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Abstract

This paper examines the performance of the method of panel corrected standard errors (PC-

SEs) for time-series cross-section data when a lag of the dependent variable is included as

a regressor. The lag specification can be problematic if observation-specific effects are not

properly accounted for, leading to biased and inconsistent estimates of coefficients and stan-

dard errors. We conduct Monte Carlo studies to assess how problematic the lag specification

is, and find that, although the method of PCSEs is robust when there is little to no corre-

lation between unit effects and explanatory variables, the method’s performance declines as

that correlation increases. A fixed effects estimator with robust standard errors appears to

do better in these situations.
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1 Introduction

The method of panel corrected standard errors, developed by Beck and Katz (1995, 1996), is

one of the most influential methodological innovations ever introduced in political science.1 It

is difficult to find a recent quantitative analysis of time-series cross-section (TSCS) data that

does not use this method. It has proven to be extremely successful for helping researchers

answer important political science questions. Yet there has been very little discussion of the

robustness of this technique despite its wide application.

In this paper, we examine the robustness of panel corrected standard errors (PCSEs) in

certain situations where the usefulness of the method may be compromised. We focus on

potential problems introduced by using lagged dependent variables along with PCSEs. This

is not a trivial issue since the method of PCSEs is widely employed with lagged specifica-

tions in the social sciences.2 We read a random sample of 80 articles citing Beck and Katz

(1995) and found that that approximately 40 percent of them report PCSEs obtained from

models that include lagged dependent variables.3 Lags are used with PCSEs for a couple

of reasons. PCSEs are appropriate only if serial correlation is not present in the data. One

standard method (arguably the preferred method) for removing the serial correlation that

often occurs in TSCS data is to include a lagged dependent variable in the model specifica-

tion. It is also quite common for researchers to include lagged dependent variables to capture

temporal dynamics that theory indicates may exist. This can present a problem, however,

if unobserved, observation-specific effects are also present in the data (or if a relevant, time-

invariant explanatory variable has been mistakenly left out of the specification). Given the

panel structure of the data, if such effects are not properly accounted for, introducing a lag

can lead to biased and inconsistent coefficient estimates. This presents a problem because

the attractiveness of the method of PCSEs depends crucially on the consistency of ordinary

least squares point estimates. It is also possible that the consistency property of PCSEs

themselves will fail to obtain.

1A search of the Social Science Citation Index currently produces 241 citations to Beck and Katz (1995).
2To make our terminology clear, by “method of PCSEs” we mean using OLS estimates of coefficients but

robust estimates of standard errors of the coefficients.
3The sample was taken from the 203 articles that were published in the past five years and cite Beck and

Katz.
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In our study, we consider how problematic the lag specifications are for the performance

of the method of PCSEs. We conduct Monte Carlo experiments to assess the severity of the

problem and consider alternative corrections for serial correlation. We find that, although

the method of PCSEs is robust when there is little to no correlation between unit effects and

explanatory variables, the method’s performance declines as that correlation increases. A

fixed effects estimator with robust standard errors appears to do better in these situations.

We reemphasize that researchers need to test for unit effects and their correlation with

explanatory variables before proceeding to use PCSEs.

2 A review of the method of PCSEs

The key motivation for using PCSEs is to improve inferences made from TSCS data by taking

into account the complexity of the error process, but in a way that does not ask too much of

the data. The errors in TSCS models are likely to be nonspherical, exhibiting any or all of

the following:

• Contemporaneous correlation: the errors across cross-sectional units are correlated due

to common shocks in a given time period.

• Panel heteroskedasticity: the error variance differs across cross-sectional units due to

characteristics unique to the units.

• Serial correlation: the errors within units are temporally correlated.

Ordinary least squares (OLS) is not the best linear unbiased estimator (BLUE) and

can produce incorrect standard errors when the errors are nonspherical. Generalized least

squares (GLS), which incorporates information about the errors and thereby makes up for the

inefficiency of OLS, is BLUE and will give correct standard errors. However, GLS assumes

that the variance-covariance matrix (Ω), which is used to weight the data, is known when in

practice it is not. Instead, we can employ feasible generalized least squares (FGLS), which

involves using an estimate of the variance-covariance matrix (Ω̂).

