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13 INCOMPLETE PANELS AND SELECTION

BIAS

In this chapter attention will be paid to selection bias in panel data. In
case of selection bias a rule other than simple random sampling determines
how sampling from the underlying population takes place. This selection rule
may distort the representation of the true population and consequently distort
inferences based on the observed data using standard methods. Distorting
selection rules may be the outcome of self-selection decisions of agents, non-
response decisions of agents or decisions of sample survey statisticians. Many
existing panel data.sets suffer from missing observations due to nonresponse
of agents or design decisions of survey statisticians. Both sources of miss-
ing observations may imply a non-random selection rule. Additionally, in
many economic applications decisions of individual agents imply a distorting
selection rule. Examples of these types of self-selection are the endogenous
decisions to join the labor force or to participate in some social program.

This chapter presents an overview of the literature on incomplete panels
and selection bias in panel data. Throughout, attention is restricted to rela-
tively simple models instead of aiming at full generality. Particular attention
will be paid to the random effects and fixed effects regression models. Because
nonresponse of agents is an important problem in many panel data sets, special
attention will be paid to this source of missing observations. In the next
section we shall give an introduction to the problem of non response in panel
data, introduce some terminology and discuss why the problem of nonresponse
may be more severe in panel data than in cross-sectional data. In Section
13.2 we make the important distinction between ignorable and non-ignorable
selection rules. If one ignores the selection rule when making inferences one is
implicitly conditioning upon the outcome of the selection process. Ideally, this
conditioning does not affect the properties of the estimator(s) under concern,
in which case it is appropriate to ignore the selection process and one can say
that the selection rule (or the missing data mechanism) is ignorable (cf. Rubin
[1976], Smith {1983]). In this section we formalize the concept of ignorability
and introduce some weaker concepts that may be appropriate. When the
selection rule is ignorable, consistency of the estimator using the complete
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observations from the panel only (the so—called balanced sub-panel) will not
be affected. However, it will be more efficient to use all information available
in the (unbalanced) panel to estimate the parameters of interest. In Section
13.3 we shall discuss how standard estimators can be modified to the case of
an unbalanced panel, assuming that the selection rule is ignorable.

In the presence of non-ignorable selection rules additional assumptions
will be required to identify the parameters of interest. In Section 13.4 we will
go deeper into this identification problem and derive conditions under which
identification is possible. In Section 13.5 we consider the estimation of panel
data models with nonresponse caused by a non-ignorable selection rule. In
particular, we discuss the effects on the consistency of standard estimators and
present alternative estimators that take the selection mechanism into account.
Given the importance of the nature of the selection problem we shall present
some tests for non-ignorability of the selection rule in Section 13.6. Section
13.7 pays attention to other models with selection bias, and, finally, Section
13.8 concludes.

Many of the issues in this chapter will be illustrated with the linear panel
data model as introduced in Chapter 4. This model is given by

Ve =2zhB+ U, i=1,.,Nt=1,....,T, (13-1)

where the error term u;; is independent of the explanatory variables and has
an error components structure

Uir = M + &+ Ve (13-2)

It is assumed that pu;, & and v; are mutually independent with E{u} =
E{e.} = E{vi} = 0, E{pip;} = 8§03, E{e.es} = §,,0% and E{vyv;,} =
6;;6,,02, where &, is Kronecker’s delta defined by 8, = 1if k = £ and 6,, =0
otherwise. Where needed, we shall impose normality. For simplicity, attention
will often be restricted to the model without time effects, in which the o2 is
zero. In general, there will be a selection rule such that observations for
yi: are not available for each (i,t). This selection rule may be the result of
economic decisions of agents, nonresponse decisions or decisions of sample
survey statisticians. We define the variable r;; to denote the outcome of the
selection process, i.e., 7y = 1 if y; is observed and r;; = 0 otherwise. Unless
stated otherwise, we assume that the variables in z;, are observed for all (3, ).

13.1 Nonresponse in Panel Data

With rare exceptions, all samples based on interviewing micro—economic
units suffer from selection problems. Although it is by now well known that
this may distort inferences (cf. Gronau [1974], Heckman [1976], [1979] and
Hausman and Wise [1979]), it is important to note that nonresponse, being
an important source for selection problems, is likely to be more severe in panel
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data than in cross—sectional data sets. Because the same units are followed
over time a higher burden is put on the respondents (they have to fill out a form
each time, for example) and moreover, nonresponse may increase with each
new wave of the panel. The U.S. Panel Study of Income Dynamics (PSID),
for example, suffered from a nonresponse rate of 24 % in its first year (1968),
and after 17 years the cumulative nonresponse rate has increased to more than
50 %. Similar or even higher nonresponse rates were experienced with many
other panel data sets, see, e.g., Kalton et al. [1989).

Another reason why in practice most panels are unbalanced is that missing
observations may be created deliberately. Given a budget constraint it is often
suboptimal to choose a pure panel in which the same individuals are observed
in T consecutive periods, since particular alternative designs may lead to more
efficient estimators. Kish [1986], for example, advocates the use of a so—called
split panel design consisting partly of a panel and partly of a series of cross
sections, and Nijman and Verbeek [1990] analyse the conditions under which
the split panel design yields more efficient estimators than a panel or a series
of independent cross sections. In other cases (Bigrn [1981], Deaton {1990], for
example), a fixed proportion of the individuals is replaced by new ones in each
period, which is known as a rolling or rotating panel design. The conditions
for optimality of a rotating panel design are analysed by Nijman et al. [1991].

13.1.1 Classification of Nonresponse

Given the sampling design, the total amount of nonresponse will depend on
the way in which the data are collected. For example, it will be of influence
whether data are collected by telephone, mail or by personal visits of an
interviewer (face-to—face surveys). A large number of studies has appeared
on the subject of how to increase response given a particular type of survey,
the discussion of which is beyond the scope of this chapter. For overviews and
references see, among many others, De Leeuw et al. [1989), Baumgartner and
Heberlein [1984], Goyder [1982] and Yu and Cooper [1983].

Below we shall present several types of nonresponse that can occur in
panel data sets (and mostly also in other types of data sets). This overview
is neither exhaustive nor exclusive, i.e., some situations of nonresponse may
belong to none and some to more than one of the mentioned categories.

1. Initial nonresponse occurs when individuals contacted for the first
time refuse (or are not able) to cooperate with the survey, or—for some
reason—can not be contacted at all. Because only very limited information
is recorded for this group of nonrespondents this type of nonresponse is
one of the most difficult to deal with during the analysis stage. Usually,
the researcher is not even aware of the problem of initial nonresponse and
implicitly assumes that it does not distort his analysis.
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2. Unit nonresponse is initial nonresponse that results in missing data on
all variables for a particular unit. Only in cases where the persons in
question are interviewed at a later stage both concepts do not coincide.

3. Item nonresponse occurs when information or a particular variable
for some individual is missing. For example, individuals may refuse to
report their income, while providing data for all other questions, like age,
education, family size, expenditure patterns, etc.

4. Wave nonresponse is typical for panel data and occurs when units do
not respond for one or more waves but participate in the preceding and
succeeding wave. In a monthly panel a typical situation where this occurs
is that where an individual is on vacation for a couple of weeks.

5. Attrition occurs when individuals having participated one or more waves
leave the panel. These individuals do not return in the panel. This can
be caused by removal, emigration or decease, but also by the fact that
individuals are just “tired” of answering similar questions each time.

