risk aversion did not change much with di�erent gambles.

Other experimental studies, especially ones conducted in the United States, were

not done with actual rewards but instead with hypothetical choices. These studies

were mostly intended to identify paradoxes in risk choice patterns that contradict

expected utility and not to elicit the parameters of the utility function.

The most popular approaches to estimate the parameters of the utility func-

tion were ones using programming models and econometric models. The following

section describes how one can use econometric models such as the Just-Zilberman

model we mentioned in the last lecture to elicit risk aversion coe�cients.



102 LECTURE 5. RISK

Estimation

Consider from simple formulations of the model the case where the farmers have

to allocate land between two crops. It is assumed that the production function

has �xed proportions per acre. Therefore, the farmer has a mean variance and

covariance between the pro�ts of the crops per acre. As the analysis in the previous

section suggests, the amount of land allocated for tcchnology 1, L1 can be written

as:

L1 =
�1 � �2

(�21 + �22 � 2�12)�( �W )
+

�2 � �12

�21 + �22 � 2�12)
�L (5.3)

where �1 is mean pro�t per acre of technology 1, �2 is mean per acre of pro�t of

technology 2, �21 is the variance of pro�t per acre of technology 1, �
2
2 is the variance

of pro�t per acre of technology 2, and �12 is the covariance between pro�ts per acre.

The function �( �W ) is a measure of absolute risk aversion as a function of average

wealth, �W .

This model, which is based on a Taylor series as an approximation of the �rst-

order condition, allows us to get a quantitative assessment of the behavior of measure

of risk aversion. Since one cannot observe the utility function change with wealth for

one individual, in this model we try to estimate how the measure of risk aversion

is changing between individuals where we tried to estimate the measure of risk

aversion as a function of average wealth, jbarW , using our results derived by our

approximation.

Several relationships which can be derived using these models depend on the

data one has and the degree of ease or statistical sophistication.

Now consider the most simplistic case. One assumes constant absolute risk

aversion and has only data on acre and land allocation with two crops. In this

case, the estimated models will be L1 = A1 +A2
�L+ ". In this case, " is a random

variabile. The estimated value of Â1 is an estimator of A. The estimated value of

Â2, is an estimator of B.

Such model can be estimated using a simple linear regression. One can use the

model to test simple empirical hypothesis. For example, if crop 1 has a higher mean

and higher variance, and the correlation of yield between the two crops is not very

big, one can test hypotheses that A1 is positive and A2 is negative and smaller than

1. If one ran such models in di�erent regions and obtained a B1 estimate for the two

regions, then one may test an hypothesis that has a region where the correlation

between yield is bigger and may have a smaller B1.

One can use this land allocation equation and incorporate it with other elements

that determine land allocation, for example, �xed costs of di�erent technologies as

well as credit constraints. In this case one can get the systems, and several segments
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and risk aversion will determine the relation between land allocation to crop 1 and

total land only in one segment. Marra and Carlson have a nice application of this

approach to allocate assessment of adoption of double cropping in the United States.

Data on L1 and L can lead to more insightful results when a more sophisticated

econometric model is used and added assumption on risk aversion is introduced if,

instead of assuming constant absolute risk aversion one assumes that � varies with
�W . Furthermore, if ones assumes a constant ratio between farm size and expected

wealth �W � ��L, then risk aversion can be approximated and estimated as a function

of farm size. Suppose

�( �W ) = CW��

where � is the elasticity of absolute risk aversion

� = �
@�

@ �W

�W

�

and C is a scaling constant. In the case of constant absolute risk aversion, � = 0.

When we have decreasing absolute risk aversion, � > 0. Let r = �W be a measure

of relative risk aversion. Note that if we de�ne the elasticity of relative risk aversion

as �, it is:

� =
@r

@ �W

�W

r
=

�
@�

@ �W

�W

�
+ 1

�
= 1� �

So, in the case of constant relative risk aversion, � = 1 and in the case of increasing

relative risk aversion, � < 1. Thus, assuming decreasing absolute and increasing

relative risk aversion implies 0 < � < 1 (or 0 < � < 1).

Thus, when �( �W ) = C �W�� and �W = ��L, the absolute risk aversion coe�cient,

� is � = C���L�� and the estimatable model that corresponds to these assumption

is

L1 = A3=L
�� +A2

�L = A3L
� +A2

�L

when A3 = A1=C�
��.

An alternative formulation is

L1

L2
= A2 +A3L

��

Estimation of these models provides Â2, Â3, and �̂ or �̂. That allows testing

when absolute risk aversion is decreasing in wealth (approximated by size) and

relative risk aversion is increasing in wealth.

This formulation can be expended to identify other factors a�ecting risk aver-

sion. If socioeconomic data are available (age, education, etc.), one may replace C

in the expression for � with g(S), a function of socioeconomic variable. One plausi-

ble speci�cation is �( �W ) = g(S) �W�� . This speci�cation can lead to an estimatable
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relationship which is a function of farm size and socioeconomic variables. More de-

tailed data on pro�t and wealth may allow all estimation of the Just and Zilberman

model with less approximation. Even then, one may need to use heroic assumptions.

Data on the subjective values of mean at the individual farm levels are not easily

obtainable. Thus, one may need to estimate these variables as well and introduce

them to an estimatable form. Similarly, average wealth of individual farmers are

needed to be computed from other accounting data. In essence, estimation of risk

aversion coe�cient from a simple speci�cation such as (5.3) requires much compro-

mise and ingenuity. We also have to recognize that the decision maker has the same

problem of data assembly as the researcher. None of the farmers knows his �1, �2
and �2. Even if she follows something resembling the expected utility criteria, she

has to estimate key parameters. Thus, in essence, a more complete model should

recognize that.

Collender, Chalfant, and Subramanian developed an approach when risk-aversion

parameters are utilized by farmers who recognize the uncertainty of his estimate of

the key parameters of his pro�t distribution. The model is complex, but the optimal

L1 depends not only on the estimated means of variance of pro�ts and the measures

of risk aversion but also on measures of the estimators' reliability and the moments

of the farmers' pro�t.

5.3 The Use of Expected Utility for Understanding Pro-

ducer Behavior

5.4 Uncertainty in Production

5.4.1 Introduction

Uncertainty occurs in several aspects of the production process. Various institu-

tional mechanisms for reducing these uncertainties have been developed. A partial

list of these and the type of production uncertainty they address is as follows:

Types of Risks Faced by Producers Mechanisms to Remedy Them

Output price risk Future markets, Forward contracts

Yield risk Crop insurance

Labor supply availability Mechanization, Long-term labor contract

Input reliability Product warranty

Input price uncertainty Forward contacts

Government policy uncertainty
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Many other institutions were developed to address risks faced by �rms. In this

section we will focus on the building blocks of modeling production uncertainty

5.4.2 Risk Speci�cation

Production risk is generally modeled through alternative speci�cations of the pro-

duction function. Several examples of production functions and their implications

for risk analysis are discussed below.

Let Y be output quantity, X input quantity and " a random variable in each of

the following models.

Model 1. Additive risk

Y = f(X) + "; E(") = 0

In this case input use does not a�ect risk and the only type of risk considered

is output risk.

Model 2. Multiplicative risk

Y = f(x) � "; E(") = 1

In this case any input that increases mean yield also increases risks associated

with yields.

Model 3. Linear risk (Just and Pope production function)

Y = f(X) + g(X)"; E(") = 0

Under this production function speci�cation, impacts of inputs on yield and

risk can be di�erentiated. For example, some inputs may be yield increasing

f 0 > 0, and risk reducing g0 < 0 and others may increase both yield and risk

f 0 > 0, g0 > 0.

