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Abstract

In this paper, we consider identification and estimation in panel data discrete choice models when the
explanatory variable set includes strictly exogenous variables, lags of the endogenous dependent variable
as well as unobservable individual-specific effects. For the binary logit model with the dependent variable
lagged only once, Chamberlain (1993) gave conditions under which the model is not identified. We present
a stronger set of conditions under which the parameters of the model are identified. The identification
result suggests estimators of the model, and we show that these are consistent and asymptotically normal,
although their rate of convergence is slower than the inverse of the square root of the sample size. We
also consider identification in the semiparametric case where the logit assumption is relaxed. We propose
an estimator in the spirit of the conditional maximum score estimator (Manski (1987)), and we show
that it is consistent. In addition, we discuss an extension of the identification result to multinomial
discrete choice models, and to the case where the dependent variable is lagged twice. Finally, we present
some Monte Carlo evidence on the small sample performance of the proposed estimators for the binary

response model.

1 Introduction.

In many situations, such as in the study of labor force and union participation, accident occurrence, unem-

ployment, purchase decisions, etc., it is observed that an individual who has experienced an event in the past
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is more likely to experience the event in the future than an individual who has not experienced the event.
Heckman (1981a, b) discusses two explanations for this phenomenon. The first explanation is the presence of
“true state dependence”, in the sense that the lagged choice/decision enters the model in a structural way as
an explanatory variable. The second is the presence of serial correlation in the unobserved transitory errors
that underlie the threshold-crossing econometric specification of the model. Of particular interest is the
case where this serial correlation is due to the presence of unobservable permanent individual/choice-specific
heterogeneity, i.e. to different propensities across individuals to experience the event. Heckman calls the
latter source of serial correlation “spurious state dependence”. Distinguishing between these two explana-
tions is important, for example, in evaluating the effect of economic policies that aim to alleviate short-term
unemployment (see Phelps (1972)), or the effect of training programs on the future employment of trainees
(see Card and Sullivan (1988)). As pointed out by Heckman, longitudinal data on individual histories are
required in order to discriminate between true and spurious state dependence. This paper presents methods
for discrete choice models with structural state dependence which allow for the presence of unobservable
individual heterogeneity in panels with a large number of individuals observed through a small number of
time periods.

It is well-known' that nonlinear panel data models with individual-specific effects, such as discrete
choice, censored and truncated, sample selection models, etc., may be estimated by the “random effects”
approach. See Arellano and Carrasco (1996) for an example. This approach requires the specification of the
statistical relationship between the observed covariates with the unobservable permanent individual effect.
Furthermore, it requires distributional assumptions on the initial conditions of the process, if there is serial
correlation in the unobserved transitory error components and/or if lags of the dependent variable are used
as explanatory variables. The problems associated with misspecification of these distributions are partly
overcome in the “fixed effects” approach. Below we discuss existing estimators for panel data discrete choice
models. Estimators for the fixed effects censored and truncated regression models with strictly exogenous
regressors have been proposed by Honoré (1992). Honoré (1993) considered the case where the explanatory
variable set also includes lags of the dependent variable. Kyriazidou (1997a) proposed estimators for the
panel data sample selection model assuming strictly exogenous regressors in both the main equation and the
binary sample selection equation. In Kyriazidou (1997b), the main equation is also allowed to contain lags
of the continuous dependent variable, while the selection equation may have lags of the endogenous selection
indicator.

In the absence of state dependence (that is, with only strictly exogenous regressors), the parametric “fixed
effects” approach for the discrete choice model assumes that the time-varying errors are independent of all

other covariates and that they are i.i.d. over time with a logistic distribution. No assumptions are made on

LFor this and other results concerning panel data models, see the survey articles by Chamberlain (1984, 1985), Hsiao (1986)
and Maddala (1983).



the distribution of the individual effects conditional on the observed explanatory variables. As Rasch (1960)
and Andersen (1970) have shown, the model may then be estimated by conditional maximum likelihood. In

the case of binary choice, the model has the form:

exp(zitf + o
P(ylt = 1|xiaai7yi07 s 7yi,t—1) = 1+ e)fp(;tﬂ + ;) t= 17 TvT Z 27 (1)
i i

where [ is the parameter of interest, «; is an individual-specific effect which may depend on the exogenous
explanatory variables z; = (2, ..., z;7) in an arbitrary way, and where y;o may or may not be observed.
(Throughout, i = 1,...,n indicates the identity of the individual.) In the case where T' = 2, inference
concerning [ is based on the observation that P(y;: = 1|, i, Yio, Yi1 + yi2 = 1) is independent of «;.

As Manski (1987) has shown, it is possible to relax the logistic assumption as well as to allow for certain
forms of serial correlation in the underlying time-varying errors in (1) above. In the special case where the

errors are independent, the model takes the form:
P(yit = Uzi, @i, Yios - - Yit—1) = Fi (waf+a;)  t=1,.T;T >2 (1)

where Fj is a strictly increasing distribution function with full support on R that is allowed to differ across
individuals, but not across time for a given individual. In the case where T = 2, identification of f is
based on the fact that, under certain regularity conditions on the distribution of the exogenous variables,
sgn (P(yi2 = 1|zi1, T2, ;) — Plyi = 121, T2, ) = sgn (22 — x;1)3) - This implies that Manski’s (1975,
1985) maximum score estimator can be applied to the first differences of the data in the sub—sample for
which y;1 # .

The parametric “fixed effects” approach may be also used to estimate panel data logit models with
individual effects and lags of the dependent variable, provided that there are no other explanatory variables
and that there are at least four observations per individual (see Chamberlain (1985), and Magnac (1997)).

In the binary choice case with the dependent variable lagged once, the model is

P(yio = 1lai) = po(a)
exp(VYit—1 + o)
P i = lai,i,...,i, = ’ t:].,...T;T>3 2
(it 2 yio it-1) 1+ exp(yyit—1 + ;) - @)

where y;0 is assumed to be observed, although the model is not specified in the initial period. When T' = 3,
inference on v is based on the observation that P(yio = do,yi1 = 0,yi2 = 1,yi3 = ds|yi1 + yiz = 1, ) is
independent of ;. (Here dg,d3 € {0,1}).

In this paper, we consider identification and estimation in panel data discrete choice models when the
explanatory variable set includes strictly exogenous variables, lags of the endogenous dependent variable,
as well as unobservable individual-specific effects that may be correlated with the observed covariates in an
unspecified way. For the binary logit model with the dependent variable lagged only once, Chamberlain

(1993) has shown that, if individuals are observed in three time periods, then the parameters of the model



are not identified. In this paper, we demonstrate that 8 and ~ are both identified (subject to regularity
conditions) if the econometrician has access to four or more observations per individual. The identification
result suggests estimators of the model. We show that these are consistent and asymptotically normal,
although their rate of convergence is not the inverse of the square root of the sample size. This result is in
line with recent findings by Hahn (1997) that suggest that the model cannot be estimated at the standard
n~1/2 rate.

We also consider identification in the semiparametric case where the logit assumption is relaxed. We pro-
pose an estimator in the spirit of Manski’s (1987) conditional maximum score estimator. For this estimator,
we only show consistency. The results by Kim and Pollard (1990) suggest that the estimator will not have
a limiting normal distribution and that its rate of convergence will be slower than n~/3.

The paper is organized as follows. Section 2 presents our identification and estimation methods for the
case where the panel contains only four observations per individual. Section 3 states the assumptions and
derives the asymptotic properties for the estimators proposed in Section 2. Section 4 discusses generalizations
and extensions of the estimators to the case of longer panels, to the case where the dependent variable is
lagged twice, and to the multinomial choice case. Section 5 presents the results of a small Monte Carlo study
investigating the small sample properties of the estimators proposed in Section 2. Section 6 concludes the

paper. The proofs of the theorems are in the Appendix.

2 Identification and Motivation of the Estimators.

2.1 The Logit Case

We consider the following fixed effects logit model which combines the features of (1) and (2):

P(yio = 1|zs,a;) = po(zs, o)
exp(zif + YYit—1 + a;)

Plyy = 1xi08,%0,...,Yit-1) = t=1,..T. 3
(e [z i, yio ia-1) L+ exp(zif + VYie—1 + ;) ®)

where z; = (z;1, ..., ;7). Throughout this section T' = 3. Here, the logit specification is imposed for periods
one to three. The model is left unspecified in the initial period, since the value of the dependent variable
is not assumed to be known in periods prior to the sample. We assume that y;o is observed, but it is not
necessary to assume that the explanatory variables are observed in the initial period. It is important to note
the implicit assumption that the errors in a threshold—crossing model leading to (3) are i.i.d. over time with
logistic distributions and independent of (z;, a;,yi0) in all time periods. While the independence over time
assumption is fairly standard (it is also implicitly assumed in (1) and (2)), it is certainly a weakness of the
approach taken here (as well as those taken to derive (1) and (2)).