Standard statistical analysis is usually based on a rectangular data set
in which no data are missing. If a data set with missing values is used in
statistical software, usually all observations are discarded for which one or
more of the variables under analysis is missing. This is not only inefficient
(because information is thrown away), but, more importantly, the remaining
cases may no longer be representative for the population. Therefore, it is
important for a researcher to pay attention to the nature of the nonresponse
problem first before entering the model building stage. Ideally, such informa-
tion should be used when specifiying the nonresponse process, which can be
used to assess the presence of selection bias in standard estimators as well as to
derive alternative estimators that take the selection mechanism into account.
Roughly, five main reasons for nonresponse can be distinguished. The first
category can be characterized by the term not locatable. This occurs, for
example, when an address is wrong, non—existant or unfindable, or when the
interviewer is not able or willing to visit certain addresses (bad neighbourhood,
watchdog, bad weather). If respondents are not at home at the intended
time(s) of interviewing we obtain the second reason for nonresponse. The third
category of reasons can be characterized as refusal, in which case nonresponse
is intentionally created by the individuals under concern. It is possible to make
the additional distinction between temporary refusal and permanent refusal.
In the first case a new visit of the interviewer may as yet result in cooperation.
Fourthly, persons may be not able to respond, although they might be willing
to do so, for example in the case of illness, (some) physical or mental disabilities
or when there are language problems. Finally, the questionnaires may be filled
out improperly or got lost somewhere. We will refer to this reason as not
usable.

Given a set of incomplete data, one can choose from three broad strategies
for dealing with the problem (cf. Little [1988]), namely imputation, in which
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266 Incomplete Panels and Selection Bias

each missing value is substituted by some estimated (predicted) value based
on the recorded information, weighting, where weights are attached to the
respondents in the sample, and finally a direct analysis of the incomplete data.
In the latter case, the missing data are left as gaps in the data set and the
treatment of them is deferred to the analysis stage. Apart from the fact that
both imputation and weighting create a rectangular data set (without any
gaps), the gains from these approaches for estimating economic models do
not seem to be substantial. Even worse, imputation strategies may create a
bias in standard estimators even if the selection rule is ignorable (cf. Kalton
(1983]). If the response mechanism is non-ignorable, both imputation and
weighting strategies require a model-based approach in which the selection
rule is specified and estimated, see, e.g., Greenlees et al. [1982]. We shall
therefore in the sequel restrict attention to model-based approaches in which
both the observed as well as the missing data are modelled.

13.1.2 Conclusion

In this section attention has been paid to the problem of nonresponse in
panel data, being an important source for selection problems. Several kinds
of nonresponse have been distinguished as well as a number of reasons for the
occurence of nonresponse. Ideally, one would like to ignore nonresponse and
other selection problems and use the available data in a standard way (with
standard software packages). Whether or not standard estimation methods
lead to consistent estimators for the parameters of interest depends crucially
on the fact whether the selection mechanism is ignorable for the parameters
of interest or not. Loosely speaking, selection is non-ignorable if methods
that do not take the selection mechanism into account are subject to bias. In
the next section we shall therefore make the important distinction between
ignorable and non-ignorable selection rules.

13.2 Ignorable and Non—-ignorable Selection Rules

In this section, we introduce and define the important concept of an ignorable
selection rule, along with several refinements. All inferences ignoring the
selection mechanism or selection rule are conditional upon » = 1. Ideally,
this conditioning does not affect the properties of the estimator(s) under
concern, in which case it is appropriate to ignore the process that causes the
missing data and we can say that the missing data mechanism (or the selection
mechanism) is ignorable (cf. Rubin [1976), Smith [1983] and Little and Rubin
(1987]). However, whether the estimators that are used are consistent for
the parameters of interest not only depends on the properties of the selection
process, but also on the estimator which is used and on the parameters of
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interest. Therefore, we shall define below the concept of an ignorable selection
mechanism for all possible parameters of interest or for some given parameter
vector of interest. If selection is non—ignorable, a consistent estimator for the
parameters of interest can often be derived taking into account the mechanism
that leads to the missing observations.

Let us consider a data set where one or more variables may be unobserved
due to a selection rule. The variables in this data set that are of interest are
split into two subsets, one denoted by y and one denoted by z, where either
y or both y and z are subject to selection. Selection is indicated by a dummy
variable r. It is assumed that both y and z are observed if r = 1 and that
either y is unobserved if r = 0 (cf. item nonreponse on y) or both y and 2 are
unobserved if r = 0 (cf. initial nonresponse or wave nonresponse on (y,2))-

13.2.1 Definitions of Ignorability

In this subsection we shall define several ignorability concepts in their general
form, while an example will be provided for the case of i.i.d. data in the next
subsection. For the case of panel data it is usually not valid to assume that
the data are i.i.d. across time. Assuming that the data are independent over
individuals (but not over time), we shall in the subsection 13.2.3 explicitly pay
attention to the situation where panel data are available.

We define a selection mechanism to be ignorable if conditioning on the
response indicator variable r does not affect the joint distribution of y and z,
i.e., if!

f(y,218) = f(y, 2| r; 8), (13-3)
where we are using f(.;.) as a generic notation for any density /mass function.
In this case all estimators for parameters in marginal or conditional distri-
butions involving y and 2z, whose consistency holds if f(y,z | 8) is the true
distribution, are consistent. Note that condition (13-3) is equivalent to

f(’!‘ | y,z§§) = f(T I é)’ (13—'4)
which implies that r is independent of (y, 2).

In applications, the condition of ignorability is usually stronger than
necessary, because interest lies only in a particular subset (or function) of
the parameter vector #. Let us denote by z a (possibly empty) subset of
the variables in z and let us assume that the parameter of interest is %,
characterizing the conditional distribution of y given z. As a special case one
can choose an empty set of z variables, such that the marginal distribution of
y is the distribution of interest. Then we define a selection mechanism to be

1 Where needed, equalities in the sequel should be interpreted as almost sure equalities
with respect to the dominating measure.




268 Incomplete Panels and Selection Bias

ignorable for 1 in the distribution of interest f(y | z;¥) if conditioning on the
response indicator variable r does not affect this distribution, i.e., if

fylz9) = flylz, ). (13-5)
In this case all estimators for ¥ based on f(y | z; ) are consistent. Note that
(13-5) is equivalent to

flrlzi¢) = f(r|2,9:8), (13-6)
which states that r is independent of y conditional on z.

If the selection rule is ignorable, it will obviously be ignorable for any
parameter vector 1, since (13-3) implies (13-5). Note, however, that the con-
verse is not true: there are many cases in which the selection rule is ignorable
for a parameter ¥ but non-ignorable for another parameter ,. In particular,
if condition (13-5) holds for a particular choice of z, it is not necessarily the
case that this condition holds for any other choice of z. So for one purpose,
e.g., inference conditional on some demographic characteristics, the selection
mechanism might be ignorable, while for other purposes, e.g., marginal or
unconditional inference, it should be taken into account. We illustrate the
concepts of ignorability in the next section, which is entirely devoted to an
example where the data are assumed to be i.i.d. across individuals.

13.2.2 Examples of Ignorable and Non-Ignorable

Nonresponse

Suppose that ¢; are log expenditures on food in 1990 of & household randomly
selected from the U.S. population. We assume that the population distribution
of ¢; is normal with unknown (positive) mean u and variance ¢*. Suppose 100
households are sampled and that total household income y; of each household
is observed. Whether or not we actually observe c¢; depends on the selection
mechanism. We consider six cases.

1. A household does not report food expenditures with unknown probability
p-
2. A household does not report food expenditures with probability 4.

3. A household does not report food expenditures if they exceed $ 5,000 (if
¢; > log(5,000) = 8.52).

4. A household does not report food expenditures if the difference between
their log food expenditures and the population average is larger than § > 0
(if | es — g |> 6).

5. Households with excess expenditures on food are likely to refuse coop-
eration. In particular, conditional on ¢;, the probability of refusal is
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®(ac;) for unknown positive parameter a, where & is the standard normal
distribution function.