5.4.3 The Sandmo-Leland Model

How will a �rm behave when output price is a random variable as opposed to when

it is a constant average?
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5.4.4 Sandmo's Model

Sandmo (1971) developed a model of a competitive �rm facing price uncertainty.

He uses a multiplicative risk speci�cation. In his model, the only risk producers

face is output price risk; thus P is a random variable with mean P and E(P ) = �P

Firms maximize expected utility with cost function C(Y ) where C 0 > 0, C 00 > 0.

The decision problem is

L = maxYEU(PY � C(Y ) +W0)

The �rst-order condition is

@L

@Y
= EU 0(PY � C(Y ) +W0)[P � C 0(Y )] = 0 (5.4)

By using the statistical theorem concerning the expected value of the product

of two random variables which states:

E(XZ) = E(X)E(Z) + Cov(XZ)

we can rewrite (5.4)as:

[P � C 0(Y )] +
Cov[U 0(W ); P � C 0(Y )]

EU 0(W )
= 0

where W = PY � C(Y ) +W0.

In order to determine the impact of risk on output, we need to determine the

signs of each element in this expression. We will make use of the fact that

Cov[U 0(W ); P � C(Y )] = E[U 0(W )(P � C 0(Y ))]

to �nd the sign of the latter.

1. By de�nition,W = PX�C(Y )�W0 andE(W ) = �PY�C(Y )�W0. Therefore,

W �E(W ) = (P � �P )Y

)W = E(W ) + (P � �P )Y

2. If we assume P > �P , from step (1) we know that W will he greater than

E(W ). Therefore,

U 0(W ) � U 0[E(W )]
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3. If we multiply P � �P ) through the results from (2), and take the expectation

of both sides, we get:

U 0(W )(P � �P ) � U 0[E(W )]E(P � �P )

Since E(P � �P ) = 0, U 0(W )(P � �P ) is less than zero.

Under risk neutrality, �P = C 0, but with risk{averse behavior �P � C(X) > 0,

which implies �P > C(X). Risk-averse �rms will produce less than risk-neutral

�rms. This �nding implies that price stabilization policies will lead to an increase

in output.

(�gure risk4 here)

The results of the Sandmo model can be contrasted with results from the stabi-

lization literature. With stabilization models, producers can adjust to changes in an

unstable situation |which could lead to higher output under uncertainty. Under

the assumptions of the Sandmo model, this is not possible.

Suppose utility depends on wealth and W = PY � C(Y ) +W0. What will be

the impact of higher wealth on Y ?

Returning to the FOC of the �rm's pro�t maximization:

@L

@Y
= EU 0(PY � C(Y ) +W0)[P � C 0(Y )] = 0

the second-order condition is

@2L

@Y 2
= EU 00(P � C(Y ))2 �EU 0C 00 < 0

Total di�erentiation of the �rst-order condition with respect to W0 yields:

dY

dW0

= �
EU 00(P � C(Y ))

@2L
@Y 2

(5.5)

Under the assumption of decreasing absolute risk aversion, we have:

�
U 00

U 0
< RA( ~W )

with P < ~P and W > ~W ; ~W being the level of wealth associated with ~P , and
~P = C 0(Y ). Therefore,

�
U 00

U 0
[P � C 0(Y )] < RA( ~W )[P � C 0(Y )]
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for every W . From this equation, we can derive:

�U 00[P �C 0(Y )] < RA( ~W )U 0(P � C 0(Y ))

We know from the �rm's �rst-order condition that the right{hand side should

equal zero at an optimum. Therefore, the left{hand side of the equation is less than

zero. From these results, we can sign @Y
@W0

.

Going back to equation (2), we can sign each of the elements of the equation as:

�
(+)

(�)

which is positive.

More a�uent risk-averse producers will provide more output, and we found a

positive wealth e�ect on supply. To summarize, we found that: @Y
@W0

R 0 if @RA
@W0

Q 0

which means that risk{neutral �rms will produce more than risk{averse ones, and,

under decreasing absolute risk aversion, wealthier producers will produce more.

Sandmo also shows that increasing relative risk aversion may lead to a reduction

in supply as income taxes increase, and he was able to partially show that increase

in riskiness (measured by a mean-preserving spread) reduces supply. His technique

was used to obtain conceptual results in many problems with multiplicative risk.

Let P1 = 
P +(l�
) �P . Using this in the �rm's pro�t maximization, we obtain:

L = max
X

EU(P1Y � C(Y ) +W0)

P1 = 
P + (l � 
) �P

@Y

@

< 0 if 
 = 1

These results indicate that there will be two supply e�ets: One from price and

another from uncertainty.

Sandmo's approach, while general, cannot be applied to situations with multiple

and correlated risks. One may need to specify utility functions in more detail to

address these problems.

Summary

The model results indicated that:

1. Under uncertainty, less output will be produced.

2. An increase in risk aversion will reduce output.
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3. Optimal resource allocation by a risk-averse �rm requires that the value of

the marginal product of a resource exceeds its rental value.

4. If there is decreasing absolute risk aversion, reductions in �xed cost will in-

crease output. Thus, �nancial conditions may a�ect production decisions

5. Expected pro�t will be highest for �rms which are closest to being risk neutral

and have the highest output.

Sandmo's technique was extended by Feder (1979) to model situations where

multiplicative risk arises, in particular, the adoption of new technologies in less-

developed countries. The Feder model is formulated as:

maxEU(g(y) + f(y) � ")

The Sandmo approach was used by Batra (1974) for input demand; by Feder

for technological adoption (1980); and by Feder, Just, and Schmitz (?) for futures

market behavior. The limitations of this model are: (i) the multiplicative assump-

tion does not allow for the analysis of the di�erential impacts of an input on output

vs. production risk, and (ii) it is only possible to handle one random variable at a

time. The advantage of the model is its generalized form, allowing for the use of

loss restrictive utility forms, in contrast with speci�c functional forms.

5.4.5 The Mean{Variance Approach

This approach was introduced in works by Tobin (1959) and by Markovitz (1959).

It plays a key role in �nance |being used as a base for capital asset pricing. The

basic idea of this model is that utility from random prospects can be described as

a function of the moments of the distribution around a mean outcome �y through a

Taylor's series expansion:

EU(y) =

Z
U(y)f(y)dy

U(y) = U(�y) + U 0(�y)(y � �y) + U 00(�y)
(y � �y)2

2
+

1X
n=3

Un (y � �y)n

n!

from which, taking the expectations of both sides:

EU(y) = U(�y) +

1X
n=2

Un(�y)

n!
E(y � �y)n = f(M1;M2;M3; : : : )

If a distribution can be completely de�ned by n moments, then the expected

utility is a function of these moments.
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If a distribution is de�ned by its �rst two moments, then the expected utility

is a function of the distribution's mean and variance. For example, in the case of

�nancial assets, the price of any asset is determined by its mean return and its

variance with the market portfolio. Certain restrictive conditions on the utility

functions and the distribution of the random outcome variable are required in order

to be able to express expected utility as a function of the mean and variance.

These are: (i) the utility function must be quadratic or exponential in form and (ii)

the outcome variable should be normally distributed. Given these conditions, the

expected utility can be expressed as:

EU(y) = ��y + �
�2

2

Freund (1956) proved the linearity of the expected utility function under the

condition of normality and exponential utility. The linear mean variance approach

has one big advantage |it is easy to work with and it allows the consideration

of behavior under risk with a large number of random variables. It is used very

frequently (see Just and Zilberman, 1983). However, the model is objectionable on

three grounds:

1. Quadratic utility implies increasing absolute risk aversion.

2. Exponential utility implies constant absolute risk aversion.

3. Normality of the outcome variable may be unreasonable (e.g., crop yields have

a negative gamma distribution as Day (1965) has shown).

