
CHAPTER 3
APPENDIX

THE UTILITY FUNCTION APPROACH TO
THE CONSUMER BUDGETING PROBLEM

The Utility-Function Approach to Consumer Choice

Finding the highest attainable indifference curve on a budget constraint is just one way that
economists have analyzed the consumer choice problem. For many applications, a second
approach has also proved useful. In this approach we represent the consumer's preferences
not with an indifference map but with a utility function (a formula that yields a number
representing the satisfaction provided by a bundle of goods.)

A utility function is simply a formula that, for each possible bundle of goods, yields a
number that represents the amount of satisfaction provided by that bundle. Suppose, for
example, that Tom consumes only food and shelter and that his utility function is given by
U(F, S) = FS, where F denotes the number of pounds of food, S the number of square
yards of shelter he consumes per week, and U his satisfaction, measured in “utils” per
week.1  If F = 4 lb/wk. and S = 3 sq yd/wk, Tom will receive 12 utils/wk of utility, just as
he would if he consumed 3 lb/wk of food and 4 sq yd/wk of shelter. By contrast, if he
consumed 8 lb/wk of food and 6 sq yd/wk of shelter, he would receive 48 utils/wk.

The utility function is analogous to an indifference map in that both provide a
complete description of the consumer's preference ordering. In the indifferencecurve
framework, we can rank any two bundles by seeing which one lies on a higher indifference
curve. In the utility-function framework, we can compare any two bundles by seeing
which one yields a greater number of utils. Indeed, as the following example illustrates, it
is straightforward to use the utility function to construct an indifference map.

Example A.3-1

If Tom's utility function is given by U(F, S) = FS, graph the indifference curves that
correspond to 1, 2, 3, and 4 utils, respectively.

In the language of utility functions, an indifference curve is all combinations of F and S
that yield the same level of utility—the same number of utils. Suppose we look at the
indifference curve that corresponds to 1 unit of utility—that is, the combinations of
bundles for which FS = 1. Solving this equation for S, we have

S =
1

F
, (A.3.1)

____________________
1The term "utils" represents an arbitrary unit. As we will see, what is important for consumer choice is not
the actual number of utils various bundles provide, but the rankings of the bundles based on their
associated utilities.
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which is the difference curve labeled U = 1 in Figure A.3-1. The indifference curve that
corresponds to 2 units of utility is generated by solving FS = 2 to get S = 2/F, and it is
shown by the curve labeled U = 2 in Figure A.3-1. In similar fashion, we generate the
indifference curves to U = 3 and U = 4, which are correspondingly labeled in the diagram.
More generally, we get the indifference curve corresponding to a utility level of U0 by
solving FS = U0 to get S = U0/F.

[Figure A.3-1]

In the indifference-curve framework, the best attainable bundle is the bundle on the
budget constraint that lies on the highest indifference curve. Analogously, the best
attainable bundle in the utility-function framework is the bundle on the budget constraint
that provides the highest level of utility. In the indifferencecurve framework, the best
attainable bundle occurs at a point of tangency between an indifference curve and the
budget constraint. At the optimal bundle, the slope of the indifference curve, or MRS,
equals the slope of the budget constraint. Suppose food and shelter are again our two
goods, and PF and PS are their respective prices. If ∆S/∆F denotes the slope of the highest
attainable indifference curve at the optimal bundle, the tangency condition says that ∆S/∆F
= PF/PS What is the analogous condition in the utility-function framework?

To answer this question, we must introduce the concept of marginal utility (the
marginal utility of a good is the rate at which total utility changes with consumption of the
good) which is the rate at which total utility changes as the quantities of food and shelter
change. More specifically, let MUF denote the number of additional utils we get for each
additional unit of food and MUS denote the number of additional utils we get for each
additional unit of shelter. In Figure 3-2, note that bundle K has ∆F fewer units of food and
∆S more units of shelter than bundle L. Thus, if we move from bundle K to bundle L, we
gain MUF∆F utils from having more food, but we lose MUS∆S utils from having less
shelter.