6. A household does not supply expenditures on food if its income is above
$ 25,000.

We consider two possible distributions of interest. For case I, the pa-
rameters of interest are u, the average log expenditures on food and o2, the
corresponding variance. For case II, interest lies in the relationship between
total household income and expenditures on food, i.e., in the parameters 8 in

¢ = Po+ Bryi + &,

where, for convenience, y; is also assumed to be normally distributed. The
variance of ¢; is denoted by o2. The pseudo maximum likelihood estimators
for y, 0% and § ignoring the selection mechanism are given by

100 100 ~
~ Yo TiCi a2 _ izl ri(ci — l‘)2 13-7
k= oo > 0 T 160 (13-7)
Dz Ti =1 T
and
R 100 -1 7100
3= (Eraa) (Sre).
i=1 i=1

where z; = (1,%)- For the six alternative selection rules discussed above we
shall now consider the question whether they are ignorable for the parameters
of interest, and whether the pseudo ML estimators are consistent and efficient.

1. The selection mechanism is ignorable. The estimators (fi,5°) and E are
consistent and efficient.

9. The selection mechanism is ignorable for (p, 0?) (case I) and ignorable for
B (case II). However, the pseudo ML estimators are not efficient since the
selection process contains information on p that is not taken into account.

3. The selection rule is non-ignorable for (u,0?) and non-ignorable for 8.
The estimators (I, 6%) and _& are inconsistent. Note, for example, that
& log(5000) — )
E{ci|r= 1}=#-05?0—-—— (5000 )_,,)96#,

where ¢ is the standard normal density function.

4. The selection rule is non—ignorable for (u,0?) and §. However, the esti-
mator [i is consistent for u since

E{c;|ri=1}=E{ci| -6 <eci+p<b}=p. (13-8)

The estimators for 8 and o2 are inconsistent. Apparently, it is possible
that an estimator, like /i, is consistent for u even though the selection rule
is non-ignorable for p. Indeed, a weaker condition is sufficient, which will
be discussed in the next section.
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5. The selection mechanism is non-ignorable for (u,0?) and 8. All pseudo
ML estimators are inconsistent. Note, for example, that
o2 )
E{C.lf,—l} H— Q(J)#”(a¢0)7

where w? = 1 + a?02.

6. The selection mechanism is non-ignorable for (u,0?), unless household
income and log food expenditures are uncorrelated (8, = 0). Suppose
that household income has mean u,, variance o2 and covariance 0., with
food expenditures. Then, it holds that

. ¥ 25000— p,)

Efci|ri=1}=p- Q(zsooo_ ) #p (0 # 0).
oy (—,—
However, the selection rule is ignorable for 8. Since r; is a function of
y; only, conditioning upon r; does not increase the conditioning set and

f(ei | v:) = f(ei | %, 7:). Thus the pseudo ML estimator for 3 is consistent.

13.2.3 Further Refinements of Ignorability

It is possible to define a concept of strong ignorability which not only implies
that the consistency of estimators is unaffected by conditioning upon 7, but
also that the efficiency of these estimators can not be improved by taking the
selection mechanism into account. In general, this requires the additional
condition that the parameters in the distribution of interest and those in
the selection process are variation free (as defined by Engle et al. [1983]).
This condition is often imposed in the literature. Smith [1983], for example,
concludes that “selection can be ignored” if condition (13—5) and (13-6) hold
with 1 and ¢ variation free. In practice however, situations in which 1 and ¢
are not variation free, like in case 2 of our example above, will be rare.

If the response mechanism is non-ignorable for the parameter vector 7, the
maximum likelihood estimator ignoring the selection mechanism is in general
inconsistent for 1. Of course, this does not necessarily imply that alterna-
tive estimators for 9 ignoring the response mechanism are also inconsistent,
although it will often be the case. For example, as we will see in Section 13.5,
the fixed effects estimator may be consistent for the slope parameters in a
random effects panel data model with non-ignorable nonresponse, while the
random effects (maximum likelihood) estimator is not.

If interest only lies in the parameter vector ¥* characterizing the first k
moments of the distribution of y given z, a still weaker condition can be given,
which is formalized as follows. We define a selection mechanism to be ignorable
of order k for the parameter vector 7 if conditioning on the response indicator

Ignorable and Non-ignorable

variable 7 does not affect
(which are the moments of

E{y"|z,4

In this notation f‘ is a ft
the distribution. If the sel

estimators for ¥* based on
for k = 1 one says that y i
is stronger than (13-9), so
it is also ignorable of orde
k—th one exist. In our exar
distribution was not affecte
the estimator fi was consist
for u were not fulfilled.

The concepts and defi
the case of panel data whe
in general — a multivarijate
of yi:’s by y,, whose t-th
ry = 0. The r;,’s are stac
of population values is in:
can say that the selection 1
ignorable if

f(yil, soen

[y, Zi | r38) =

ie., if (y,,Z:) is mdepend
based on r; will not affect t
will hold if all observatior
results in an unbalanced p
which Til = 00 =TT = 1
Using the balanced sub-pa
tational issues. On the oth
dividuals that are observec
estimation results based «
much higher standard err
in particular if many indiv
Chowdhury [1991], and A
next section, for many conr
estimation techniques are

If interest lies in the
distribution of y, given X
mechanism is ignorable fo

f(yilv e Ui




e Panels and Selection Bias

4,0?) and §. All pseudo
ple, that

#u (a #0),

(1,0?), unless household
ated (8, = 0). Suppose
¢ and covariance oy with

# 1 (0o #0).

Since r; is a function of
the conditioning set and
;imator for § is consistent.

gnorability

ty which not only implies
conditioning upon r, but
e improved by taking the
s requires the additional
of interest and those in
. by Engle et al. [1983]).
'mith [1983], for example,
m (13-5) and (13-6) hold
-uations in which % and ¢
above, will be rare.

1e parameter vector ¢, the
n mechanism is in general
sarily imply that alterna-
ism are also inconsistent,
ve will see in Section 13.5,
he slope parameters in a
le nonresponse, while the
ot.

characterizing the first k
:er condition can be given,
mechanism to be ignorable

on the response indicator

Ignorable and Non—ignorable Selection Rules 271

variable r does not affect the first k¥ moments E{y* | a:,_q)_"} (« = 1,.,k)
(which are the moments of interest), i.e., if

E{y* | z,9"} = E{¢" | z,n¢"}, Kk=1,.,k (13-9)

In this notation g" is a function of % characterizing the first ¥ moments of
the distribution. If the selection mechanism is ignorable of order k for 3 all

estimators for f’ based on the first K moments are consistent. If (13-9) holds
for k = 1 one says that y is mean independent of r given z. Condition (13-5)
is stronger than (13-9), so that if the selection mechanism is ignorable for 3
it is also ignorable of order k for k = 1, ..., provided all moments up to the
k—th one exist. In our example in the previous section the first moment of the
distribution was not affected by conditioning on 7 in case 4. This explains why
the estimator fi was consistent for u even though the conditions for ignorability
for p were not fulfilled.

The concepts and definitions above can straightforwardly be applied for
the case of panel data when one keeps in mind that the selection process is —
in general — a multivariate process. Let us denote the 7' dimensional vector
of yii’s by y,, whose t-th element is observed if r;; = 1 and unobserved if
rie = 0. The ry’s are stacked in a vector r;. Assuming that the distribution
of population values is independent over individuals and using (13-3), one
can say that the selection mechanism (which is now a multivariate process) is
ignorable if

f(yl'la o iy Ziny e ZiT | Q) = f(ﬂ,, Z; | Q)
= f(g" Zl' ' L!.o-) = f(yﬂ, sy YTy Zits - ZiT | Tity "',Tt'T;-o-)’ (13_10)

i.e., if (y,,Z;) is independent of r;. If this condition holds, selection of data
based on r; will not affect the consistency of the estimators. In particular, this
will hold if all observations are selected for which r;; = 1 (which in general
results in an unbalanced panel), and if only those individuals are selected for
which 7;; = ... = r;p = 1 (which results in a so—called balanced sub-panel).
Using the balanced sub—panel has the obvious advantage of facilitating compu-
tational issues. On the other hand, nothing is used from the information on in-
dividuals that are observed in a limited number of periods only. Consequently,
estimation results based on the balanced sub-panel may be afflicted with
much higher standard errors than those based on all observed information,
in particular if many individuals are incompletely observed. See, for example,
Chowdhury [1991], and M4tyds and Lovrics [1991]. As we shall see in the
next section, for many commonly estimated panel data models, complete data
estimation techniques are straightforwardly generalized to incomplete data.