Despite these shortcomings, the linear mean variance approach is popular since

it results in models useful for dynamic programming. In the next section some

examples of how this approach has been applied are discussed.

Applications of the Mean-Variance Approach

1. Linear and Quadratic Programming. | The mean{variance approach can be

very useful in modeling a typical farmer's land allocation problem. Assuming linear

solution techniques, the farmer's problem can be stated as (using matrix notation):

maxU 0L� rL0�L� V 0L

where:

U = average yield vector

V = variable cost vector
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� = variance-covariance matrix of revenue per acre, and

r =measure of risk.

One way to apply the mean variance approach is to construct an e�ciency

locus of mean variance (or standard deviation) trade{o�s. This is done through a

quadratic programming problem where the land allocation that minimizes variance

is computed to attain expected pro�t from the land, �Z.

min
L

L0�L

subject to a mean income constraint:

L0U = �Z

2. MOTAD. | The quadratic programming procedure is computationally ex-

pensive. A simpler procedure is to calculate the minimum of total absolute deviation

(MOTAD). Assuming that there are J crops and H states of the world, the problem

is set up as follows.

First, an average return to each crop over all states, �Uj , is calculated, given

Lj= land allocated to crop j,

Ujh = revenue per acre of crop j in state of world h

�Uj =
1

n
Ljh

To calculate MOTAD, we use the formula:

min

HX
h=1

yh

where yh is the absolute total deviation in state h, subject to:

JX
j=1

(Ujh � �Uj)Lj + yh � 0

JX
j=1

�UjLj � �Z

JX
j=1

aij � bi
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where the b0is are other linear programming constraints and the a
0
ijs are other linear

programming coe�cients. The MOTAD procedure generates a mean{absolute de-

viation trade{o�. It is a reasonable approximation to the more costly to calculate

mean standard error trade{o�.

Mean{Variance models

When the distribution of wealth (or pro�t) has two parameters, expected utility

can be expressed as function of the mean and variance of wealth (pro�t). With the

negative exponential utility function and normal distribution, utility maximization

can be expressed as a linear function of mean and variance of wealth (pro�t). These

assumptions have been used extensively, especially in agricultural economics and

in �nance. They are used primarily in conceptual analysis when decision makers

are a�ected by several correlated random variables when more general frameworks,

such as Sandmo's, cannot be easily applied.

The linear mean-variance formulation has been extensively used in modeling

land allocation by farmers. Assume that a farmer has L acres of land which can be

divided among n crops. The pro�t of the ith crop is normally distributed with mean

�i, variance �
2, and cov(�i; �j) = �ij. The land allocation problem is a constrained

quadratic programming problem

max
Li

NX
i=1

Li�i �
r

2

2
4 NX
i=1

�
L2i �

2
i

�
+
X
j 6=i

LiLj�ij

3
5

s.t.
nX
i=1

Li � �L

Let � be the shadow price of land. The Lagrangian formulation of this problem

is:

L = max
Li

NX
i=1

Li�i �
r

2

2
4 NX
i=1

�
L2i �

2
i

�
+
X
j 6=i

LiLj�ij

3
5+ �

"
�L�

NX
i=1

Li

#

The optimality conditions, when there is an internal solution, are:

@L

@Li
= �i � r

2
4Li�2i + 1

2

X
j 6=i

Lj�ij

3
5� � = 0; i = 1; : : : ; N (5.6)

@L

@�
=

NX
i=1

Li � �L = 0
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At the optimal solution, � equals the marginal contribution of land to expected

net bene�ts. For the ith crop, this marginal value is equal to net pro�t per acres,

�i, minus marginal contribution to risk (MVi, where MVi = risk cost). Note that

the marginal contribution to overall risk depends on the inherent risk of the crop

and correlation of its pro�ts with the pro�ts from the other crops. A crop for which

pro�ts are negatively correlated to the pro�ts of other crops may reduce the overall

cost of risk. Such a crop may have substantial acreage even if it is less pro�table on

average than other crops. By averaging all the �rst-order conditions, the marginal

value of land � can be expressed as

� = ��� �MV

where:

�� =
1

N

NX
i=1

�i

and

�MV =
1

N

NX
i=1

MVi

The �rst-order condition (5.6) can be rewritten as:

�i � ��� (MVi � �MV ) = 0

A crop will be grown if it is either more pro�table or less risky than average.

Riskiness may not re
ect less variability but, rather, negative correlation of pro�t

with the other crops.

Linking Mean{Variance and General EU Models

There have been many attempts to generalize the linear mean{variance framework.

One such attempt is presented in Just and Zilberman (Oxford Economic Papers,

1983).

Consider the case when two crops are grown and each has a costant return{

to{scale technology when pro�ts per acre, �i, is a random variable with mean �i.

When all land is used, the expected utility problem bocomes

max
Li

EU [�1L1 +�2(�L� L1) +W0] (5.7)

and the �rst-order condition is

EfU 0(w)(�1 ��2)g = 0 (5.8)
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Marginal utility at W can be approximated by

U 0(W ) = U 0( �W ) + U 00(W )
�
L1(�1 � �1) + (�L� L1)(�2 � �2)

�
(5.9)

where �W = W0 + �1L1 + �2(�L � L1). By introducing this approxirnation to the

�rst-order condition, (5.8) becomes

E
�
U 0( �W )(�1 ��2) + U 00( �W )

�
L1(�1 � �1) + (�L� L1)(�2 � �2)

�
(�1 ��2)

	
=

= U 0( �W )
�
�1 � �2 �RA(W )

�
L1(�

2
1 � �12) + (�L� L1)(�12 � �22)

�	
= 0

(5.10)

The �rst-order condition suggests that

L1 =
�1 � �2

V (�1 ��2)RA( �W )
+

�22 � �12

V (�1 ��2)
�L (5.11)

where V (�1 ��2) = �21 + �22 � 2�12.

Under risk neutrality, a producer will specialize in the crop with higher mean

pro�t. With risk aversion, consideration of riskiness is added to those of average

pro�tability, and the weight of the expected pro�t di�erential in determining L1
declines as V (�1 � �2) increases. Suppose crop 1 has a higher pro�t and higher

risk than crop 2. For example, it maybe a modern export crop that is sensitive to

weather and economic conditions, while crop 2 may be a traditional crop. It may

be of interest to understand the impact of farm size on the acreage of each crop.

Di�erentiation of (5.11) yields

dL1

d�L
= �

�1 � �2

V (�1 ��2)RA( �W )
�
dRA

d �W
�
�W

RA

�
d �W

d�L
�
1
�W
+

�22 � �12

V (�1 ��2) (5.12)

Substituting (5.11) into the equation gives us

dL1
d�L

=
h

�2
2
��12

V (�1��2)
�L� L1

i
dRA
d �W

�
�W
RA

�
d �W
d�L
�
1
�W
+

�2
2
��12

V (�1��2)
=

=
�2
2
��12

V (�1��2)

h
1 + �LdRA

d �W
�

�W
RA

� d
�W
d�L
� 1
�W

i
� L1

dRA
d �W

�
�W
RA

� d
�W
d�L
� 1
�W (5.13)

Let �R = �
dRA
d �W

�W
RA

be the elasticity of absolute risk aversion, and assume in-

creasing absolute risk aversion, �R(W ) > 0. With this de�nition, the change in crop

1's acreage with respect to size can be presented as:

dL1

d�L
=

�22 � �12

V (�1 ��2)