Our identification scheme follows the intuition of the conditional logit approach.? The aim is to derive a

2Jones and Landwehr (1988) attempt to use the conditional logit approach to estimate the model considered in this paper.



set of probabilities that do not depend on the individual effect. Following Chamberlain (1985), we consider

the events:
= {yio =do,yn = 0,y = 1,y;3 = d3}
= {yio =do,yn = 1,yi2 = 0,3 = d3}
where dy and ds are either 0 or 1. A straightforward calculation yields:

1
1+ exp(zi B+ vdo + ;)

P(Alzi,a;) = po(wi,a:)® (1 — polas, ;) ™" x

exp(zi2 8 + ay) exp(dszs + dsy + dzoy;)
1+ exp(zi2f + ay) 1 +exp(zif+v+ a;)

and

exp(zi1 B + vdo + ;)

P(Blz: a;) = )0 (1 — g ))do
( |mz:az) pO(xuaz) ( pO(mz:az)) X 1+8Xp(1’i1ﬁ+’7d0+ai)

y 1 y exp(dzxi3f + dsa;)
1+exp(zief+ a; +7) 1+ exp(zizf + ;)

In general, the probabilities P(A|x;, a;, AUB) and P(B|z;,«;, AU B), which condition on the event that
the dependent variable changes sign between periods one and two, will depend on «;. This is the reason why
a conditional likelihood approach will not eliminate the fixed effect. Our identification scheme rests on the

observation that, if z;5 = x;3, then the conditional probabilities

1
1+exp ((5611 - xig) B+ (dO - d3))

P(A|:L’i,ai,AUB,£L’i2 = 1‘,’3) = (4)

and

o oy exp (i — zio) B+ (do — d3))
P(B|muaz;AUB,1'12 —ml?)) - 1+eXp((Cl7i1 _$12)ﬂ+')/(d0 —d3)) (5)

do not depend on «;. This observation is the key to all the results presented in this paper. In the special case

where all the explanatory variables are discrete and the z;; process satisfies P(z;2 = z;3) > 0, one can use
(4) to make inference about 8 and «. In particular, one may estimate 8 and v by maximizing the weighted

likelihood function:

n

exp((zi1 — ®i2)b + g(yio — viz)) V™ )
Hyin +ypp =11 {x;s — 23 =0} In
; tyn +ye = 1H Az — 2 =0} <1 +exp((zi1 — Ti2)b + 9(¥io — Yi3))

The resulting estimator will have all the usual properties (consistency and root-n asymptotic normality).
While inference based only on observations for which z;» = z;3 may be reasonable in some cases (in

particular, experimental cases where the distribution of z; is in the control of the researcher), there are

However, their calculation does not allow for exogenous explanatory variables.



many economic applications where it is not useful. The idea then is to replace the indicator functions
1{x;» — x;3 = 0} in the objective function above with weights that depend inversely on the magnitude of
the difference z;5 — x;3, giving more weight on observations for which z;5 is “close” to z;3. Specifically, we
propose estimating 3 and - by maximizing

zn: yit + i = 11K (l‘iz - xi3> In ( exp((i1 — @i2)b+ g(yio — ¥is))¥"* > (©)

i=1 On L +exp((zi1 — zi2)b+ g(yio — yis))

with respect to b and g over some compact set. Here K(-) is a kernel density function which gives the
appropriate weight to observation i, while o,, is a bandwidth which shrinks as n increases. The asymptotic
theory will require that K (-) be chosen so that a number of regularity conditions, such as K(v) — 0 as
|v| = oo, are satisfied.

Note that the proposed estimators are maximum-likelihood-type (or extremum or M-) estimators. The
key idea behind the estimation is that the limit of the objective function above (as well as of the objective
function in the semiparametric case, discussed below), and which may be readily seen to be a conditional
expectation given the event that x;» — z;3 = 0, is uniquely maximized at the true parameter values, under
appropriate assumptions. It is clear that identification of the model will require that z;> —x;3 be continuously
distributed with support in a neighborhood of 0, and that z;; — z;2 have sufficient variation conditional on
the event that x;5 — x;3 = 0.

The asymptotic properties of the estimators may be derived in a manner similar to that underlying local
likelihood estimation (see, for example, Staniswalis (1989), and Tibshirani and Hastie (1987)) and robust
regression function estimation (see, for example, Hardle (1984), and Hérdle and Tsybakov (1988)). Section
4 states conditions under which the estimators maximizing (6) are consistent and asymptotically normal,
although their rate of convergence will be slower than n~'/? and will depend on the number of covariates in

Tit.

2.2 The Semiparametric Case

In this section, we will use Manski’s (1987) insight to relax the logit assumption on the distribution of the
time-varying errors underlying a threshold-crossing specification of the model in (3). The independence over

time assumption of the previous section will be maintained. Suppose® that
P(yio = 1|zi,a;) = po(zi, i)
Py = 1z, a6,yi0,---,¥it-1) = Flxaf +yyie—1 + i), t=1,..,T (7)

where y;o is assumed to be observed and F' is a strictly increasing function that has full support on R. As

before, we will focus on the case where there are four observations per individual, i.e. T = 3. With A and B

3Tt is possible to generalize the results in the remainder of this section to allow the distribution function, F, to differ across

individuals, provided that it does not differ over time for a given individual.



defined as in the previous section, we have:

P(Alz;, i, zin = i3) = po(i, ;)™ (1= po(zi, ;) ™% x (1= F(zu B+ ydo + ;)

XF (2B + i) x (1= F(zf + 7+ a) ™) x F(zinf + v + ;)™

and
P(B|zi,qi,xi0 = 43) = polzi, ;)™ (1 — po(i, i) ™% X F(2i 8+ ydo + ;)
X(1 = F(zpnfB+7+a;) x (1 = Fzpf + ;)% x F(zip8 + ap)®
If d3 = 0, then
P(A|z;, ai, T2 = x43) _ (1= F(zuB+ vdo + o)) o F(zpf + a;)
P(B|z;, o, T2 = x;3) (1 - F(zpf + a;)) F(zuB+ vdo + o)

(1 = F(xu B+ vdo + ;) y F(zi2f + vds + a;)
(1= F(zpB+vds + ;)  F(xalf +vdo + a;)

where the second equality follows from the fact that ds is zero. If d3 = 1, then

P(Alzi, a0 =23) (1= F(zaf+vdo + o)) y F(zipf+ v+ o)
P(B|z;, 0, T2 = x;3) (1 - F(zpB+v+w)) F(zi1 8+ vdo + o)

(1= F(za B+ ydo + i) y F(zpf + vds + ;)
(1= F(zpB+vds +a;))  F(zaB+vdo + a;)
where the second equality follows from the fact that d3 = 1, so that yd3 = . In either case, the monotonicity

of F' implies that
sgn (P(Alz;, i, T2 = x43) — P(B|z;, 0, T2 = x33)) = sgn (2 — x1)B + v(d3 — do)) (8)

If P(z;2 = z;3) > 0, a maximum score estimator may therefore be applied to the observations satisfying

AU B and z;5 = z;3. That is, 8 and v may be estimated by maximizing

n

Z 1{zi — i3 = 0} (yi2 — yi1) sgn (w2 — xi1) b+ g (Vis — Yio))
=1

with respect to b and g over some compact set. It is obvious from the expression above that only observations
which satisfy y;; + ;2 = 1 are used in the estimation.

Similarly to the logistic case, when z;5 — x;3 is continuously distributed with support in a neighborhood
of 0, we propose to estimate S and ~ (up to scale) by maximizing the score function

; K <M> (yi2 — yir) sgn ((zs2 — i) b+ g (¥is — Yio)) (9)

On

with respect to b and g over some compact set. In Section 4, we show consistency of this estimator. We

do not derive its asymptotic distribution, but in view of existing results on the maximum score estimator



for the cross-sectional binary response model, we expect the limiting distribution to be non—normal and the
rate of convergence to be slower than n=1/3.

In both the logistic and the semiparametric case, the main limitations of our approach are (i) the as-
sumption that the errors in the underlying threshold—crossing model are independent over time, and (ii) the
assumption that z;» — x;3 has support in a neighborhood of 0. The latter restriction rules out time—dummies.
In the analysis above we have assumed that all explanatory variables are continuous. The estimators may be
modified in a straightforward manner to account for discreteness of some variables in z;, namely multiply

the objective functions (6) and (9) by indicators that restrict the discrete regressors to be equal in periods

2 and 3.

3 Asymptotic Properties of Estimators.

In this section, we discuss the asymptotic properties of the estimators proposed in the previous section. The

following notation will be useful:

0 = (bag)l> 90 = (6)7)1)
T2z = T2 —T3, Ti12 =21 — T2, T21 = T2 — 21,
Yo3 = Yo—¥3, Ys0=Ys—Yo, and Y21 =Yz —Yi.

3.1 The Logit Case.

We first consider the estimator defined by minimizing (6). It will be useful to define the (random) functions:

bO) = 1 htn (22

1+ exp (z6)
" _ Oh _ __ep(d) N
RV () = 50 = L # u2} <y1 1 + exp (29)> :
92h exp (z0) /
(2) — = 1+ oxp (20012
e 6) 5090~ Hyr # y2} (1 +exp (20))2Z

where z = (z12,%03). The following theorem gives sufficient conditions for consistency of the estimator
proposed in (6). For simplicity, we will focus on the case where all the exogenous variables are continuously

distributed.
Theorem 1 (Consistency) Let the following assumptions hold:

(C1) {(yio, Yi1, Yi2, Yiz» Tit, Tiz, Tiz) by @8 a random sample of n observations from a distribution satisfying

(3).

(C2) 6y € O, a compact subset of RF+1.



(C8) The random wvector x25 € X C R* is absolutely continuously distributed with density f(-) that is

bounded from above on its support, and strictly positive and continuous in a neighborhood of zero.
(C4) The function E[||x12]|| ®23 = ] is bounded on its support.
(C5) The function E[h(6)| za3 = | is continuous in a neighborhood of zero for all 8 € ©.
(C6) The function E |[z|4x12| T23 = -] has full column rank k in a neighborhood of zero.

(C7) K : R* — R is a function of bounded variation that satisfies: (i) sup,cq |K (v)| < oo, (ii) [|K (v)|dv <
00, and (i) [ K (v)dv = 1.

(C8) oy, is a sequence of positive numbers that satisfies: o, — 0 as n — oco.

Let 6, = (Bn,’yn) be a sequence of solutions to the problem

) K (5”"23) hi (6) (10)

Then, én 5 0,.

Assumptions (C7) and (C8) are standard in kernel density and regression function estimation. The strict
positiveness of f and the full rank condition of Assumption (C6) are required for identification of 5. The rest
of the assumptions are regularity conditions that permit the application of a uniform law of large numbers
to show convergence of the objective function to a nonstochastic limit that is uniquely maximized at 6.
Note that, in some cases, the boundedness condition of Assumption (C4) may be restrictive. However, it is
clear from the proof of the theorem that it may be relaxed. In particular, we only need to assume that the
product f (-) E[||z12||| 223 = -] is bounded on its support. The same comment applies to similar conditions
in the theorems that follow. Finally, the compactness of the parameter space (Assumption (C2)) may be
also relaxed if K () > 0, in which case the objective function is strictly concave (see e.g., Newey and Powell
(1987)).

We next present conditions that are sufficient for asymptotic normality of the proposed estimators. Apart
from the usual strengthening of regularity conditions on the existence and finiteness of moments higher than
those required for consistency, additional smoothness is imposed on the model which allows convergence at

a faster rate.

