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Abstract

In this paper� we consider identi�cation and estimation in panel data discrete choice models when the

explanatory variable set includes strictly exogenous variables� lags of the endogenous dependent variable

as well as unobservable individual�speci�c e�ects� For the binary logit model with the dependent variable

lagged only once� Chamberlain ��		
� gave conditions under which the model is not identi�ed� We present

a stronger set of conditions under which the parameters of the model are identi�ed� The identi�cation

result suggests estimators of the model� and we show that these are consistent and asymptotically normal�

although their rate of convergence is slower than the inverse of the square root of the sample size� We

also consider identi�cation in the semiparametric case where the logit assumption is relaxed� We propose

an estimator in the spirit of the conditional maximum score estimator �Manski ��	���� and we show

that it is consistent� In addition� we discuss an extension of the identi�cation result to multinomial

discrete choice models� and to the case where the dependent variable is lagged twice� Finally� we present

some Monte Carlo evidence on the small sample performance of the proposed estimators for the binary

response model�

� Introduction�

In many situations� such as in the study of labor force and union participation� accident occurrence� unem�

ployment� purchase decisions� etc�� it is observed that an individual who has experienced an event in the past
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is more likely to experience the event in the future than an individual who has not experienced the event�

Heckman �����a� b	 discusses two explanations for this phenomenon� The 
rst explanation is the presence of

�true state dependence�� in the sense that the lagged choicedecision enters the model in a structural way as

an explanatory variable� The second is the presence of serial correlation in the unobserved transitory errors

that underlie the threshold�crossing econometric speci
cation of the model� Of particular interest is the

case where this serial correlation is due to the presence of unobservable permanent individualchoice�speci
c

heterogeneity� i�e� to di�erent propensities across individuals to experience the event� Heckman calls the

latter source of serial correlation �spurious state dependence�� Distinguishing between these two explana�

tions is important� for example� in evaluating the e�ect of economic policies that aim to alleviate short�term

unemployment �see Phelps �����		� or the e�ect of training programs on the future employment of trainees

�see Card and Sullivan �����		� As pointed out by Heckman� longitudinal data on individual histories are

required in order to discriminate between true and spurious state dependence� This paper presents methods

for discrete choice models with structural state dependence which allow for the presence of unobservable

individual heterogeneity in panels with a large number of individuals observed through a small number of

time periods�

It is well�known� that nonlinear panel data models with individual�speci
c e�ects� such as discrete

choice� censored and truncated� sample selection models� etc�� may be estimated by the �random e�ects�

approach� See Arellano and Carrasco �����	 for an example� This approach requires the speci
cation of the

statistical relationship between the observed covariates with the unobservable permanent individual e�ect�

Furthermore� it requires distributional assumptions on the initial conditions of the process� if there is serial

correlation in the unobserved transitory error components andor if lags of the dependent variable are used

as explanatory variables� The problems associated with misspeci
cation of these distributions are partly

overcome in the �
xed e�ects� approach� Below we discuss existing estimators for panel data discrete choice

models� Estimators for the 
xed e�ects censored and truncated regression models with strictly exogenous

regressors have been proposed by Honor�e �����	� Honor�e �����	 considered the case where the explanatory

variable set also includes lags of the dependent variable� Kyriazidou �����a	 proposed estimators for the

panel data sample selection model assuming strictly exogenous regressors in both the main equation and the

binary sample selection equation� In Kyriazidou �����b	� the main equation is also allowed to contain lags

of the continuous dependent variable� while the selection equation may have lags of the endogenous selection

indicator�

In the absence of state dependence �that is� with only strictly exogenous regressors	� the parametric �
xed

e�ects� approach for the discrete choice model assumes that the time�varying errors are independent of all

other covariates and that they are i�i�d� over time with a logistic distribution� No assumptions are made on

�For this and other results concerning panel data models� see the survey articles by Chamberlain ����� ������ Hsiao ������

and Maddala �������
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the distribution of the individual e�ects conditional on the observed explanatory variables� As Rasch �����	

and Andersen �����	 have shown� the model may then be estimated by conditional maximum likelihood� In

the case of binary choice� the model has the form�

P �yit � �jxi� �i� yi�� � � � � yi�t��	 �
exp�xit� � �i	

� � exp�xit� � �i	
t � �� ���T �T � �� ��	

where � is the parameter of interest� �i is an individual�speci
c e�ect which may depend on the exogenous

explanatory variables xi � �xi�� ���� xiT 	 in an arbitrary way� and where yi� may or may not be observed�

�Throughout� i � �� ���� n indicates the identity of the individual�	 In the case where T � �� inference

concerning � is based on the observation that P �yit � �j�i� xi� yi�� yi� � yi� � �	 is independent of �i�

As Manski �����	 has shown� it is possible to relax the logistic assumption as well as to allow for certain

forms of serial correlation in the underlying time�varying errors in ��	 above� In the special case where the

errors are independent� the model takes the form�

P �yit � �jxi� �i� yi�� � � � � yi�t��	 � Fi �xit� � �i	 t � �� ���T �T � � ���	

where Fi is a strictly increasing distribution function with full support on � that is allowed to di�er across

individuals� but not across time for a given individual� In the case where T � �� identi
cation of � is

based on the fact that� under certain regularity conditions on the distribution of the exogenous variables�

sgn �P �yi� � �jxi�� xi�� �i	� P �yi� � �jxi�� xi�� �i		 � sgn ��xi� � xi�	�	 � This implies that Manski�s ������

����	 maximum score estimator can be applied to the 
rst di�erences of the data in the sub�sample for

which yi� �� yi��

The parametric �
xed e�ects� approach may be also used to estimate panel data logit models with

individual e�ects and lags of the dependent variable� provided that there are no other explanatory variables

and that there are at least four observations per individual �see Chamberlain �����	� and Magnac �����		�

In the binary choice case with the dependent variable lagged once� the model is

P �yi� � �j�i	 � p���i	

P �yit � �j�i� yi�� � � � � yi�t��	 �
exp��yi�t�� � �i	

� � exp��yi�t�� � �i	
t � �� ���T �T � � ��	

where yi� is assumed to be observed� although the model is not speci
ed in the initial period� When T � ��

inference on � is based on the observation that P �yi� � d�� yi� � �� yi� � �� yi� � d�jyi� � yi� � �� �i	 is

independent of �i� �Here d�� d� � f�� �g	�
In this paper� we consider identi
cation and estimation in panel data discrete choice models when the

explanatory variable set includes strictly exogenous variables� lags of the endogenous dependent variable�

as well as unobservable individual�speci
c e�ects that may be correlated with the observed covariates in an

unspeci
ed way� For the binary logit model with the dependent variable lagged only once� Chamberlain

�����	 has shown that� if individuals are observed in three time periods� then the parameters of the model
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are not identi
ed� In this paper� we demonstrate that � and � are both identi
ed �subject to regularity

conditions	 if the econometrician has access to four or more observations per individual� The identi
cation

result suggests estimators of the model� We show that these are consistent and asymptotically normal�

although their rate of convergence is not the inverse of the square root of the sample size� This result is in

line with recent 
ndings by Hahn �����	 that suggest that the model cannot be estimated at the standard

n���� rate�

We also consider identi
cation in the semiparametric case where the logit assumption is relaxed� We pro�

pose an estimator in the spirit of Manski�s �����	 conditional maximum score estimator� For this estimator�

we only show consistency� The results by Kim and Pollard �����	 suggest that the estimator will not have

a limiting normal distribution and that its rate of convergence will be slower than n�����

The paper is organized as follows� Section � presents our identi
cation and estimation methods for the

case where the panel contains only four observations per individual� Section � states the assumptions and

derives the asymptotic properties for the estimators proposed in Section �� Section � discusses generalizations

and extensions of the estimators to the case of longer panels� to the case where the dependent variable is

lagged twice� and to the multinomial choice case� Section � presents the results of a small Monte Carlo study

investigating the small sample properties of the estimators proposed in Section �� Section � concludes the

paper� The proofs of the theorems are in the Appendix�

� Identi�cation and Motivation of the Estimators�

��� The Logit Case

We consider the following 
xed e�ects logit model which combines the features of ��	 and ��	�

P �yi� � �jxi� �i	 � p��xi� �i	

P �yit � �jxi� �i� yi�� � � � � yi�t��	 �
exp�xit� � �yi�t�� � �i	

� � exp�xit� � �yi�t�� � �i	
t � �� ���� T� ��	

where xi � �xi�� ���� xiT 	� Throughout this section T � �� Here� the logit speci
cation is imposed for periods

one to three� The model is left unspeci
ed in the initial period� since the value of the dependent variable

is not assumed to be known in periods prior to the sample� We assume that yi� is observed� but it is not

necessary to assume that the explanatory variables are observed in the initial period� It is important to note

the implicit assumption that the errors in a threshold�crossing model leading to ��	 are i�i�d� over time with

logistic distributions and independent of �xi� �i� yi�	 in all time periods� While the independence over time

assumption is fairly standard �it is also implicitly assumed in ��	 and ��		� it is certainly a weakness of the

approach taken here �as well as those taken to derive ��	 and ��		�

Our identi
cation scheme follows the intuition of the conditional logit approach�� The aim is to derive a

�Jones and Landwehr ������ attempt to use the conditional logit approach to estimate the model considered in this paper�
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set of probabilities that do not depend on the individual e�ect� Following Chamberlain �����	� we consider

the events�

A � fyi� � d�� yi� � �� yi� � �� yi� � d�g
B � fyi� � d�� yi� � �� yi� � �� yi� � d�g

where d� and d� are either � or �� A straightforward calculation yields�

P �Ajxi� �i	 � p��xi� �i	
d� ��� p��xi� �i		

��d� � �

� � exp�xi�� � �d� � �i	

� exp�xi�� � �i	

� � exp�xi�� � �i	
� exp�d�xi�� � d�� � d��i	

� � exp�xi�� � � � �i	

and

P �Bjxi� �i	 � p��xi� �i	
d� ��� p��xi� �i		

��d� � exp�xi�� � �d� � �i	

� � exp�xi�� � �d� � �i	

� �

� � exp�xi�� � �i � �	
� exp�d�xi�� � d��i	

� � exp�xi�� � �i	

In general� the probabilities P �Ajxi� �i� A	B	 and P �Bjxi� �i� A	B	� which condition on the event that

the dependent variable changes sign between periods one and two� will depend on �i� This is the reason why

a conditional likelihood approach will not eliminate the 
xed e�ect� Our identi
cation scheme rests on the

observation that� if xi� � xi�� then the conditional probabilities

P �Ajxi� �i� A 	B� xi� � xi�	 �
�

� � exp ��xi� � xi�	� � � �d� � d�		
��	

and

P �Bjxi� �i� A 	 B� xi� � xi�	 �
exp ��xi� � xi�	 � � � �d� � d�		

� � exp ��xi� � xi�	� � � �d� � d�		
��	

do not depend on �i� This observation is the key to all the results presented in this paper� In the special case

where all the explanatory variables are discrete and the xit process satis
es P �xi� � xi�	 � �� one can use

��	 to make inference about � and �� In particular� one may estimate � and � by maximizing the weighted

likelihood function�

nX
i��

�fyi� � yi� � �g� fxi� � xi� � �g ln

�
exp��xi� � xi�	b � g�yi� � yi�		yi�

� � exp��xi� � xi�	b � g�yi� � yi�		

�
The resulting estimator will have all the usual properties �consistency and root�n asymptotic normality	�

While inference based only on observations for which xi� � xi� may be reasonable in some cases �in

particular� experimental cases where the distribution of xi is in the control of the researcher	� there are

However� their calculation does not allow for exogenous explanatory variables�
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many economic applications where it is not useful� The idea then is to replace the indicator functions

� fxi� � xi� � �g in the objective function above with weights that depend inversely on the magnitude of

the di�erence xi� � xi�� giving more weight on observations for which xi� is �close� to xi�� Speci
cally� we

propose estimating � and � by maximizing

nX
i��

�fyi� � yi� � �gK
�
xi� � xi�

�n

�
ln

�
exp��xi� � xi�	b � g�yi� � yi�		

yi�

� � exp��xi� � xi�	b � g�yi� � yi�		

�
��	

with respect to b and g over some compact set� Here K�
	 is a kernel density function which gives the

appropriate weight to observation i� while �n is a bandwidth which shrinks as n increases� The asymptotic

theory will require that K�
	 be chosen so that a number of regularity conditions� such as K�		 � � as

j	j � �� are satis
ed�

Note that the proposed estimators are maximum�likelihood�type �or extremum or M�	 estimators� The

key idea behind the estimation is that the limit of the objective function above �as well as of the objective

function in the semiparametric case� discussed below	� and which may be readily seen to be a conditional

expectation given the event that xi� � xi� � �� is uniquely maximized at the true parameter values� under

appropriate assumptions� It is clear that identi
cation of the model will require that xi��xi� be continuously

distributed with support in a neighborhood of �� and that xi� � xi� have su�cient variation conditional on

the event that xi� � xi� � ��

The asymptotic properties of the estimators may be derived in a manner similar to that underlying local

likelihood estimation �see� for example� Staniswalis �����	� and Tibshirani and Hastie �����		 and robust

regression function estimation �see� for example� H�ardle �����	� and H�ardle and Tsybakov �����		� Section

� states conditions under which the estimators maximizing ��	 are consistent and asymptotically normal�

although their rate of convergence will be slower than n���� and will depend on the number of covariates in

xit�

��� The Semiparametric Case

In this section� we will use Manski�s �����	 insight to relax the logit assumption on the distribution of the

time�varying errors underlying a threshold�crossing speci
cation of the model in ��	� The independence over

time assumption of the previous section will be maintained� Suppose� that

P �yi� � �jxi� �i	 � p��xi� �i	

P �yit � �jxi� �i� yi�� � � � � yi�t��	 � F �xit� � �yi�t�� � �i	� t � �� ���� T ��	

where yi� is assumed to be observed and F is a strictly increasing function that has full support on �� As

before� we will focus on the case where there are four observations per individual� i�e� T � �� With A and B