Beck and Katz (1995) show, however, that the FGLS method advocated by Parks (1967)

and Kmenta (1986) produces incorrect standard errors when applied to TSCS data. The
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poor statistical properties of this technique stem from the fact that it estimates an inordinate

number of parameters in the variance-covariance matrix (Beck 2001, 280). Although FGLS

works fine in large samples, TSCS data typically does not provide enough observations to

estimate these parameters with much precision. The method gives overconfident standard

errors because it does not fully take into account the variability in the estimates of the error

parameters.

Beck and Katz (1995) argue that a superior way to handle complex error structures in

TSCS analysis is to estimate the coefficients by OLS and then compute PCSEs. In this

method, Ω is an NT × NT block diagonal matrix with Σ, an N × N matrix of contempo-

raneous correlations along the diagonal. OLS residuals, denoted ei,t for unit i at time t, are

used to estimate the elements of Σ:

Σ̂i,j =

∑T
t=1 ei,tej,t

T
. (1)

Then the standard errors of the coefficients are computed using the square roots of the

diagonal elements of

(X′X)−1X′Ω̂X(X′X)−1, (2)

where X denotes the NT × NT matrix of stacked vectors of explanatory variables, xi,t.

Although this approach estimates the same number of parameters as the FGLS method, it

has better small sample properties. The intuition as to why this is the case is that PCSEs are

similar to White’s heteroskedasticity-consistent standard errors for cross-sectional estimators,

but are better because they take advantage of the information provided by the panel structure

of the data (Beck and Katz 1996, 34). Through Monte Carlo studies, Beck and Katz (1995,

1996) demonstrate that PCSEs produce more reliable standard errors than FGLS methods.

Based on these results, the method of PCSEs has been widely adopted in political science

research. It is available in the most commonly used statistical software, and requires no

more effort or cost to estimate than a standard regression model. The ease with which

researchers can apply the method can lead us to use it without giving serious consideration

to particular methodological nuances that may present problems. The method has been

applied in research situations that are very different from those simulated in Beck and Katz’s

original analysis, raising concerns about its robustness. In the next section we discuss how

it may be inappropriate to use this method for certain applications.
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3 Lagged specifications for TSCS data

A crucial assumption for the method of PCSEs is that the errors are free of serial correla-

tion. Yet it is reasonable to expect that such correlation would be common in TSCS data.

Before this method is applied, the serial correlation must be removed. One popular way

to do this is to include a lagged dependent variable in the model specification. Beck and

Katz (1996) conduct simulations which show that the lag correction generally outperforms

a FGLS estimator that uses the Prais-Winsten transformation, and therefore recommend

that researchers begin with the former. Beck (2001, 279–280) states that “the modeling of

dynamics via a lagged dependent variable allows researchers to estimate their specification

using” OLS with PCSEs. Introducing a lag, can be problematic, however, because if serial

correlation is not entirely removed by the lag, OLS will be inconsistent. Beck (2001, 279-280)

advocates a Lagrange multiplier test to make sure the lag (or additional lags) takes care of

the temporal dependence.

But the lag fix requires not only that no serial correlation remain, but also that no unit-

specific effects be present in the data.4 One of the reasons to employ methods beyond OLS

for TSCS data is that observations in this data are not “exchangeable.” That is, the labels

on the observations matter, and we cannot arbitrarily change the position of an observation

in the data set without changing the information on that observation. Panel heteroskedas-

ticity, contemporaneous correlation, and serial correlation imply that observations are not

exchangeable. The presence of unit effects also means the data are not exchangeable.

The discussion of unit-specific effects is largely absent from the articles that advocate

PCSEs, yet the modeling of this kind of heterogeneity is at the heart of the analysis of data

with repeated observations. Beck (2001, 282–287) addresses the issue of heterogeneity in

TSCS data, but does not link this discussion with the issue of serial correlation or dynamics.

