
PANTOB INSTRUCTIONS

by Je�rey R. Campbell and Bo E. Honor�e, December 1991.

Pantob is a Gauss program which estimates a censored Tobit model with panel data as in

Honor�e (1992). The program runs with Gauss version 2.2. It requires that the Gauss module

Optmum be properly installed on your hard drive. Pantob provides three optimization algorithms

of its own.

Installing Pantob.

The code needed to run Pantob is in the following �les:

pantob.f

bopt.rex

bodpt.rex

boddpt.rex

bocalv.rex

bosort.rex

The �rst �le should be made part of your Gauss program using the #include statement. At

the top of your program, put the following lines of code.

library optmum;
#include optmum.ext;
#include pantob.f;

If you wish to access other libraries in your program, you should include them in one library

statement with optmum.

The remaining �les, those with the extention \.rex", should be placed in the subdirectory

C:n GAUSS n GXE. These are compiled Fortran routines which do the bulk of the work for Pantob.

These are automatically loaded when you call the Pantob procedure. Once they are in the proper

subdirectory, you need not worry about them.

Pantob uses Optmum to maximize the objective function. Pantob has three optimization

routines built into it, the downhill simplex method, Powell's method, and the conjugate gradient

method of Polak and Ribiere. These routines are procedures in the �le pantob.f. See Press,

Flannery, Teukolsky, and Vetterling (1986) for the details of these procedures. Pantob will run

with no problem if you do not have Optmum, however you may only use the three methods for

your optimization.
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Running Pantob

To estimate a tobit model with �xed e�ects, you need only call the procedure pantob. Below

is a sample program which estimates such a model using the Gauss data set \labordat". The �rst

column of the data set is the dependent variable. The second contains an identi�cation number.

The third contains the only regressor. The optimization routines require starting values of the

parameters being estimated. In this case, the routine starts from zero.

library optmum;
#include optmum.ext;
#include pantob.f;

fb,v,f,infile,met,yname,iname,xnamesg=pantob("laborda t",1,2,3,0)

This program uses the default values of all global variables. In general, this is unwise.

Inside Pantob

When your program calls the pantob procedure, it �rst loads and sorts the given data set.

It sorts the data according to the identi�cation number and deletes all observations with missing

data in any column used for the estimation. This reduces the amount of data processing you need

to do in Gauss, but it may become a large computational burden if you repeatedly use the same

data set. If you have a particularly large data set, you may want to alter the code so that this step

is only performed once, at the beginning of the program.

After the data is processed, the program minimizes the chosen objective function over Rk

where k is the number of regressors. The global variables ptloss and pttheta control the choice

of an objective function. At their default values, they chose the quadratic loss function. The

Optmum module gives you �ve algorythims for minimizing this function, and Pantob gives you

three more. The global variable ptmet controls the choice of an optimization algorythim. Optmum

uses the global variable output to control wheter running time output from the optimization is

sent to the screen. The running time output generated by the methods Pantob provides is also

controled by this global.

As a �nal step, the program estimates the variance covariance matrix of the estimator. V ,

the variance of the �rst derivative of the objective function, is always estimated using analytic

derivatives. The global variable ptbw controls the estimation of �. If ptbw > 0, the estimatior

uses numerical derivatives. If ptbw = 0, the estimatior will use analytic derivatives if that is

possible.
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Your Data

Pantob assumes that your data is in a Gauss data set which is on the current directory. To

convert your data from an ASCII �le into a Gauss data set, you can use the Atog data utility.

See the Gauss documentation for more information on Atog. You will need to tell Pantob the

column numbers of the data set which contain your dependent variable, identi�cation number, and

regressors.

If your data set has missing data for some observations, this will not cause a problem. Pan-

tob will automatically delete observations with missing data in any relevant column. After this

operation, the data set may not be a true panel. If there are individuals with only one observation,

Pantob will ignore them during estimation. If either of these steps leaves you with no observations,

Pantob will tell you this and stop.

Honor�e(1992) contains two rank assumptions which your data must ful�ll. Assumption R.1

speci�es that �X is of full rank. Variables which do not change over the panel for a given individual

do not ful�l this requirement. This excludes many variables of interest such as race and gender.

Any such variable is \ absorbed into the �xed e�ect ". Assumption V requires that the covariance

matrix of the objective function's �rst derivative and the objective function's second derivative

are of full rank when evaluated at the true value of �. If your data satisfy assumption R.1., the

covariance matrix of the �rst derivative, V , should not present a problem. The second derivative,

� may still not be of full rank, particularly if you are using the absolute value or polynomial loss

functions. In these cases, � is of full rank only if E[�X j�Y ��X� 2 O] is of full rank where O is

an open ball of arbitrarily small diameter around zero. Your data should satisfy the assumption if

this holds for some \small" ball around zero. If the assumption does not hold, then your estimate,

�̂, will fail to invert. If this occurs, Pantob will print �̂, dump it to the current auxiliary output,

and then crash.