�
1� �R

�L
�W

d �W

d�L

�
+ �R

L1
�L

�L
�W

d �W

d�L
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It is reasonable to argue that (i) 0 < �R < 1 when relative risk aversion is

increasing and (ii) (d �W=d�L) � (�L= �W ) is also likely to be smaller than 1. If we

examine the case of constant absolute risk avetsion where �R = 0, then

sign

�
dL1

d�L

�
= sign

�
�22 � �12

V (�1 ��2)

�
(5.14)

Note that �22 � �12 = �2[�2 � ��1], where � is the correlation between the crop

i's pro�ts and the �i's are the standard deviation of crop i's pro�ts. Equation

(5.14) suggests that, if crop 2 is much less risky than crop 1 and the correlation

between their pro�t is high (so that �2 < ��1), risk consideration will cause larger

farmers to grow less of the risky crop than the smaller farmers. In other cases,

Just and Zilberman have shown that, with 0 < �R < 1, the land share of the

more risky technology declines with farm size. Since risk costs increase more than

proportionally wich farm size, larger formers are likely to grow relatively less of the

risky crops. The optimization problem (5.7) is not a constrained one, but we have to

realize that 0 � L1 � �L. Therefore, letting the result of this optimization problem

be denoted as L�1, ultimately:

L1 =

8<
:

�L if L�1 >
�L

L�1 if 0 � L�1 �
�L

0 if L�10

The line OAB depicts outcomes when �1 > �2 and � < �2=�1. The higher pro�ts

of crop 1 may lead to specialization of small farmers if risk is not so high. Larger

farms will grow both crops. However when the pro�t correlation is not su�ciently

large, the production of crop 1 will grow absolutely and its land share will decline

with size.

The line OAC depicts a situation when �1 > �2 and � > �2=�1. In this case

correlation is so large that, beyond a certain size, acreage of crop 1 declines with

size.

The line ODEF depicts a situation when �2 > �1 but �21 < �22 . When crop 1

is less risky but less pro�table on average, it may not be grown by small farmers

but may be added to the portfolio of larger ones. It may become the major crop of

some very big operators.

In this analysis, risk was the only reason for diversi�cation, and we ignored other

constraints facing farmers. There are many situations when other factors, besides

risk, cause diversi�cation. They may include labor or equipment scarcity. Growers

may grow several crops to spread the harvesting season, thus overcoming labor or

capital constraints. Credit limitation may provide another reason. The high value

crop may require more credits and that may limit a farmer. Economists have a
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tendency to attribute \too much" to risk considerations and to ignore those other

factors. Realistic analysis has to study in detail local conditions and to incorporate

the relevant constraint before conducting allocative investigation.

The framework presented here can be extended to other choices. It is a varia-

tion of �nancial portfolio analysis which is used to investigate distribution of wealth

among assets and analysis of �nancial investments. Similarly, it applies to time

allocation analysis including land diversi�cation between on{farm and o�{farm ac-

tivities and migration decisions (time allocation between locations).

5.4.6 Stochastic Dominance

Where the mean-variance and MOTAD approaches are useful in a planning con-

text, the stochastic dominance rule suggested by Anderson (1974) is useful for the

comparison of technologies. In general, the stochastic dominance concept allows us

to compare the risk associated with each of two probability distributions and to

determine which is preferable under an expected utility framework.

Let A and B be two crops. Let FA(x) be the cumulative distribution of pro�ts

under A, and FB(x) under B. A and B are de�ned on the same space. A is

�rst-order stochastic dominant to B if:

FA(x) < FB(x); 8x

We say that A is stochastic dominant to B of the second degree if, for every x,Z x

�1

FA(z)dz <

Z x

�1

FB(z)dz

This approach can be used for comparisons of both discrete and continuous risky

choices. Its usefulness is limited since not all distributions can be ordered through

second-degree stochastic dominance.

5.5 Measuring Risk: Mean-Preserving Spread and Stochas-

tic Dominance

5.5.1 Introduction

Economists have made many attempts to de�ne a good measurement for the risk-

iness of a prospect. These were developed in an attempt to address the question:

Given a set of choices, which will a risk{averse individual prefer and how will risk

a�ect her choices? Several general measures were developed within the context of

expected utility. Rothschild and Stiglitz (1970) provided a methodology for the
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ranking of prospects which have the same mean outcome but di�erent levels of

risk. In addition, their method provides comparative statics results describing the

impact of risk on key parameters. Hadar and Russell (1969) developed a method

for ranking prospects with di�ering mean outcomes. Both of these methods are

set within the framework of expected utility, ranking prospects derived from a Von

Neumann{Morgenstern concave utility function, implying risk{averse behavior.

5.5.2 Mean-Preserving Spread

Rothschild and Stiglitz (1970) put forth two important concepts in comparing

prospects with like means. These are:

1. For any X, Y with E(X) = E(Y ), if EU(X) � EU(Y ) for every U with

U > 0; U" < 0, then Y is riskier than X. In other words, if every risk{averse

individual prefers X to Y , then Y is riskier than X.

2. If Y d
�!X + Z (i.e., Y is equivalent in distribution to X plus Z) where Z is a

random variable with E(Zjx) = 0, then Y is riskier than X. In other words,

if Y is the sum of X and another random variable Z, when the conditional

expectation of Z for every X is zero, Y is riskier than X.

3. If Y can be constructed from X through the use of a mean{preserving spread,

then Y is riskier than X. A mean{preserving spread is a modi�cation of a

distribution that increases the variance of a distribution without changing its

mean.

A numerical example of how a mean-preserving spread works may help to shed some

light. Given a random variable X, with the following probability distribution:

x P(X=x)

1 1/8

2 1/8

3 1/2

4 1/8

5 1/8

A new random variable Y is generated from X through use of a mean-preserving

spread such that:
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x Change in P(X=x)

1 +1/8

2 -1/8

4 -1/8

5 +1/8

The variable Y then has the following probability distribution:

y P(Y=y)

1 1/4

3 1/2

5 1/4

According to Rothschild and Stiglitz, i� Y is constructed by a sequence of a

mean{preserving spread from X, then EU(X) > EU(Y ), for U 0 > 0, U 00 < 0.

To illustrate the last point consider the above example where we moved from X

to Y by a mean-preserving spread. In that case,

EU(X) =

�
1

8
U(1) +

1

8
U(2) +

1

2
U(3) +

1

8
U(4) +

1

8
U(5)

�

EU(Y ) =

�
1

4
U(1) +

1

2
U(3) +

1

4
U(5)

�

EU(X)�EU(Y ) =
1

8
[U(2) � U(1) + U(4)� U(5)]

which is positive due to a decreasing marginal utility under risk-averse behavior,

Thus, U(2)� U(1) > U(5) � U(4), and the alternative X is preferred to Y .

Why is the concept of the mean-preserving spread important? Because it allows

for an analysis of the marginal impact of risk. For example, given a production

system such that:

� = PY �WX

we can use the mean-preserving spread to manipulate P and create a new variable

with the same mean but di�erent variance.

P1 = 
P + Z

where

E(Z) = (1� 
)E(P )

We can then calculate dY
d


to determine the impact of price risk on output.
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5.5.3 Stochastic Dominance

Hadar and Russell (1969) developed the concept of stochastic dominance which

allows for the comparison of outcomes with di�ering means. This method also

allows for the ranking of uncertain prospects without assuming a speci�c utility

function.

First-Order Stochastic Dominance (FSD)

Let X denote the value of a variable (wealth, income) which can assume values in

the range (�1;1). Let the function FX
i (x), be de�ned recursively where

FX
i (x) =

Z x

�1

FX
i�1(Z)dZ

and where FX
0 (x) is the density function of X.