He does recommend that researchers test for unit heterogeneity in their data, however. The

dangers of unmodeled unit-specific effects in TSCS data are explicitly addressed by Green,

Kim, and Yoon (2001). They remind us that when unmodeled unit effects are correlated

with explanatory variables, OLS slope coefficients are biased and inconsistent.5 The source

4Observation-specific effects can be a source of serial correlation.
5If they are not correlated with explanatory variables, then we simply get bias in the intercept.
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of the problem is that, if they are not modeled explicitly, unit-specific effects are relegated

to the disturbance term, which induces correlation between explanatory variables and the

disturbance, violating the fundamental requirement for consistency. The situation is not

terrible, however, because standard fixed effects estimators can be used to eliminate this

problem.6

In response to Green et al. (2001), Beck and Katz (2001) argue that including fixed ef-

fects for models with continuous dependent variables to account for unobserved heterogeneity

can be worse than leaving them out. The bias may not be that great in certain situations—

namely, when the explanatory power of the unit effects is minimal. Fixed effects are perfectly

collinear with time invariant variables and highly collinear with variables that move slowly.

The former must be dropped if fixed effects are included in the model, while the latter will

have imprecisely estimated coefficients. Thus, the loss in terms of inference on important

substantive variables that are time invariant or move slowly can outweigh the gains of mod-

eling heterogeneity. Beck and Katz (2001, 493) address the issue of dynamics, arguing that

including lags of the dependent variable can make fixed effects less relevant (e.g., fixed effects

are similar to including a lag with a coefficient of one). This is an interesting argument,

although in the literature on dynamic panel models, unit heterogeneity and dynamics are

treated as separate features to be modeled, which is consistent with Beck’s (2001) position

that these kind of features should be treated as substantive issues and not mere nuisance.7

We will consider the degree to which the lag helps or hurts in our analysis reported below.

Data that requires separate modeling of unit heterogeneity and dynamics can be quite

problematic for standard estimators. Even if independent variables are not correlated with

the unit-specific effects, lagged dependent variables are correlated with such effects by con-

struction. And if independent variables are correlated with the lagged dependent variable,

their coefficients are biased and inconsistent. Standard fixed effects estimators do not neces-

sarily take care of the attendant problems. For example, the least squares dummy variable

(LSDV) or “within group” estimator is still biased and inconsistent (Baltagi 1995). Instru-

6We consider only fixed effects in this paper because, as Beck (2001) argues, it is more appropriate to

think of unit specific effects in TSCS data as fixed as opposed to random effects (i.e., where the effects are

drawn from some random distribution).
7For a review of the literature on dynamic panel models see Arellano and Honoré (2001).
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mental variables (IV) estimators can be used to surmount these problems. But it is not clear

that these estimators are appropriate for TSCS data. The asymptotic properties of many

IV estimators are with respect to N , not T , but the latter typically dominates the former

in studies where PCSEs are applied. IV estimators may be more appropriate for studies

like those in the international relations literature which examine large numbers of country

dyads. Although Beck and Katz (1995, 637) make clear that PCSEs are intended to address

situations where T is larger, but not much larger, than N , this method has been used for

data where N is much larger than T (e.g., see Blanton 1999; Keith 1999; Poe, Tate, and

Keith 1999). IV estimators may be more appropriate for these kinds of studies than PCSEs.

But what are the implications for the method of PCSEs? The debate between Green

et al. (2001) and Beck and Katz (2001) over the use of fixed effects in TSCS data does not

address how PCSEs might be affected. If we use a lag to correct for serial correlation but

do not adequately account for unit effects, OLS does not retain its properties that make it

attractive for producing the point estimates used in the method of PCSEs. Furthermore, a

key assumption required for the consistency of PCSEs is violated. If a lag is included on

the right hand side in X, the matrix of explanatory variables, and unit effects exist but are

unmodeled and thereby relegated to the disturbance term ε, then E[X′ε] will not necessarily

equal zero. This is because X contains a lag of the dependent variable, which is correlated

with the the unit specific effects contained in ε. But this expectation is assumed to be zero

in the proof that Σ̂
a.s.→ Σ, and by extension Ω̂

a.s.→ Ω (see Beck and Katz 1996, 32–33 and

White 1984, 59,165–166).8

It is not clear how much of a problem this is in practice, however. The theory that tells

us PCSEs are reliable is grounded in their asymptotic properties. We are mainly concerned

with small sample properties, but if large sample properties are not good, it does not bode

well for the situation where we have small N or T . Still, it could be that including lags to

eliminate serial correlation helps with the problem of unit effects. In fact, the existence of