If interest lies in the parameter vector 3 characterizing the conditional
distribution of y, given X; (a subset of Z;), then we need that the selection
mechanism is ignorable for 9,

fWity - Uir | Xi3¥) = f(Wirs oo tir | Xis 153 9), (13-11)
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which says that y, is independent of r; given X;. If attention is restricted to
the t-th wave of the panel, one can say that the response mechanism of period
t is ignorable for inferences in period t if

F(Winr 21 | 8) = f(Yirs 2t | 7383 8). (13-12)

In this case it is valid to analyze the t—th wave of the panel as a cross section.
However, it is not necessarily the case that it is valid to analyze all waves
of the panel jointly if (13-12) holds for all ¢t (¢ = 1,...,7). Only in some
special cases (13-11) holds if (13-12) holds for all ¢, for example when only
unit nonresponse occurs, in which case r;; = ... = ri7 by construction. Finally,
the selection mechanism is ignorable of order 1 for ¢ if

E{yit | Xi; ¥} = E{ya | Xiy 139}
forallit (t=1,..,T).

13.2.4 Example: a Simple Model of Nonresponse in
Panel Data

This subsection considers a simple model of nonresponse in panel data that
generalizes the well known sample selection models for cross—sectional data.
Consider model (13-1),
Yar = E::g‘l' Uit (13-13)
where we shall assume that u;; has a one way error components structure,
Uy = Yi + Vir-

Furthermore, we assume that y;; is observed if a latent variable 7}, is nonneg-
ative, for which we assume

Th= Z:'tl + & + M (13-14)

where z,, is a vector of variables, usually containing partly the same variables
as z;;. The error term in (13-14) also has a one way error components struc-
ture. In this set up the indicator variable r;; is equal to 1 if r}; is nonnegative,
and 0 otherwise, i.e., r;; = I (r}, > 0). For illustrative purposes we assume
normality of the error terms in (13-13) and (13-14) as well as independence
of all z;, and z;,. In particular,

v ollr
ﬂ. - O'u,,IT 0"2,]1' _
L~vlo] ™ 0 o : (13-15)
& 0 0 o o

where v; = (i1, %) and 7, = (%, ...,%7). I we want to estimate

the parameters in the model (13 13) using the available information on
only, we need the selection mechanism to be ignorable for (8',02,02). Under
the assumption that (13-14) and (13-15) describe the selection mechanism
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properly this implies that o,, = 0 and o, = 0. In this case r; is independent
of y, given X;. If we want to analyze the t-th wave of the panel as a single
cross section we need that the selection mechanism of period ¢ is ignorable for
inferences in period t. This requires that p; + vi; and &; + 7, are independent,
which is the case if o,, + 0, = 0. Note that this is equivalent to a zero
covariance in the cross—sectional sample selection model as discussed in Gronau
(1974] and Heckman [1976], [1979)].

In the next section we shall assume that the selection mechanism is ignor-
able and analyze the question of how to estimate a linear random effects or
fixed effects model with an incomplete panel. In Section 13.4 we analyze the
consequences of dropping the assumption of an ignorable selection mechanism.
This will have effects on the consistency of the standard random effects and
fixed effects estimators and introduce an identification problem. Without any
additional information (assumptions) it is in general not possible to identify
the parameters of interest and we shall give weak conditions under which
identification is possible.

13.3 Estimation with an Ignorable Selection Rule

In this section we shall pay some more attention to the estimation of several
types of panel data models with missing observations generated by an ignorable
selection mechanism.

13.3.1 Maximum Likelihood

Assume that interest lies in the parameters characterizing the conditional
distribution of y;, given z,,. Let us stack %i1,...,yirina T dimensional vector
y,. Let the 0-1 variable 7;;, as before, be equal to one if and only if y;; is
observed and let T, denote the number of periods where unit 7 is observed
(T; = 7_, 7). For each cross-sectional unit we define a T; x T' matrix
R; transforming y, into the T; dimensional vector of observed values y"b‘
say. This matrix R is obtained by deleting the rows of the T dimensional
identity matrix corresponding to the unobserved elements. Now we can write
y""' = R;y,. All N vectors g:,’b‘ are stacked in a large }_; 7; dimensional vector

ob: - (yob: obs )I

When the selectlon rule is ignorable consistent estimators can be based
on maximization of the likelihood function of the observed data, given by

@ 1 X0 = [ fu] X5 du™), (13-16)
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where f(y | X;%) is the density of the complete (observed and missing) data,

t.e.,
gl X59) = fg° 9™ | X 9). (13-17)

When the data are i.i.d. across i, the likelihood function of the observed
data is simple, since (13-16) reduces to

fE* X9 = Hf(RiL | R: X5 9). (13-18)

Maximization of (13-18) (or, more general, of (13-16)) with respect to ¥
is consistent as long as the selection rule is ignorable for . Compared to
maximization of the complete data likelihood function, the optimization of the
observed data likelihood may be more complicated. For example, it may no
longer be the case that simple analytic expressions for the first order conditions
can be obtained. We will first of all illustrate this for a regression model
with random individual effects and subsequently refer to results for regression

models with both individual and time specific effects.
First, consider the linear model with individual effects,
Yie = 2B + i + vie,y (13-19)

where y; and v;; are i.i.d normal random variables with zero mean and variance
o2 and 02, respectively, which are mutually independent and independent of
z;,. We will show that in this example the first order condition for § has a
simple. analytical expression, which does not apply to o2 and a;‘:. The density
of Y, given X; is normal with mean X; and variance §) = aﬁbl}-*—a,",’lrp, where
I; is a T dimensional column vector of ones. Consequently, in the complete
data case the likelihood contribution of unit ¢ is given by

1 1 -
log f(y, | Xii) = k - 21og | 0| ~5(y, ~ X:fY 2 (3~ Xif)  (13-20)
where k is a constant and where
|92 |= 02" (a2 + T0?) (13-21)
and \
g !
Q,;l = a';'z [IT - -O?T“TU—?‘LTLT] (13—22)

(cf. Hsiao [1986], p. 34). From this, one can easily derive the first order
conditions for obtaining the maximum likelihood estimator. In particular,
after appropriate arranging of terms one obtains

N -1 /N
Bur = (Exiﬁ;llLXi) (ZX.'Q;}LQ.) (13-23)

i=1 i=1

~ 1 & ~ "
G = NT-1) §(yi - XiB,,,)Qr(y, — XiBy,) (13-24)
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~2 1 ul = = 2 1 ~2
Tumr = ﬁz(y‘ —EBy) - T vmrs (13-25)

i=1

where Qr = It — #lply (the within transformation) and % = 7 LT Vi
From these first order conditions the ML estimators can be solved recursively,
starting from some initial trial value. In addition, a (feasible) GLS estimator
for § can be derived from (13-23). This estimator can be obtained easily by
running an ordinary least squares regression on transformed data,

y;g = z“é + Uit (13_26)
where _
bie = v — (1 - 8, (13-27)
with
~ o2
" . (13-28)

321 To?
Gl +Ta}
and where u;; is a white noise error term. In (13-28), 32 and 2 are consistent

estimates for o2 and o2, which can be based on residuals from two simple
regressions (see below).