[Figure A.3-2]

Because K and L both lie on the same indifference curve, we know that both bundles
provide the same level of utility. Thus the utility we lose from having less shelter must be
exactly offset by the utility we gain from having more food. This tells us that

MUF∆F = MUS∆S. (A.3.2)

Cross-multiplying terms in Equation A.3.2 gives

MUF

MU S

=
∆S
∆F

. (A.3.3)

Suppose that the optimal bundle lies between K and L, which are very close together, so
that ∆F and ∆S are both very small. As K and L move closer to the optimal bundle, the
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ratio ∆S/∆F becomes equal to the slope of the indifference curve at that bundle, which
Equation A.3.3 tells us is equal to the ratio of the marginal utilities of the two goods. And
since the slope of the indifference curve at the optimal bundle is the same as that of the
budget constraint, the following condition must also hold for the optimal bundle:

MUF

MU S

=
PF

PS

. (A.3.4)

Equation A.3.4 is the condition in the utility-function framework that is analogous to the
MRS = PF/PS condition in the indifference-curve framework.

If we cross-multiply terms in Equation A.3.4, we get an equivalent condition that has a
very straightforward intuitive interpretation:

MUF

PF

=
MUS

PS

. (A.3.5)

In words, Equation A.3.5 tells us that the ratio of marginal utility to price must be the
same for all goods at the optimal bundle. The following examples illustrate why this
condition must be satisfied if the consumer has allocated his budget optimally.

Example A.3-2

Suppose that the marginal utility of the last dollar John spends on food is greater than
the marginal utility of the last dollar he spends on shelter. For example, suppose the
prices of food and shelter are $1/lb and $2/sq yd, respectively, and that the
corresponding marginal utilities are 6 and 4. Show that John cannot possibly be
maximizing his utility.

If John bought 1 sq yd/wk less shelter, he would save $2/wk and would lose 4 utils. But
this would enable him to buy 2 Ib/wk more food, which would add 12 utils, for a net gain
of 8 utils.

Abstracting from the special case of corner solutions, a necessary condition for
optimal budget allocation is that the last dollar spent on each commodity yield the same
increment in utility.

Example A.3-3

Mary has a weekly allowance of $10, all of which she spends on newspapers (N.) and
magazines (M), whose respective prices are $1 and $2. Her utility from these purchases
is given by U(N) + V(M). If the values of U(N) and V(M) are as shown in the table, is
Mary a utility maximizer if she buys 4 magazines and 2 newspapers each week? Of not,
how should she reallocate her allowance?
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N U(N) M V(M)

0 0 0 0
1 12 1 20
2 20 2 32
3 26 3 40
4 30 4 44
5 32 5 46

For Mary to be a utility maximizer, extra utility per dollar must be the same for both
the last newspaper and the last magazine she purchased. But since the second newspaper
provided 8 additional utils per dollar spent, which is four times the 2 utils per dollar she
got from the fourth magazine (4 extra utils at a cost of $2), Mary is not a utility
maximizer.

To see clearly how she should reallocate her purchases, let us rewrite the table to
include the relevant information on marginal utilities.

N U(N) MU(N) MU(N)/PN M U(M) MU(M) MU(M)/PM

0 0 0 0
12 12 20 10

1 12 1 20
8 8 12 6

2 20 2 32
6 6 8 4

3 26 3 40
4 4 4 2

4 30 4 44
2 2 2 1

5 32 5 46

From this table, we see that there are several bundles for which MU(N)/PN = MU(M)/PM—
namely, 3 newspapers and 2 magazines; or 4 newspapers and 3 magazines; or 5
newspapers and 4 magazines. The last of these bundles yields the highest total utility but
costs $13, and is hence beyond Mary's budget constraint. The first, which costs only $7, is
affordable, but so is the second, which costs exactly $10 and yields higher total utility than
the first. With 4 newspapers and 3 magazines, Mary gets 4 utils per dollar from her last
purchase in each category. Her total utility is 70 utils, which is 6 more than she got from
the original bundle.