Theorem 2 (Asymptotic Normality) Let Assumptions (C1)-(C8) hold and 8,, be a solution to (10). In

addition assume:
(N1) 6y € int (O).

(N2) f(-)is s (s > 1) times continuously differentiable on its support and has bounded derivatives.



(N3) The function E [h™) (00)| Taz = -] is s times continuously differentiable on its support and has bounded

derivatives.
(N4) The function E [h(?) (0)| Taz = -] is continuous in a neighborhood of zero for all § € ©.
(N5) The function E |:||5612||6‘ Toz = } is bounded on its support.
(N6) The function E [h1) (6) h(V) (00)'| Taz = -] is continuous in a neighborhood of zero.
(N7) K : R* — R is an s’th order bias-reducing kernel that satisfies:

(z)f|y| |K (v)|dv < oo fori =0 andi=s, where s >1

1 Zfllzigz...:ikzo

i1 in _
(i) fl/1 V. K(Vl,I/Q,...,I/k)dllldVQ...de = { 0 if0<iy+ipt .. +ix<s

Let \/nokas — 0. Then
ok (6a—00) SN (0,77 V)

where

J J(8o)=—f(0)-E [h<2> (60) |23 = o]

Vo= V)= 0B (60) ) (60) s = 0] -/K2 (v) dv

Remark: Note that the rate of convergence of the proposed estimator is maximized for \/nokss —
o # 0. However, in this case the estimator is asymptotically biased. It may be easily shown that in this
case, \/nok (9 - 00) SN (0J7'B,J7'VJ~!) , where B is a function of the s’th order derivative of f () x

[h(l) 0o) |a:23 = Although it is possible to eliminate the asymptotic bias in the manner suggested, for
example, by Horowitz (1992), we have found that the asymptotic bias correction is not effective in reducing
the small sample bias in our Monte Carlo experiments.

The next theorem provides consistent estimators of the two components of the asymptotic variance-

covariance matrix.

Theorem 3 (Asymptotic Variance Estimation) Let Assumptions (C1)-(C8) and (N1)-(N7) hold and

9n be a consistent estimator of 0.

(i) Define
Jn (0) =

= T ()

Then, J, (?)n) 2 T (80), where J (6y) is defined in Theorem 2.

(it) Define

(f’”

) = (5”’23> V0 hY (8)

10



IfE [h(l) (8) KD ()" |wa3 = ] is continuous in a neighborhood of zero as a function of x23 for all 6 € O,
then V, (9n) 2V (60), where V (6o) is defined in Theorem 2.
3.2 The Semiparametric Case

In this section, we present conditions that are sufficient to identify and consistently estimate 6, when the

logit assumption on the distribution of the underlying time-varying errors is relaxed. We define the function
h(0) = y21 sgn (26)

where now z = (221, y30)-

Theorem 4 (Identification and Consistency) Let the following conditions hold:

(CS1) {(yio, Yi1, Yiz, Yis,» Ti1, Tiz, Tiz) }oy 48 a random sample of n observations from a distribution satisfying

(7)-
(CS2) F is strictly increasing on R for almost all (z;, ;) .

(CS3) There exists at least one k € {1,...,k}, such that 3, # 0, and such that, for almost all T2y =
(T21,15 -y T2, 15— 15 T21,5+15 -, T21,k) , the random variable x21 . has everywhere positive Lebesgue density

conditional on Ts1 and conditional on x23 in a neighborhood of 23 near zero.

(CS4) The support of x21 conditional on x23 in a neighborhood of x23 near zero is not contained in any proper

linear subspace of R*.

(CS5) The random wvector w23 € X C R* is absolutely continuously distributed with density f(-) that is

bounded from above on its support and strictly positive in a neighborhood of zero.

(CS6) For all 6 € ©, f(-) and E[h(0)| x23 = -] are continuously differentiable on their support with bounded

first-order derivatives.

(CS7) K : R* — R is a function of bounded variation that satisfies: (i) sup,cq |[K (v)] < oo, (ii) [ |K (v)|dv <
00, and (ii) [ K (v)dv =1.

(CS8) o, is a sequence of positive numbers that satisfies: (i) o, — 0 as n — oo, and (ii) nok /Inn — oo as

n — 00.

Then:

(i) 6o is identified (up to scale) relative to all § € R**1 such that 0/ 6] # 6o/ ||6o]] = 65

11



(ii) Let 6, = (Bnﬂn) be a sequence of solutions to the problem

max y | K (5”"23) h; (6) (11)

00 & On
1

where © = {0 € RETL 2 ||6]] = 1N |be] > n} and n is a known positive constant such that |3,.| / ||fo]] > n.

Then, 0,, 5 6.

Assumptions (CS1)-(CS4) are analogous to Manski’s (1987) Assumptions 1 and 2. The rest of the
assumptions of the theorem are similar to the assumptions in the logit case. Here, however, we strengthen
the continuity assumption on f(:) and E[h(f)| 223 =] to first order differentiability, in order to show
uniform convergence of the objective function to its population analog. This is a consequence of the fact
that, in the semiparametric case, the summands in the objective function are not continuous in the parameter,

although they are uniformly bounded.

4 Extensions.

4.1 Identification with more than four observations per individual

The identification and estimation approach described in Section 2 extends to the case of longer panels. Note
that in the case where T' = 4, the idea behind the identification for the logit model (3) follows Chamberlain’s
(1985) intuition, namely that conditional on a switch between periods 1 and 2 (and in our case, conditional
also on x;2 = x;3), the probability of a sequence of choices (a “string”) does not depend on the individual
effect. For general T, identification in the dynamic logit model (2), which has only one lag of the dependent
variable and no other explanatory variables, relies on the fact that conditional on the initial and the last
observation, and conditional on ), y;, the probability of a string is independent of the individual effect. To
investigate whether the same intuition holds in the general T' case for the model that also contains exogenous
variables, we consider T' = 5. In this case, it is possible to show that the same statement holds, namely that
conditional on the initial and the last observation, and conditional on ), y;, the probability of a string is
independent of the individual effect, provided that we also condition on z;5 = ;3 = x;4. This implies that
the rate of convergence would be \/TT%’", i.e. slower than the rate we obtain for T' = 4. However, as will
become clear below, it is possible to retain the same rate of convergence as in the T' = 4 case, namely \/TF’;L ,
if we instead use a pairwise approach that is based on considering all possible pairs of observations in a string
that display a switch in the sign of the dependent variable.

Suppose that individuals are observed for 7"+ 1 periods, where T" > 3. In either the logistic or the
semiparametric case, identification is based on sequences for which y;; +y;s = 1 for some 1 <t < s <T —1.

Consider the event
A=A{yio =do,...,yit—1 = di—1,¥it =0, Yitt1 = di1, .., Yis—1 = ds—1,Yis = 1, Yis+1 = dst1,...,¥ir = dr}
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and its counterpart,
B = {yio =do,..,¥it-1 = dt—1,Yit = L, Yiry1 = dg1, -, Yis—1 = ds—1,Yis = 0,Yist1 = dsi1, ..., Yir = dr}
It is not difficult to show that for the logit model (3),

Pr(B|z;,a;, AUB,Titr1 = Tist1)
exp (Tt — @is) B+ 7 (di—1 — ds1) + 7 (diy1 —ds—1) 1 {s —t > 3})
L+exp ((wit — 2is) B+ 7 (de—1 —dsy1) + v (diy1 —ds 1) 1{s =t > 3})

which does not depend on «;. This suggests estimating 4 and v by maximizing

n

LTit4+1 — Lis+1
> l{yit‘i‘yis:l}K(%)X

i=1 \1<t<s<T-—1

( exp ((Zit — Tis) b+ g (Yit—1 — Yis+1) + 9 Wiry1 — Yis—1) L{s —t > 3})"* >>
L+exp ((zit — Tis) b+ g (Yit—1 — Yis+1) + 9 Wit+1 — Yis—1) 1 {s —t > 3})

For the semiparametric model (7), we consider two cases depending on whether periods ¢ and s are

adjacent or not. For s =t + 1, it is easily verified that whether dyy2 = 0 or dyyo =1,

Pr (Al i, ai, Tigg1 = Tigy2) __1-F (it + o +ydi—1) F (418 + o + vdey2)
Pr(B|x;, o, Tit41 = Titg2) 1 —F (410 + s +ydeyo) F (2 + i + ydi—1)

and therefore,
sgn{Pr (A|z;, i, Tir41 = Tipq2) — Pr(B|zi, 0, Tirg1 = Tirg2) }
= sgn{(zit41 — @it) B+ v (der2 — di—1)}
If t and s are not adjacent (so s >t + 1), then

Pr(Alzi, i, Zitg1 = Tist1, Yirrr = Yisyr) _ 1= Fxaf+ai+ydia) F(2isf+ i +vds 1)
Pr(B|zi, 0, Tit41 = Tist1, Yitr1 = Yis+1) 1 — F (238 + a; +vds—1) F (233 + o + yde—1)

which implies that

sgn {Pr (A| 2;, i, Tit41 = Tist1, Yitt1 = Yis+1) — Pr(B| 24, 0, Tit41 = Tist1,Yit+1 = Yis+1)}

= sgn{(zis — i) B+ 7 (ds—1 —de—1)}

This suggests estimating 4 and v by maximizing;:

n T-3
Z; — I
Z (Z Wyit + yirt1 = 1} K <M> sgn (Yit+1 — Yit) S0 (Tit+1 — Tit) b+ g (Yit+2 — Yit—1))

i=1 \t=1 Tn
T-2 T-1 . -
Gl — Tisrt
+ Z Z Hyie +yis = 1} Hyirr1 = yisa1 } K <Zt+07w+> sgn (Yis — Yit) 880 (#is — Tit) b+ g (Yis—1 — Z/it—l)))
t=1 s=t+2 n

It is interesting that although in general time—-dummies are ruled out in eiter the logisitic or the semi-
parametric case, it is possible to allow for seasonal effects in the case of quarterly data and at least seven

observations per individual (i.e. T =6).
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4.2 Identification with more than one lag of the dependent variable

As noted by Chamberlain (1985), for the logit model without exogenous regressors, it is possible to test for
the presence of the endogenous dependent variable lagged twice, when there are at least six observations per

individual.* The same is true in the presence of exogenous variables for the model:

P(yio = 1|z, a5) = pols, o)
P(yin = 1|z, i,90) = p1(wi, i, yio)
exp (0 + it—1 T it—2 O
P(ya = 1z ai,Yios .- Yii—1) D (it + aYia1 + Yolit—2 + o) t=2,.T;T>5

T Tt exp (@B + 1Yie—t + VaYi—z + aq)
where x; = (zi2, ..., z;7). It is assumed that (y;0,y:1) is observed although the model is not specified for these
time periods. For 7" = 5, inference on  and +y, can be based on pairs of sequences (strings) that satisfy
{Zi3 = Tia = Ti5,yi2 + yi3 = 1} and either {yi0 # yi1,yir = Yia = Yis} or {Yia # Yis, Yio = Yi1 = Yia} (there
are four such pairs of strings). Consider, for example, the pair A = (1,0,0,1,0,0) and B = (1,0,1,0,0,0).
It is straightforward to establish that

1

Pr(A 19 i:A B’ i3 = Lia =Ty -
v(Alwi, @i, AU Bywig = wia = Tis) = T e

and

exp + (zj2 —x43) B
Pr(B|ai,ai, AU B, a3 = v = 2i5) = HX(pv(Q7 J(r(i«z _ZZ)B))@
2 3 3

which does not depend on «;.