When the data are incomplete, the likelihood contribution of individual ¢ is
given by log f(R.y, | R:Xi; ). Denoting the covariance matrix of Ri(lrp; +v;)
by Q;, we have

Q,‘ = R,QR: = O'le'_yr', + 031’1’.--
Since §; has the same structure as £, its inverse is readily obtained. Denoting
X = R;X;, the likelihood contribution of unit ¢ is given by

log f(y;™ | X{™¢) =
1 1
ki _ Elog I Ql’ | _E(g:b: on”ﬂ) Q ( obs X‘?hé)- (13_29)

Trom the first order conditions it is easily obtained that

N -l N
Buur = (2 X""'Q.MLX:"") (E X:’“'Qa},,g:") : (13-30)
i=1 i=1

However, relatively simple expressions like (13-24) and (13-25) can not be de-
rived from the first order conditions with respect to the two variances. If these
variances are known, the GLS estimator for 3 is identical to the ML estimator
and is given by (13-30). Like in the complete data case, this estimator can also
be obtained by running an ordinary least squares regression on transformed
data, where now the transformation depends on T;. In particular, (13-27) is
changed into

Boo = v — (1 - 6)3, (13-31)
where 0; is given by (cf. Baltagi [1985])

0.2

0, = —2—. 13-32
= (13-32)
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Usually, o2 and o2 are unknown. In that case a feasible GLS estimator can be
computed by replacing o2 and o2 in (13-32) by quadratic unbiased estimates
obtained from the “within” and “between” residuals. These are the residuals
from a regression of y;; — §; on z;, — Z; and %; on Z;, respectively. From these,
02 and o2 can be estimated consistently by

1 N T _—
G = N ra |(vie — %) — (2 — 2)'B (13-33)
S =285
and
2= L5 G-z, - 142 (13-34)
au—_ﬁ; ('.‘/-'—EEB) _T:.UV ’
where EPE and EB denote the within (“fixed effects”) estimator and the

between estimator, respectively, obtained from the transformed regressions
mentioned above, i.e.,

E.FE = (ZZ Tit(Zi — Z) (i - :..)) (E

i=1 t=1

rieZis — Z3)' (Ye — 37;‘))

i

and

A more general model of interest than (13-19) would contain both indi-
vidual (%) specific and time () specific effects, i.e.,

Yir = ZiB + i + €+ Vi (13-35)

In this case, it is rather complicated to adjust the complete data transforma-
tions to the case of an incomplete panel, both for the case where y; and &, are
treated as fixed (the fixed effects model), as well as when they are treated as
independent normal error terms (the random effects model). Wansbeek and
Kapteyn [1989] derive the general form of the appropriate transformations for
the case with missing observations. Their extensions are less elegant because
the symmetry in the way in which both dimensions are dealt with disappears
when the data are incomplete. In particular, it is no longer possible to give
closed—form expressions for the appropriate transformations.

13.3.2 The EM Algorithm

Under ignorable response mechanisms, the maximum likelihood approach
leads to consistent estimators of the parameters in the model even if the
fraction of missing data increases with sample size. Because direct maxi-
mization of the likelihood function of the observed variables given in (13-16)
may be computationally cumbersome, it is sometimes convenient to exploit the
relationship between (13-16) and the likelihood of the complete data (13-17).

Estimation with an Ignorabl

This is what is done in t
algorithm is nothing more¢
the maximum likelihood e
1950s by, among others, H
general treatment of the ¢
authors recognize the expe
step) in their general form
and discuss a wide range
algorithm is the following

f(yobs l

Although the algorithm c:
it is particularly convenier

flyl X5) = ex

where #(y,X) denotes a -
general form, the EM algc

Q¥
= [log f(y| X

where the conditional exp
eters 9 in f are not repla
of 9 after k cycles of the :
two steps.

E step: Compute the co
M step: Maximize Q(%,
The heuristic idea is t!

log f(y | X ;). Because w

its current expectation gi

For the special case o
QD) = ¥ E iy,

where the second term in
known parameters. In thi:
expectations of the sufficie
statistics are not linear ir
replacing the missing obs
tional expectations given
which Q(¢,%) is maxima
value obtained from the @
the algorithm is essential.




plete Panels and Selection Bias

sasible GLS estimator can be
juadratic unbiased estimates
1als. These are the residuals

Z,, respectively. From these,

~ 2
too — ) B (13-33)
%33] , (13-34)

effects”) estimator and the
the transformed regressions

Z rie(Zie — Z) (Y — ?7:'))

5.2:7.-) :

19) would contain both indi-

e.,
Vs (13-35)

he complete data transforma-
r the case where y; and €, are
1 as when they are treated as
flects model). Wansbeek and
ypropriate transformations for
sions are less elegant because
ons are dealt with disappears
. is no longer possible to give
1sformations.

rithm

\aximum likelihood approach
ers in the model even if the
2 size. Because direct maxi-
ved variables given in (13-16)
times convenient to exploit the
of the complete data (13-17).

B

Estimation with an Ignorable Selection Rule 277

This is what is done in the EM algorithm. As the name suggests the EM
algorithm is nothing more than just an alternative algorithm for computing
the maximum likelihood estimator. The algorithm was first introduced in the
1950s by, among others, Healy and Westmaccott (1956] and Hartley [1958). A
general treatment of the algorithm is given in Dempster et al. [1977]. These
authors recognize the expectation step (E step) and the maximization step (M
step) in their general forms, give some theoretical properties of the algorithm
and discuss a wide range of applications. The basic relation used in the
algorithm is the following

@1 X59) = / fly | X;9)du(y™). (13-36)

Although the algorithm can be used for any form of the densities in {13-36),
it is particularly convenient when f(y | X; 1) has the exponential family form

fy) Xi9) = exp{9/t(y, X) + by, X) + a(, X))}, (13-37)

where t(y, X) denotes a vector of complete-data sufficient statistics. In its
general form, the EM algorithm can be characterized as follows. Define

Q) = By {log f(y | X; %) 13 }
= [log fly| Xsw)fG™ | ™% = Diu(s™), (13-38)

where the conditional expectations are evaluated at ¥ = ﬁ (while the param-

eters ¢ in f are not replaced by _@ Suppose Q(k) denotes the current value
of 1 after k cycles of the algorithm. Then the next cycle can be described in
two steps.

E step: Compute the conditional expectation Q(v, _12(")).
M step: Maximize Q(¥, y_(k)) with respect to ¥, yielding ﬂ(”l),
The heuristic idea is that we would like to choose a value for 1 to maximize

log f(y | X; ). Because we do net know log f(y | X;4), we maximize instead
its current expectation given the data y_""’ and the current fit 2(" ).

For the special case of exponential families, one can see that
Q) = ¥ Egt(s, X) | 37 + Eglb(, X) | ™) +a( X),  (13-39)

where the second term in the right hand side does not depend upon the un-
known parameters. In this case it is thus sufficient to compute the conditional
expectations of the sufficient statistics only. Because in general these sufficient
statistics are not linear in the missing observations, this is not equivalent to
replacing the missing observations in the likelihood function by their condi-
tional expectations given the data. Moreover, note that the value of 1 for
which Q(ﬂ,@ is maximal does not necessarily correspond with the limiting
value obtained from the algorithm. This explains why the iterative nature of
the algorithm is essential.
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An analysis of the convergence properties of the EM algorithm is presented
by Dempster et al. [1977) and Wu [1983], the treatment of which is beyond the
scope of this chapter. If the algorithm converges, then (under the condition
that taking expectations and differentiation is interchangeable) the limiting

value ¥ satisfies
it X ;9
Evla(“) { o8 f(gal / = ) I yob;} =0. (13—40)

This condition is equivalent to the first order condition for the maximum
likelihood estimator based on maximizing (13-36). This can be seen as follows.

Using
log f(y | X;9) =log f(y | ™, X; ) +log f(3™* | X;¥)
we can write

dlog f(y| X;¢) _ dlog f(y | ., X 9) N dlog f(y* | X;9)

0% 0¥ 0¥ ’
from which it follows, taking expectations on both sides over y given y°*, that
dlog f(y | X59) 4 dlog f(y™* | X;9)
—_—= = |y = = . 1341
E { % ly 0+ ) ( )

This equality proves that £(°°) satisfies the first order conditions for maximum
likelihood.