�It is possible to generalize the results in the remainder of this section to allow the distribution function� F� to di�er across

individuals� provided that it does not di�er over time for a given individual�
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de
ned as in the previous section� we have�

P �Ajxi� �i� xi� � xi�	 � p��xi� �i	
d� ��� p��xi� �i		

��d� � ��� F �xi�� � �d� � �i		

�F �xi�� � �i	� ��� F �xi�� � � � �i		
���d�� � F �xi�� � � � �i	

d�

and

P �Bjxi� �i� xi� � xi�	 � p��xi� �i	
d� ��� p��xi� �i		

��d� � F �xi�� � �d� � �i	

���� F �xi�� � � � �i	� ��� F �xi�� � �i		
���d�� � F �xi�� � �i	

d�

If d� � �� then

P �Ajxi� �i� xi� � xi�	

P �Bjxi� �i� xi� � xi�	
�

��� F �xi�� � �d� � �i		

��� F �xi�� � �i		
� F �xi�� � �i	

F �xi�� � �d� � �i	

�
��� F �xi�� � �d� � �i		

��� F �xi�� � �d� � �i		
� F �xi�� � �d� � �i	

F �xi�� � �d� � �i	

where the second equality follows from the fact that d� is zero� If d� � �� then

P �Ajxi� �i� xi� � xi�	

P �Bjxi� �i� xi� � xi�	
�

��� F �xi�� � �d� � �i		

��� F �xi�� � � � �i		
� F �xi�� � � � �i	

F �xi�� � �d� � �i	

�
��� F �xi�� � �d� � �i		

��� F �xi�� � �d� � �i		
� F �xi�� � �d� � �i	

F �xi�� � �d� � �i	

where the second equality follows from the fact that d� � �� so that �d� � �� In either case� the monotonicity

of F implies that

sgn �P �Ajxi� �i� xi� � xi�	� P �Bjxi� �i� xi� � xi�		 � sgn ��xi� � xi�	� � ��d� � d�		 ��	

If P �xi� � xi�	 � �� a maximum score estimator may therefore be applied to the observations satisfying

A 	 B and xi� � xi�� That is� � and � may be estimated by maximizing

nX
i��

� fxi� � xi� � �g �yi� � yi�	 sgn ��xi� � xi�	 b � g �yi� � yi�		

with respect to b and g over some compact set� It is obvious from the expression above that only observations

which satisfy yi� � yi� � � are used in the estimation�

Similarly to the logistic case� when xi� � xi� is continuously distributed with support in a neighborhood

of �� we propose to estimate � and � �up to scale	 by maximizing the score function

nX
i��

K

�
xi� � xi�

�n

�
�yi� � yi�	 sgn ��xi� � xi�	 b � g �yi� � yi�		 ��	

with respect to b and g over some compact set� In Section �� we show consistency of this estimator� We

do not derive its asymptotic distribution� but in view of existing results on the maximum score estimator

�



for the cross�sectional binary response model� we expect the limiting distribution to be non�normal and the

rate of convergence to be slower than n�����

In both the logistic and the semiparametric case� the main limitations of our approach are �i	 the as�

sumption that the errors in the underlying threshold�crossing model are independent over time� and �ii	 the

assumption that xi��xi� has support in a neighborhood of �� The latter restriction rules out time�dummies�

In the analysis above we have assumed that all explanatory variables are continuous� The estimators may be

modi
ed in a straightforward manner to account for discreteness of some variables in xit� namely multiply

the objective functions ��	 and ��	 by indicators that restrict the discrete regressors to be equal in periods

� and ��

� Asymptotic Properties of Estimators�

In this section� we discuss the asymptotic properties of the estimators proposed in the previous section� The

following notation will be useful�


 � �b� g	�� 
� � ��� �	��

x�� � x� � x�� x�� � x� � x�� x�� � x� � x��

y�� � y� � y�� y�� � y� � y�� and y�� � y� � y��

��� The Logit Case�

We 
rst consider the estimator de
ned by minimizing ��	� It will be useful to de
ne the �random	 functions�

h�
	 � �fy� �� y�g ln

�
exp �z
	

y�

� � exp �z
	

�
h��� �
	 �

�h

�

� �fy� �� y�g

�
y� � exp �z
	

� � exp �z
	

�
z�

h��� �
	 �
��h

�
�
�
� ��fy� �� y�g exp �z
	

�� � exp �z
		
� z

�z

where z � �x��� y��	� The following theorem gives su�cient conditions for consistency of the estimator

proposed in ��	� For simplicity� we will focus on the case where all the exogenous variables are continuously

distributed�

Theorem � �Consistency� Let the following assumptions hold�

�C�� f�yi�� yi�� yi�� yi�� xi�� xi�� xi�	gni�� is a random sample of n observations from a distribution satisfying

����

�C�� 
� � �� a compact subset of �k���
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�C�� The random vector x�� � X  �k is absolutely continuously distributed with density f �
	 that is

bounded from above on its support	 and strictly positive and continuous in a neighborhood of zero�

�C
� The function E  kx��kjx�� � 
! is bounded on its support�

�C�� The function E  h �
	jx�� � 
! is continuous in a neighborhood of zero for all 
 � ��

�C�� The function E  x���x��jx�� � 
! has full column rank k in a neighborhood of zero�

�C� K � �k � � is a function of bounded variation that satis�es� �i� sup��� jK �		j ��� �ii�
R jK �		j d	 �

�� and �iii�
R
K �		 d	 � ��

�C�� �n is a sequence of positive numbers that satis�es� �n � � as n���

Let "
n �
�

"�n� "�n

�
be a sequence of solutions to the problem

max
��	

X
i

K

�
xi��
�n

�
hi �
	 ���	

Then	 "
n
p� 
��

Assumptions �C�	 and �C�	 are standard in kernel density and regression function estimation� The strict

positiveness of f and the full rank condition of Assumption �C�	 are required for identi
cation of 
�� The rest

of the assumptions are regularity conditions that permit the application of a uniform law of large numbers

to show convergence of the objective function to a nonstochastic limit that is uniquely maximized at 
��

Note that� in some cases� the boundedness condition of Assumption �C�	 may be restrictive� However� it is

clear from the proof of the theorem that it may be relaxed� In particular� we only need to assume that the

product f �
	E  kx��kjx�� � 
! is bounded on its support� The same comment applies to similar conditions

in the theorems that follow� Finally� the compactness of the parameter space �Assumption �C�		 may be

also relaxed if K �
	 � �� in which case the objective function is strictly concave �see e�g�� Newey and Powell

�����		�

We next present conditions that are su�cient for asymptotic normality of the proposed estimators� Apart

from the usual strengthening of regularity conditions on the existence and 
niteness of moments higher than

those required for consistency� additional smoothness is imposed on the model which allows convergence at

a faster rate�

Theorem � �Asymptotic Normality� Let Assumptions �C����C�� hold and "
n be a solution to ����� In

addition assume�

�N�� 
� � int ��	 �

�N�� f �
	 is s �s � �	 times continuously di�erentiable on its support and has bounded derivatives�
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�N�� The function E
�
h��� �
�	