8Since OLS coefficients are used to produce estimates of the residuals, it is possible that bias in OLS

coefficients could lead to problems with the estimates of standard errors, which is the area where the Beck

and Katz method gives the greatest gains. White’s proof of consistency requires that β̂
a.s.→ β (i.e., the

estimate of the slope coefficients converge almost surely to the population values), which will not necessarily

happen if E[X′ε] 6= 0.
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such effects might appear as serial correlation to researchers who test for it. Since Beck and

Katz (1995) make clear that such tests should be conducted, this pitfall might be avoided by

taking steps to correct for serial correlation.9 Since we are interested in how well different

estimators perform in small samples, in the next section we conduct Monte Carlo studies to

get a sense of how problematic these issues are.

4 Monte Carlo Analysis

We follow Beck and Katz (1995, 1996) in conducting simulations to determine how robust

PCSEs are when lags are used to correct for serial correlation (or explicitly model dynamics)

but unit effects are ignored. The data for the simulations are generated using error structures

involving contemporaneous correlation, panel heteroskedasticity, and serial correlation. We

assume that temporal dependence is the same across cross-sectional units within a simulation,

although we vary the level of serial correlation as an experimental condition. To induce serial

correlation, we generate the data in two ways. The first is by including dynamics in the

model through a lagged dependent variable:

yi,t = ρyi,t−1 + βxi,t + αi + ui,t. (3)

This sets up situations where we can have unmodeled dynamics in the data—an issue raised

in Beck and Katz (2001)—when we omit yi,t−1 from the estimation equation.10 The lag

correction should be most appropriate for serial correlation induced by this approach. We

also generated serial correlation according to

yi,t = βxi,t + αi + ui,t + ρui,t−1 + vi,t. (4)

Using this first-order autoregressive process (AR1) is less favorable to the lag correction than

is generating the data by including a lag in the specification. This sets up a particularly

9For those who want to apply standard fixed effects estimators, theory tells us that the bias can go away

as T becomes large. While it is not clear how large T has to get, the relatively large T in TSCS data (at

least compared with standard panel data sets) may mean that the bias is not severe.
10We generated 50 values for yi,t starting from yi,0 = 0, which we discarded before generating the data

used for the analysis.
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difficult test of the lag correction. If we find that the lag correction performs well in this

instance, then we can be very confident about using it in practice.11

We also vary the degree of correlation between the unit-specific effect αi and the explana-

tory variable.12 We did this by drawing the αi from a uniform distribution and then scaling

random normal deviates by αi to produce the xi,t. We are unable to precisely manipulate this

correlation, because it is affected by the degree of panel heteroskedasticity in the data, which

is tied to the value of xi,t, as in Beck and Katz’s original analyses. The level of correlation

and heteroskedasticity is also likely to affect the amount of serial correlation induced in the

data. If the value of the disturbance term was big last period, it will be big this period,

especially if the disturbance is tied to size of explanatory variable, which is in turn tied to

the size of the unobserved unit effect. It is quite possible that these different factors will be

intertwined in real data as well. Thus, even crude manipulation of the correlation between

αi and xi,t is informative for the performance of different estimators.

As far as the explanatory power of xi,t and αi goes, the data were generated so that the

Schwartz Criterion only slightly favored a model that took fixed effects into account over

plain OLS.13 Our intention here is to avoid the situation where the results are driven by

selecting unreasonably influential unit effects. The coefficient on xi,t was on average four

times its standard error.14

We are primarily interested in the performance of the different approaches for estimating

11Beck and Katz (1996) use a more complicated procedure for generating serial correlation, using a com-

bination of the autoregressive and lag structure approaches.
12Obviously, typical model specifications used with TSCS data have more than one explanatory variable.

We include only one for ease of exposition and to keep our analysis as transparent and comparable as possible

to Beck and Katz’s simulations.
13Beck and Katz (2001) argue that the Schwartz Criterion (SC) is superior to the standard F test for the

presence of fixed effects, because the SC imposes a higher penalty for including more explanatory variables.