Analysis of this matrix can often reveal what is wrong with your data. If one column of �̂

contains only zeros, the regressor corresponding to it is not of full rank. If �̂ is a matrix of zeros,

you are probably not having a problem with your data, but rather a problem with estimating �.

See the section below on estimating � before you conclude that your data violate assumption V.

The simplist way to include transformations of your data in the estimation is to form a new

data set by appending the transformations onto the original data set. For example, if age was one

of your dependent variables and you wanted to include its square in the estimation, you should

write a program like this:
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.

@ addsq.gsp @

infile="agedat; outfile="agedat2";

open f1=^infile;

varnames=getname(infile);

sel=(varnames.$=="age");

create fout=^outfile with ^varnames,0,8;

do until eof(f1);

x=readr(f1,100);

agesq=(x*sel)^2;

x=x~agesq;

call writer(fout,x);

endo;

closeall;

Be wary of taking the log of your dependent variable. If you believe that the dependent

variable's level is generated by a tobit model, it is not at all clear this model also applies to its log.

Loss Functions

For a given symmetric convex function �(d) with derivative �(d) de�ne the function s(y1; y2; �)

as follows:

s(y1; y2; �) =

8<
:
�(y1)� (y2 + �)�(y1) if � � �y2;
�(y1 � y2 � �) if �y2 < � < y1;
�(�y2)� (� � y1)�(�y2) if y1 � �.

If �(d) = d2 then s(y1; y2; �) = �(y1; y2; �) and if �(d) = jdj then s(y1; y2; �) = '(y1; y2; �)

where � and ' are de�ned in Honor�e (1992). Minimization of the mean of ' across the sample

yields the estimator �̂3. Similarly, minimization of the mean of � yields �̂4. Each choice of a

loss function, �(d) yields a di�erent estimator for the tobit model with �xed e�ects. Consider the

following loss function:

�(d; �) =

8<
:
15(�d)2 � 5(�d)4 + (�d)6 for -1 � �d � 1
11� 16(1 + �d) for �d � �1
11 + 16(�d� 1) for 1 � �d

For a given value of �, this loss function also de�nes an estimator. This function is the

polynomial loss function. The parameter � indexes it. This is a C2 function, so the matrix �

can be computed analytically in stead of numerically. Note that lim�!0
�(d;�)
15�2 = d2 and that

lim�!1
�(d;�)
16� = jdj. The polynomial loss function is just a combination of the quadratic and
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absolute value loss functions. In a sense, it is superior to either one of them alone. It combines the

di�erentiability of the quadratic with the robustness of the absolute value.

Pantob allows you to chose between estimators de�ned by the quadratic, absolute value,

or polynomial loss functions. The global variable ptloss governs this choice. If you select the

polynomial loss function, set pttheta equal to your desired value of �.

Requirements the estimation imposes on the data will help you select a loss function. If

your dependent variable has a high censoring probability, assumption V will be di�cult to ful�ll in

practice. Assumption V places the fewest demands on the data when the quadratic loss function

de�nes the estimator. On the other hand, if you feel that outliers are a problem with your data set;

then the robustness of the absolute value loss function is desirable. The polynomial loss function

allows you to trade o� between these two extremes.

Estimating �

Pantob implements the estimators of � proposed in Honor�e (1992). Estimators based on

numerical derivatives are available for use with any of the loss functions. The global variable ptbw

controls the bandwidth used. This may be either a scaler or a vector. If it is a scaler, the estimator

uses the same bandwidth when taking the derivative with respect to each of the coe�cients. If it

is a vector, the bandwidth for the derivative with respect to the jth coe�cent is its jth element.

For the quadratic and polynomial loss functions, estimators based on analytic derivatives are

also available. Setting ptbw= 0 selects these estimators.

Estimating � is probably the trickiest part of the estimation procedure. With the quadratic

loss function, this usually presents no problem. A convenient analytic expression for the second

derivative of the loss function exists, so it's expectation is estimated with a mean. No such expres-

sion exists for the absolute value loss function.

Let f(y1; y2;�X�) be the �rst derivative of s(y1; y2;�X�). Then � is de�ned by

� =
@E[f(y1; y2;�X�0)]

@�

To estimate this for the absolute value loss function, the partial derivative is replaced by a �nite

di�erence and the expectation is replaced by taking the mean over the sample.

