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INTRODUCTION

This manual contains detailed solutions for the problems that appear in the eighth edition of Microeconomic Theory:  Basic Principles and Extensions.  The manual also includes a brief introductory statement about the nature of the problems in each chapter and brief notes on the economic point of each problem.  This additional descriptive material may help to focus discussions about the problems and serve to integrate them more completely with the theoretical material in the text.  That is especially important for problems that incorporate theoretical concepts that, while not sufficiently central to warrant explicit treatment in the text, contain ideas that should be understood by most students of economic theory.  Problems that introduce such basic results are explicitly highlighted in the commentary.  In general the problems in the text are arranged from least to most difficult.  Especially difficult problems are separately identified here together with some hints on how to get students started on them.

CHAPTER 2

THE MATHEMATICS OF OPTIMIZATION

The problems in this chapter are primarily mathematical.  They are intended to give students some practice with taking derivatives and using the Lagrangian techniques, but the problems in themselves offer few economic insights.  Consequently, no commentary is provided.  All of the problems are relatively simple and instructors might choose from among them on the basis of how they wish to approach the teaching of the Lagrangian method in class.

Solutions

2.1 
a. 
/(x) = 4x3  12x,      /(x) = 12x2  12,

     
x2  1 = 0   x = 1    

For x = 1, /(x) = 8 local minimum since /"(x) = 24x > 0

     
For x = 1  /(x) = +8 local maximum since /"(x) = 24x < 0

b.
/(x) = 4x  x2,    /(x) = 4  2x,

      
/(x) = 0 when x = 2,    f"(x) = 2  so this is a local maximum.  Here this is also a global maximum.

c.   
/(x) = x3, /(x) = 3x2,  /"(x) = 6x

    
/(x) = 0 when x = 0,    /"(x) = 0, test fails.

At 0, /"(x) changes sign.  Thus it is a point of inflection.

2.2
V  = (12  2x)2(x)

V(x) = 144  48x + 4x2  48x + 8x2

   = 12(x2  8x + 12)

     (x  6)(x  2) = 0      x = 2, 6

V" = 4(12  2x)  [(4x)(2) + 4(12  2x)]

V"(2) = 32  [16] = 48 max 

 x = 2

V"(6) = 0  [48] = +48 min

2.3
a.  
H = 16t2 + 40t

 

[image: image1.wmf]0

 

=

 

40

 

+

 

t

 

32

 

=

 

dt

dH

-

  when t = 5/4 sec.

    
H(5/4) = 16(25/16) + 40(5/4) = 25 + 50 = 25 ft.

b.  
H = 2.75t2 + 40t
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H(7.3) = 145 feet

c.  
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2.4
a.
T = .01 I5
I = 10, T = .01(10)2 = 1

Taxes = $1,000

I = 30, T = .01(30)2 = 9

Taxes = $9,000

I = 50, T = .01(50)2 = 25

Taxes = $25,000

Income = Tax

I = .01I5 = T

so

I = 100 and Income = $100,000

b.


Average Rate

Marginal Rate

I = 10

    10%


     20%

I = 30

    30%


     60%

I = 50

    50%


    100%


[Figure 2.4 goes here]

c.   
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Marginal tax rates in table are computed from this expression.

2.5
U = /(x, y) = 4x2 + 3y2
a.

[image: image8.wmf]6y

 

=

 

y

 

U

 

     

 ,

8x

 

=

 

x

 

U

 

¶

¶

¶

¶


b.
8, 12

c.
dU = 
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d.
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g.
U = 16 contour line is an ellipse centered at the origin.  With equation 4x5 + 3y5 = 16, slope of the line at (x, y) is 
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2.6
Substitution:  /(x, y) = xy    x + y = 1    y = 1 - x

 
/ = x(1 - x)
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Note: /"(x = 2) = 2. . .  This is a local and global maximum.

Lagrangian:   L  = xy + λ (1  x  y)
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so, x = y.
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  x = y = 2    / = 3
2.7
a.
Profits = π = TR - TC = -2q2 + 40q - 100
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b.
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so profits are maximized

c.
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so q* = 10 obeys MR = MC.

2.8
The proof is most easily accomplished through the use of the matrix algebra of quadratic forms.  See, for example, Mas Colell et al., pp. 937-939.  Intuitively, because concave functions lie below any tangent plane, their level curves must also be convex.  But the converse is not true.  Quasi-concave functions may exhibit "increasing returns to scale"; even though their level curves are convex, they may rise above the tangent plane when all variables are increased together.