��x�� � 
� is s times continuously di�erentiable on its support and has bounded

derivatives�

�N
� The function E
�
h��� �
	

��x�� � 
� is continuous in a neighborhood of zero for all 
 � ��

�N�� The function E
h
kx��k


���x�� � 

i
is bounded on its support�

�N�� The function E
�
h��� �
�	h

��� �
�	
���x�� � 
� is continuous in a neighborhood of zero�

�N� K � �k � � is an s�th order bias�reducing kernel that satis�es�

�i�
R j	ji jK �		j d	 �� for i � � and i � s� where s � �

�ii�
R
	i�� 	

i�
� ���	

ik
k K�	�� 	�� ���� 	k	d	�d	����d	k �

	
� if i� � i� � ��� � ik � �
� if � � i� � i� � ��� � ik � s

Let
p
n�kn�

s
n � �� Then q

n�kn

�
"
n � 
�

�
#�N



�� J��V J��

�
where

J � J �
�	 � �f ��	 
 E
h
h��� �
�	 jx�� � �

i
V � V �
�	 � f ��	 
E

h
h��� �
�	h

��� �
�	
� jx�� � �

i


Z

K� �		 d	

Remark� Note that the rate of convergence of the proposed estimator is maximized for
p
n�kn�

s
n �

� �� �� However� in this case the estimator is asymptotically biased� It may be easily shown that in this

case�
p
n�kn

�
"
n � 
�

�
#�N



�J��B� J��V J��

�
� where B is a function of the s�th order derivative of f �
	�

E
�
h��� �
�	

��x�� � 
� Although it is possible to eliminate the asymptotic bias in the manner suggested� for

example� by Horowitz �����	� we have found that the asymptotic bias correction is not e�ective in reducing

the small sample bias in our Monte Carlo experiments�

The next theorem provides consistent estimators of the two components of the asymptotic variance�

covariance matrix�

Theorem � �Asymptotic Variance Estimation� Let Assumptions �C����C�� and �N����N� hold and

"
n be a consistent estimator of 
��

�i� De�ne

Jn �
	 � � �

n�kn

X
i

K

�
xi��
�n

�
h
���
i �
	

Then	 Jn

�
"
n

�
p� J �
�	 � where J �
�	 is de�ned in Theorem ��

�ii� De�ne

Vn �
	 � �

n�kn

X
i

K�

�
xi��
�n

�
h
���
i �
	h

���
i �
	�

��



If E
�
h��� �
	h��� �
	

� jx�� � 
� is continuous in a neighborhood of zero as a function of x�� for all 
 � ��

then Vn

�
"
n

�
p� V �
�		 where V �
�	 is de�ned in Theorem ��

��� The Semiparametric Case

In this section� we present conditions that are su�cient to identify and consistently estimate 
� when the

logit assumption on the distribution of the underlying time�varying errors is relaxed� We de
ne the function

h �
	 � y�� sgn �z
	

where now z � �x��� y��	�

Theorem � �Identi	cation and Consistency� Let the following conditions hold�

�CS�� f�yi�� yi�� yi�� yi�� xi�� xi�� xi�	gni�� is a random sample of n observations from a distribution satisfying

���

�CS�� F is strictly increasing on � for almost all �xi� �i	 �

�CS�� There exists at least one  � f�� ���� kg � such that �� �� �� and such that	 for almost all #x�� �
�x����� ���� x������� x������� ���� x���k	 � the random variable x���� has everywhere positive Lebesgue density

conditional on #x�� and conditional on x�� in a neighborhood of x�� near zero�

�CS
� The support of x�� conditional on x�� in a neighborhood of x�� near zero is not contained in any proper

linear subspace of �k�

�CS�� The random vector x�� � X  �k is absolutely continuously distributed with density f �
	 that is

bounded from above on its support and strictly positive in a neighborhood of zero�

�CS�� For all 
 � �� f �
	 and E  h �
	jx�� � 
! are continuously di�erentiable on their support with bounded

�rst�order derivatives�

�CS� K � �k � � is a function of bounded variation that satis�es� �i� sup��� jK �		j ��� �ii�
R jK �		j d	 �

�� and �iii�
R
K �		 d	 � ��

�CS�� �n is a sequence of positive numbers that satis�es� �i� �n � � as n� �� and �ii� n�kn� lnn� � as

n���

Then�

�i� 
� is identi�ed �up to scale� relative to all 
 � �k�� such that 
� k
k �� 
�� k
�k � 
���

��



�ii� Let "
n �
�

"�n� "�n

�
be a sequence of solutions to the problem

max
��	

X
i

K

�
xi��
�n

�
hi �
	 ���	

where � � �

 � �k�� � k
k � � � jb�j � �


and � is a known positive constant such that j��j � k
�k � ��

Then	 "
n
p� 
���

Assumptions �CS�	��CS�	 are analogous to Manski�s �����	 Assumptions � and �� The rest of the

assumptions of the theorem are similar to the assumptions in the logit case� Here� however� we strengthen

the continuity assumption on f �
	 and E  h �
	jx�� � 
! to 
rst order di�erentiability� in order to show

uniform convergence of the objective function to its population analog� This is a consequence of the fact

that� in the semiparametric case� the summands in the objective function are not continuous in the parameter�

although they are uniformly bounded�

� Extensions�

��� Identi�cation with more than four observations per individual

The identi
cation and estimation approach described in Section � extends to the case of longer panels� Note

that in the case where T � �� the idea behind the identi
cation for the logit model ��	 follows Chamberlain�s

�����	 intuition� namely that conditional on a switch between periods � and � �and in our case� conditional

also on xi� � xi�	� the probability of a sequence of choices �a �string�	 does not depend on the individual

e�ect� For general T� identi
cation in the dynamic logit model ��	� which has only one lag of the dependent

variable and no other explanatory variables� relies on the fact that conditional on the initial and the last

observation� and conditional on
P

t yit� the probability of a string is independent of the individual e�ect� To

investigate whether the same intuition holds in the general T case for the model that also contains exogenous

variables� we consider T � �� In this case� it is possible to show that the same statement holds� namely that

conditional on the initial and the last observation� and conditional on
P

t yit� the probability of a string is

independent of the individual e�ect� provided that we also condition on xi� � xi� � xi�� This implies that

the rate of convergence would be
p
n��kn � i�e� slower than the rate we obtain for T � �� However� as will

become clear below� it is possible to retain the same rate of convergence as in the T � � case� namely
p
n�kn�

if we instead use a pairwise approach that is based on considering all possible pairs of observations in a string

that display a switch in the sign of the dependent variable�

Suppose that individuals are observed for T � � periods� where T � �� In either the logistic or the

semiparametric case� identi
cation is based on sequences for which yit � yis � � for some � � t � s � T � ��

Consider the event

A � fyi� � d�� ���� yit�� � dt��� yit � �� yit�� � dt��� ���� yis�� � ds��� yis � �� yis�� � ds��� ���� yiT � dT g

��



and its counterpart�

B � fyi� � d�� ���� yit�� � dt��� yit � �� yit�� � dt��� ���� yis�� � ds��� yis � �� yis�� � ds��� ���� yiT � dT g