The SC provides a particularly difficult test for the LSDV model where separate dummies for each cross-

sectional unit are specified. FE is identical to LSDV, except that FE performs a transformation of the model

that obviates the need for including cross-section dummies. Thus it is not clear to us that the SC, when used

with the FE estimator instead of LSDV, has the same properties that lead Beck and Katz to favor it.
14The coefficients in Beck and Katz (1996) were between two and three times their standard errors. We

generated data to produce larger t statistics so that we would produce fewer models where β̂ was not bounded

away from zero.
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β and its standard error. The main concern is that the method of PCSEs may perform poorly

both in terms of point estimates and standard errors under certain conditions. To gage the

accuracy of the point estimates for β, we computed the mean and root mean squared error

(RMSE) of the estimated βs across replications. To assess the performance of the standard

errors, we computed the Beck and Katz measure of optimism:

100

∑1000
l=1

(
β

(l)
OLS − β̄OLS

)2

∑1000
l=1

[
SE
(
β

(l)
OLS

)]2 , (5)

where l denotes replications and βOLS denotes OLS estimates. Values above 100 indicate that

true sampling variability is greater than the reported estimate of that variability, while values

less than 100 indicate that the estimate understates true variability.15 In each replication,

we also performed a Lagrange Multiplier (LM) test to determine the existence of serial

correlation, even after the inclusion of the lagged dependent variable to remove it. Even

though the lag correction has been favored, it is valuable to know how it will perform when

we know unit effects are present in the data.

In addition to examining the method of PCSEs, we also consider other approaches that

are appropriate for data with repeated observations on cross-sectional units. We employed

the standard within-group fixed effects estimator (FE). Theory tells us that this estimator is

also biased and inconsistent when a lagged dependent variable is included, although the bias

decreases at T gets large. The bias is of order 1/T (Nickell 1981), and therefore may not be

much of a problem in TSCS data where T is larger than in typical panel data sets.

Given the error structure in the data, we also tried a technique for computing robust stan-

dard errors for the fixed-effects estimator proposed by Arellano (1987). Arellano’s technique

15We also measured bias in the standard errors by computing

σβ(l) − 1
1000

∑1000
l=1 σ̂β̂(l)

σβ(l)
(6)

where σβ(l) is the standard error of the β(l) over the replications and σ̂β̂(l) is the estimated standard error

of β in replication l. Additionally, we considered the coverage of the confidence intervals, determining how

often the true value of β falls within the estimated 95% confidence interval, while taking into account the

length of the interval. We report only the measure of optimism because it makes our analysis comparable

with Beck and Katz’s original experiments. The bias other measures produced results consistent with the

optimism statistic. Details of the other measures are available upon request from the authors.
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has the same flavor as PCSEs, in that it employs a White estimator of the variance-covariance

matrix.16 The robust estimates of FE standard errors are computed from

(
X̃′X̃

)−1
(

N∑
i=1

X̃i
′ ˆ̃ui

ˆ̃u′
iX̃i

)(
X̃′X̃

)−1

, (7)

where X̃ denotes the matrix of explanatory variables from the within group transformation

and ˆ̃ui are the estimated residuals obtained from running OLS on the transformed equation.17

We begin by reporting experiments where there is no serial correlation in the data (i.e.,

ρ = 0). This establishes a baseline for assessing the degree to which the lag specification is

problematic. It also gives us a clean test of whether the lag specification helps to address the

problem of unmodeled unit heterogeneity. For this first round of experiments, we set β = 10,

N = 15, and T = 20.

Table 1 reports the results from these experiments. As the column labeled “% reject

ρ = 0” in Table 1 indicates, the presence of unit effects almost always leads us to reject the

null of serial correlation when no lag is included in the estimation model. The only cases

where there is a nontrivial chance of not rejecting the null of no serial correlation is with

very high contemporaneous correlation and heteroskedasticity. Even in those cases, the OLS

point estimates and PCSEs do fine.