2.9
a.
/1 = 
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/12 = /21 = 
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Clearly, all the terms in Equation 2.107 are negative.

b.
If 
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 since α, β > 0, x2 is a convex function of x1 .

c.
Using equation 2.91,
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 which is negative for α + β > 1.

2.10
a.
Since y > 0 y" < 0, the function is concave.

b.
Because /11 , /22 < 0, and /12 = 0, the function is concave.

c.
y is quasi-concave as is 
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 is not concave for γ > 1.


CHAPTER 3


PREFERENCES AND UTILITY

These problems provide some practice in examining utility functions by looking at indifference curve maps.  The primary focus is on illustrating the notion o/ a diminishing MRS in various contexts.  The concepts of the budget constraint and utility maximization are not used until the next chapter.


Comments on Problems
3.1
A simple linear utility function for three goods.  Yields linear indifference curves in two dimensions if one of the goods is held constant.

3.2
The basic Cobb-Douglas utility case for (=(=0.5.  Final part illustrates a monotonic transformation.

3.3
A fixed proportions utility function that also illustrates indirect utility in a simple context.

3.4
Illustrates how everyday aphorisms can be formalized in a utility function context.

3.5
Requires students to graph indifference curves for a variety of functions, some of which do not exhibit a diminishing MRS.

3.6
Introduces a formal definition of quasi-concavity to be applied to the functions in 3.5.

3.7
Shows that diminishing marginal utility is not required to obtain a diminishing MRS. All of the functions are monotonic transformations of one another, so this problem illustrates that diminishing MRS is preserved by monotonic transformations, but diminishing marginal utility is not.

3.8
Further exploration of the Cobb-Douglas function.  Part c provides an introduction to the linear expenditure system.  This is treated in more detail in the Extensions to Chapter 4.

3.9
Illustrates one situation in which diminishing marginal utilities ensure a diminishing MRS.

3.10
Explores various features of the CES function.


Solutions

3.1
a.
U = 10 + 2W +3C
if U = 40, graph is 30 = 2W + 3C
if U = 70, graph is 60 = 2W + 3C
b.
MRS = MUW/MUC = 2/3 for all W, C
c.
MRS is unaffected, but U = 40, U = 70 are now closer to origin in WC plane because M has increased.

3.2
a.
U = 10 = 
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 a rectangular hyperbola.

b.
XY = 100 if X = 5, Y = 20

 Y = 100/X    Y/ X = MRS = 100/X2 = 4 at 5, 20

c.
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in b   MRS also is Y/X
d.
U’ = logU = log (10) = 1

Notice if X = 5, Y = 20      U = 10     U = 1
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so 
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this result would hold for any monotonic transformation.

3.3
a.
Indifference curves are single points for multiples of hot dogs, buns, and mustard.  Notice that more of any one item without the other reduces utility to zero.  These are perfect complements if one can assume free disposal of surplus amounts of any one good.

b.
Complete hot dog (with bun and mustard) costs $1.50 so

Utility = 10M
where M is amount spent on hot dog, bun, and mustard combinations.

c.
U = 7.5M .  A given amount of dollars now provides less utility than in b.

3.4
a.
Perfect substitutes.

b.
Perfect complements.

c.
Marginal utility of other goods increase with Coke.

d.
Utility depends on prior consumption.

e.
Mosquitos are a "bad"  -- that is, 
[image: image42.wmf].
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f.
Presumably, wine increases marginal utility of everything.

g.
Fixed proportions in the production of the tango.

3.5
Indifference curves for these functions are represented together with an indication of whether they are strictly convex.


[Figure 3.5 - 2 graphs go here]


[Figure 3.5 - 4 graphs go here]

3.6
a.
/11 = /22 = /12 = 0     No

b.
/11, /22 < 0, /12 > 0     Yes

c.
/11, /22  ambiguous   /12 < 0     No

d.
/11, /22  ambiguous   /12 > 0     No

e.
/11, /22 < 0,   /12 > 0     Yes

f.
/11, /22 < 0,   /12 = 0     Yes

3.7
a.
MUX = Y     MUY = X
MRS = Y/X which is diminishing but /XX = /YY = 0.


b.
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/XX, /YY > 0

MRS = MUX/MUY = Y/X - diminishing

c.
MUX = 1/X     MUY = 1/Y
/XX, /YY < 0

MRS = Y/X - diminishing

Motonic transformation may affect diminishing marginal utility, but not the MRS.

3.8
a.
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This result does not depend on the sum α + β which, contrary to production theory, has no significance to consumer theory because utility is unique only up to a monotonic transformation.

b.
Mathematics follows directly from part a.  If α > β the individual values X more highly; hence, dY/dX > 1.

c.
The function is homothetic in 
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3.9
From problem 3.6, /12 = 0 implies diminishing MRS providing /11, /22 < 0.