For the semiparametric case, where
P (yit = Ui, T4, Yi0, - Yit—1) = F (2t + v1Yie—1 + Yalit—2 + ) t=2,.1T>5

and where y;0 and y;; are given as above, it is easy to establish that for 7' =5,

Pr(A| Ti, A, T3 = Tja = ZUZ'5) _ F(wlgﬂ +’)/2 + Oéi) 1-— F($l3ﬂ + Oéi)
Pr(B|xi, o, i3 = T = T45) Fzpf+a;) 1—F(xpf+v,+a)

Thus,
sgn (Pl" (A| Ti, O, Ti3 = Tij4 = $i5) —Pr (A| Ti, Qj, Ti3 = Tia = 3715)) = sgn ((33@2 - «Ti3) B8+ 72)

The analysis above suggests estimators of 8 and 7, analogous to (6) and (9) provided that (z;3 — T4, Ty — Ti5)
has support in a neighborhood of (0,0). It may be possible to generalize the preceding identification results
for general T and for an arbitrary (but finite) number of included lags. Magnac (1997) provides such results

for the dynamic logit model when no exogenous covariates are present.

4As noted by Chamberlain, it is possible in the dynamic logit model with two lags of the dependent variable and without
exogenous regressors to allow the coefficient of the first lag to be individual-varying. The same observation applies to the model
considered in this section, in both the logistic and in the semiparametric case. We are grateful to one of the referees for pointing

this out to us.
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4.3 Identification in multinomial logit models

We next consider the case where the individual chooses among M alternatives. The model is:

Pr(yio =m|zi, ;) = Pmio (24, )

exp (xmitﬂm +anm + ’ij)

Pr(yi = m|zi, ap,yie—1 = j) = t=1,..,T;T >3

M
> exp (zhit By + i + Vin)
h=1

where a; = {cu,m'}%:1 and z; = {{l”mit}%:l }:;1 . The model above is obtained if we assume that the under-
lying errors in the well known random utility ;naximization framework are independent across alternatives
and over time conditional on (z;, a;,¥:0) , and identically distributed according to the Type I extreme value
distribution, and hence independent of (x;,a;,y:;0). Note that we now model individual heterogeneity as
depending also on the choice, i.e. each individual has a specific attitude toward each alternative, a;, where
j €{1,...,M}. Furthermore, the coefficient y on the lagged endogenous variable is now allowed to depend
upon both the past choice and the current choice, so that there are in total M? feedback parameters. Thus,
Y;m 1s the feedback effect when a choice of alternative j at ¢t — 1 is followed by choice m at time ¢, where
jyme{l,..,M}.

For the model above, identification of {ﬂm}%zl and {vjm};\j[mzl is based on sequences of choices where
the individual switches between alternatives at least once during the periods 1 through 7" — 1. Out of all
possible M T+ sequences of choices among the M alternatives in the T + 1 periods, there are (MT+1 — M3)
such sequences. However, similar to the dynamic multinomial logit model without time-varying exogenous
regressors (see Magnac, 1997), only (M? — (2M — 1)) feedback parameters y are identified.

Consider the events:
A ={yio =do, .-, Yit—1 = J,Yit =M, Yit41 = @5y Yis—1 = D, Yis = L, Yis41 =T, -, i = d7}
and
B ={yio =do, ., Yit—1 = J,Yit = L, Yit+1 = ¢, s Yis—1 = Py Yis = M, Yist1 =75 e, i = dr}

where 1 <t < s < T —1, and j,m,q,p,{,r,do,dr € {1,..., M} with m # £. It is possible to verify that, if

Tmit+1 = Tmist+1 tor all m € {1,..., M}, then,

Pr (B| xi, 05, AU B, {mmit-l-l = wmis+1}%:1)

€xXp ((mMit - mTTLiS) ﬂm + (mfis - .T[it) ﬂl + (’ij + 'qu + ’Ypl + 7(7‘) - (’le + ’qu + ’Ypm + ’Ymr))
1+ exp ((mmzt - xmis) ﬁm + (I'Zis - mfit) ﬂl + (’YJm + 7mq + 71)[ + 7[7“) - (’YJZ + ’YZq + ’Ypm + ’Ymr))

Defining the binary variables yp;; = 1 if alternative h € {1, ..., M} is chosen in period ¢ and 0 otherwise,

estimation may be based on maximization of

zn: Z Z L{Ymit +yeis = 1} K <xlt+1+nxw+1> y

i=1 1<t<s<T—1m#{
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Ymit
exp ((l'mit _mmis)ﬁm + (mﬁs _l'lit)ﬁz +7yit—1ym +’ymvyit+1 +’yyisf1,Z+7Lyis+1_’yyit71,l “Veyierr ~ Vyis—1m _’meisﬂ)

In
I+exp ((mmit _mmis)ﬂm + (‘Tﬁs _meit)ﬂe_‘_’yyii—l7m+’ymyyit+1 +’Yyis—17€+7lyyis+1_’)/yit—17f “Yeyierr ~ Vyis—1,m _’meis+1)

where z;; = (z14¢, .-, i) and where the necessary 2M — 1 restrictions on the +’s have been imposed (for

example v;; =v;; =0 for all j =1,..., M).

5 Some Monte Carlo Evidence.

In this section, we summarize the main results from a small Monte Carlo experiment designed to illustrate
the finite sample properties of the estimators defined in section 2. All the results presented in this section

are based on 1000 replications of the model:

Yio 1{zuf + a; +ei > 0}

Yit Wzulb +vyip—1 + i+ >0} t=1,...,T -1

We consider several different designs that differ on the length of the panel, the relative magnitude of 3
and 7, on the number of variables in x;; and on the data generating process for z;;. In all designs €;; is i.i.d.
logistically distributed over time. The benchmark design has T =4, v = 0.5, # = 1, and only one exogenous
variable x;; which is i.i.d. over time with distribution N(0,72/3). This makes the variance of x;;3 equal to
the variance of ;;. The fixed effect is generated as a; = (zi0 + i1 + 22 + 243) /4. Recall that the estimators
proposed in Section 2 use only the observations for which y;1 # y;2. For this design, the “effective” sample
size is reduced to about 37%. We consider sample sizes of 250, 500, 1000, 2000 and 4000.

We first focus on the finite sample performance of the estimator proposed for the logit case, which
maximizes (6). Given that the distribution of the underlying errors is correctly specified, this estimator is
consistent and asymptotically normal. To implement the estimator, one must choose a kernel as well as a
bandwidth. All the results presented in this section use a normal kernel. This means that s in Theorem 2 is
2. Since there is only one regressor in the benchmark design, the rate of convergence is maximized by setting
on = c-n~Y/5, for some constant ¢. However, in this case the estiamator is asymptotically biased (see the
Remark following Theorem 2). In Table 1, we present results for ¢ = 1, 2, 4, 8, 16, 32 and 64. For each
bandwidth and for each sample size, we present the mean bias and the root mean squared error (RMSE) of
the estimator. Since these measures can be sensitive to outliers, we also present the median bias and the
median absolute error (MAE) of the estimator. In what follows, we focus on these robust measures of bias
and precision.

—2/5_ The results in Table 1 suggest

By the Remark following Theorem 2, the estimator converges at rate n
that for this design, the theoretical rate of convergence gives a fairly good approximation to the finite sample

behavior of the estimator. For example, when we regress the logarithm of the median absolute error of 7,, on
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the logarithm of sample size (and allowing for a bandwidth—specific intercept), we get a coefficient of —0.47,
which is fairly close to the predicted value of —0.4. If we exclude the samples of size 250, then the coefficient
is —0.41.

When v = 0 or § = 0, the estimator defined by minimization of (6) is consistent and root—n asymptotically
normal if the bandwidth is fixed, i.e., does not shrink to 0. The reason for this is that, when v = 0 or
B =0, the terms in (6) are the same terms that would enter into a correctly specified conditional likelihood

function.?

It therefore seems likely that the small-sample performance of the estimator depends on the
relative magnitudes of v and 8. In particular, if v is small, one would expect the estimator to perform well
even if the bandwidth is large. In order to investigate the sensitivity of our results to the value of 7, we
consider designs with v equal to 0.25, 1.0 and 2.0. For these designs, the effect of the lagged dependent
variable on the first order serial correlation of y;; ranges from being smaller, to being greater than the effect
of the permanent error component.® The results for the alternative values of v are given in Tables 2 (to
conserve space, we present only the results for o, = 8 - n’l/s). Our findings confirm that as v increases,
the bias increases dramatically.” Intuitively, we would expect that longer panels would dramatically improve
the performance of the estimator for . Table 2 therefore also presents results for 7' = 8. Since the same
bandwidth is used for the two sample sizes, it is not surprising that the bias is of approximately the same
magnitude, but the median absolute errors do decrease dramatically. Interestingly, the gains seem to be
about the same for both B and 4.