The fixed effects model does somewhat better in estimating β when there is minimal

correlation between αi and xi,t, and a lot better when there is low correlation. The bias in

βOLS relative to the fixed effects estimator βFE, should come as no surprise, and appears

only to be a serious problem when there is correlation between αi and xi,t, (displayed in

16This technique assumes that N is large and T is small, which is the opposite of what we usually think

of with TSCS data. But we will consider experiments where N is large relative to T since researchers have

applied PCSEs to data that takes this form. Other robust estimators for the standard errors were considered,

but we do not report results on them because they performed so poorly.
17Another option is to estimate the least squares dummy variable (LSDV) model for the point estimates of

β and then compute PCSEs. LSDV is equivalent to the FE estimator we employ, but requires the inclusion of

N − 1 additional dummy variables in the model. Even with moderately sized Ns, including these additional

dummies can be cumbersome and violate limits on matrix size in commonly employed software. We ran

some experiments and found that the results for LSDV with PCSEs were nearly identical to the results for

FE with the robust standard error estimate. We are note aware of any studies that have used PCSEs with

LSDV, but this is certainly an option for researchers.
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the column marked ρα,x). OLS with PCSEs tends to overstate both the size of β and the

true sampling variability (although not by much for the latter). Overstating variance implies

that we might not reject the null of a zero coefficient when that null is false, leading us to

conclude that variables do not have effects when in fact they do. However, unless there is

no heteroskedasticity in the data, researchers are advised to use the robust estimator of the

standard errors rather than the normal fixed effects standard errors, which do quite poorly.18

Including a lag helps to improve the quality of the OLS estimates and the PCSEs, although

the former are still on average quite far from the truth even with low correlation between α

and x. We have about a 50–50 chance of rejecting the null of no serial correlation and thus

proceeding with the method of PCSEs. While the PCSEs are in general the most accurate

of any of the standard errors we considered, the bias in βOLS suggests we would be better off

using a fixed effects estimator, possibly even without a lag. Ancillary analysis indicated that

with high correlations between α and x and no serial correlation, PCSEs are “pessimistic”

by only 5 to 10 percent, implying that omitted variable bias is not completely driving the

results on PCSEs.

What we are mainly concerned with is using the lag to correct for serial correlation, so

the remaining analyses focuses on models that actually include some temporal dependence

apart from cross-sectional effects. Table 2 reports results with minimal correlation between

αi and xi,t. The average of βOLS is always closer to truth than is the average of βFE, and their

RMSEs are comparable. The FE point estimates get worse as ρ increases, while the OLS

estimates get slightly better, most likely due to the increasing collinearity between αi and the

lagged dependent variable. PCSEs produce virtually exact estimates of sampling variability,

and are a few percentage points more accurate than the robust FE standard errors. The

method of PCSEs is recommended in this situation.

18We do not report results for the estimated coefficient on the lagged dependent variable because researchers

are not generally interested in making substantive inferences about the lag. We note however, that we did see

substantial bias in the estimated lag coefficient, just as theory would have indicated. The OLS estimates of

the lag coefficient were generally biased upward, as we would expect because of the unit effect. The bias was

so large in some cases that it would have falsely raised concerns about unit roots. If researchers are genuinely

interested in making inferences about dynamics, they need to be much more careful about the estimator they

choose.
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However, the performance of the method of PCSEs begins to deteriorate as the (positive)

correlation between αi and xi,t increases. Table 3 shows that when this correlation is moderate

(i.e., between .45 and .55) and serial correlation is low, the OLS point estimates are very

far from truth. FE point estimates do much better both in terms of the average point

estimate and RMSE (until ρ reaches .9). PCSEs do fairly well according to the measure of

optimism, as long as heteroskedasticity is below .3. When heteroskedasticity is .5, PCSEs

overstate true sampling variability between 10 and 20 percent. But according to Beck and

Katz (1996, 20), this degree of heteroskedasticity is rare in real data sets, so we may not

have to worry about the reliability of PCSEs in practice. The FE robust standard errors

are overconfident by only a few percentage points, and remain solid across the ranges of

contemporaneous correlation, heteroskedasticity, and serial correlation examined. When the

performance of the point estimates and standard errors is considered jointly, researchers can

do a fair amount better by using the FE estimator with robust standard errors instead of

OLS with PCSEs. It should be noted that the standard errors given by the FE estimator do

very badly. Even though accounting for unit effects appears to be important, doing so with

the FE estimator without correcting for the standard errors is not likely to lead researchers

to correct inferences

Table 4 shows the same pattern with very high correlation between αi and xi,t. OLS tends

to overestimate β by a great deal when ρ ≤ .5, especially when there is no heteroskedasticity

in the data, although PCSEs are most accurate with homoskedasticity (they are dead on

with high serial correlation). At their worst PCSEs are overly “pessimistic” by about 25%.