In Example A.3-3, note that if all Mary's utility values were doubled, or cut by half, she
would still do best to buy 4 newspapers and 3 magazines each week. This illustrates the
claim, that consumer choice depends not on the absolute number of utils associated with
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different bundles, but instead on the ordinal ranking of the utility levels associated with
different bundles. If we double all the utils associated with various bundles, or cut them by
half, the ordinal ranking of the bundles will be preserved, and thus the optimal bundle will
remain the same. This will also be true if we take the logarithm of the utility function, the
square root of it, or add 5 to it, or transform it in any other way that preserves the ordinal
ranking of different bundles.

Cardinal versus Ordinal Utility

In our discussion about how to represent consumer preferences, we assumed that people
are able to rank each possible bundle in order of preference. This is called the ordinal
utility approach to the consumer budgeting problem. It does not require that people be
able to make quantitative statements about how much they like various bundles. Thus it
assumes that a consumer will always be able to say whether he prefers A to B, but that he
may not be able to make such statements as “A is 6.43 times as good as B.”

In the nineteenth century, economists commonly assumed that people could make such
statements. Today we call theirs the cardinal utility approach to the consumer choice
problem. In the two-good case, it assumes that the satisfaction provided by any bundle can
be assigned a numerical, or cardinal, value by a utility function of the form

U = U(X, Y). (A.3.6)

In three dimensions, the graph of such a utility function will look something like the
one shown in Figure A.3-3. It resembles a mountain, but because of the more-is-better
assumption, it is a mountain without a summit. The value on the U axis measures the
height of the mountain, which continues to increase the more we have of X or Y.

Suppose in Figure A.3-3 we were to fix utility at some constant amount, say, U0. That
is, suppose we cut the utility mountain with a plane parallel to the XY plane, U0 units
above it. The line labeled JK in Figure A.3-3 represents the intersection of that plane and
the surface of the utility mountain. All the bundles of goods that lie on JK provide a utility
level of U0. If we then project the line JK downward onto the XY plane, we have what
amounts to the U0 indifference curve, shown in Figure A.3-.

[Figure A.3-3]

Suppose we then intersect the utility mountain with another plane, this time U1 units
above the XY plane. In Figure A.3-3, this second plane intersects the utility mountain
along the line labeled LN. It represents the set of all bundles 3that confer the utility level
U1. Projecting LN down onto the XY plane, we thus get the indifference curve labeled U1

in Figure A.3-3. In like fashion, we can generate an entire indifference map corresponding
to the cardinal utility function U(X, Y).

[Figure A.3-4]

Thus we see that it is possible to start with any cardinal utility function and end up
with a unique indifference map. But it is not possible to go in the other direction! That is,
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it is not possible to start with an indifference map and work backward to a unique cardinal
utility function. The reason is that there will always be infinitely many such utility
functions that give rise to precisely the same indifference map.

To see why, just imagine that we took the utility function in Equation A.3.4 and
doubled it, so that utility is now given by V = 2U(X, Y). When we graph V as a function of
X and Y. the shape of the resulting utility mountain will be much the same as before. The
difference will be that the altitude at any X, Y point will be twice what it was before. If we
pass a plane 2 U0 units above the XY plane, it would intersect the new utility mountain in
precisely the same manner as the plane U0 units high did originally. If we then project the
resulting intersection down onto the XY plane, it will coincide perfectly with the original
U0 indifference curve.

All we do when we multiply (divide, add to, or subtract from) a cardinal utility
function is to relabel the indifference curves to which it gives rise. Indeed, we can make an
even more general statement: If U(X, Y) is any cardinal utility function and if V is any
increasing function, then U = U(X, Y) and V = V[U(X, Y)] will give rise to precisely the
same indifference maps. The special property of an increasing function is that it preserves
the rank ordering of the values of the original function. That is, if U(X1, Y1) > U(X2, Y2),
the fact that V is an increasing function assures that V[U(X1, Y1)] will be greater than
V[U(X2, Y2)]. And as long as that requirement is met, the two functions will give rise to
exactly the same indifference curves.