The belief is wide-spread that the EM algorithm is not able to provide
an estimate of the information matrix. As was recently stressed by Ruud
[1991], this complaint is not entirely correct. When the data are independently
distributed across individuals, i.e., when

N
Eg {108 fly | X;9) | g™} = 3 By {log (3, | Xis 9) | w, (13-42)

condition (13-41) also holds for each individual score. Using this, an estimate
of the information matrix can be obtained from the outer product of the
score vectors. Note that the M step will not provide individual scores, unless
QY @ is programmed as the sum of individual contributions (according to
(13-42)). This is in conflict with the result that for the exponential family case
conditional expectations of the sufficient statistics only are required. Alterna-
tively, an estimate of the information matrix can be obtained by differentiating
(13-41) with respect to ¥ and evaluating the result at the ML estimate for 9.
However, note that the expectation operator in the left hand side of (13-41)
depends on %, which should be taken into account when differentiating. Be-
cause the expectations used in the M step are conditional upon the parameter
values from the previous cycle of the algorithm, this derivative can not be
computed in a straightforward way from the maximization routine.

In Dempster et al. [1977] it is assumed that the selection rule is ignorable.
However, the EM algorithm can also be used in the case of non-ignorable
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selection. In that case all densities also include r and the parameters of interest
(%) should be estimated jointly with the parameters of the response mechanism
(£), see, e.g., Little and Rubin [1987] (p. 220) or, more recently, Ruud [1991].

As a final point, we would like to mention that an approach to han-
dling missing data that is sometimes confused with the EM algorithm is the
maximization of (13-17) with respect to the parameters % and the missing
observations y™* (see, e.g., Kmenta [1981], Kmenta and Balestra {1986], Lien
and Rearden [1988], [1990]). This method is not maximum likelihood and
although it might be useful in some cases, it is likely to lead to inconsistent
estimators, as shown in Hsiao [1986] and Little and Rubin [1983], because the
number of parameters increases with the number of observations.

13.4 Identification with a Non-Ignorable
Selection Rule

As mentioned in the previous section a common assumption made in applied
econometric work is that the selection mechanism is ignorable of order 1, i.e.,
that

E{yit | Zi; ¥} = E{yie | 2ir, 159},

or, restricting attention to one wave of the panel only, that

E{yit | it %} = E{tis | Zit, mie = 159}

If this assumption is not met the selection mechanism should be taken into
account when making inferences. The first problem a researcher faces in
this case is the fact that the mechanism that generates the missing data is
unknown and without additional assumptions it is not possible to identify the
parameters in .

Suppose we are interested in the regression function E{y; | z;;} in some
period .2 Data on y;; are available only if r;; = 1, while data on z,, are
available if r;; = 1 and r; = 0. What can be identified from the data is
E{yi | 2,7t = 1} as well as E{r;; | z;,} = P{riy = 1| z;;}. Note that

E{y | L‘:} = E{yu | 2i,70 = 1} P{ri = 1 | Zie}
+E{yit | Zig, 70 = 0} P{riy = 0] z;,}.

Since no information on E{y; | z;;} is provided by the data it is not possible
to identify E{y; | z,;,} without additional information or making additional
assumptions. As Manski [1990a] notes, in the absence of prior information, the
selection problem is fatal for inference on E{y;; | z;;}. However, it is not the

To simplify notation, we shall in the remainder of this section delete the parameter vectors
from the conditioning set.
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case that the failure of identification is total. Observe that for any measurable
set ACR,

P{yi € A| 2i} = P{yis € A| Zipymae = 1} P{re = 1| 24t}
+P{yi € Al iy, 7i = 0}P{ris = 0| z,,}.
Although the sampling process does not provide information on P{y; € A |

Z;,Ti¢ = 0} this probability necessarily lies in the interval [0,1]. Using this,
one can write

P{yi € Al zipyrie = 1}P{rss = 1| 2} < P{yit € Al 2,4}
< P{y.-: €A | Lty Tit = I}P{'f'it =1 |L¢} + P{"it =0 |§4t} (13”43)

As long as the probability of selection, P{r;; = 1| z;,}, is positive the bound
width on P{y; € A z;,} is smaller than one and thus non-trivial. Suppose,
for example, that one chooses A = {y | y < t}. Then it follows immediately
from (13-43) that

P{yy <t|ziyrie = 1}P{ris = 1| 21} < Py < | 2i4}
< P{y.-: <t | Lty Tit = I}P{Tit =1 I Q.'g} + P{r,-, =0 I L‘t}- (13_44)

Thus, even in the case with no prior information, the distribution function of y
is bounded, while the bounds can be estimated consistently (for almost all z).
Note that the conditional distribution function P{y; < t | ;;, ris = 1} satisfies
this bound. As shown by Manski [1990a], it is possible to derive bounds on the
a—quantile of y conditional on z from the bounds on the distribution function
of y conditional on z. These bounds are informative whenever P{r;; =1 | 2}
is sufficiently large. In particular, both the upper and lower bound are non-
trivial if P{r;; = 1| z;;} > max{a,1 — a}. This implies tkat the bound on
the median of y conditional on z is informative if P{ry, = 1| z,} > 1.

Thus, in the absence of prior information, the selection problem is fatal
for inference on the mean regression of y on z but not for inference on
quantile regressions. For the case of mean regression, Manski [1989] examines
two alternatives for the assumption of order 1 ignorability (conditional mean
independence). His first alternative is based on the results above and imposes
weak restrictions, namely that there exist non-trivial bounds on the support
of y conditional on z and r = 0. From this, bounds on E{y; | z;;} can be
estimated.

Suppose, for example, that it is known that the conditional distribution
of y;; given z;, and r; = 0 is concentrated in a given interval (L., U,]. This
implies that

L, < E{yu | 2o} < Us.
From this one can derive that
E{yis | Zie,rie = 1} P{ris = 1] 2.} + L P{ry =0]z;}< E{yu | 2.4}
< E{ya | ziyrie = 1} P{rio = 1| 2;,} + U P{ris = 0| z;,}.
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If P{rii = 1| z;} > 0, the bound width on E{y; | z;;} is smaller than the
imposed bound width on E{y; | 2,7« = 0}, in which case the bounds are
informative. Because this strategy will only identify bounds on expressions
like E{yi: | z;i} and E{y | z;; = k1} — E{tir | zi; = kyp} for some k, and
k,, the practical use of it seems limited. Therefore we shall continue with the
discussion of the second alternative to the assumption of conditional mean
independence.

In the econometric literature on selection, it is common practice to identify
E{yi | 25} by assuming that E{y; | z;, iz = 1} is the sum of E{y; | z;}
and another function that can be distinguished from E{y; | z;;}. Suppose it

is known that
E{y: | 2.} = g1(za)
E{yl't | ZLigsTit = 1} = gl(Lg) + yz(ﬁu) 3
where ¢; and g, belong to some specified families of functions, G, and G, say.
Because g;(.) + g2(.) is identifiable from the data, the two functions can be
identified seperately if this information is combined with prior restrictions on

G and G,. In the literature, such restrictions are often motivated by a latent
variable specification:

Vi = fi(zi) + €0, Eleil|zi} =0,
ra = X {r}, = fa(z:) + m: > 0},

where ¢;; and 7, are unobserved random variables. This latent variable model
implies that

E{yi | 2:i} = fi(zie) s (13-45)

E{yil 2z, ra =1} = fi(z) + E{es| 24, fa(zie) + mi2 > 0}. (13-46)

Prior restrictions on f;(.), f2(.) and the distribution of (ei, i) conditional

on z,, can identify f, (and f, as well). Note that the assumption that ¢;; and

it are independent (conditional on z,,) implies that the selection mechanism
is ignorable (for f,).