Under this de�nition, FX
1 (x) is the cumulative distribution of X. Consider two

random prospects, X and Y . There is a �rst-order stochastic dominance of Y by

X, (X FSD Y ) if

FX
1 (Z) � F Y

1 (Z) for �1 < Z <1

with at least one point of strong inequality. We can illustrate it graphically

(�gure risk1 here)

X is �rst{order stochastic dominant to Y if the cumulative distribution of X is

below that of Y for every Z. That means that Prob(X � Z) > Prob(Y � Z) for

every Z.

It is easy to argue that, ifX FSD Y , then every individual with positive marginal

utility will prefer X to Y . That is, if Z represents income, then every individual will

prefer X over Y since it represents a higher probability of achieving a high income.

Second-Order Stochastic Dominance (SSD)

SSD is a weaker domination concept than FSD which is useful when there is some

cross{over between the CDF's of two prospects, but the area under one is greater

than the other.

The graph depicts cumulative distributions under SSD

(graph risk2 here)
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The cumulative functions in this case intersect twice, with F Y
1 (Z) < FX

1 (Z) in

the range between the intersection points. X is SSD to Y ifZ Z

�1

F Y (z) �

Z Z

�1

FX(z)

SSD relies upon the condition that individuals are strictly risk averse or have

diminishing marginal utility (i.e., a concave utility function). Under these assump-

tions, individuals will prefer X to Y .

Beyond the second order, stochastic dominance is much less useful as a concept.

It is unclear what choices a risk{averse individual will make in the presence of third

or greater order stochastic dominance. Very restrictive assumptions about behavior

are required in order to derive results from higher orders or stochastic dominance.

When stochastic dominance tests are applicable, they are very useful, but they

are not applicable in every situation. They present a \partial" ordering ranking

only some of the prospects while leaving others out. In particular, stochastic dom-

inance may not capture the trade{o�s between risks and returns. An alternative

could have a higher mean (non{�rst degree stochastically dominated) with a higher

variance and be second-degree stochastically dominated. The choice between the

two alternatives would depend on the degree of risk aversion and the magnitudes of

the mean and variance.

5.5.4 Variance as a Measure of Risk

Is variance a good measure of risk? Consider two variables with the following

probability distributions:

X =

�
n+1
n

with probability n�1
n

1
n

with probability 1
n

Y =

�
n�1
n

with probability n�1
n

2n�1
n

with probability 1
n

The means and variances of the two distributions will be as follows:

E(X) = U(Y ) = 1

V (X) = V (Y ) =
n� 1

n2

However, even though the means and variances are the same, many risk-averse

individuals will prefer Y to X. For this reason, variance is not a good measure of

risk, although it is often used as a proxy because it is easy to calculate and the data

necessary are usually available.
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5.5.5 Just and Pope Production Model

Just and Pope (1977) developed general models for analyzing cases of production

risk econometrically. Before their work, one had the option of assuming either:

Additive risk: y = f(x) + "; with E(") = 0

Multiplicative risk: y = f(x)"; with E(") = 1

Risk in the production function causes di�culties in the use of linear programming

estimation procedures since an investigation into the properties of the random vari-

ables is required. Both the additive and the multiplicative models are criticized

heavily by Just and Pope. The additive speci�cation does not allow the uncertainty

e�ect to be correlated with the input mix. The multiplicative speci�cation does not

allow for inputs that have di�ering impacts on mean and variance, and for inputs

that are yield increasing and risk decreasing such as, for example, fertilizer.

Therefore, they suggest

y = f1(x) + f2(x)"; with E(") = 0

which o�ers greater 
exibility in describing stochastic technologic processes and

related behavior. By including two components in the production function, one

relating to output level, and one relating to variability of output, the Just and Pope

production model allows for the di�erential impacts of an input on output and risk.

The shortcomings of this model are that it only allows for the consideration of

one random variable, and it requires a large number of estimations, including the

production function, the risk element, and the behavioral element.

5.5.6 Exponential Utility

Another approach to estimating behavior under risk calls for the use of a utility func-

tion that is applicable to any distribution. Yassour and Zilberman (1981) adopted

this approach and used an exponential utility function in order to look at farm

technology adoption decisions. This utility function can be applied conveniently in

conjunction with all distributions which have moment{generating functions. The

utility function is written as:

U(x) = e�rx

and the expected utility function is

EU(x) = �EU(e�rx) =M(�r)

where M is a moment{generating function and Efetxg is a well-behaved function.

Since the moment-generating function is a function of the parameters, the util-

ity function can be expressed in terms of this function. One shortcoming of this

approach is that it implies constant rather than decreasing absolute risk aversion.
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Expo{Power Utility

Saha (1993) proposed a new utility function which allows for 
exibility in the mod-

eling of risk preference structures. This form allows the data to reveal both the

degree and structure (i.e., increasing, constant, or decreasing) of risk aversion. Use

of this utility function means that no a priori assumptions about risk preferences

are necessary.

The form Saha proposes is called the expo{power function and its formula is:

U(w) = � � expf��w�g

where

� > 1; � 6= 0; � 6= 0; �� > 0

The properties of the expo{power utility function are:

1. It is unique up to an a�ne transformation.

2. �U 00

U 0 =
1+��w�

w
and �U 00

U 0 w = 1 + ��w�

3. When � is less than one, there is decreasing absolute risk aversion; when � is

equal to one, there is constant absolute risk aversion; and when � is greater

than one there is increasing absolute risk aversion.

4. When � is less than zero, there is decreasing relative risk aversion; when � is

greater than zero there is increasing relative risk aversion;

5. The utility function is quasi-concave for all w > 0.

The parameters, � and �, are the key determinants of the risk preference structure.

An increase in � leads to an increase in A(w) |the coe�cient of absolute risk

aversion. The e�ect of � on A(w) and R(w) |the coe�cients of absolute and

relative risk aversion| depends on the relative magnitude of w and the parameters.

5.5.7 Summary

Expected utility has theoretical usefulness |such as in Sandmo's results and in the

mean variance model| and practical usefulness in applications through either the

mean variance model, the MOTAD programming model, or the Just-Pope produc-

tion function.

Some of the shortcomings of these models have been addressed by the work of

Yassour and Zilberman (1981) and Saha (1993). The former allows for the consider-

ation of nonnormal yield distributions in an easy to manipulate format. The latter

proposes a 
exible utility form with no a priori assumptions about risk preferences
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speci�ed. Further work extending and testing the results of these models is needed.

A major problem is that, up to now, only one variable (either yield or price) is

considered random. Many times, both are random. When there are two random

variables, only the log-normal distribution yields analytic results.

5.6 Alternatives to Expected Utility: safety rules

Safety rules correspond to expected utility in the same way that classical statistics

relate to Bayesian. Safety rules are simple, reasonable, but somewhat arbitrary.

They imply lexicographic rules and an objective function that is linear in mean and

variance. They fall into three categories as follows:

Roy Minimum Probability Rule

Decision-makers following this rule will choose a production plan subject to mini-

mizing the probability of yield falling below a threshold level D.

min
x

Prob(�(x) < D)

where D is a pre{speci�ed disaster level. This approach corresponds to a lexico-

graphic utility model. This rule is useful in modeling subsistence agriculture.

Telser safety-�rst Rule: A Limit on Disaster Probability

Decision-makers following this rule will maximize expected pro�t subject to a bound

on the probability of pro�t falling below the threshold level D.

max
x

E(�(x))

subject to

Prob(�(x) < D) � P �

This rule has application in the development of many engineering and health

codes and is based on the concept of an onerous event in a manner much like the

use of critical levels in Classical Statistics.

