Economics 302 Microeconomic Theory Fall 2005, Dr. Shirley Liu

Homework 5

Due: Monday, November 28, within the first 10 minutes at the beginning of lecture

- 1. [50] A firm uses two inputs $x_1 = (\text{labor})$ and $x_2 = (\text{capital})$ to produce its output y = (bicycles), via the following technology: $f(x_1, x_2) = x_1^{\frac{1}{3}} x_2^{\frac{1}{3}}$. Let (p, w_1, w_2) denote the per unit price of output, input 1, and input 2.
 - (a) [6] Suppose in the short run the level of capital is fixed at $\overline{x}_2 = 8$. State the firm's short-run production function.
 - (b) [6] Solve for the firm's short-run profit-maximizing choice of labor.
 - (c) [8] State the difference between a "Factor demand function" and a "Conditional factor demand function".
 - (d) [12] Solve for the firm's factor demand functions: $x_1(p, w_1, w_2)$ and $x_2(p, w_1, w_2)$.
 - (e) [12] Assuming that the firm wishes to produce exactly (\overline{y}) bicycles, solve for the firm's conditional factor demand functions: $x_1(w_1, w_2, \overline{y})$ and $x_2(w_1, w_2, \overline{y})$.
 - (f) [6] Solve for the firm's minimum cost function for producing (\overline{y}) bicycles: $C(w_1, w_2, \overline{y})$.
- 2. [25] A firm uses two inputs (x_1, x_2) to produce its output (y). This firm employs perfect substitutes technology as specified by: $f(x_1, x_2) = 2x_1 + x_2$. Suppose the firm wishes to produce exactly (60) units of output in the least costly way, and $w_1 = w_2 =$ \$6.
 - (a) [12] To produce (60) units of output in the least costly way, how many units of input one and how many units of input two would this firm choose to use? *Numeric answers*.
 - (b) [5] What is the firm's minimum cost in producing (60) units of output? Numeric answer.
 - (c) [8] On the same graph, graphically illustrate the associated isoquant and isocost lines that passes through the firm's cost-minimizing choice of inputs for producing exactly (60) units of output. Numerically label all intercepts, and the cost-minimizing choice of inputs (x_1^*, x_2^*) .
- 3. [25] Joe's Handicrafts produces plastic deer for lawn ornaments. His production function is given by $f(x_1, x_2) = Min\{x_1, 2x_2\}$, where x_1 is the amount of plastic used and x_2 is the amount of labor used.
 - (a) [5] Graphically illustrate all the input combinations that will produce (4) deers. Label all axis and the kink.
 - (b) [10] If the input prices are $(w_1, w_2) = (1, 1)$, and Joe wants to produce (4) deers in the cheapest way possible. How many units of each input would Joe use? How much would it cost?
 - (c) [10] If the input prices are $(w_1, w_2) = (2, 3)$, and Joe wants to produce (4) deers in the cheapest way possible. How many units of each input would Joe use? How much would it cost?