It is not di�cult to show that for the logit model ��	 �

Pr�Bjxi� �i� A 	 B� xit�� � xis��	

�
exp ��xit � xis	� � � �dt�� � ds��	 � � �dt�� � ds��	 � fs� t � �g	

� � exp ��xit � xis	� � � �dt�� � ds��	 � � �dt�� � ds��	 � fs� t � �g	
which does not depend on �i� This suggests estimating � and � by maximizing

nX
i��

�

�� X
��t�s�T��

� fyit � yis � �gK
�
xit�� � xis��

�n

�
�

ln

�
exp ��xit � xis	 b � g �yit�� � yis��	 � g �yit�� � yis��	 � fs� t � �g	yit

� � exp ��xit � xis	 b � g �yit�� � yis��	 � g �yit�� � yis��	 � fs� t � �g	
��

For the semiparametric model ��	 � we consider two cases depending on whether periods t and s are

adjacent or not� For s � t � �� it is easily veri
ed that whether dt�� � � or dt�� � ��

Pr �Ajxi� �i� xit�� � xit��	

Pr �Bjxi� �i� xit�� � xit��	
�

�� F �xit� � �i � �dt��	
�� F �xit��� � �i � �dt��	

F �xit��� � �i � �dt��	

F �xit� � �i � �dt��	

and therefore�

sgn fPr �Ajxi� �i� xit�� � xit��	� Pr �Bjxi� �i� xit�� � xit��	g
� sgn f�xit�� � xit	� � � �dt�� � dt��	g

If t and s are not adjacent �so s � t � �	� then

Pr �Ajxi� �i� xit�� � xis��� yit�� � yis��	

Pr �Bjxi� �i� xit�� � xis��� yit�� � yis��	
�

�� F �xit� � �i � �dt��	
�� F �xis� � �i � �ds��	

F �xis� � �i � �ds��	

F �xit� � �i � �dt��	

which implies that

sgn fPr �Ajxi� �i� xit�� � xis��� yit�� � yis��	� Pr �Bjxi� �i� xit�� � xis��� yit�� � yis��	g
� sgn f�xis � xit	� � � �ds�� � dt��	g

This suggests estimating � and � by maximizing�

nX
i��

�
T��X
t��

� fyit � yit�� � �gK
�
xit�� � xit��

�n

�
sgn �yit�� � yit	 sgn ��xit�� � xit	 b � g �yit�� � yit��		

�
T��X
t��

T��X
s�t��

� fyit � yis � �g � fyit�� � yis��gK
�
xit�� � xis��

�n

�
sgn �yis � yit	 sgn ��xis � xit	 b � g �yis�� � yit��		

�

It is interesting that although in general time�dummies are ruled out in eiter the logisitic or the semi�

parametric case� it is possible to allow for seasonal e�ects in the case of quarterly data and at least seven

observations per individual �i�e� T � �	�

��



��� Identi�cation with more than one lag of the dependent variable

As noted by Chamberlain �����	� for the logit model without exogenous regressors� it is possible to test for

the presence of the endogenous dependent variable lagged twice� when there are at least six observations per

individual�� The same is true in the presence of exogenous variables for the model�

P �yi� � �jxi� �i	 � p��xi� �i	

P �yi� � �jxi� �i� yi�	 � p��xi� �i� yi�	

P �yit � �jxi� �i� yi�� � � � � yi�t��	 �
exp �xit� � ��yi�t�� � ��yi�t�� � �i	

� � exp �xit� � ��yi�t�� � ��yi�t�� � �i	
t � �� ���T �T � �

where xi � �xi�� ���� xiT 	� It is assumed that �yi�� yi�	 is observed although the model is not speci
ed for these

time periods� For T � �� inference on � and �� can be based on pairs of sequences �strings	 that satisfy

fxi� � xi� � xi�� yi� � yi� � �g and either fyi� �� yi�� yi� � yi� � yi�g or fyi� �� yi�� yi� � yi� � yi�g �there

are four such pairs of strings	� Consider� for example� the pair A � ��� �� �� �� �� �	 and B � ��� �� �� �� �� �	 �

It is straightforward to establish that

Pr �Ajxi� �i� A 	 B� xi� � xi� � xi�	 �
�

� � exp ��� � �xi� � xi�	�	

and

Pr �Bjxi� �i� A 	 B� xi� � xi� � xi�	 �
exp ��� � �xi� � xi�	�	

� � exp ��� � �xi� � xi�	�	

which does not depend on �i�

For the semiparametric case� where

P �yit � �j�i� xi� yi�� ���� yi�t��	 � F �xit� � ��yi�t�� � ��yi�t�� � �i	 t � �� ���T �T � �

and where yi� and yi� are given as above� it is easy to establish that for T � ��

Pr �Aj xi� �i� xi� � xi� � xi�	

Pr �Bjxi� �i� xi� � xi� � xi�	
�

F �xi�� � �� � �i	

F �xi�� � �i	

�� F �xi�� � �i	

�� F �xi�� � �� � �i	

Thus�

sgn �Pr �Aj xi� �i� xi� � xi� � xi�	� Pr �Ajxi� �i� xi� � xi� � xi�		 � sgn ��xi� � xi�	� � ��	

The analysis above suggests estimators of � and �� analogous to ��	 and ��	 provided that �xi� � xi�� xi� � xi�	

has support in a neighborhood of ��� �	 � It may be possible to generalize the preceding identi
cation results

for general T and for an arbitrary �but 
nite	 number of included lags� Magnac �����	 provides such results

for the dynamic logit model when no exogenous covariates are present�

�As noted by Chamberlain� it is possible in the dynamic logit model with two lags of the dependent variable and without

exogenous regressors to allow the coe�cient of the �rst lag to be individual�varying� The same observation applies to the model

considered in this section� in both the logistic and in the semiparametric case� We are grateful to one of the referees for pointing

this out to us�

��



��� Identi�cation in multinomial logit models

We next consider the case where the individual chooses among M alternatives� The model is�

Pr �yi� � mjxi� �i	 � pmi� �xi� �i	

Pr �yit � mjxi� �i� yit�� � j	 �
exp



xmit�m � �mi � �jm

�
MP
h��

exp


xhit�h � �hi � �jh

� t � �� ���� T �T � �

where �i � f�migMm�� and xi �
n
fxmitgMm��

oT
t��

� The model above is obtained if we assume that the under�

lying errors in the well known random utility maximization framework are independent across alternatives

and over time conditional on �xi� �i� yi�	 � and identically distributed according to the Type I extreme value

distribution� and hence independent of �xi� �i� yi�	� Note that we now model individual heterogeneity as

depending also on the choice� i�e� each individual has a speci
c attitude toward each alternative� �ji� where

j � f�� ����Mg � Furthermore� the coe�cient � on the lagged endogenous variable is now allowed to depend

upon both the past choice and the current choice� so that there are in total M� feedback parameters� Thus�

�jm is the feedback e�ect when a choice of alternative j at t � � is followed by choice m at time t� where

j�m � f�� ����Mg �
For the model above� identi
cation of f�mgMm�� and

�
�jm

M
j�m��

is based on sequences of choices where

the individual switches between alternatives at least once during the periods � through T � �� Out of all

possible MT�� sequences of choices among the M alternatives in the T � � periods� there are