Still it is important to note that PCSEs generally do not do that badly, especially when they

only need to correct for contemporaneous correlation. The FE estimator outperforms OLS

both in terms of the average of the estimates of β and RMSE. The robust FE standard errors

are slightly overoptimistic, but generally do well across the experimental conditions.

The results are essentially the same when we generate the data using an AR1 process.

Table 5 reports the results for some of those experiments. For the OLS point estimates,

including a lag to correct for serial correlation is clearly superior to not including it. But

even with the lag, βOLS is still often quite far from the true β. For the FE estimator, we do

slightly better by estimating the model without a lag and then using the robust estimator for
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the standard errors to take care of serial correlation. Although we do not report those results

here, the difference in the performance of the FE estimator without the lag was increasing

in ρ (i.e., it did worse as ρ increases, not surprisingly).

To summarize the results to this point, the method of PCSEs is fairly robust to situations

where both serial correlation and observation specific effects are present in the data. The

lag correction for serial correlation does not seem to be terribly problematic for inferences

about exogenous variables when those variables are uncorrelated with αi, although it does

not help much with the problem of unobserved unit effects. When there is medium to high

correlation between unobserved unit effects and explanatory variables, the bias in the OLS

estimates of the coefficients on those variables can be quite high and the performance of

PCSEs deteriorates somewhat.19 In these cases, the within group estimator with robust

standard errors generally works better. Thus, although theory tells us that introducing

a lag when there are unobserved individual effects produces bias, in practice it appears

better to include the lag to eliminate serial correlation in TSCS data if we do not explicitly

model individual effects. But we can do much better in some cases by accounting for this

heterogeneity, and possibly leaving out the lag in a FE model.

So far we have kept N and T constant. Do we see the same patterns when we vary sample

size? Table 6 reports results when T = 40 and correlation between αi and xi,t is moderate.

Comparing these results with Table 3, which has smaller T but the same level of correlation,

we find that the increase in the number of time periods slightly improves the performance

of both OLS with PCSEs and FE with robust standard errors. The gain for the latter is a

bit better, which is consistent with what theory tells us. Unless ρ is very high, the FE point

estimates are to be preferred to OLS point estimates.

If we drop N to 5 but keep the same level for ρα,x, as we did for the experiments reported

in Table 7, we find that βFE generally does better than βOLS in terms of the point estimates of

β, although the performance of the former is still not very good. PCSEs generally do better

than the robust fixed effects standard errors, so it is a toss-up between which estimator is

better in this situation.

19With low levels of serial and contemporaneous correlation and homoskedasticity, OLS does very badly

for the point estimates, producing values that are on average almost twice the size of true β. However, these

estimates are farther off on average without the lag correction.
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Perhaps a more interesting case is when we increase N to 100. Although the original

Monte Carlo experiments that Beck and Katz performed did not consider values of N that

were this large, the method of PCSEs has been applied in research with this number of

cross-sectional units, so it is valuable to assess performance with simulated data of these

dimensions. Table 2 reports results when the average value for ρα,x is 0.20 The performance

of OLS and FE in terms of RMSE are nearly identical, as is the performance of PCSEs and

FE robust standard errors. We note that there is a greater tendency to reject the null of no

serial correlation even though a lag has been included, but PCSEs perform fine even with

the serial correlation induced by the unobserved unit effects.

As with the other experiments, things are more problematic for the methods of PCSEs

when there is correlation between αi and xi,t. As Table 9 reports, with moderate to high

values for ρα,x, OLS does about the same in terms of the average estimate of β and RMSE as

it did with smaller N . The performance of PCSEs is somewhat worse, overstating variance

by as much as 30 percent in some cases. One saving grace is that we are more likely to reject

the null of no autocorrelation with larger N , although there is still a nontrivial chance that

we would not reject and proceed with the method of PCSEs in certain cases. The increase

in N enhances the performance of the fixed effects estimator, with the FE robust estimates

of the standard errors matching true variability in the point estimates. Although the FE

estimator does worse as ρ increases, these results suggest that with low to moderate serial

correlation, researchers with large Ns in their data will probably do fine with this estimator,

and do not need to employ more complicated dynamic panel data estimators.