It is difficult to interpret Monte Carlo results like the ones presented here without a comparison to
competing estimators. Because there is no other consistent (at n — oo) estimator for the dynamic panel
data logit model considered here, we will compare our estimator to the maximum likelihood estimator that
estimates all the fixed effects. This estimator is consistent as T — oo with n fixed, which suggests that its
behavior will depend crucially on the number of time—periods. We therefore report results for 7' = 4, 8, and
16 (to conserve space, we consider only n = 250) . As this estimator will be inconsistent (as n — co) but

—1/2

converge at rate n to its probability limit, we expect this estimator to have larger bias but less variability

than the estimator proposed here. Columns three through six of Table 3 give the results for this estimator

5This observation also suggests that it is possible to test for true state dependence by considering (6) with a fixed bandwidth.

Investigation of such a test, which would be in the same spirit as the test proposed by Heckman (1978), is left for future research.

6Specifically, if there is no fixed effect and no exogenous explanatory variables in the model, then the first order serial
correlation of y;¢, due entirely to the presence of the lagged dependent variable, is approximately 0.06, 0.12, 0.23 and 0.41, for y
equal to 0.25, 0.5, 1.0 and 2.0, respectively. If only the fixed effect is present in the model, then the first order serial correlation
is 0.15. Including the term z;;3, and when there are no individual effects, the corresponding calculations yield first order serial
correlation of 0.04, 0.07, 0.15 and 0.29 for the four values of . In the absence of the lagged dependent variable, and with the

inclusion of the exogenous variable, the first order serial correlation resulting from the fixed effect is 0.16.

"In simulations not reported here, we found that this is especially true for large bandwidths. This suggests that it might be

important to let the bandwidth be data-dependent.
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for the four values of v considered earlier, whereas the results for the estimator proposed in this paper (with
0n = 8-n~'/%) are presented in columns seven through ten. The most striking feature of these results is that
the maximum likelihood estimator that estimates all the fixed effects is inferior in terms of median absolute
error to the estimator proposed here for all the values of v and T, although the results for 4 are close when
v=2and T = 16.

It is not too surprising that our estimator performs better than an estimator which is inconsistent. We
therefore also compare the estimator to the infeasible maximum likelihood that uses the fixed effect as one of
the explanatory variables (treating its coefficient as an unknown parameter to be estimated). As expected,
this estimator performs better than the one proposed here, with the relative performance of our estimator
being worse when 7 is larger and when 7' is smaller.

It is well understood that the design of the regressors in Monte Carlo studies may have a large effect
on the results. For example, normally distributed regressors often make estimators look better than they
are for other distributions of the regressors. In order to investigate this issue, we modify the benchmark
design by changing the distribution of z;; to a x2 (1) random variable, normalized to have the same mean
and variance as the regressor in the benchmark design. See the upper left hand corner of Table 4. The
results are quite similar to those presented in Table 1. To conserve space, we present only the results for
0n = 8-n /% Another problem with the choice of design is that the rate of convergence of the proposed
estimators decreases as the number of regressors increases. In order to obtain information about the finite
sample behavior of the estimator when there are more explanatory variables, we add three regressors to
the benchmark design. All three are generated as N (0, 7?2/ 3) independently of each other and of all other
variables. The true values of the coefficients on the additional regressors are all zero, i.e. 8, = 83 = 84 =0,
so the data—generating process is the same as for the benchmark case and the only difference is that three
additional regressors are used in the estimation. The results from this experiment are given in the upper
right hand corner of Table 4. To conserve space we report only the results for 3, and for v and for one of
the bandwidth sequences (note that the rate at which the bandwidths decrease is slower as a result of the
additional regressors). The results suggest that the cost of adding the additional parameters is not high in
terms of the median absolute error of the estimator of the two original parameters, 4; and ~.

Since 7 is essentially identified from the time series behavior of y;;, one might worry that the i.i.d. design
of the regressors biases the results in favor of our estimator. To investigate this, we change the benchmark

design to allow for serial correlation and a time—trend in . Specifically we generate x;; as
zip =c- ({3 +a+0.1-1)

where (;; is an AR(1) with standard normal innovations and autoregressive coefficient equal to 0.5. a is
chosen so that a + 0.1 - ¢ averages 0 over the sample, and ¢ is chosen so that the variance of the marginal
distribution of z;; is the same as in the benchmark design. This design was chosen because it is very close

to that used in Heckman (1981b). The fixed effect is constructed as the average of the first four realizations
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of ¢- (;. The results of this experiment for 7' = 4 and 7' = 8 are given in the lower part of Table 4. A
comparison between the results in Table 4 and the corresponding results in Table 2 suggests that the i.i.d.
property of the explanatory variable in the benchmark design is favorable to the estimator proposed here,
although the difference is surprisingly small. As one might expect, the difference is more pronounced when
T is larger, presumably because the time—trend in the regressor is more important with many time—periods.

The asymptotic normality of the estimator may be used to conduct asymptotically valid inference. To
investigate how well the asymptotic results approximate the finite sample properties of the resulting con-
fidence intervals, we calculate 80% and 95% confidence intervals for each of the two parameters of the
benchmark design. In Table 5, we present the percentage of times that these confidence intervals cover the
true parameter values. The results suggest that for the benchmark design, the asymptotics provide a fairly
good approximation of the finite sample distribution of the estimator (and the estimator of its variance),
although it seems that the confidence intervals have coverage probabilities that are slightly smaller than
the asymptotic theory would predict. This is consistent with the fact that the confidence intervals are not
centered correctly (due to the asymptotic bias). We expect this problem to be more severe if 7 is big, and
the sample size and bandwidth are both large, because in this case the bias will be more important relative
to the variance of the estimator. Indeed, in additional experiments (not reported in Table 5), we found
that, with 4000 observations, v = 1, and o,, = 64 - n~ /5, the coverage probabilities for the 80% and 95%
confidence intervals were approximately 47% and 74% for 3 and 57 and 80% for ~, respectively.

We finally turn to examine the small sample properties of the maximum score estimator obtained by
maximizing (9). In Table 6, we present the results for the benchmark design. Because the assumptions
maintained for the maximum score estimator do not identify the scale of the parameter vector, we consider
v/B as the parameter of interest.® A priori, we expect the maximum score estimator to perform worse
than the estimator that imposes the logit assumption. We also expect the rate of convergence to be slower
than that of the logit estimator, because, for the panel data binary response model with only exogenous

—1/2 rate

regressors, the maximum score estimator is known to converge at rate n1/3, as opposed to the n
of convergence of the logit maximum likelihood estimator. The results in Table 6 confirm this. The median
absolute error of the maximum score estimator is larger than that of the logit estimator in all cases, and the

relative difference is larger for larger sample sizes.

8The objective function for the maximum score estimator is not differentiable, and is therefore potentially difficult to
maximize. We calculate the estimator by performing a grid search over 600 equally spaced points on the unit circle. If more
that one point achieves the maximum value of the objective function, then the estimate is calculated as the average value of

those different point estimates of v/f3.

19



6 Concluding Remarks.

In this paper, we consider discrete choice models that allow for both unobserved individual heterogeneity
(Heckman’s “spurius” state dependence) and “true” state dependence. We show that it is possible to identify
such models within the logit framework, and we propose an estimator which is consistent and asymptotically
normal, although the rate of convergence is slower than the usual inverse of the square root of the sample
size. The results of a small Monte Carlo study suggest that the estimator performs well (for the very simple
designs considered), and that the asymptotics provide a reasonable approximation to the finite sample
behavior of the estimator. The paper also proposes an estimator of the semiparametric version of the model.
That estimator, which is an adaptation of Manski’s maximum score estimator, is consistent, but we do
not derive its asymptotic distribution. In future research, we plan to investigate whether it is possible to
obtain an asymptotically normal distribution (under a stronger set of regularity conditions), by applying
Horowitz’s (1992) approach to smoothen the objective function (9) above. This suggests estimating 3 and

~ by maximizing

- Tiz — T Tip — %i1) b+ g (yis — yi
ZK( 20 3>(yi2_yi1)L<( 2 1) - 9 (Yis yO))
i=1 n n

where L is a kernel function that satisfies: L (v) "=="° 0 and L (v) "=3 1, and h,, is another bandwidth

sequence that tends to 0 as n increases.
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8 Appendix

1. LOGIT CASE

The ideas behind the proofs of Theorems 1 and 2 are very closely related to those underlying local
likelihood estimation (Staniswalis (1989), and Tibshirani and Hastie (1987)) and robust regression function
estimation (Hérdle (1984), and Hérdle and Tsybakov (1988)). The difference is that the object of interest

here is a finite dimensional vector, whereas in those papers it is an unknown function.

Proof of Theorem 1

After re-scaling by 1/nok, the objective function (6), can be written as:

Qnit) = o SR (2 ) o

To show consistency of the maximizer of @, (6), we will use Theorem 4.1.1 in Amemiya (1985). The theorem

requires that the following conditions hold: (A1) © is compact, (A2) Q,(#) is continuous in 6 € O, (A3)
@, (0) is measurable for all # € 0, (A4) Q,(f) converges to a nonstochastic function () in probability
uniformly in # € © and (A5) Q(0) is uniquely maximized at 6.

Notice that (A1) is satisfied by Assumption C2, while (A2) and (A3) are trivially satisfied.