This estimation procedure has an inherent variance-bias trade o�. A larger bandwidth reduces

the variance while increasing the bias. With the absolute value loss function, the only observations

which a�ect �̂ are those for which j�Y � �X�j < ptbw. This is clear after inspection of the

expression for �̂
(ij)
3 in Honor�e (1992). If the bandwidth is small, the �nite di�erence approximates

the derivative well; and the bias of �̂ declines. A small bandwidth also reduces the number of

observations being used in the mean, so the variance of �̂ increases.

A high censoring probability for the dependent variable can cause problems with estimating

�. Only observations for which either y1 > 0 or y2 > 0 a�ect �̂3. Imposing this requirement along

with that above may yield an estimate which is a�ected by only a handful of observations. If the

total number of observations is large, �̂3 will be very close to zero.
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Unfortunately, using a polynomial loss function and letting � be large is not a solution for

these problems. Although analytic derivatives may be used to estimate �, the only observations

which will a�ect the estimate are those for which either y1 > 0 or y2 > 0 and j�Y ��X�j < 1=�.

In this case, 1=� plays the same role as ptbw does above. They both de�ne how close to zero an

observation must be to a�ect �̂. Reducing 1=� does not reduce the bias of the estimator, because

it uses analytic derivatives, although it will increase its variance. A high censoring probability will

also cause problems with this estimator if � is large.

Optimization

All of the estimators for the tobit model with �xed e�ects are de�ned as minimizers of criterion

functions. For this task, Pantob provides three routines, the downhill simplex method, Powell's

method, and the Polak-Ribiere conjugate gradient method. Pantob also allows you to use the

�ve routines contained in the Optmum module. The global variable ptmet controls the choice of

optimization routine. To send running time output from any of the routines, set the global variable

output= 2. Otherwise, set output= 1; This is the case whether you are using the routines

provided by Pantob or those from Optmum.

When using one of the Optmum routines, you may use any of the global variables discussed in

the Optmum documentation except opalgr to control the optimization. opalgr is superseded by

ptmet. The global variables amftol and amitmax control the operation of the routines provided

by Pantob. All of the methods will stop if the number of iterations exceeds amitmax. The downhill

simplex method will stop when the di�erence of the function value at the high point of the simplex

and that at the low point is less than amftol. The other two routines will stop when the function

value fails to improve by amftol. The global variables amalp, ambet, and amgam control the

downhill simplex method. All of the optimizers Pantob provides are adapted from Press, Flannery,

Teukolsky, and Vetterling (1986). See there for the details of their operation.

No matter which routine you use, it is always a good idea to restart the optimization from

the point where it converged. If your result does not change much, then you can be more con�dent

that the point is a minimum and not a saddle point or ridge. This is especially good advice if you

are using any of the methods Pantob provides. To restart the optimization, simply call Pantob

a second time using the parameter estimate from the �rst estimation as the starting value. It is

advisable to restart the optimization using a di�erent optimization method. We have encountered

situations in practice where no single optimization method �nds a minimum, but combining two of

them does quite well.

If your starting value is poor, the routines in Optmum may never �nd the minimum of the

objective function. In this case, the downhill simplex method will locate a neighborhood of the

minimum relatively rapidly. One of the other routines can then pinpoint the minimum. The

demonstration program demo.gsp pursues this strategy.

Optimization can be more di�cult when the estimator uses the absolute value loss function.

In this case, the second derivative of the objective function may be zero in a neighborhood of the
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minimum. Optimization methods which set the gradient of the objective function equal to zero

will generally crash when this happens, because its Hessian is non-invertable. All of the routines

provided by Optmum have this problem. Even if this is a problem, these methods may still be

useful. They may �nd a neighborhood of a minimum before crashing. One of the other minimizers

may be started from the point it crashed at to re�ne the minimum. This point is stored in the

global variable opparnm.

Using WRTPT

The �le wrtpt contains a procedure for displaying the results generated by Pantob. The

procedure, wrtpt, takes all of the output from Pantob as input and returns nothing. To use the

procedure, use the call command.

call wrtpt(b,v,f,met,yname,iname,xnames,colour)

Pantob generates all of the inputs except colour. Set this equal to 1 if you do not have a

color monitor. Set it greater than one otherwise. To use the procedure, #include the �les wrtpt

and colors at the top of your program.

Wrtpt reports the coe�cient estimates, their standard errors, and their t-statistics. It also

reports the loss function used, the optimization method, the dependent variable, the identi�cation

variable, and a �2 test for joint signi�cance of the coe�cients.

To send the screen to an output �le, use the screen out command. See the demonstration

program for an example.

Demonstration Program

The �le demo.gsp is a Gauss program which illustrates the use of the Pantob module. The

program's comments should make its content self explanitory.

demo.gsp uses the Gauss dataset baddat. This is simulated data, but it is an unbalanced

panel with missing observations. Pantob automatically handles these two common data problems.