To summarize, researchers who want to use OLS with PCSEs appear to be better off by

including a lag in their specifications when there is serial correlation (whether generated by

“true” dynamics or an autoregressive error process) and observation-specific effects in the

data. The bias that can result from including the lag is less of a problem than the bias

that results from doing nothing about the heterogeneity in the data. The method of PCSEs

will work fine as long as there is no correlation between the unit effects and explanatory

variables. When such correlation exists, the method of PCSEs can lead to very inaccurate

point estimates and Type II errors. In these cases, researchers are probably better off using

20We conducted experiments for a smaller range for ρ because of the excessive amount of time it takes for

these experiments to run.
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a fixed effects estimator with Arellano’s robust standard errors, which may even obviate the

the inclusion of the lag to correct for serial correlation. If the number of cross-sectional

units is large compared with the number of time periods, the gains of using FE with robust

standard errors instead of OLS with PCSEs can be substantial.

It should be reemphasized then that analysts of TSCS data should include a test for unit

effects in their battery of tests to determine the appropriate estimation approach. Tests for

serial correlation that should be de rigeuer in TSCS analysis can reveal the presence of unit

effects. A test of correlation between such effects and explanatory variables is also important.

One problem with this recommendation is that the standard Hausman test which compares

the within-group and generalized least squares estimators for panel data is invalid when the

errors are heteroskedastic and/or serially correlated, which compromises its usefulness for

TSCS data. The only test that we are aware of that is possibly appropriate for the kinds of

nonspherical errors that we typically see in TSCS analysis is that proposed by Arellano (1993),

which relies on the forward orthogonal deviations transformation developed by Arellano and

Bover (1995). But this test is designed for large N data and models without lagged dependent

variables, and so therefore may not work very well in the situations were it is most needed.

5 Discussion

Researchers who analyze TSCS data owe a large debt to Beck and Katz for not only raising

our level of consciousness about potential problems for standard estimators, but also for

providing a robust method that corrects for some of those problems. This paper follows

in the spirit of Beck and Katz’s seminal articles on TSCS data—that TSCS data presents

unique challenges for standard methods, and that there may be room for improvement over

these methods. PCSEs are very robust and will often serve researchers well. We have sought

to shed more light on how the method of PCSEs performs when lags of the dependent

variable are included as regressors and there are unobserved, observation-specific effects in

the data. Methods that account for observation-specific effects can in some cases do better

than PCSEs.21

21We note that the improvements over PCSEs that we found are not nearly as substantial as the improve-

ments that Beck and Katz found over the method of panel weighted least squares.
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Our intention is not to discourage the use the method of PCSEs. The method is very

robust and deserves to be part of our statistical toolkit. We do, however, want to encourage

researchers to consider that their data might present challenges that require methods beyond

that of PCSEs. It is important to check for unit effects and to assess their correlation with

explanatory variables. A priority should be coming up with a good method for determining

the degree of this correlation.

here are several issues which we have not addressed that will require more work. First, we

did not consider what happens when more than one lag of the dependent variable is included

as a regressor. Adding more lags can help remove serial correlation that remains after one lag

is included and may help eliminate some of the problems that we found with the performance

of the methods we examined. Additional experiments can be done to assess how more lags

may help. Second, even though the FE estimator with robust standard errors outperformed

the method of PCSEs in certain cases, its performance was still not as good as we might like.

There is undoubtedly room for improvement over this approach. For large N , IV estimators

developed in the literature on dynamic panel data have some promise, but a more thorough

investigation of them is required before we can recommend using them for data sets that have

a relatively large number of time periods. These methods are certainly not appropriate when

the time dimension dominates the cross-sectional dimension. Third, although our reading

of the literature leads us to conclude that the Prais-Winsten transformation for eliminating

serial correlation is inferior to the lag correction, it may be worth revisiting to see how it

performs in the presence of observation specific effects. Finally, we have sidestepped the

issue of what to do if a model contains substantively important variables that vary little,

if at all, over time. Time invariant variables have to be dropped when the FE estimator is

employed, and inferences may change on slow moving variables due to collinearity with the

unit effects. It may be difficult to tell whether the changes in the estimated effects of slow

moving variables are due to bias or simply collinearity (although the two issues are related).

More simulations of the kind reported in this paper can help guide researchers who confront

this problem.
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