To verify (A4) we will use Lemma, 2.9 in Newey and McFadden (1994), which requires that © be compact
(satisfied by Assumption C2), that @, (f) converge to Q(6) in probability for all 8, where ()(#) is continuous
in 6, and that there exists @ > 0 and Z,, = O), (1) such that for all 6,0 €0, Qn(0) —Qn (é) ‘ <Z,|l0—-8 :

Note that standard arguments (bounded convergence) and under our assumptions,

EQ.01=F | K (22)h0)] > f O B2 =0 = Q00)

n n

and

Var[Qu @] =0 (25 ) =o()

n

which by Chebyshev’s theorem imply that Q,,(8) N Q(0) for all § € ©. Continuity of Q(f) may be easily
established by dominated convergence arguments using the fact that |k (8)] < In2 + 2|z]|]|6||, and that
under our assumptions F [||z||| #23] < oco. Next, note that by the multivariate mean value theorem and by

the triangular inequality,

IN

Qn(6) = @n (9)]

= L )y \K ()\ [ @)
o] o 3o (32)

where 6 lies between 6 and #, and where the second inequality follows from the fact that thl) (67)

xp(z0
(14 2220 il < 2l Let Zo = e 3,

our assumptions, E[Z,] = O (1) and Var[Z,] = O ( L ) , which imply that Z, = O, (1) as required.

ok
nok

IN

[zl

<

K (zaﬁ)‘ [|zi]] - It is straightforward to show that under
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Finally, to complete the proof of the theorem we need to show (A5), i.e. that Q(f) is uniquely maximized

at 6. Recall that 8 = (b, g)". By assumption, Q(b, g) is well-defined and finite for all b and g, and

Q(b,9)

fF(O)E [h(b, g)|w23 = 0]

fO)E [P(yl # ya|x2s = 0,90,y3) E I:E(bv 9)|w23 = 0,90,y3, 1 # y2] ‘ T3 = 0}

where h(b,g) = In (%) . The logit assumption implies that P (y; # y2|wa3 = 0,y0,%3) > 0.

Next note that conditional on (z23 = 0,y0,¥ys,y1 7# y2), h (b, g) is the log-likelihood of a logit model with
explanatory variables z15 and yo3. If y3 = yo, then E [5(0)|m23 =0,90,Y3,y1 # yg} does not depend on g,
but as a function of b, it is uniquely maximized at b = 3 provided that x5 is not contained in a proper linear
subspace of R* with probability 1, conditional on (223 = 0,0, ¥y3,y1 # y2) (this follows from standard proofs
of consistency of the maximum likelihood estimator of a logit model). By the maintained logit assumption,
this “full-rank” condition follows from (C6). If y3 # yo then E |h()|z23 = 0,y0,y3,y1 # y2| depends on
both g and b, and it is uniquely maximized at b = § and g = -y provided that (z12,y03) is not contained in a
proper linear subspace of R**! with probability 1 conditional on (223 = 0,%0,¥3,%1 # y2). Again, the latter

will be true by the logit assumption under assumption (C6). This implies that Q(b, g) is uniquely maximized

at b=/ and g = 7.

Proof of Theorem 2 — Part (i)

The asymptotic normality of the proposed estimator is derived in a standard way. Since the objective
function is differentiable, 6, € int (©), and 6, is a consistent estimator of 8, then for n large enough the

estimator satisfies the first order conditions:

An expansion of these around 6 yields:

0 = e S (K (52) W0 - [ (T2) 10 @)

= Zu(80) + /1oL E (B (80)] = Ju (63) -/ (B 00)

where % (which may be different for different rows of J,, (-)) lies between 6,, and 6 and therefore converges
in probability to 6p. The asymptotic normality of \/nok (97; - 00) will follow from Z, (6) 4N (0,V),
\/nokEB,, (8) — 0, and J,, (8) % J (8) uniformly in # € © where J (6) is a nonstochastic function that is
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continuous at . This last result will imply (by Theorem 4.1.5 in Amemiya (1985)) that .J,, (8%) 2 J (6) =
J.

We will first show that Z, (89) = N (0,V).

Let ¢ be a (k+ 1) x 1 vector of finite constants such that ¢’c = 1. To show the claim it suffices to show

that ¢'Z, (6o) 4N (0,c'Ve) . Write:

(2, (00) = WZ (4 00) ~ 2 [4" (00)]) 2%26

where {;,,}!" , is an independent sequence of scalar random variables. We will verify that {;,}" , satisfies

the conditions of the Lyapounov CLT for double arrays (see Theorem 7.1.2 in Chung (1974) and comment

+6
on page 209). We need E[;,] =0, Var[§;,] < 00, V = limy,_y0 Var[§;,] < oo, and Y ;- | E { £ } -0
for some ¢ € (0,1) . Indeed:
1 1
El¢,) = CE l( ¢ (o) | =0
[fzn] \/U_I” ( 0) \/U_I” ( 0)
1 !
Var[¢,] = B €&l c=CE [ wat) (60) 4t (60) ] c——cE[q" (80)] B[4V (60)] ¢

Note that under our assumptions (see Assumptions (N5) and (C7)) both terms of Var[¢,,] are finite. Now,

for the first term of the variance, bounded convergence yields:

1
b a_kq(l)(eo)q(l)wﬂ)l} - F

n

iK (@)2 B [h(l) (6o) R (00)" ng]l

ak on
5 FO) B[R (60) O (B0)] 22 = 0] /K(V)Qdy

since f () and E [h() (65) b)) (8)'| 223 = -] are continuous in a neighborhood of zero (Assumptions (C3)
and (N6)). The second component of Var [¢;,] goes to 0 since E [¢1) (6)] = O (o%) . Therefore,

nlgréo Varl¢,]=¢ {f (0)E [h(l) (60) BV (00)" To3 = 0] /K2 (v) du} c=cVe

which under our assumptions is bounded away from infinity. Finally, for any § € (0,1),

# () [l )]

— 92ts (ﬁ)a/m(’/)ﬁHE[Hh(l) (00)H2+5

0
2245 (—_:mk> J 1K @) B[ = v £ ) v

2+0
gin
N

n
Z E
i=1

| E—
IN

To3 = I/O’n:| fvoy)dv

IN
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since [ |K (v) |2+‘i dv is finite by the finiteness and absolute integrability of the kernel, and E ||z||2+6 |zos =-| £ ()
is bounded for all z23 under (C3) and (N5).

We will next show that\/nok EB,, (69) — 0.

By Assumptions (N2) and (N3), E [h(V) (00)| Za3 =] f(-) = ¢ () is s times continuously differentiable.

A Taylor expansion around x»3 = 0 yields:

E[B. ()] = EL—%K (j—f) Ko (00)]
_ /U—lﬁK <”(;—2:> E [0 (80) | w25] £ (225) oy
= /g_ng (”3) {cp (0) + ™M (0) oz + ... + $<p<8> (#23) xgg} da3

= 0)/K dl/+<,0)(0)an/VK(u)dV+...
1

e VO [ K Gt [ VK @)@ @) d

1
= 0+...+0+aflg VK (v) o (¢,) dv

since ¢ (0) = £(0) - E [nV (00)|m23 =0] = f(0)-0 = 0 by the first order conditions of the limiting
maximization problem, and K is an s’th order kernel (Assumption N7). Here, ¢, is a (k x 1) vector whose
elements lie between 0 and vo,. Now, under our assumptlons 5 [V K (v )¢ (¢,) dv = O (1) . Therefore,

since y/nokos — 0, we obtain,

nok E [B,, (00)] = \/noka? '/ ) () dv — 0

Finally, we will show that supgce ||Jn (6) — J (8)|| = 0, (1) where J (§) = —f(0) - E [h(? (9)| T2z = 0] is
continuous at 6.

First note that .J () is continuous in € for all # (and hence at 6p). This may be easily verified using
dominated convergence arguments and the proof is omitted. To verify the uniform convergence, we will use
Lemma 2.9 of Newey and McFadden (1994).

Note that standard arguments (bounded convergence) and under our assumptions,

E[J,(0)] = —E [U—lﬁK (%) h® (9)] S _f(0)E [h<2> (9)‘ oy = o] = 7 (6)

since f (-) and E [h(? (9) |23 = -] are continuous in a neighborhood of zero, and for the ji’th component of

In (0),
YRR

n

1 T 2
g (ﬁ> n (0)?,

On

26



which by Chebyshev’s theorem imply that J,,(8) < J(6) for all § € ©. Next, note that by the multivariate

mean value theorem and by the triangular inequality,

[ror-1.@)] < Jo-o) oy 3| (22)
o2l g 5= e (222 [

h(3) )

IN

IN

(3) (0*)
K (%)‘ lzil|® . Tt is straightforward to show that

where 0* lies between 6 and 6, and where the second inequality follows from the fact that

X ;0 1—ex 19 3
(0ol D |zl < J|zill®- Let Zo = i

E[Z,] = O(1) and Var[Z,] < O (#) , since by Assumption (N5) F [||z||6‘ Loz = } < oo which imply
that Z,, = O, (1) as required.

<

Proof of Theorem 3

The proofs of the two parts of the theorem rely on the fact that, under the assumptions, 9n 4 6y and
on the fact that the proposed estimators of the asymptotic variance components converge in probability
uniformly in § € © to nonstochastic limit functions which are continuous at 6y. Uniform convergence in
probability of .J,, (#) to J (6) was established above. The proof that V,, (§) converges in probability to V' (6)

uniformly in # € O follows exactly the same arguments and it is omitted.

2. SEMIPARAMETRIC CASE

The following result on uniform rates of convergence, adapted from Pollard (1993) to the multivariate
case, will be useful (see also Theorem 37, Chapter 2 in Pollard, 1984). We will denote by P,, the empirical
measure generated by independent sampling from a probability distribution P. Following the empirical

process literature, we will also use P to denote the expectation operator.

Lemma 5 (Uniform Rates of Convergence) Let F,, be a subclass of a fized Fuclidean class of functions

F that has envelope F'. Suppose there exist constants 0,, — 0 such that sup P |x| = O (0’2) . If F is constant

[okInn :
sup |P,x — Px| = O, ( ) :OP(U];L)
Fn n

Note that nok/Inn — oo implies that Inn/n = o(ck). Hence, if a,, = O, (\/@) then a, =

o (Vb)) =0, (0).

Define:
1 1 Ti23
Qn(9)=&'52K<;> ZQZ = —Pag

and no® /Inn — oo, then:
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where now h(0) = yo18gn(20) with 2 = (z21,y30)- As we show below, @,(#) converges in probability

uniformly in # € © to the nonstochastic function:

Q(8) = f(0)E[h(8)|z23 = 0]
Proof of Theorem 4

Note that in the semiparametric case the objective function is no longer continuous in 6. To show
consistency we will use Theorem 9.6.1 in Amemiya (1985) which requires that the following conditions hold:
(A1) © is a compact set, (A2) Q,(f) is a measurable function for all § € ©, (A3) @,(0) converges in
probability to a nonstochastic function Q(#) uniformly in 6 € ©, and (A4) Q(f) is continuous in 6 and is
uniquely maximized at 6.