The concept of the indifference map was first discussed by Francis Edgeworth, who
derived it from a cardinal utility function in the manner described above. It took the
combined insights of Vilfredo Pareto, Irving Fisher, and John Hicks to establish that
Edgeworth's apparatus was not uniquely dependent on a supporting cardinal utility
function. As we have seen, the only aspect of a consumer's preferences that matters in the
standard budget allocation problem is the shape and location of his indifference curves.
Consumer choice turns out to be completely independent of the labels we assign to these
indifference curves, provided only that higher curves correspond to higher levels of utility.

Modern economists prefer the ordinal approach because it rests on much weaker
assumptions than the cardinal approach. That is, it is much easier to imagine that people
can rank different bundles than to suppose that they can make precise quantitative
statements about how much satisfaction each provides.

Generating Indifference Curves Algebraically

Even if we assume that consumers have only ordinal preference rankings, it will often be
convenient to represent those preferences with a cardinal utility index. The advantage is
that this procedure provides a compact algebraic way of summarizing all the information
that is implicit in the graphical representation of preferences.

[Figure A.3-5]

Suppose, for example, that Tom's utility function is given by U(X, Y) = XY, and we
want to use this information to graph Tom's indifference map. In the language of utility
functions, an indifference curve is all combinations of X and Y that yield the same level of
utility. Suppose we look at the indifference curve that corresponds to 1 unit of utility—
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that is, the combinations of bundles for which XY = 1. Solving this equation for Y, we
have

Y =
1

X
, (A.3.7)

which is the indifference curve labeled U = 1 in Figure A.3-5. The indifference curve that
corresponds to 2 units of utility is generated by solving XY = 2 to get Y = 2/X and it is
shown by the curve labeled U = 2 in Figure A.3-5. In similar fashion, we generate the
indifference curves for U = 3 and U = 4, which are correspondingly labeled in the diagram.
More generally, we get the indifference curve corresponding to a utility level of U0 by
solving XY = U0 to get Y = U0/X.

Consider another illustration, this time with U(X, Y) = (2/3)X + 2Y. The bundles of X
and Y that yield a utility level of U0 are again found by solving U(X, Y) = U0 for Y. This
time we get Y = (U0/2) - (1/3)X. The indifference curves corresponding to U = 1, U = 2,
and U = 3 are shown in Figure A.3-6. Note that they are all linear, which tells us that this
particular utility function describes a preference ordering in which X and Y are perfect
substitutes.

[Figure A.3-6]

Using Calculus to Maximize Utility

Students who have had calculus are able to solve the consumer's budget allocation
problem without direct recourse to the geometry of indifference maps. Let U(X, Y) be the
consumer's utility function; and suppose M, PX, and PY denote denote income, the price of
X, and the price of Y. respectively. Formally, the consumer's allocation problem can be
stated as follows:

Maximize U(X, Y) subject to PXX + PYY = M. (A.3.8)
X, Y

The appearance of the terms X and Y below the “maximize” expression indicates that these
are the variables whose values the consumer must choose. The price and income values in

THE METHOD OF LAGRANGIAN MULTIPLIERS

As noted earlier, the function U(X, Y) itself has no maximum; it simply keeps on increasing
with increases in X or Y. The maximization problem defined in Equation A.3.8 is called a
constrained maximization problem, which means we want to find the values of X and Y
that produce the highest value of U subject to the constraint that the consumer spend only
as much as his income. We will examine two different approaches to this problem.
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One way of making sure that the budget constraint is satisfied is to use the so-called
method of Lagrangian multipliers. In this method, we begin by transforming the
constrained maximization problem in Equation A.3.8 into the following unconstrained
maximization problem:

Maximize £ = U(X, Y) - λ (PXX + PYY - M). (A.3.9)
X, Y, λ

The term A is called a Lagrangian multiplier, and its role is to assure that the budget
constraint is satisfied. (How it does this will become clear in a moment.) The first-order
conditions for a maximum of £ are obtained by taking the first partial derivatives of £ with
respect to X, Y, and λ and setting them equal to zero:

  

∂ £

∂X
=

∂U

∂X
− λPX = 0, (A.3.10)

  

∂ £

∂Y
=

∂U

∂Y
− λP

Y = 0, (A.3.11)

and

∂£

∂λ
= M − PX X − PY Y = 0. (A.3.12)

The next step is to solve Equations A.3.10-A.3.12 for X, Y. and λ. The solutions for X
and Y are the only ones we really care about here. The role of the equilibrium value of λ is
to guarantee that the budget constraint is satisfied. Note in Equation A.3.12 that setting
the first partial derivative of £ with respect to λ equal to zero guarantees this result.