Katoka Safety-Fixed Rule

Under this rule decision-makers will maximize the threshold level attained at a given

probability level, P �

max
x

D

subject to:

Prob(�(x) < D) � P �
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For normal distributions of outcomes, safety �xed is identical to �nding the

maximum of the expression
��� b�

where �� and � are the mean and standard deviation of the outcomes distribution,

subject to a probability level constraint. Under normality, we choose a line of actions

to maximize D subject to the constraint:

Prob(
�(x)� ��

�
<
D � ��

�
) � P �

If the constraint is binding, this amount to choose D such that

D � ��

�
= ZP �

where ZP � is such that Prob(x < ZP �) = P � under the standard normal distribu-

tion.

Thus, D = ��+ZP ��, and maximizing D, in the case of the normal distribution,

amounts to maximize the sum of the mean and a multiple of the standard deviation.

The advantages of safety rules are:

1. They can be used with programming techniques.

2. They follow the logic of conventional statistics while expected utility is Bayesian.

3. They are frequently used by engineers and regulators in constructing nuclear

power plants and devising earthquake regulations.

4. They provide a satisfying model of behavior in many circumstances.

These models are useful both in positive and normative analyses. For applica-

tions in development, see Roumasset and de Janvry and Moscardi (1977).

5.7 Safety Rules

5.7.1 Introduction

The main appeal of the expected{utility approach to modeling decisions under un-

certainty is that it is derived rigorously from a well de�ned and reasonable set of

assumptions about preferences. One disadvantage of this approach is the assump-

tion that individuals know the probabilities associated with each possible outcome

of a prospect, and that they have based theft decision upon this knowledge In many
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cases, the degree of information and computation required may make his assump-

tion unrealistic. An alternative approach for modeling choices under certainty is

embodied by the various \safety rules".

\Safety rules" re
ect a \behavioristic" approach to modeling behavior. The

models are based upon simple decision criteria economists believe people use in

making day{to{day decisions. One common element of these rules is that they

re
ect "satisfying" behavior; where people make choices to meet some objective.

Thus, under this approach, people do not \maximize", rather, they aim to meet

a target. A major proponent of this approach was Herbert Simon, a Nobel Prize

winner in Economics. Simon introduced the notion of \bounded rationality", where

people are constrained by high computation information and competition costs,

and therefore, they develop simple decision rules. Simon saw these behavioristic

rules as outcomes of optimization subject to all computation and data costs and

constraints, and his views pose a challenge to economists to identify the constrained

optimization problems that have resulted in the behavioristic rules whose existence

is supported statistically.

When economists identify persistent behavioral rules, they can be used for pre-

diction and analysis of appropriate policy. They can be particularly relevant in

setting government regulations.

The safety rules that we present are intuitively appealing and are likely to rep-

resent the behavior of at least some people. They correspond in their structure

to decision rules of \classical" statistics. In particular, they resemble the use of

statistical signi�cance in classical \hypothesis testing".

5.7.2 Roy Minimum Probability Rule

Let �, denoting pro�t, be a random variable whose distribution depends on a de-

cision variable, X. For example, � = PX � C(X) where P is a random variable.

One safety rule is the Safety First approach introduced by Roy (1952). Under this

approach, the objective function is

max
X

Probf�(X) � Dg or min
X

Probf�(X) < Dg

where D is a disaster level. Under this approach, agents' choices are dominated by

the desire to minimize the probability of bankruptcy. If P � N( �P ; �2), then Roy's

safety rule suggests setting the X that minimizes the probability that a standard{

normal random variable is smaller than
D�PX�C(X)

�X
.

If the cumulative distribution of the standard normal random variable is denoted

by �(Z), then the Roy rule is

X� =
D � �PX � C(X)

�X
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(�gure risk3 here)

5.7.3 Telser Safety-First Rule

An alternative approach is provided by Telser (1955). In his case, the objective

is maximized expected pro�t when the probability to be under a disaster level is

contained below a signi�cance level, �

This model is

max
X

E�(X) s. t.Probf�(x) � Dg < �

For our previous example with a normal distribution, the Telser rule is

max
X

�PX � C(X) s. t.ProbfZ �
D � �PX � C(X)

�X
g < �

where Z � N(0; 1) is a standardized normally distributed random variable

5.7.4 Safety Fixed

Kataoka (1963) developed the safety-�rst rule which maximizes a minimum pro�t

level which can be obtained with a probability of at least the critical value �.

Mathematically, the safety-�xed rule can be presented as

max
X

D s.t.Probf�(X) < Dg < �

This safety rule and the safety-�rst rule are inversely related. The statistical

signi�cance level � is the parameter of the safety �xed rule, and its objective is to

�nd the pro�t distribution which has the highest level of pro�t when the cumulative

distribution is at �. The disaster levelD is the parameter of the safety{�rst rule, and

its objective is to select the pro�t distribution with the lowest level of cumulative

distribution when pro�t is equal to D. Figure (5.7.4) demonstrates the two rules

graphically.

(�gure risk3 here)

Suppose we have to choose among three activities. The cumulative distributions

of pro�ts of the three activities are denoted by the Fi functions in Figure (5.7.4).

Activity 1 is selected under the safety{�xed rule when � is �1. It is selected under

safety{�rst when D is D1. When the safety{�xed rule is not as restrictive and � is

�2, activity 2 is selected and this activity is selected under safety �rst when D is

D2.
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5.7.5 Safety Rules and Expected Utility

Safety rules can be expressed as special cases of the expected utility framework. The

safety-�rst rule can be expressed as the outcome of the expected utility framework

when the utility function is lexicographic. The objective of the safety{�rst rule is

to minimize the probability of pro�ts below the disaster level D. That is equivalent

to expected utility maximization when the utility function is

U(�) =

�
1 when � � D

0 when � < D

With this utility function, the probability that pro�t is greater thanD is maximized.

The main criticism of the safety-�rst approach is that lexicographic utility functions

are unreasonable, and that individuals prefer making more money than less once

their pro�ts are above the disaster level. There are likely to be situations where the

safety rules are good approximators of reality, and their use is justi�ed. One major


aw of the standard expected utility models is that they assume that utility is a

function of income only. There are many situations where utility depends on other

variables, such as social status, (e.g., landlord vs. landless peasant; hired hand vs.

self{employed, etc.). If social status is lost when pro�ts are below a threshold level,

and such a status loss entails a drastic reduction in welfare, when activities result

in pro�ts level in the neighborhood of the threshold level, the use of safety �rst

provides a good approximation of expected utility outcomes.

For some pro�t distributions, safety rules may result in many interesting decision

rules. For example, when pro�ts have a normal distribution with mean � and

variance �2, the safety-�xed rule results in the maximization of a linear combination

of the mean and standard deviation of pro�ts. To see this note, that when � �

N(�; �2)

maxD s. t.Probf� � Dg = �

yields under normality

maxD s. t.Prob

�
Z �

D � �

S

�
= �) max�+ Z�S

where Z� is the value of a standardized normal random variable that is not exceeded

with probability of �. Thus, Z� is the coe�cient of the standard deviation in a linear

combination of mean and standard deviation when pro�ts is maximized under safety

�xed rules.

For the case with

� = �PX � c(X)
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and

S = �X

the safety{�xed objective function becomes

maxPX � C(X) + Z��X

when � < :5, 2� < 1 and we have some form of risk aversion.

5.8 Prospect Theory

The attractive feature of expected utility is that it is derived from a set of axioms

about human behavior. While this set is reasonable, rational, and very desirable as

a base to normative analysis, it is sometimes criticized as unrealistic. The following

experimental examples show some instances of when individuals violate expected

utility.