The first condition is satisfied by construction of ©. Condition (A2) is trivially satisfied. For condition
(A3) we need to verify that supgeg |@n(0) — Q(#)| = 0, (1), which follows from supgeg |@n(0) — EQn ()] =
0p (1) and supyce |EQn(8) — Q(0)| = o(1).

Note that supgcg |@n(8) — EQn(0)| = 0y (1) <= supz, |Pog — Pg| = 0p(c%) where

fnz{z(<”;—2:>h(0):ee@}

and o, > 0 and 0,, — 0. F,, is a subclass of the fixed class F = {K (22) h(6) : 0 € ©,0 > 0} = F,Fy, with
Fo = {K (£2) : ¢ > 0}, which is Euclidean for the constant envelope sup |K| (see Lemma 22(ii) in Nolan
and Pollard, 1987) and Fyp = {h(f) = y21sgn(26) : € ©}. Note that h (#) is uniformly bounded by the
constant, envelope Fy = 1. Furthermore, it is easy to see that there is a partition of ® into k + 1 intervals on
each of which h (0) is linear. This implies that F is Euclidean for the constant envelope F' = sup|K]| (see
example 2.11 in Pakes and Pollard (1989)). Next, note that

sup P|q|
Fn

IN

supa, / K ()| E [y sgn (6)]| 223 = v00] f (vorn) di

IN

k _ k
571:17? o, / |K (V)| f (vo,)dv =0 (oF)

Applying Lemma 5 we obtain that

cklnn
sup |P,q — Pg| = O, ( n ) = op(o})
Fn n

by assumption (CS8).
We next show that supgeg [EQn(6) — Q(6)] = o(1). Let ¢ (-) = E[h(8)|z23 = -] f (-). Notice that by

assumption (CS6) we can write:

p Q. (6) - Q)| = swl|E| K (ﬂﬁ—f)hw)]—f(O)E[h(0>|x23=o1\
= sup /a_ng (i—f)w(wm)dwm—w(o)‘
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1
= sup /—kK <@> [ap (0) + oV (5523)5623] dzaz — 90(0)‘
E) On On
= sup cp(O)/K(V) dV—i—O’fL/I/K (v) <p(1) (cn)du—go(O)‘
e®
= sup a’;;/VK ) oM (¢,) dv
e®
< a'fl/|1/K (v)| sup ‘cp(l) (cn)‘du
e®
= 0(oy)
= o(1)

and the desired result follows.

To show that the identification condition (A4) holds we will follow Manski (1985, 1987). Let

Zy = {z : sgn (20) # sgn (260)}

and

R(a) = 4 dFZlIzg:O

Lemma 6 establishes that R (f) > 0 for all § € ®**! such that 6/ ||| # 6. Lemma 7 uses this result to
establish the desired result, namely that Q(65) > @ (8) . We will assume throughout that all distributions

that condition on the event that z23 = 0 are well defined.
Lemma 6 Let assumptions (CS2)-(CS4) hold. Then R () > 0 for all § € R¥* such that 0/ ||0|| # 6.

Proof: The claim follows from Lemma 2 of Manski (1985) provided that we can show that (i) Pr (21 € N|Z21,y0 = do, Y3
0 for any subset N of &, and (ii) Pr (:Egll; + Y309 = 0‘ To3z = 0) < 1 for all (l;,g) .
(i) Note that for any subset N of R :

Pr (@21, € N|&21,y0 = do, y3 = ds, x23 =0)

Pr(z21,x € N,yo = do, y3 = d3| T21, 223 = 0)
Pr(yo = do,ys = d3| £21,223 = 0)

Pr (a1, € N|&21,223 =0) - Pr(yo = do,ys = d3| 221, € N, Z21,223 =0)
Pr(yo = do,ys = ds| Z21, 23 = 0)

PI“(ZEQLFU € N| T21,%23 = 0) : fPr(yo =dp,y3 = d3| T,q,Ta3 = 0) sz,a\zzazO,im,zszN
Pr(yo = do,ys = ds| T21, 223 = 0)

By Assumption (CS3) x21 , has positive density on R for almost all Z2; and conditional on z23 = 0, so that

Pr (5[7217,.; S N| To1,X23 = 0) > 0. Next, note that
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/PI“ (yO = d07y3 = d3| T,Q,T23 = 0) sz,a|:t23=0,521,z21,,¢€N

= /Pr(y3 =dz|z,a,y0 = do, z23 = 0) Pr (yo = do| 7, a, 223 = 0) dFy o|255—0,321,001.. €N

Y Pr(ys =ds|w,a,y0 = do,y> = do,y1 = di, w23 = 0) Pr(ys = da| x, 2,50 = do, y1 = di, 25 = 0)
dl,dze{o,l}

Pr(y1 = di|z,a,y0 = do, z23 = 0) Pr(yo = do| 7, @, 223 = 0) dFy ]253=0,52, 001, €N

= Y F(x3B+a+ydy) F (228 + a+yd) F (218 + a + vdo)
dl,dze{o,l}

-Pr (yO = d0| T,Q,T23 = 0) sz,a\zz;;:O,im,zaneN

where the integrand is strictly positive by Assumption (CS2), and from the fact that Pr (yo = dp| z, @, 223 = 0)
will be always positive even if yo = 1 (or 0) with probability one conditional on (z,a) .

Hence, Pr (yo = do,ys = d3| x21,x € N, %21, 223 = 0) > 0 and therefore Pr (yo = do,ys = d3| 21,223 = 0) >

(ii) Note that for ¢ = 0, Pr (:7:215+y3()g = 0‘:1:23 = 0) = Pr (:1?215 = 0‘:1:23 = 0) < 1 by the full rank
condition in Assumption (CS4). Now, for g # 0
Pr (5215 + Y309 = 0‘ T3 = 0) = /Pr (yBOQ = —53215‘ T21,T23 = 0) AF 3, |205=0
= / > Pr (ygg = dog — 53215‘ Yo = do, T21,T23 = 0)
dge{o,l}
-Pr (yo = d0| 5721, 23 = 0) dFizﬂng:O

By Assumption (CS2), Pr (ygg = dog — 552113‘ Yo = do, To1, T3 = 0) < 1, and the desired result follows.

Lemma 7 Let assumptions (CS2)-(CS5) hold. Then Q(85) > Q(6) for all € RETL such that 6/ |0|| # 65

Proof: For all § € RF+1,

Q(6) — Q(0)
= f(O)E[yx (sgn(26;) — sgn (20))| w23 = 0]
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= 21(0) [ sgn(a60) Elyz ~ | 2,020 = 0]dF g
Zg

= 2f(0)/ sgn (260) E[E [y2 — y1|z,@,y0 = do, ys = d3, 23 = 0]] 2,223 = 0] dF;|pp5—0
Zg

= 2f(O)/ sgn (260) E [Pr (y1 = 0,y2 = 1|z, a, yo = do, y3 = d3, r23 = 0)
Zg

— Pr(y1 = 1,y2 = 0|z, , yo = do, y3 = d3, w23 = 0)| 2,223 = 0] dF’|5,,—0
= 2f(0)/ sgn (200) E [Pr (A|z,a,y0 = do, y3 = d3, 723 = 0)
Zg

— Pr(B|z,a,y0 = do,y3 = d3, 723 = 0)| 2,223 = 0] dF 3,50

Pr (Alz, o, 223 = 0) — Pr(B|z, a, z25 = 0)
27(0 FE | sgn (20
f()/zg {g ( 0)< Pr(yo = do,ys = ds| z, a0, 223 = 0)

As we have shown in Section 2, sgn (Pr (A|z, @, z23 = 0) — Pr(B|z,a,z23 = 0)) = sgn(z6p), so that the

Z,T23 = 0:| sz\zzgz[)

integrand above is non-negative which implies that sgn (260) E [y2 — y1| 2,223 = 0] = |E [y2 — y1] 2, 223 = 0]| .
Therefore,

QU65) = Q6) = 2£0) [ 1B [y =1l 20220 = 0| dF. gm0 2 0
Now, E [y2 — y1| 2,223 = 0] # 0 for almost all ; since E [y2 — y1| 2,223 = 0] = 0 if and only if sgn (z6) =0,
or equivalently zfy = 0, an event that has zero probability measure under our assumptions. It then follows

from Lemma 6 and from Assumption (CS5) that Q(65) — Q(6) > 0 whenever 0/ ||0]| # 65.

Finally, to show continuituy of the limiting objective function with respect to 8, we follow Lemma 5 of
Manski (1985). From the proof of that Lemma, it is clear that we need to establish continuity of terms of

the form:

Pr (yl =di,y2 = da, 21,50 > —9 (Y3 — Yo) — 53215‘ To3 = 0)

> Pr (y1 =di, Y2 = da, T21,5bx > —g (d3 — do) — 55215‘3523 =0,y0 = do,ys = d3) X
dg,dge{o,l}

Pr(yo =do,ys = ds| x23 = 0)

= Z / [/ _Pr(yl:dl,y2:d2|1’,1‘23:0,y0:d0’y3:d3)
do,dsef0,1} Y 21 |/ —9(ds—do)=Z21b

fI21,n|I23=07y0=d0,y3=d3,521 ($21,n) dm?lﬂ"‘v] dFim\Iza:O,yo:do,ya:da X
Pr(yo = do,ys = d3| w23 = 0)
Note that in order to establish continuity of the last expression above with respect to 8 = (l;, g) it is sufficient

that fo,, . |2a3=0,y0—do,ys—ds (T21,x) does not have any mass points. This will be true given our assumption
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(CS3) on fI21,,i‘z23=0,521 ('T217K) .