In applied work, attention is usually restricted to parametric functions
for f, and f, and to cases where the distribution of (g;;, n:;) conditional on
Z,, is known up to a finite number of parameters. In that case sufficiently
strong parametric restrictions identify all parameters in the model. Often,
one imposes linearity of f; and f, and normality of ¢;; and 7;; (independent
of z,,), yielding

E{yi | 2:; 0} = 209, (13-47)
#(zi)
T o(zly)
where o, is the covariance between &;; and 7. This type of models was
discussed first in the 1970s by Gronau [1974], Lewis [1974] and Heckman

[1976], [1979] and have received substantial attention ever since. See, among
many others, Olsen [1980], Greene [1981}, Little [1982], [1985] and surveys

E{yi |l zisre = i,y =29 + 0 (13-48)
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in Maddala [1983] (Chapter 9), Amemiya [1984], [1985] (Chapter 10) and
Pudney [1989] (Chapter 2). Extensions to the case of panel data are given by
Hausman and Wise [1979], Winer [1983], Ridder [1990] and Verbeek {1990],
which we shall discuss in more depth in the next section. Recently, more
and more attention has been paid to semiparametric estimation of selection
models, in which the functional forms f;(.) and f;(.) are known up to a finite
number of parameters and the distribution of (&, 7::) is left unspecified. (See,
e.g., Newey, Powell and Walker [1990].) The crucial point required for the
identification of f(z;,) is that E{e; | z;4, f2(2i:) + 7 > 0} depends on z,,
through f,(z;,) only.

Under (13-45) — (13-46), the selection problem can be considered as an
omitted variable problem, a fact which was first noticed by Heckman [1976],
[1979]. From this point of view Heckman proposed a two step estimator for 1
in (13-47) ~(13-48), which does not require maximum likelihood estimation of
the complete model. His proposal is to estimate 7y in the response process from
standard probit maximum likelihood, to estimate ¢(z/,7)/®(z},7) by replacing
7 by its estimate ¥ and to include tlus (estimated) variable in the regression
equation and estimate 9 and o,, using ordinary least squares. From this, one
can easily test whether o,, = 0 (in which case the missing data mechamsm is
ignorable for ). Moreover, the estimators for 1 obtained by this procedure are
consistent (although inefficient). A problem from the applied point of view is
the fact that the usual standard errors from OLS routines are not valid if o,,, #
0, see Heckman [1979] and Greene [1981] for details. Nowadays, corrected
standard errors are often routinely supplied by econometric software packages

Y\ (like LIMDEP). Normality of both ¢;; and 7, is not a necessary condition for
the results above to hold. The only thing that is required is normality of 7,

\‘ (to estimate the probit model) and linearity of the conditional expectation of

| € given 7y,. A variant of Heckman’s two step estimator is given by Olsen

" [1980]. He suggests to use the linear probability model instead of the probit

; model, which simplifies the estimation problem and makes the correction term
l. linear in z,, if it is assumed that the conditional expectation of ¢;; given
LT is linear. Apart from the implied distributional assumptions the most
important distinction between the two approaches are the conditions required
for identification of 9. Olsen’s method requires the presence of a variable
in the linear probability model that is not present in the regression equation

(13-47). In applications the two correction terms produce very similar results
(see Olsen [1980]).

13.5 Panel Data Regression Models with
Non-Ignorable Nonresponse

In this section we shall discuss the properties of the standard fixed effects and
random effects estimators in the linear model when the selection mechanism is
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non-ignorable and subsequently pay attention to alternative estimators that
take into account the selection mechanism. Let us consider once more the
linear regression model with a one way error components error structure given
in (13-13),

Yie = Zi 0+ i + ity (13-49)
where p; and v;; are unobserved random variables. Observations on y; (and
possibly on z;, as well) are missing if r;; = 0. We define ¢; = Hf':l i, so that
¢; = 1 if and only if y;, is observed for all ¢.

13.5.1 Sufficient Conditions for Consistency of the
Standard Fixed and Random Effects

Estimators

The first estimator for 8 we consider is the (pseudo) maximum likelihood
estimator ignoring the missing data mechanism, which is the random effects
(generalized least squares) estimator (see, e.g., Hsiao [1986] (p. 34)). Defining

#; as in Section 13.3,
[ o2
9. =1—,/—2—
! 0'3 + T,'O'?‘ ’

and denoting the transformed variables with a double tilde, i.e.,

Z, =z — 0iZi,

the random effects estimator based on the unbalanced panel can be written as

- - N T “lyN T
EML=EHE(U)=(ZZ£,z,ri') (EZ_:E_,-,@,-,r.-,). (13-50)

i=1 t=1 =1 t=1
In applied work, attention is often restricted to the balanced sub-panel in
which only those individuals are retained that have completely observed
records. In this case, the resulting random effects estimator is given by

N T “-LyN T
E_RE<B>=(zzz.-,z-,c.-) (zzdy) (1351)

i=1 i=1 i=1 t=1
Note that all units ¢ for which ¢; = 1 will have the same value for #;. These
estimators 3, (.) are consistent for V — oo if

E{gi+vs|r}=0, t=1.,T;i=1,.,N, (13-52)

which implies that the missing data mechanism is ignorable of order 1 for 3.
In the special case where the selection mechanism can be described by (13-14)
and the errors are normally distributed according to (13-15), the expectation
of v;, given selection is given by

T
TR P . s _
E{vﬂ | L} = 0.'2, E{E, + it IL} 0'2, +TU? Z}E{En + nis IL}] ’ (13 53)
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while the conditional expectation of yu; given selection is given by

E{piln} = — i",}a, ZE{E, + i | ) (13-54)

€ s=1

Clearly, 0, = 0,, = 0 implies that (13-52) will hold. Another situation in
which (13-52) holds occurs when E{¢; + 7;; | i} is constant over time and
Oue + Oyy = 0.

If neither of these two conditions holds, in which case the response mech-
anism is non-ignorable for §, nor ignorable of order 1, alternative estimators
may exist that are consistent for B without taking the missing data mechanism
into account explicitly. In the model under consideration such an estimator is
the fixed effects estimator (which treats the y; as fixed unknown parameters).
If we define Z;, as the value of z;, in deviation from its (observed) individual
mean, i.e., I;; = &;; —Z;, and define §; analogously, the fixed effects estimator
based on the unbalanced panel is given by (cf. Hsiao [1986] (p. 31))

EFE(U) = (z Ziitﬂtrh) (Z Eiﬁt@itrh)

i=1t=1 i=1 t=1
and the one based on the balanced sub—panel by

EFE(B) = (2 Z i.-g_@,C.-) (E Z_: inﬂnci) .

i=1 =1
Evidently, these two estimators are consistent for J if the response mechanism
is ignorable for 3. However, it is straightforward to show that g, (U) and
B, (B) are consistent estimators (for N — oo) if

E{ty|r;}=0, t=1,.T; i=1,..,N. (13-55)

For the case of normally distributed errors where the missing data mechanism
is described by (13-14) one can show that

E{‘D,; I—s} -

E{fc + 7t ' .4} ET‘,E{& + 7, | }/ Eru . (13_56)
s=1

Equation (13—56) implies that the fixed effects estimators are consistent not
only if the missing data mechanism is ignorable for 3, but also if either o,, = 0
or if E{& +mi: | 15} does not vary over time. The latter condition implies that
there is no selectivity bias in the fixed effects estimators if the probability of
an individual of being observed is constant over time. This is caused by the
fact that the correction term for selectivity in (13-49) is absorbed in the fixed
individual effect if it is constant over time. This was noted earlier in a different
model by Meghir and Saunders [1987]. Since {13-56) does not contain o, a
correlation between the individual effects in equation (13-49) and the probit
equation (13-14) does not result in a bias in the fixed effects estimator.
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13.5.2 A Consistent Two—step Estimator for the
Random Effects Regression Model

Now suppose neither of the two conditions (13-52) and (13-55) is satisfied, in
which case we have to look for alternative estimators for 3. The seminal paper
of Hausman and Wise [1979] was the first to discuss the estimation of a random
effects panel data model with attrition. Because their model is essentially a
two period model in which selection takes place in the second period only, we
shall follow Ridder [1990] and discuss a more general model where selection
can occur in any period. The model of interest is, again, (13-49), while the
selection process is characterized by a latent variable specification

T = Zuy + & M (13-57)

such that 7, = I {r}, > 0}. The term & in (13-57) accounts for unobserved
heterogeneity in the selection process. H r;;_; is included in z,,, this can
account for state dependence in the process. Both phenomena can explain
the often observed fact that individuals observed in previous periods are more
likely to be observed in the present period than individuals who are not ob-
served before. As discussed in Ridder [1990], they have rather different effects
on the distribution on the observed y;,’s. Let us assume, for convenience, that
all error terms are normally distributed as specified in (13-15) and leave the
more general case to Ridder [1990].