MT�� �M�

�
such sequences� However� similar to the dynamic multinomial logit model without time�varying exogenous

regressors �see Magnac� ����	� only


M� � ��M � �	

�
feedback parameters � are identi
ed�

Consider the events�

A � fyi� � d�� ���� yit�� � j� yit � m� yit�� � q� ���� yis�� � p� yis � �� yis�� � r� ���� yiT � dT g

and

B � fyi� � d�� ���� yit�� � j� yit � �� yit�� � q� ���� yis�� � p� yis � m� yis�� � r� ���� yiT � dT g

where � � t � s � T � �� and j�m� q� p� �� r� d�� dT � f�� ����Mg with m �� �� It is possible to verify that� if

xmit�� � xmis�� for all m � f�� ����Mg � then�

Pr
�
Bjxi� �i� A 	 B� fxmit�� � xmis��gMm��

�
�

exp


�xmit � xmis	�m � �x	is � x	it	 �	 �



�jm � �mq � �p	 � �	r

�� 
�j	 � �	q � �pm � �mr

��
� � exp



�xmit � xmis	�m � �x	is � x	it	�	 �



�jm � �mq � �p	 � �	r

�� 
�j	 � �	q � �pm � �mr

��
De
ning the binary variables yhit � � if alternative h � f�� ����Mg is chosen in period t and � otherwise�

estimation may be based on maximization of
nX
i��

X
��t�s�T��

X
m��	

� fymit � y	is � �gK
�
xit�� � xis��

�n

�
�

��



ln
exp

�
�xmit�xmis	�m��x	is�x	it	�	��yit���m��m�yit����yis���	��	�yis����yit���	��	yit����yis���m��myis��

�ymit

��exp
�
�xmit�xmis	�m��x	is�x	it	�	��yit���m��m�yit����yis���	��	�yis����yit���	��	yit����yis���m��myis��

�
where xit � �x�it� ���� xMit	 and where the necessary �M � � restrictions on the ��s have been imposed �for

example �jj � ��j � � for all j � �� ����M	�

� Some Monte Carlo Evidence�

In this section� we summarize the main results from a small Monte Carlo experiment designed to illustrate

the 
nite sample properties of the estimators de
ned in section �� All the results presented in this section

are based on ���� replications of the model�

yi� � � fxit� � �i � �i� � �g
yit � �fxit� � �yi�t�� � �i � �it � �g t � �� ���� T � ��

We consider several di�erent designs that di�er on the length of the panel� the relative magnitude of �

and �� on the number of variables in xit and on the data generating process for xit� In all designs �it is i�i�d�

logistically distributed over time� The benchmark design has T � �� � � ���� � � �� and only one exogenous

variable xit which is i�i�d� over time with distribution N��� ����	� This makes the variance of xit� equal to

the variance of �it� The 
xed e�ect is generated as �i � �xi� �xi� �xi� �xi�	��� Recall that the estimators

proposed in Section � use only the observations for which yi� �� yi�� For this design� the �e�ective� sample

size is reduced to about ��$� We consider sample sizes of ���� ���� ����� ���� and �����

We 
rst focus on the 
nite sample performance of the estimator proposed for the logit case� which

maximizes ��	� Given that the distribution of the underlying errors is correctly speci
ed� this estimator is

consistent and asymptotically normal� To implement the estimator� one must choose a kernel as well as a

bandwidth� All the results presented in this section use a normal kernel� This means that s in Theorem � is

�� Since there is only one regressor in the benchmark design� the rate of convergence is maximized by setting

�n � c 
 n����� for some constant c� However� in this case the estiamator is asymptotically biased �see the

Remark following Theorem �	� In Table �� we present results for c � �� �� �� �� ��� �� and ��� For each

bandwidth and for each sample size� we present the mean bias and the root mean squared error �RMSE	 of

the estimator� Since these measures can be sensitive to outliers� we also present the median bias and the

median absolute error �MAE	 of the estimator� In what follows� we focus on these robust measures of bias

and precision�

By the Remark following Theorem �� the estimator converges at rate n����� The results in Table � suggest

that for this design� the theoretical rate of convergence gives a fairly good approximation to the 
nite sample

behavior of the estimator� For example� when we regress the logarithm of the median absolute error of b�n on

��



the logarithm of sample size �and allowing for a bandwidth�speci
c intercept	� we get a coe�cient of ������

which is fairly close to the predicted value of ����� If we exclude the samples of size ���� then the coe�cient

is ������

When � � � or � � �� the estimator de
ned by minimization of ��	 is consistent and root�n asymptotically

normal if the bandwidth is 
xed� i�e�� does not shrink to �� The reason for this is that� when � � � or

� � �� the terms in ��	 are the same terms that would enter into a correctly speci
ed conditional likelihood

function�� It therefore seems likely that the small�sample performance of the estimator depends on the

relative magnitudes of � and �� In particular� if � is small� one would expect the estimator to perform well

even if the bandwidth is large� In order to investigate the sensitivity of our results to the value of �� we

consider designs with � equal to ����� ��� and ���� For these designs� the e�ect of the lagged dependent

variable on the 
rst order serial correlation of yit ranges from being smaller� to being greater than the e�ect

of the permanent error component�
 The results for the alternative values of � are given in Tables � �to

conserve space� we present only the results for �n � � 
 n����	� Our 
ndings con
rm that as � increases�

the bias increases dramatically� Intuitively� we would expect that longer panels would dramatically improve

the performance of the estimator for �� Table � therefore also presents results for T � �� Since the same

bandwidth is used for the two sample sizes� it is not surprising that the bias is of approximately the same

magnitude� but the median absolute errors do decrease dramatically� Interestingly� the gains seem to be

about the same for both "� and "��

It is di�cult to interpret Monte Carlo results like the ones presented here without a comparison to

competing estimators� Because there is no other consistent �at n � �	 estimator for the dynamic panel

data logit model considered here� we will compare our estimator to the maximum likelihood estimator that

estimates all the 
xed e�ects� This estimator is consistent as T � � with n 
xed� which suggests that its

behavior will depend crucially on the number of time�periods� We therefore report results for T � �� �� and

�� �to conserve space� we consider only n � ���	 � As this estimator will be inconsistent �as n � �	 but

converge at rate n���� to its probability limit� we expect this estimator to have larger bias but less variability

than the estimator proposed here� Columns three through six of Table � give the results for this estimator

�This observation also suggests that it is possible to test for true state dependence by considering ��� with a �xed bandwidth�

Investigation of such a test� which would be in the same spirit as the test proposed by Heckman ������� is left for future research�

�Speci�cally� if there is no �xed e�ect and no exogenous explanatory variables in the model� then the �rst order serial

correlation of yit� due entirely to the presence of the lagged dependent variable� is approximately 
�
�� 
���� 
��� and 
��� for �

equal to 
���� 
��� ��
 and ��
� respectively� If only the �xed e�ect is present in the model� then the �rst order serial correlation

is 
���� Including the term xit�� and when there are no individual e�ects� the corresponding calculations yield �rst order serial

correlation of 
�
� 
�
�� 
��� and 
��� for the four values of �� In the absence of the lagged dependent variable� and with the

inclusion of the exogenous variable� the �rst order serial correlation resulting from the �xed e�ect is 
����

�In simulations not reported here� we found that this is especially true for large bandwidths� This suggests that it might be

important to let the bandwidth be data�dependent�

��



for the four values of � considered earlier� whereas the results for the estimator proposed in this paper �with

�n � � 
n����	 are presented in columns seven through ten� The most striking feature of these results is that

the maximum likelihood estimator that estimates all the 
xed e�ects is inferior in terms of median absolute

error to the estimator proposed here for all the values of � and T � although the results for b� are close when

� � � and T � ���

It is not too surprising that our estimator performs better than an estimator which is inconsistent� We

therefore also compare the estimator to the infeasible maximum likelihood that uses the 
xed e�ect as one of

the explanatory variables �treating its coe�cient as an unknown parameter to be estimated	� As expected�

this estimator performs better than the one proposed here� with the relative performance of our estimator

being worse when � is larger and when T is smaller�

It is well understood that the design of the regressors in Monte Carlo studies may have a large e�ect

on the results� For example� normally distributed regressors often make estimators look better than they

are for other distributions of the regressors� In order to investigate this issue� we modify the benchmark

design by changing the distribution of xit to a �� ��	 random variable� normalized to have the same mean

and variance as the regressor in the benchmark design� See the upper left hand corner of Table �� The

results are quite similar to those presented in Table �� To conserve space� we present only the results for

�n � � 
 n����� Another problem with the choice of design is that the rate of convergence of the proposed

estimators decreases as the number of regressors increases� In order to obtain information about the 
nite

sample behavior of the estimator when there are more explanatory variables� we add three regressors to

the benchmark design� All three are generated as N


�� ����

�
independently of each other and of all other

variables� The true values of the coe�cients on the additional regressors are all zero� i�e� �� � �� � �� � ��

so the data�generating process is the same as for the benchmark case and the only di�erence is that three

additional regressors are used in the estimation� The results from this experiment are given in the upper

right hand corner of Table �� To conserve space we report only the results for �� and for � and for one of

the bandwidth sequences �note that the rate at which the bandwidths decrease is slower as a result of the

additional regressors	� The results suggest that the cost of adding the additional parameters is not high in

terms of the median absolute error of the estimator of the two original parameters� �� and ��

Since � is essentially identi
ed from the time series behavior of yit� one might worry that the i�i�d� design

of the regressors biases the results in favor of our estimator� To investigate this� we change the benchmark

design to allow for serial correlation and a time�trend in x� Speci
cally we generate xit as

xit � c 
 �� it � a � ��� 
 t	

where � it is an AR��	 with standard normal innovations and autoregressive coe�cient equal to ���� a is

chosen so that a � ��� 
 t averages � over the sample� and c is chosen so that the variance of the marginal

distribution of xit is the same as in the benchmark design� This design was chosen because it is very close

to that used in Heckman �����b	� The 
xed e�ect is constructed as the average of the 
rst four realizations

��



of c 
 �it� The results of this experiment for T � � and T � � are given in the lower part of Table �� A

comparison between the results in Table � and the corresponding results in Table � suggests that the i�i�d�

property of the explanatory variable in the benchmark design is favorable to the estimator proposed here�

although the di�erence is surprisingly small� As one might expect� the di�erence is more pronounced when

T is larger� presumably because the time�trend in the regressor is more important with many time�periods�

The asymptotic normality of the estimator may be used to conduct asymptotically valid inference� To

investigate how well the asymptotic results approximate the 
nite sample properties of the resulting con�


dence intervals� we calculate ��$ and ��$ con
dence intervals for each of the two parameters of the

benchmark design� In Table �� we present the percentage of times that these con
dence intervals cover the

true parameter values� The results suggest that for the benchmark design� the asymptotics provide a fairly

good approximation of the 
nite sample distribution of the estimator �and the estimator of its variance	�

although it seems that the con
dence intervals have coverage probabilities that are slightly smaller than

the asymptotic theory would predict� This is consistent with the fact that the con
dence intervals are not

centered correctly �due to the asymptotic bias	� We expect this problem to be more severe if � is big� and

the sample size and bandwidth are both large� because in this case the bias will be more important relative

to the variance of the estimator� Indeed� in additional experiments �not reported in Table �	� we found

that� with ���� observations� � � �� and �n � �� 
 n����� the coverage probabilities for the ��$ and ��$

con
dence intervals were approximately ��$ and ��$ for � and �� and ��$ for �� respectively�

We 
nally turn to examine the small sample properties of the maximum score estimator obtained by

maximizing ��	� In Table �� we present the results for the benchmark design� Because the assumptions

maintained for the maximum score estimator do not identify the scale of the parameter vector� we consider

��� as the parameter of interest�� A priori� we expect the maximum score estimator to perform worse

than the estimator that imposes the logit assumption� We also expect the rate of convergence to be slower

than that of the logit estimator� because� for the panel data binary response model with only exogenous

regressors� the maximum score estimator is known to converge at rate n���� as opposed to the n���� rate

of convergence of the logit maximum likelihood estimator� The results in Table � con
rm this� The median

absolute error of the maximum score estimator is larger than that of the logit estimator in all cases� and the

relative di�erence is larger for larger sample sizes�

�The objective function for the maximum score estimator is not di�erentiable� and is therefore potentially di�cult to

maximize� We calculate the estimator by performing a grid search over �

 equally spaced points on the unit circle� If more

that one point achieves the maximum value of the objective function� then the estimate is calculated as the average value of

those di�erent point estimates of ����

��



� Concluding Remarks�

In this paper� we consider discrete choice models that allow for both unobserved individual heterogeneity

�Heckman�s �spurius� state dependence	 and �true� state dependence� We show that it is possible to identify

such models within the logit framework� and we propose an estimator which is consistent and asymptotically

normal� although the rate of convergence is slower than the usual inverse of the square root of the sample

size� The results of a small Monte Carlo study suggest that the estimator performs well �for the very simple

designs considered	� and that the asymptotics provide a reasonable approximation to the 
nite sample

behavior of the estimator� The paper also proposes an estimator of the semiparametric version of the model�

That estimator� which is an adaptation of Manski�s maximum score estimator� is consistent� but we do

not derive its asymptotic distribution� In future research� we plan to investigate whether it is possible to

obtain an asymptotically normal distribution �under a stronger set of regularity conditions	� by applying

Horowitz�s �����	 approach to smoothen the objective function ��	 above� This suggests estimating � and

� by maximizing
nX
i��

K

�
xi� � xi�

�n

�
�yi� � yi�	L

�
�xi� � xi�	 b � g �yi� � yi�	

hn

�
where L is a kernel function that satis
es� L �		

v��	�� � and L �		
v�	�� �� and hn is another bandwidth

sequence that tends to � as n increases�
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 Appendix

�
 LOGIT CASE

The ideas behind the proofs of Theorems � and � are very closely related to those underlying local

likelihood estimation �Staniswalis �����	� and Tibshirani and Hastie �����		 and robust regression function

estimation �H�ardle �����	� and H�ardle and Tsybakov �����		� The di�erence is that the object of interest

here is a 
nite dimensional vector� whereas in those papers it is an unknown function�

Proof of Theorem �

After re�scaling by ��n�kn� the objective function ��	� can be written as�

Qn�
	 �
�

n�kn

X
i

K

�
xi��
�n

�
hi �
	

To show consistency of the maximizer of Qn�
	� we will use Theorem ����� in Amemiya �����	� The theorem

requires that the following conditions hold� �A�	 � is compact� �A�	 Qn�
	 is continuous in 
 � �� �A�	

Qn�
	 is measurable for all 
 � �� �A�	 Qn�
	 converges to a nonstochastic function Q�
	 in probability

uniformly in 
 � � and �A�	 Q�
	 is uniquely maximized at 
��

Notice that �A�	 is satis
ed by Assumption C�� while �A�	 and �A�	 are trivially satis
ed�

To verify �A�	 we will use Lemma ��� in Newey and McFadden �����	� which requires that � be compact

�satis
ed by Assumption C�	� that Qn�
	 converge to Q�
	 in probability for all 
� where Q�
	 is continuous

in 
� and that there exists � � � and Zn � Op ��	 such that for all 
� #
 � ��
���Qn�
	�Qn

�
#

���� � Zn

���
 � #

���
 �

Note that standard arguments �bounded convergence	 and under our assumptions�

E  Qn �
	! � E

�
�

�kn
K

�
x��
�n

�
h �
	

�
� f ��	E  h �
	jx�� � �! � Q �
	

and

V ar  Qn �
	! � O

�
�

n�kn

�
� o ��	

which by Chebyshev�s theorem imply that Qn�
	
p�� Q�
	 for all 
 � �� Continuity of Q�
	 may be easily

established by dominated convergence arguments using the fact that jh �
	j � ln � � � kzkk
k � and that

under our assumptions E  kzkjx��! � �� Next� note that by the multivariate mean value theorem and by

the triangular inequality����Qn�
	�Qn

�
#

���� �

���
 � #

��� �

n�kn

X
i

����K �
xi��
�n

����� ���h���i �
�	
���

� �
���
 � #


��� �

n�kn

X
i

����K �
xi��
�n

����� kzik
where 
� lies between 
 and #
� and where the second inequality follows from the fact that

���h���i �
�	
��� ��

� � exp�z��
��exp�z��

�
kzik � � kzik � Let Zn � �

n�kn

P
i

���K �
xi��
�n

���� kzik � It is straightforward to show that under

our assumptions� E  Zn! � O ��	 and V ar  Zn! � O
�

�
n�kn

�
� which imply that Zn � Op ��	 as required�

��



Finally� to complete the proof of the theorem we need to show �A�	� i�e� that Q�
	 is uniquely maximized

at 
�� Recall that 
 � �b� g	
�
� By assumption� Q�b� g	 is well�de
ned and 
nite for all b and g� and

Q�b� g	 � f��	E  h�b� g	jx�� � �!

� f��	E
h
P �y� �� y�jx�� � �� y�� y�	E

h
#h�b� g	jx�� � �� y�� y�� y� �� y�

i���x�� � �
i

where #h�b� g	 � ln
�

exp�x��b�y��g�
y�

��exp�x��b�y��g�

�
� The logit assumption implies that P �y� �� y�jx�� � �� y�� y�	 � ��

Next note that conditional on �x�� � �� y�� y�� y� �� y�	� #h �b� g	 is the log�likelihood of a logit model with

explanatory variables x�� and y��� If y� � y�� then E
h
#h�
	jx�� � �� y�� y�� y� �� y�

i
does not depend on g�

but as a function of b� it is uniquely maximized at b � � provided that x�� is not contained in a proper linear

subspace of Rk with probability �� conditional on �x�� � �� y�� y�� y� �� y�	 �this follows from standard proofs

of consistency of the maximum likelihood estimator of a logit model	� By the maintained logit assumption�

this �full�rank� condition follows from �C�	� If y� �� y� then E
h
#h�
	jx�� � �� y�� y�� y� �� y�

i
depends on

both g and b� and it is uniquely maximized at b � � and g � � provided that �x��� y��	 is not contained in a

proper linear subspace of Rk�� with probability � conditional on �x�� � �� y�� y�� y� �� y�	� Again� the latter

will be true by the logit assumption under assumption �C�	� This implies that Q�b� g	 is uniquely maximized

at b � � and g � ��

Proof of Theorem � � Part �i	

The asymptotic normality of the proposed estimator is derived in a standard way� Since the objective

function is di�erentiable� 
� � int ��	 � and "
n is a consistent estimator of 
�� then for n large enough the

estimator satis
es the 
rst order conditions�

�p
n�kn
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i

K

�
xi��
�n

�
h
���
i

�
"
n

�
� �

An expansion of these around 
� yields�

� �
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q
n�kn

�
"
n � 
�

�
� Zn �
�	 �

q
n�knE  Bn �
�	!� Jn �
�n	 


q
n�kn

�
"
n � 
�

�
where 
�n �which may be di�erent for di�erent rows of Jn �
		 lies between "
n and 
� and therefore converges

in probability to 
�� The asymptotic normality of
p
n�kn

�
"
n � 
�

�
will follow from Zn �
�	

d� N ��� V 	�p
n�knEBn �
�	 � �� and Jn �
	

p� J �
	 uniformly in 
 � � where J �
	 is a nonstochastic function that is

��



continuous at 
�� This last result will imply �by Theorem ����� in Amemiya �����		 that Jn �
�n	
p� J �
�	 �

J �

We will 
rst show that Zn �
�	
d� N ��� V 	 �

Let c be a �k � �	� � vector of 
nite constants such that c�c � �� To show the claim it su�ces to show

that c�Zn �
�	
d� N ��� c�V c	 � Write�

c�Zn �
�	 � �p
n�kn

X
i

c�
�
q
���
i �
�	�E

h
q
���
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�	

i�
�

�p
n
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i

�in

where f�ingni�� is an independent sequence of scalar random variables� We will verify that f�ingni�� satis
es

the conditions of the Lyapounov CLT for double arrays �see Theorem ����� in Chung �����	 and comment

on page ���	� We need E  �in! � �� V ar  �in! ��� V � limn�	 V ar  �in! ��� and
Pn

i��E

���� �inpn ������� �

for some � � ��� �	 � Indeed�
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Note that under our assumptions �see Assumptions �N�	 and �C�		 both terms of V ar  �in! are 
nite� Now�

for the 
rst term of the variance� bounded convergence yields�
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� are continuous in a neighborhood of zero �Assumptions �C�	
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�
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which under our assumptions is bounded away from in
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since
R jK �		j�� d	 is 
nite by the 
niteness and absolute integrability of the kernel� and E

h
kzk�� jx�� � 


i
f �
	

is bounded for all x�� under �C�	 and �N�	�

We will next show that
p
n�knEBn �
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By Assumptions �N�	 and �N�	� E
�
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	 is s times continuously di�erentiable�

A Taylor expansion around x�� � � yields�
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since � ��	 � f ��	 
 E �h��� �
�	
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