Conversely, 3.2, for example, has /11, /22 < 0 and diminishing MRS, but /12 > 0.

3.10
a.
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so this function is homothetic.

b.
If δ = 1, MRS = α/β, a constant.

If δ = 0, MRS = α/β (Y/X)

which agrees with Problem 3.8.

c.
For δ < 1, 1 - δ > 0, por lo que la RMS disminuye.

d.
Follows from Part a, if X = Y
MRS = α/β.

e.
With 
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Hence, the MRS changes more dramatically when δ = -1 than when 

δ = .5; the lower δ is, the more sharply curved are the indifference curves.



When 
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CHAPTER 4


UTILITY MAXIMIZATION AND CHOICE
The problems in this chapter focus mainly on the utility maximization assumption.  Relatively simple computational problems (mainly based on CobbDouglas utility functions) are included.  Comparative statics exercises are included in a few problems, but for the most part, introduction of this material is delayed until Chapters 5 and 6.

Comments on Problems

4.1
Simple Cobb-Douglas case, part (b) asks students to compute income compensation for a price rise and may prove difficult for them.  As a hint they might be told to find the correct bundle on the original indifference curve first, then compute its cost.

4.2
This uses the Cobb-Douglas utility function to solve for quantity demanded at two different prices.  Instructors may wish to introduce the expenditure shares interpretation of the function's exponents (these are covered extensively in the Extensions to Chapter 4).

4.3
A maximization problem.  There is no income constraint in part (a) on the assumption that this constraint is not limiting.  In part (b) there is a total quantity constraint.  Students should be asked to interpret what Lagrangian Multiplier means in this case.

4.4
This problem shows that with concave indifference curves first order conditions do not assure a local maximum.

4.5
An example of a "fixed proportion" utility function.  This might be used to illustrate the notion of perfect complements and the absence of relative price effects for them.  Students may need some help with the min ( ) functional notation by using illustrative numerical values for V and G and showing what it means to have "excess" V or G.

4.6
Introduces a third good for which optimal consumption is zero until income reaches a certain level.

4.7
A graphical proof of the lump-sum principle.

4.8
This problem repeats the lessons of the lump-sum principle for the case of a subsidy.

4.9
Examines the first order conditions for a utility maximum with the CES function.

4.10
This problem shows utility maximization in the linear expenditure system (see also the extensions to Chapter 4).


Solutions

4.1
a.
Set up Lagrangian

L  =  
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Ratio o/ first two equations implies


[image: image56.wmf]2.5S

 

=

 

T

     

2.5

 

=

 

S

T


Hence

1.00 = .10T + .25S = .50S.

S = 2     T = 5

Utility =  
[image: image57.wmf]10


b.
New utility 
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Substituting into indifference curve:
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S2 = 16     S = 4     T = 2.5

Cost of this bundle is .25(4) + .40(2.5) = 2.00.

Paul needs another dollar.

4.2
Use a simpler notation:  
[image: image62.wmf]300
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Hence,
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Budget constraint:  20F + 4C = 300, 30F = 300,

F = 10, C = 25.

b.
New constraint: 10F + 4C = 300

5/2 = 2C/F, 4C=5F    10F + 5F = 300

F = 20, C = 25



Note:  This person always spend b of income on F, a on C.

4.3
U = 20C - C2 + 18B - 3B2
a.
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So, U = 127.

b.
Constraint:  B + C = 5

 L  = 20C  C2 + 18B  3B2 + λ (5  B  C )
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20  2C = 18  6B

C = 3B + 1

B + 3B + 1 = 5

B = 1, C = 4, U = 79

4.4
U(X, Y) =  
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     Constraint:  50  3X  4Y =0

Maximizing U2 in turn will max U.

a.
L = X2 + Y2 + λ (50  3X  4Y)
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3X + 4(4/3X) =50     X = 6, Y = 8     U = 10

b.
This is not a local maximum because the indifference curves do not have a diminishing MRS.  Hence, we have necessary but not sufficient conditions for a maximum.

4.5
U(M) = U(G, V) = min 
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a.
No matter what the relative price are (i.e., the slope of the budget constraint) the maximum utility intersection will always be at the vertex of an indifference curve where G = 2V.


b.
Since G = 2V and budget constraint is PGG + PVV = I, we have 

2 PG V + PV V = I or 
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Similarly, 
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It is easy to show that these two demand functions are homogeneous of degree zero in PG , PV , and I.

c.
Utility = 
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G

 = V so, by substitution

Indirect Utility is V = 
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d.
The expenditure function is found by solving for I,

I = E = V(2PG + PV).