32



op =1
Op =2
op=4-
onp =28
on =16
op = 32
o, =64-

—1/5

'n

=1/

n—1/5

.p—1/5

n—1/5

=1/

—1/5

Table 1. Benchmark design. (7 =0.5,8 = 1,z; ~ N(0,7%/3),0; = > 1_, Tit/4)

Sample
Size

250
500
1000
2000
4000

250
500
1000
2000
4000

250
500
1000
2000
4000

250
500
1000
2000
4000

250
500
1000
2000
4000

250
500
1000
2000
4000

250
500
1000
2000
4000

Mean
Bias

1.393
0.421
0.148
0.065
0.037

0.323
0.144
0.073
0.033
0.019

0.165
0.085
0.049
0.024
0.015

0.137
0.075
0.049
0.032
0.022

0.138
0.078
0.058
0.044
0.035

0.141
0.081
0.063
0.050
0.043

0.142
0.082
0.064
0.051
0.046

~

Results for 3,

RMSE Median

5.631
1.479
0.445
0.259
0.182

0.891
0.431
0.255
0.175
0.120

0.423
0.264
0.173
0.123
0.086

0.335
0.207
0.137
0.098
0.069

0.320
0.192
0.130
0.092
0.066

0.320
0.190
0.130
0.093
0.069

0.320
0.190
0.131
0.094
0.071

Bias

0.284
0.140
0.081
0.035
0.017

0.127
0.075
0.044
0.019
0.010

0.080
0.049
0.035
0.019
0.010

0.076
0.044
0.038
0.028
0.019

0.088
0.051
0.049
0.040
0.031

0.090
0.055
0.052
0.046
0.039

0.092
0.056
0.054
0.048
0.042

MAE

0.450
0.296
0.207
0.147
0.109

0.269
0.205
0.148
0.109
0.079

0.183
0.144
0.108
0.076
0.053

0.154
0.113
0.086
0.063
0.044

0.152
0.102
0.077
0.058
0.043

0.152
0.102
0.077
0.058
0.046

0.156
0.102
0.077
0.058
0.047

Mean
Bias

0.890
0.054
0.047
0.025
0.015

0.166
-0.005
0.022
0.003
0.011

0.036
-0.019
-0.006
-0.015
-0.003

-0.015
-0.044
-0.038
-0.041
-0.031

-0.035
-0.063
-0.062
-0.065
-0.058

-0.042
-0.070
-0.071
-0.075
-0.072

-0.043
-0.072
-0.074
-0.079
-0.076

Results for 7,

RMSE Median

6.642
1.371
0.829
0.524
0.405

1.331
0.686
0.506
0.356
0.277

0.787
0.467
0.351
0.256
0.196

0.645
0.382
0.282
0.207
0.151

0.611
0.361
0.264
0.196
0.141

0.607
0.359
0.263
0.197
0.144

0.607
0.359
0.264
0.199
0.146

Bias

0.103
0.017
0.029
-0.007
0.006

0.059
-0.007
-0.009
-0.007

0.013

0.018
-0.013
-0.022
-0.024

0.001

-0.039
-0.052
-0.035
-0.042
-0.035

-0.069
-0.070
-0.064
-0.065
-0.059

-0.068
-0.074
-0.069
-0.069
-0.076

-0.072
-0.077
-0.071
-0.073
-0.079

MAE

1.106
0.670
0.448
0.350
0.264

0.688
0.412
0.327
0.242
0.192

0.487
0.295
0.221
0.170
0.134

0.403
0.256
0.178
0.143
0.102

0.367
0.255
0.168
0.135
0.098

0.363
0.244
0.173
0.134
0.100

0.359
0.243
0.176
0.134
0.103

33




v =0.25
v=0.5
v=1
v=2.0

250
500
1000
2000
4000

250
500
1000
2000
4000

250
500
1000
2000
4000

250
500
1000
2000
4000

Table 2. Benchmark Design with different values of ~

T=4

~

Results for 3, Results for 7,
Bias MAE Bias MAE

0.060  0.155 -0.027  0.354
0.029  0.106 -0.033  0.239
0.028  0.082 -0.019 0.174
0.018  0.060 -0.027  0.133
0.008  0.039 -0.011  0.091

0.076  0.154 -0.039  0.403
0.044 0.113 -0.052  0.256
0.038  0.086 -0.035 0.178
0.028  0.063 -0.042 0.143
0.019  0.044 -0.035 0.102

0.121  0.187 -0.028 0.454
0.076  0.126 -0.072  0.312
0.062  0.095 -0.085 0.225
0.045 0.072 -0.075 0.167

0.036  0.051 -0.058 0.119
0.196 0.251 -0.056  0.620
0.139 0.181 -0.117 0417

0.113  0.136 -0.148  0.321
0.087  0.102 -0.142  0.241
0.063 0.074 -0.118 0.163

T=28

~

Results for 3, Results for 7,,
Bias MAE Bias MAE

0.010  0.049 -0.026 0.124
0.005  0.038 -0.025 0.081
0.007  0.027 -0.019  0.062
0.004  0.020 -0.018  0.045
0.003  0.015 -0.018  0.034

0.014  0.050 -0.053 0.131
0.007  0.037 -0.054  0.098
0.009  0.027 -0.041  0.075
0.007  0.020 -0.036  0.051
0.005  0.015 -0.033  0.039

0.021  0.054 -0.095 0.152
0.014  0.041 -0.092 0.113
0.012  0.029 -0.080 0.098
0.010  0.021 -0.074 0.077
0.007  0.016 -0.064 0.065

0.016  0.064 -0.195 0.227
0.014 0.044 -0.179  0.197
0.016 0.034 -0.160 0.164
0.009  0.023 -0.133  0.134
0.006  0.017 -0.116  0.116
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Table 3. Alternative Estimators for Benchmark Design (n = 250)

Estimating the Fixed Effects

~

Estimator Proposed Here

~

Infeasible MLE

~

y T Bias MAE Bias MAE Bias MAE Bias MAE Bias MAE Bias MAE
025 4 0796 0.796 -2.663 2.663 0.066 0.161 -0.022 0.341 0.008 0.060 -0.006 0.099
8 0.263 0.263 -0.760 0.760 0.011 0.051 -0.024 0.131 0.005 0.036 0.003 0.065
16 0.010 0.010 -0.307 0.307 0.003 0.028 -0.022 0.067 0.001 0.024 -0.003 0.041
0.5 4 0.787 0.787 -2.577 2.577 0.086 0.170 -0.039 0.360 0.009 0.058 -0.006 0.100
8 0.257 0.257 -0.745 0.745 0.014 0.050 -0.053 0.131 0.003 0.035 0.005 0.062
16 0.101 0.101 -0.298 0.298 0.005 0.029 -0.053 0.074 0.003 0.024 -0.000 0.040
1.0 4 0.772 0.772 -2.355 2.355 0.107 0.191 -0.057 0.402 -0.001 0.063 -0.011 0.101
8 0.259 0.259 -0.700 0.700 0.021 0.054 -0.093 0.152 0.001 0.036 -0.000 0.062
16 0.104 0.104 -0.291 0.291 0.005 0.028 -0.105 0.109 0.003 0.024 0.003 0.040
2.0 4 0.740 0.740 -2.054 2.054 0.195 0.260 -0.074 0.579 0.003 0.068 0.005 0.120
8 0.268 0.268 -0.636 0.636 0.018 0.062 -0.190 0.222 0.006 0.039 0.008 0.079
16 0.109 0.109 -0.289 0.289 -0.003 0.034 -0.200 0.201 0.001 0.028 -0.004 0.051
Table 4. Benchmark Design with various designs for z;;
x?(1)-Regressors. o, =8 -n~'/> Additional Regressors. o, = 8 -n~'/8
Results for 3,, Results for 7, Results for 3, Results for 7,
n Bias MAE Bias MAE Bias MAE Bias MAE
250 0.090 0.171 -0.011 0.309 0.143  0.186 -0.041 0.431
500 0.052  0.128 -0.010 0.222 0.094 0.141 -0.037 0.273
1000 0.038  0.085 -0.034 0.161 0.070  0.099 -0.026 0.197
2000 0.037  0.071 -0.032 0.117 0.051  0.068 -0.063 0.155
4000 0.032  0.053 -0.021 0.081 0.041  0.056 -0.050 0.116

250
500
1000
2000
4000

Trending Regressor. T =4. 0, =8 -n />

Results for ﬁn

Bias

0.089
0.036
0.040
0.020
0.015

MAE

0.184
0.127
0.093
0.066
0.050

Results for 7,,

Bias

-0.013
-0.035
-0.046
-0.055
-0.039

MAE

0.385
0.260
0.196
0.141
0.092

Trending Regressor. T = 8. 0, =8-n />

Results for ﬁn

Bias

0.008
0.004
-0.002
0.001
-0.001

MAE

0.060
0.045
0.031
0.021
0.015

Results for 7,,

Bias

-0.049
-0.055
-0.040
-0.034
-0.030

MAE

0.136
0.099
0.071
0.056
0.043
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Table 5. Coverage Probabilities of CI’s for Benchmark Design.
Results for En Results for 7,

n 95% CI  80% CI 95% CI 80% CI

op=2-n"4/° 250 0911  0.720 0.874 0.679

500 0.911 0.749 0.927 0.772

1000 0.929 0.754 0.937 0.773

2000 0.934 0.778 0.949 0.794

4000 0.956 0.809 0.940 0.774

op=8-n"1/° 250 0.943 0.786 0.926 0.751

500 0.933 0.776 0.952 0.795

1000 0.944 0.765 0.944 0.784

2000 0.945 0.790 0.939 0.784

4000 0.941 0.788 0.938 0.785

op=232-n"1/5 250 0.949 0.766 0.935 0.759

500 0.941 0.763 0.948 0.802

1000 0.934 0.753 0.941 0.791

2000 0.928 0.753 0.923 0.748

4000 0.900 0.695 0.900 0.721

Table 6. Maximum Score Estimation for Benchmark Design.
B/ (MS) B,/ (logit)

n Bias MAE Bias MAE

on=2-n"1% 250 -0.059 0.674 0.015 0.591

500 -0.138  0.593 -0.041 0.397

1000 -0.044 0.483 -0.025 0.334

2000 -0.015 0.421 -0.025 0.239

4000 -0.022  0.330 0.002 0.187

op=8-n"1% 250 -0.126  0.539 -0.078 0.365

500 -0.113  0.451 -0.062 0.254

1000 -0.066  0.354 -0.046 0.177

2000 -0.072  0.303 -0.060 0.133

4000 -0.054 0.212 -0.040 0.105

on=32-n"Y5 250 -0.125 0.525 -0.091 0.347

500 -0.109 0.431 -0.104 0.237

1000 -0.084 0.339 -0.096 0.175

2000 -0.109 0.277 -0.090 0.132

4000 -0.103 0.214 -0.093 0.107
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