Kahnman and Tversky Experiments

Kahnman and Tversky conducted experiments to test the validity of the expected

utility model. Individuals were asked to select one of two options from the following

choice pairs:

Choice 1 Choice 2

(1) X P (X) chosen X P (X) chosen

A 4,000 .80 20% 4,000 .20 65%

B 3,000 1 80% 3,000 .25 35%

Choice 3 Choice 4

A -4,000 .80 92% -4,000 .20 42%

B -3,000 1 8% -3,000 .25 58%

IMPLICATIONS from (1): U(3; 000) > :8U(4; 000)

IMPLICATIONS from (2): :25U(3; 000) < :2U(4; 000),

or U(3; 000) < :8U(4; 000)
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IMPLICATIONS from (3): :8U(�4; 000) > U(�3; 000)

IMPLICATIONS from (4): :2U(�4; 000) < :25U(�3; 000),

or :8U(�4; 000) < U(�3; 000)

Therefore, the choices for the pairs in questions (1) and (2), and those for the

pairs in questions (3) and (4) are inconsistent with the predictions of the expected

utility model.

Conclusion {The validity or Expected Utility is cast into doubt

Two major explanations for the apparent failure of the expected utility model to

correctly predict human behavior have been advanced. These are:

1. People under{weigh outcomes that are probable in comparison to certain out-

comes, even when they both have the same expected utility, which is known

as the certainty e�ect.

2. People are risk averse when they gain risk and risk lovers when they lose;

known as the re
ection e�ect.

5.9 The Validity of the Expected Utility (EU) Model

The EU model has been widely embraced by economists for modeling decisions

under risk because of its ease of use, normative appeal, and (it is argued) for its

reasonable accuracy in predicting behavior under risk for many economic activities.

However, the EU model has repeatedly been sbown to lack descriptive and pre-

dictive validity in experimental settings. These empirical violations of EU have

given rise to the formulation of a large number of alternative Generalized-EU mod-

els, even though little is known about the underlying reasons for the occurrence of

EU violations.

Applied economists face a dilemma when choosing between models of decision

making under risk. They must chose between: (1) the EU model that has normative

appeal but has been shown to be systematically violated by behavior or (2) one of

a number of generalized models that lack normative appeal and allow for some

behavioral violations of EU. These notes o�er a brief discussion of the EU model's

implications for behavior, the experimental violations of EU, the approach of the

generalized-EU models, and an explanation for the occurrence of choices violating

EU which o�ers direction to applied economists for model selection in risky choice

environments.
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5.9.1 Background: The EU Model's Critical Implications for Be-

havior

There are three main axioms in the EU framework. They are de�ned over a binary

relation where:

� denotes weak preference,

� denotes strong preference, and

� denotes indi�erence.

for preferences over probability distributions p; q 2 P that are de�ned over a com-

mon (discrete or continuous) outcome vector x. The three axioms that are necessary

and su�cient for the EU representation u(�) over preferences (cf., Jensen, Fishburn)

are:

Axiom O (Order):

The preference ordering � is a weak ordering.

This axiom implies that the preference ordering is complete (all distributions

p; q 2 P are comparable via the ordering) and transitive (if p � q, and q � r,

then p � r).

Axiom I (Independence):

For all p; q; r 2 P , and for all � 2 (0; 1), if p � q, then �p + (1 � �)r �

�q + (1� �)r

This axiom holds that preferences over probability distributions should only

depend on the portions of the distributions that di�er (p and q), not on their

common elements (r). This independence of preference with respeet to r holds

regardless of r and of the level of � that de�nes the linear combination.

Axiom C (Continuity):

For all p; q; r 2 P with p � q and q � r, there exist �; � 2 (0; 1) such that:

�p+ (1� �)r � q and q � �p+ (1� �)r

This axiom gives a degree of continuity to the preferences.

Axioms O, I, and C can be shown to be necessary and su�cient (Jensen; Fish-

burn) for the existence of a function u(�) on the outcomes x 2 X that represents
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preferences through �. In the discrete case where p = fp1; p2; : : : ; png, it gives the

probabilities of occurrence for x = fx1; x2; : : : ; xng:

p � q ,

nX
i=1

u(xi)pi �

nX
i=1

u(xi)qi

Most of the violations of EU hinge on an implication stemming primarily from

the Independence Axiom.

A useful diagram for viewing the implications for models of behavior under risk

was developed by Marschak and reintroduced by Machina (Figure 1). This triangle

in two dimensions has boundaries from 0 to 1 (a simplex) consistent with rules of

probability.

Probability distributions de�ning gambles over three (low, medium, high) dis-

crete outcomes are represented by points inside or on the boundaries of this triangle.

The distribution's probability for the occurrence of the lowest outcome (xL) is given

on the horizontal axis, the probability of occurrence for the highest outcome (xH) is

given on the vertical axis, and the probability of the medium outcome (xM ) is given

implicitly by 1 less the sum of the probabilities for the high and the low outcomes.

To further explain, points on the hypotenuse represent gambles with no choice

of occurrence for the middle outcome (the sum of the probabilitics for the low and

the high outcomes is one), while the point on the vertix of the triangle opposite to

the hypotenuse represents a gamble giving the middle outcome with certainty.

Preferences over gambles can be illustrated by indi�erence curves within the

triangle; the EU model holds that these indi�erence curves must be parallel as in

Figure 1. These indi�erence curves can be compared with the equi-expected value

lines in the �gure, where the risky alternatives have the same expected values. The

indi�erence curves shown in Figure 1 indicate that the individual is risk averse, as

increased risk (movements along an indi�erence curve to the \Northeast") require a

higher expected value for indi�erence to hold. Individuals prefer movements toward

the \Northwest" of the triangle, as the probability of the highest outcome increases

while that of the lowest outcome decreases.

Violations of EU

There have been many advances in the economic analysis of decisions under risk

using the EU model. (e.g., Friedman and Savage; Sandmo; Newbery and Stiglitz).

These papers all take the validity of the EU model as given. A serious challenge to

the use of EU was made by the Nobel prize (in economics) winner Maurice Allais

soon after its introduction. His work and that of others following him elicited choices

between hypothetical risky alternatives to show that EU lacked complete predictive,

and hence descriptive, validity.
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Some well-known risky choice examples are given in a paper by Kahneman and

Tversky (1979) that synthesizes work by Allais and by others who have shown

experimental violations of EU. This paper also presents a model of choice which

strives for only descriptive (not normative) validity. Kahneman and Tversky's paper

remains a standard in this subject of modeling choice under risk; in particular, their

experimental results have had a great deal of in
uence on the literature.

The �rst of Kahneman and Tversky's examples showing EU violations discussed

here (shown in Figure 2) asks individuals to select between two pairs of risky alter-

natives, where one of the alternatives in the pair (A and C, respectively) is less risky

than the other alternative that has a higher expected value (B and D, respectively)

Kahneman and Tversky's Choice 1: Select between A and B

Gamble A Gamble B

$3000 with probability 1.0 $4000 with probability .8,

$0 with probability .2

Kahneman and Tversky's Choice 2: Select between C and D

Gamble C Gamble D

$3000 with probability .25, $4000 with probability .2

$0 with probability .75 $0 with probability .8

The EU model requires that the choice between A and B must be compatible

with the choice between C and D; i.e., if the more risky alternative B is selected in

the �rst choice, the more risky alternative D must be selected in the second choice

and viceversa. One of these choice patterns is required due to the Independence

Axiom, since the probability vectors f(:75; :25; 0); (:8; 0; :2)g over the outcome vector

x = ($0; $3000; $4000) de�ning alternatives C and D, respectively, can be viewed as

a linear combination of the probability distributions fp = (0; 1:0; 0); q = (:2:0:8)g

that de�ne A and B, respectively. In the de�nitions below that show the relationship

between the pairs through the Independence Axiom, a distribution carrying a certain

outcome of $0 is de�ned by ($0)

:25 � p+ :75 � ($0) = (:75; :25; 0) The probability vector de�ning C.