4.6
a.
If X = 4  Y = 1  U (Z = 0) = 2.

If Z = 1  U = 0 since X = Y = 0.

If Z = 0.1 (say)  X = .9/.25 = 3.6, Y = .9.

U = (3.6).5 (.9).5 (1.1).5 = 1.89

b.
At X = 4  Y = 1  Z =0
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So, even at Z = 0, the marginal utility from Z is "not worth" the good's price.  Notice here that the “1” causes this individual to incur some diminishing marginal utility for Z before any is bought.

c.
If I = 10, optimal choices are X = 16, Y = 4, Z = 1.  A higher income makes it possible to consume Z at a utility maximum.  To find the minimal income at which any Z would be bought, use the fact that with the Cobb-Douglas this person will spend equal amounts on X, Y, and (1+Z).  That is:
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Substituting this into the budget constraint yields:
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Hence, for Z>0 it must be the case that I>2PZ or, in this case, I>4.

4.7
a.
In graph, initial budget constraint is I.  A sales tax on good X shifts the constraint to I' and X', Y' is chosen.  An income tax (I") that collects the same revenue passes through X', Y' but permits this person to reach a higher indifference curve.


[Figure 4.7 goes here]

b.
With fixed proportions, utility maximization occurs at X’, Y’ under both I' and I’’.

c.
Similar results hold with many goods.

4.8
a.

[image: image85.wmf]2

 

=

 

E

 

2,

 

=

 

U

 

1,

 

=

 

P

 

.25,

 

=

 

P

 

With

Y

X

  

.

 

P

  

P

 

U

2

 

=

 

E

.5

Y

.5

X


For 
[image: image86.wmf]2.50

 

=

 

E

     

2.5

 

=

 

U


If hold E = 2 and solve for PY , need
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With PY = .64, Y = 2/2(.64) = 1.56

Subsidy = .36 (1.56) = .56 which is 64 greater than the required 504 income subsidy.

b.



[Figure 4.8 goes here]

Subsidizing purchases on good X causes utility maximum point to shift to X1, Y1 and utility to rise to U2.  A lump-sum transfer would shift the budget constraint to I"I" and increase utility to U3.  U3 > U2.

c.
Yes, this applies to the many goods case too.

4.9
a.
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  for utility maximization.

Hence, 
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b.
If δ = 0, X/Y = PY / PX so PX X = PY Y .

c.
Part a shows 
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For 0 < δ < 1 and PX /PY > 1,  PX X/ PY Y < 1.  

For δ < 0 PX /PY > 1, PX X /PY Y > 1.

This shows that, with lower substitutability budget shares are positively correlated with relative prices.  They are inversely correlated with higher substitutability.

4.10
a.
For X < X0 utility is negative so will spend PX X0 first.  With I  PX X0 extra income, this is a standard Cobb-Douglas problem:
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b.
Part a yields
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CHAPTER 5

INCOME AND SUBSTITUTION EFFECTS

Problems in this chapter focus on comparative statics analyses of income and own-price changes.  Many of the problems are fairly easy so that students can approach the ideas involved in shifting budget constraints in simplified settings.  Theoretical material is confined mainly to the Extensions where Shephard's Lemma and Roy's Identity are illustrated for the Cobb-Douglas case.

Comments on Problems
5.1
An example of perfect substitutes.

5.2
A fixed-proportions example.  Illustrates how the goods used in fixed proportions (peanut butter and jelly) can be treated as a single good in the comparative statics of utility maximization.

5.3
A problem on compulsory purchases which reinforces the idea of utility maximization.  Could be used to focus a discussion on rationing or on compulsory purchases for safety reasons (e.g., air-bags).

5.4
A simple and perhaps obvious problem for which an intuitive solution should suffice.  This is a good question for an oral quiz.

5.5
An exploration of the notion of homothetic functions.  Shows that Giffen's Paradox cannot occur with homothetic functions.

5.6
Utility maximization for a CES function with limited substitutability.

5.7
Asks students to pursue the analysis of Example 5.1 to obtain compensated demand functions.  Basically duplicates Examples 5.3 and 5.4.

5.8
Another utility maximization example.  In this case, utility is not separable and cross-price effects are important.

5.9
A revealed preference example of inconsistent preferences.

5.10
Introduces the concept of separable utility and shows that the types of relationships among goods with such a function are limited.

Solutions
5.1
a.
Utility = Quantity of water = .75X + 2Y.

b.
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c.