Specific solutions for the utility-maximizing values of X and Y require a specific
functional form for the utility function. We will work through an illustrative example in a
moment. But first note that an interesting characteristic of the optimal X and Y values can
be obtained by dividing Equation A.3.10 by Equation A.3.11 to get

∂U / ∂X

∂U / ∂Y
=

λPX

λPY

=
PX

PY

(A.3.13)

Equation A.3.13 is the utility function analog to Equation A.3.8 from the text, which
says that the optimal values of X and Y must satisfy MRS = PX/PY. The terms � U/� X and
� U/�Y from Equation A.3.13 are caged the marginal utility of X and the marginal utility
of Y. respectively. In words, the marginal utility of a good is the extra utility obtained per
additional unit of the good consumed. Equation A.3.13 tells us that the ratio of these
marginal utilities is simply the marginal rate of substitution of Y for X.

If we rearrange Equation A.3.13 in the form
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∂U / ∂X

PX

=
∂U /∂Y

PY

(A.3.14)

another interesting property of the optimal values of X and Y emerges. In words, the
left-hand side of Equation A.3.14 may be interpreted as the extra utility gained from the
last dollar spent on X. Similarly, the right-hand side of the equation is the extra utility
gained from the last dollar spent on Y. It is easy to see intuitively why, for the optimal
values of X and Y, the extra utility gained from the last dollar spent on each must be the
same. Suppose, to the contrary, that the extra utility gained from the last dollar spent on Y
exceeded the extra utility from the last dollar spent on X. The consumer could then spend
a dollar less on X and a dollar more on Y and end up with more utility than he had under
the original allocation. The conclusion is that the original allocation could not have been
optimat. Only when the extra utility gained from the last dollar spent on each good is the
same will it not be possible to carry out a similar utility-augmenting reallocation.

An Example. To illustrate the Lagrangian method, suppose that U(X, Y) = XY and that
M = 40, PX = 4, and PY = 2. Our constrained maximization problem would then be written
as

Maximize £ = XY - λ  (4X + 2Y - 40). (A.3.15)
X, Y. λ

The first-order conditions for a maximum of £ are given by

  

∂ £

∂X
=

∂(XY)

∂X
− 4λ = Y − 4λ = 0, (A.3.16)

∂£

∂Y
=

∂(XY)

∂Y
− 2λ = X − 2λ = 0, (A.3.17)

and

∂£

∂λ
= 40 − 4X − 2 = 0. (A.3.18)

Dividing Equation A.3.16 by Equation A.3.17 and solving for Y, we get Y = 2X;
substituting this result into Equation A.3.18 and solving for X, we get X = 5, which in turn
yields Y = 2X = 10. Thus (5, 10) is the utility-maximizing bundle.2

AN ALTERNATIVE METHOD

There is an alternative way of making sure that the budget constraint is satisfied, one that
involves less cumbersome notation than the Lagrangian approach. In this alternative
method, we simply solve the budget constraint for Y in terms of X and substitute the result
wherever Y appears in the utility function. Utility then becomes a function of X alone, and
we can maximize it by taking its first derivative with respect to X and equating that to
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zero.3 The value of X that solves that equation is the optimal value of X, which can then be
substituted back into the budget constraint to find the optimal value of Y.

[Figure A.3-7]

To illustrate, again suppose that U(X, Y) = XY, with M = 40, PX = 4, and PY = 2. The
budget constraint is then 4X + 2Y = 40, which solves for Y = 20 - 2X. Substituting this
expression back into the utility function, we have U(X Y) = X(20 - 2X) = 20X - 2X2.
Taking the first derivative of U with respect to X and equating the result to zero, we have

 
dU

dX
= 20 − 4X = 0, (A.3.19)

which solves for X = 5. Plugging this value of X back into the budget constraint, we
discover that the optimal value of Y is 10. So the optimal bundle is again (5, 10), just as
we found using the Lagrangian approach. For these optimal values of X and Y, the
consumer will obtain (5)(10) = 50 units of utility.