:25 � q + :75 � ($0) = (:80; 0; :20) The probabi
y vector derming D.

In their experiment using hypothetical payo� outcomes, many (65Kahneman

and Tversky's subjects selected A over B in the �rst pair but sclected D over C in

the second pair, a choice pattern that violates EU. Figure 2a illustrates this pattern

of choice.
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The gamble pairs (A,B) and (C,D) are connected in Figure 2a by loci of points;

these parallel lines are important for the analysis of choice with respect to the

EU model. The "Indi�erence Curves #1 and #2" in the �gure correspond with

preference representations u1(x), u2(x) that would be consistent with the choices

made for each pair. Of particular note as a result of the construction of the pairs

(AB) and (CD) is that these indi�erence curves cannot be parallel as called for

under EU.

Another well-known EU violation was found by Kahneman and Tversky where

they asked respondents to select between hypothetical risky alternatives that have

equal expected values:

Kahneman and Tversky's Choice 3: Select between E and F.

Gamble E Gamble F

$3000 with probability .9, $6000 with probability .45,

$ 0 with probability .1 $ 0 with probability .55

Choice 4: Select between 0 and H.

Gamble G Gamble H

$3000 with probability .002, $6000 with probability .001,

$ 0 with probability .998 $ 0 with probability .999

The probabilities de�ning G and H can also be written as a linear combination

of the probabilities that de�ne E and F, with ($0) de�ning a distribution giving a

certain outcome of $0. The EU model requires consistency of choice: if E is selected

in the �rst pair, G must be selected in the second. On the other hand, if F is

selected in the �rst choice, H must be selected in the second.

Respondents also violated the EU model in their choices over these two pairs,

with most respondents selecting E over F and H over G. The gambles and the

hypothetical \Indi�erence Curves #3 and #4" are shown in Figure 2b. The choice

of the riskier H over G also violates second-degree stochastic doniinance as H and

G have equal expected value.

The Generalized{EU models

A number of models have been set forth as alternatives to EU in light of the behav-

ioral violations of EU such as those developed by Kahneman and Tversky described

above. These models weaken the Independence Axiom of EU in order to allow for

observed behavioral violations. The upshot of these models is that preferences are

represented through both a function u(x) over the outcomes, but also through a
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nonlinear function g(s) for s 2 fp; qg over the probability distributions, giving the

representation:

p � q ,

nX
i=1

u(xi)gi(p) �

nX
i=1

u(xi)gi(q)

The function u(x) has similar structure as in the EU model; the interesting part

of these models is the function g(r) for r 2 P . Quiggin proposed a model in

1982 (Journal of Economic Behavior and Organization) where g(�) overweighted

extremely small probabilities when de�ncd over either very low ($0 in the exam-

ples) or relatively high ($4000, $6000 in the examples) outcomes. Recent models

by Tversky and Kahneman; by Wakker and by Luce and Fishburn incorporate

Quiggin's structure of this function g(�).

Another early, well known, and simple to illustrate form of the Generalized-EU

models was developed by Machina (Econometrica, 1982). In this model, preferences

locally correspond with EU in the same manner as Taylor's series approximations

for nonstochastic functional forms. Machina further speci�es the behavior of the

preferences in order to allow for the empirical violations of EU through a curvature

change in the triangle known as \fanning out". Figure 3 shows fanning out of

the nonlinear but smooth preference curves, where the indi�erence curves become

steeper with increases in the expected values of the gamble (movements toward

the northwest). This fanning out notion has been used for other Generalized-EU

models, but is neither strongly motivated nor predictively accurate.

The Similarity Model: Alternative Explanation for the Paradoxes

An appealing explanation of the patterns of choices showing inconsistencies with

EU proposes that individuals evaluate risky alternatives di�erently, dependent on

the similarity of the alternatives. This similarity has both objective and subjec-

tive connotations. In risky choice, selection between the more similar alternatives

would likely be both (1) more di�cult or (mentally) costly and (2) less bene�cial

or important since the alternatives di�er little in an objective sense. As a result,

comparisons between two sets of choice pairs that di�er considerably in their degree

of similarity (such as those used to show violations of EU) may give misleading

implications about preferences in the nature of model misspeci�cation, since both

preferences and perceplions are re
ected in choices.

To illustrate the application of this similarity idea, consider the pairs of risky al-

ternatives in the Certainty E�ect and the Common Ratio E�ect examples discussed

above and illustrated in Figures 2a and 2b, respectively. In both of these examples,

one of the choice pairs [(AB) in the Cenainty E�ect and (EF) in the Common Ratio

E�ect] is quite \dissimilar" as de�ned by the distance (Euclidian norm) metric over
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the probability space;

metric(p; q) =

"
nX
i=1

(pi � qi)
2

# 1

2

In addition to distance di�erences, the pair (AB) is qualitatively di�erent, since

A gives $3000 with certainty (no risk).

Choices between these dissindiar pairs are compared with choices between sim-

ilar pairs [(CD) in the Certainty E�ect and (GH) in the Common Ratio E�ect].

Kahneman and Tversky's results can be explained if individuals are more likely

to select the riskier (D and H in the Cenainty E�ect and Common Ratio E�ect,

respectively) alternative when the alternatives are similar.

Work by Leland, and by Rubinstein, has explored some of the implications

of various models of similarity on risky choice, although the models suggested by

these authors are quite limited in their applications. Buschena and Zilberman have

developed and tested more general models for the similarity of risky choice and have

found considerable e�ects of similarity on both the pattern of choice and on the

occurrence of EU violabons. The tests show two primary results. First, as the risky

choice pair becomes more similar (the choice is less critical and the evaluation is more

costly), the riskier alternative is much more likely to be selected. Second, violations

of EU are much more likely to occur when the di�erences in the dissimilarity between

the two sets of risky choice pairs is large, i.e., when there is a good deal of dichotomy

between the dissimilarity of the pairs.

The results of the similarity tests in Buschena and Zilberman show some results

that should be of signi�cant interest to general and applied economists, namely

that:

1. There is an operational and intuitively appealing explanation for the occur-

rence of choice patterns that violate EU.

2. There are a signi�cant number of decisions over risky alternatives for which

the EU model is descriptively accurate; i.e., EU works well for dissimilar pairs.

3. Statistical analysis shows signi�cant violations of the models set forth as alter-

natives to EU (Generalized{EU and others); moreover, these violations were

in the direction predicted by the Similarity Model.

There remain a number of unanswered questions regarding the e�ects of similar-

ity on risky choice. Of particular note are those concerning the e�ects of using real,

rather than hypothetical, payo�s on the in
uence of similarity on choice. Further

questions of interest that are quite unexplored are the occurrence of EU violations
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themslves, and also the e�ects of similarity on the occurrence of violations, for

nonexperimental choices (e.g., agricultural production decisions and risky resource

protection issues). There is some evidence (Bar-Shira, American Journal of Agri-

cultural Economics, 1992) that the EU model works well for modeling crop portfolio

choices.

Research modeling and testing the robustness of the �ndings of experiments to

risky decisions made in \everyday life" is a very fertile one. This line of research,

however, will likely be quite di�cult to carry out given data availability and calls

for a good deal of creativity in experimental design. Some of the recent �ndings dis-

cussed here indicate promise for models of behavior incorporating factors re
ective

of more comprehensive models of decision making.