[Graph 5.1 goes here]

d.
I shifts demand for X outward.  Reductions in PY do not affect demand for X until 
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  Then X falls to zero.

e.
The income-compensated demand curve for good X is the single X, PX  point that characterizes current consumption.  Any change in PX would change utility from this point (assuming X > 0).

5.2
a.
PB = 2J and .05PB + .1J = 3

              5PB + 10J = 300

               PB +  2J = 60

  4J = 60          J = 15, PB = 30

b.
PJ = $.15          PB = 2J          .05PB + .15J = 3

5PB + 15J = 300        25J = 300        J = 12, PB = 24

c.
To continue buying J = 15, JB = 30, David would need to 

buy 3 more ounces of jelly and 6 more ounces of peanut butter.

Increase income by:  3(.15) + 6(.05) =  .75.

d.



[Figure 5.2 goes here]

e.
Since David N. uses only PB + J to make sandwiches (in 

fixed proportions), and because bread is free, it is just as though he buys sandwiches where

Psandwich = 2PPB + PJ.

           In part a, PS = .20, QS = 15;

           In part b, PS = .25, QS = 12;

           In general,
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  so the demand curve for sandwiches is a hyperbola

f.
There is no substitution effect due to the fixed proportion.  A change in price results in only an income effect.

5.3
Unconstrained utility maximization will yield an X*.  With a regulated X0 this individual will achieve a maximum only if X*=X0.  For low income people it seems likely that X*<X0, so this person will be forced to consume too little in other goods.  For a high income person, X*>X0 and this person will be forced to consume too much in other goods.


5.4
If both goods were inferior, then an increase in I holding 
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 constant would bring about a decrease in the quantity of both X and Y.  But that would leave some income unspent, a situation which violates the utility maximization hypothesis.

5.5
a.
As income increases, the ratio 
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  stays constant, and the utility-maximization conditions also require that MRS stay constant.  Thus, if MRS depends on the ratio 
[image: image104.wmf]X

/

  

X

1

2

, this ratio must stay constant as income increases.  Therefore, since income is spent only on X1 and X2, X1 and X2 are proportional to income.  Thus, Engel curves are straight lines.

b.
Because of part (a), 
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 > 0.  Therefore, Giffen's paradox cannot arise.

5.6
a.
Lagrangian is  
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yielding the first-order condition


[image: image107.wmf]0

1

2

=

-

=

¶

¶

-

¶

¶

Y

X

2

P

Y

Y

L

0

 

=

 

P

 

X

1

 

=

 

X

L

l

l






[image: image108.wmf].

  

0

 

=

 

Y

  

P

 

 

X

  

P

 

 

I

 

=

 

L

Y

X

-

-

¶

¶

l


Hence 
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Substitution into the budget constraint yields
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b.
Clearly a doubling of PX, PY, and I leaves these demand functions unchanged.

c.
Increases in I increase X and Y proportionally here.  An increase in PY reduces the demand for X and vice versa.

5.7
a.
Since X = .3I/PX and Y = .7I/PY
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b.
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P

  

UP

  

K

.3

 

=

 

P

/

  

E

 

=

 

X

.7

  

Y

.7

  

X

1

X

C

-

-

¶

¶


c.
Easiest to show Slutsky Equation in elasticities (see Chapter 7).


[image: image116.wmf].7

 

=

 

e

        

1

 

=

 

e

P

 

  ,

X

P

X,

X

c

X

-

-



[image: image117.wmf]e

  

s

 

e

 

=

 

e

I

  

  ,

X

X

P

  ,

X

P

  

  ,

X

X

c

X

-




Here, -1 = -.7 - .3(1).

So, the Slutsky Equation holds.

5.8
a.
Use of the Lagrangian technique yields
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Substitution into the budget constraint provides
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Hence, changes in PY do not affect X, but changes in PX do affect Y.

b.
The indirect utility function is 
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and this yields an expenditure function of
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c.
Clearly the compensated demand function for X depends on PY , whereas the uncompensated function did not.

5.9
Year 2's bundle is revealed preferred to Year 1's since both cost the same in Year 2's prices.  Year 2's bundle is also revealed preferred to Year 3's for the same reason.  But in Year 3, Year 2's bundle costs less than Year 3's but is not chosen.  Hence, these violate the axiom.

5.10
Use the utility maximizing condition
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a.
If income rises, quantity of one of the goods (say, X1) 

must rise (not all can be inferior).  Hence, 
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 falls and to maintain equality X2 and X3 must also rise.


b.
Since there are no inferior goods, all must have negative own-price derivatives.
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