The model generating the data is
Y ?
it = �i +Xit� + "it

Yit = max(0; Y ?
it)

� = (1; 1; 0; 0; 0)0

Where Xit is a 1 � 5 vector. The �rst column of the data set is the dependent variable, Yit.

The second column is the identi�cation number, i. The third through eighth columns are the

componants of the vector Xit.

There are 5000 individuals in the data set. The number of observations for each individual is

uniformly distributed between 1 and 5. The probability that any given element of the data matrix

is missing is 1
10 . Identi�cation numbers are never missing. Although none of the identi�cation

numbers are missing for this data set, Pantob can handle data with this problem. It deletes all

observations with no identi�cation number.
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The demonstration program estimates the same model using each of the available loss func-

tions. It uses the procedure wrtpt to write the output to the screen, and it saves the output in

the �le demo.out. The program impliments much of the advice o�ered above, particularly that

regarding optimization.
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Pantob Global Variables

Four global variables control the operation of Pantob, and �ve control Amoeba. Two others

are used internally by it and so should not be used in your program. The global variables are:

ptloss This controls your choice of a loss function for the estimation. This impliesa choice of

an estimator. Your choices are:

1 Quadratic loss function

2 Absolute value loss function

3 Polynomial loss function

(See pttheta below)

Default value = 1

pttheta This is your choice of � for the polynomial loss function. See the section on loss functions

above for details.

Default value = 3

ptbw This is the band width used when estimating � with numerical derivatives. If it is a scaler,

all of the derivatives will use the same band width. If it is a vector, its jth element is the bandwidth

for the derivative with respect to the jth coe�cient. If it is set equal to zero, the estimator will use

analytic derivatives if this is possible. Analytic derivatives may not be used if you are estimating

with the absolute value loss function. In this case, if it is set equal to zero, Pantob will warn you

than you have made a mistake and set it equal to 1
8 .

Default value = 0;

ptmet This controls the optimization method used to minimize the loss function. Your choices

are:

�2 Polak-Ribiere Conjugate Gradient method

�1 Powell's method

0 Downhill simplex method

1 Steepest descent

2 Broyden,Fletcher,Goldfarb, Shanno method(BFGS)

3 Scaled BFGS

4 Davidon,Fletcher,Powell method

5 Newton-Raphson method

9



See Press, Flannery, Teukolsky, and Vetterling (1986) for descriptions of the �rst three methods.

The other methods are the routines found in the Optmum module. If one of these methods is

selected, the value of ptmet is passed the global variable opalgr used by Optmum to select an

optimization algorithm. The Gauss applications manual contains details of these algorithms.

Default value = 1

amftol This sets the convergence tolerance for the methods Pantob provides.

Default value = 10�4

amalp This is the �rst extrapolation constant for the simplex method.

Default value = 1

ambet This is the contraction constant for the simplex method.

Default value = 1
2

amgam This is the second extrapolation constant for the simplex method.

Default value = 2

amitmax This is a ceiling over the number of iterations the methods Pantob provides will apply

to a problem.

Default value = 200

See below for details on the function of these global variables.

xx,dat1 These globals are used to store the data. They should not be used in your program.
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Pantob Refrence

PANTOB

Purpose

Estimates a tobit model with panel data using the techniques in Honor�e(1992).

Format

fb,v,f,in�le,met,yname,iname,xnamesg=Pantob(dset,yvar,ivar,xvars,sval)

Input

dset String containing the name of a Gauss dataset

yvar integer, column number of the dependent variable

ivar integer, column number individual reference variable

xvars K � 1 vector of integers, column numbers of the regressors

sval K � 1 vector, starting values for minimization routine

Output

b K � 1 vector, estimates of regression coe�cients

v K �K matrix, estimated variance/covariance matrix of b

f scaler, criterion function evaluated at b

in�le string, identical to the input \dset

met scaler, value of ptmet during estimation

yname string, label of dependent variable.

iname string, label of identi�cation variable.

xnames K � 1 string vector, labels of regressors.
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WRTPT

Purpose

Displays the output of Pantob

Format

WRTPT(b,v,f,in�le,met,yname,iname,xnames,colour)

Inputs

b K � 1 vector, estimates of regression coe�cients

v K �K matrix, estimated variance/covariance matrix of b.

f scaler, criterion function evaluated at b

in�le string, identical to the input \dset

met scaler, value of ptmet during estimation

yname string, label of dependent variable.

iname string, label of identi�cation variable.

xnames K � 1 string vector, labels of regressors.

colour scaler, set colour> 1 if you have a color monitor. Set it equal to one otherwise.
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