Both algebraic approaches to the budget allocation problem yield precisely the same
result as the graphical approach described in the text. Note in Figure A.3-7 that the U = 50
indifference curve is tangent to the budget constraint at the bundle (5, 10).

A SIMPLIFYING TECHNIQUE

Suppose our constrained maximization problem is of the general form

Maximize U(X, Y) subject to PXX + PYY = M. (A.3.20)
X, Y

If (X*, Y*) is the optimum bundle for this maximization problem, then we know it will also
be the optimum bundle for the utility function V[U(X, Y)], where V is any increasing
function.4 This property often enables us to transform a computationally difficult
maximization problem into a simple one. By way of illustration, consider the following
example:
____________
2Here, the second-order condition for a local maXimum is that d2U/dX2 < O.

Maxmize X1/3Y2/3  subject to 4X + 2Y = 24. (A.3.21)
X, Y

First note what happens when we proceed with the untransformed utility function given in
Equation A.3.21. Solving the budget constraint for Y = 12, 2X and substituting back into
the utility function, we have U = Xl/3(12 - 2X)2/ 3. Calculating dU/dX is a bit tedious in this
case, but if we carry out each step carefully we get the following first-order condition:

dU

dX
 = (1/3)X-2/3(12 - 2X)2/3 + Xl/3(2/3)(12 - 2X)-l/3(-2) = 0, (A.3.22)
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which, after a little more tedious rearrangement, solves for X = 2. And from the budget
constraint we then get Y = 8.
Now suppose we transform the utility function by taking its logarithm:

V = ln[U(X, Y)] = ln(Xl/3Y2/3) = (1/3)1n X + (2/3)1n Y. (A.3.23)

Since the logarithm is an increasing function, when we maximize V subject to the budget
constraint, we will get the same answer we got using U. The advantage of the logarithmic
transformation here is that the derivative of V is much easier to calculate than the
derivative of U. Again, solving the budget constraint for Y= 12 - 2X and substituting the
result into V, we have V = (1/3)1n X + (2/3)1n(12 - 2X). This time the first-order condition
follows almost without effort:

dV

dX
=

1/ 3

X
−

2(2 / 3)

12 − 2X
= 0,  (A.3.24)

which solves easily for X = 2. Plugging X = 2 back into the budget constraint, we again get
Y = 8.

The best transformation to make will naturally depend on the particular utility function
you start with. The logarithmic transformation greatly simplified matters in the example
above, but will not necessarily be helpful for other forms of U.

________________
4Again, an increasing function is one for which V(X1) > V(X2) whenever Xl > X2.

Problems

1. Tom spends all his $100 weekly income on two goods, X and Y. His utility function is
given by U(X, Y) = XY. If PX = 4 and PY = 10, how much of each good should he buy?

 
2. Same as Problem 1, except now Tom's utility function is given by U(X, Y) = Xl/2Yl/2

 
3. Note the relationship between your answers in Problems 1 and 2. What accounts for

this relationship?
 
4. Sue consumes only two goods, food and clothing.  The marginal utility of the last

dollar she spends on food is 12, and the marginal utility of the last dollar she spends on
clothing is 9.  The price of food is $1.20/unit, and the price of clothing is $0.90/unit.
Is Sue maximizing her utility?
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5. Albert has a weekly allowance of $17, all of which he spends on used CDs (C) and

movie rentals (M), whose respective prices are $4 and $3.  His utility from these
purhcases is given by U(C) + V(M).  If the values of U(C) and V(M) are as shown in
the table, is Albert a utility maximizer if he buys 2 CDs and rents 3 movies each week?
If not, how should be reallocate his allowance?

C             U(C)                    M               V(M)

0 0 0 0
1 12 1 21
2 20 2 33
3 24 3 39
4 28 4 42