A first way to obtain consistent estimators of the parameters in (13-49)
is a generalization of the two step-method of Heckman [1979] for the cross—
sectional case, as discussed in the previous section. Instead of one correction
term we now have two correction terms to be included in (13-49) corresponding
to the conditional expectations of p; and v;; given selection. The parameters
for these correction terms are the covariances between §; and g and between
nie and v, respectively. From (13-54) and (13-53) we can write E{u; | r;} =
0, Ar; and E{v | 7;} = Oup Azir, With

1 T
Au=——s S E{E+m | 1, 13-
§= T 2 e 1) (13-58)
and
1 o} T
Ay = —= | E{& i |} — 5 E{& is | Ti)H - 13-59
2it 03[ {&+me | 1} 03+TU?.§=1: {&+m | .} ( )

The computation of these correction terms is not as easy as in the cross—
sectional case because we have to evaluate E{; + 7 | 7;}, which requires nu-
merical integration. Moreover, the estimation of the correction terms requires
estimation of the parameters in the probit equation (the response process),
which—in its turn—necessitates numerical integration. Fortunately, the di-
mension of integration can be reduced to one because of the error components
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structure of the error terms. The conditional expectation E{§; + n;; | r;} is
given by

Bletmiln) = [ [6+E(nl S0, (13-60)

where vt
E{ni | £, &} = (2ri — D)o, * (_;‘—_') N
@ ((2ri — 1)2LE)
and

T, & ((2re - 1)%) &/ o¢)
S Ty @ ((2m — 1)) Lo(e/op)de”

which is the density of £; given selection. Once the parameters in A,; and
A3zt have been estimated, estimated correction terms can be added to (13—49)
and, as in the cross-sectional case, consistent estimators for the parameters in
(13-49) are obtained from running OLS or GLS in the extended model. If the
selection rule is non-ignorable, it should be noted that the error term in the
extended model exhibits both autocorrelation (due to the random effect) and
heteroskedasticity (due to the presence of the correction terms) implying that
it may be hard to obtain valid standard errors in this case. If the two step
procedure is used to test the hypothesis of no selection bias valid standard
errors under Hy can easily be obtained from feasible GLS, where—in the first
step—the variances are estimated under H, (see Nijman and Verbeek [1989]
for an application). Because of the computational complexity the (generalized)

two-step procedure is much less attractive in the panel data case than in the
cross—sectional case,

fl&ln)=

13.5.3 ML Estimation of a Random Effects Model
with Selection Bias
Efficient estimators of all parameters in the model can be obtained by using
the maximum likelihood method. To derive the likelihood function of r; =
(ri1 -y 7ir)’ and g:_’b’ it is most convenient to write
log f(rs, ) = log f(r: | ™) +log F(3™) (13-61)

where f(r; | y2**) is the likelihood function of a (conditional) T-variate probit
model and f(g’.f”') is the likelihood function of a T; dimensional error compo-

nents regression model (cf. Hsiao [1986, p. 38]). The second term is simple
and can be written as

T; -1 1
log f(y™) = - log2m — logo? — 5(03 + Tio?)

2
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The first term in (13-61) is somewhat more complicated because we have to
derive the conditional distribution of the error term in the probit model. From
(13-15) and defining oy = (i + i) (Where 1y is treated as non-stochastic),
the conditional expectation of the error term & + iy is given by

o2 T

g,
E{& 4 7 | @ity tir} = Tit— |Ct = 573 is
{é + it I Qi1 ,alT} Tit 03 Qe 0-3 + T;O’z E:la

B o=

T
Oy
—_— Qs = City SaYy.

+63 + T.'Uz ‘E=:l 1y y
Using (13-15) the conditional variance of & + 7 can also be derived. It
is straightforward to show that the conditional distribution of & + 7 given
@1, ..., 0y corresponds to the (unconditional) distribution of the sum of three
normal variables e;; + vy; + ri;vg; whose distribution is characterized by

E{vi} = E{vu} =0, E{ea}=cu,
V{ieu} = o2 = ryeal, [0} = 5}, say
V{vi} = 0} = Tiok (ol + Tiol) ™" = wi, say

V{vu} = 02,020, (02 + Tio2) ™" = wy, say

Cov{vy, v} = —0ueOuq(0s + T.-a;‘:)'1 = Wyq, say
and all other covariances equal to zero. For notational convenience we do
not explicitly add an index ¢ to the (co)variances s? and w;. If the response
mechanism is ignorable for §, i.e., if ouy = 04 = 0 then ¢;; = 0, s2 = 03,
w, = ag and w,, = w, = 0. Similar to the unconditional error components
probit model (cf. Heckman [1981a]), the likelihood contribution can be written
as

L ZiY + cis v+ Tl
flz | be‘) = //H‘D (dn = : - k F (v, vai)dviidvy;
t=1 !

St

(13-62)
where d;; = 2ri — 1 and f(.,.) is the density of vy and vy;. Using the
expressions above it is possible to write down the complete likelihood function
for our model. Note that computation of the maximum likelihood estimator
requires numerical integration over two dimensions for all individuals which
are not observed in each period (for which r;, is not equal to 1 for all ¢). This
makes the likelihood approach rather unattractive in applied work. Therefore, ~
it is recommended first to check whether the response mechanism is indeed
non-ignorable before starting this computationally demanding ML procedure.
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* 13.5.4 Consistent Estimation of a Fixed Effects Model flz;::fters (ps) and thu

with Selection Bias Denoting by g:b- i1
In many applications the individual effects u; in (13—49) are likely to be function of r; and th
correlated with the explanatory variables z,, in the model (see Mundlak [1961]

i

for a classical example). If that is the case, treating the u; as 1.1.d. errors will log f(r
usually lead to inconsistent estimators. A convenient way to circumvent this : Since (13-63) does not i
problem is to treat the p; as fixed unknown parameters. However, direct and maximizing the me
;' estimation of these fixed effects within the maximum likelihood framework asymptotically normally
I sketched above will not lead to consistent estimators when the number of time the conditional distribut
' . periods T is small. Verbeek [1990] presents a transformation to eliminate the dimension of numer
the fixed individual effects and shows that the corresponding marginal max- ; this distribution is ident

imum likelihood estimator can be used to estimate the remaining parameter case,
- onsistently, even when only a few time series observations are available. E{

Again, the model of interest is (13—49), where now z;, contains only strictly

exogenous variables and where the y;’s may be correlated with the z;,’s and vy

therefore treated as fixed unknown parameters. The selection equation (13-57) .
is left unchanged and we make the same distributional assumptions for the and all covariances equ:
error terms, except for y; for which no assumptions are made.

As discussed at the beginning of this section, the standard fixed effects
estimator of 8 in (13-49) which ignores the nonresponse problem is incon-
sistent if both o,, # 0 and zl,y varies with . An obvious alternative is

Yto use the maximum likelihood estimator incorporating selectivity, as done
in Keane, Moffitt and Runkle [1988]. This is a straightforward extension of
the method sketched above, but instead of treating the y; as random errors
we treat them as fixed unknown parameters. However, the fixed effects y;
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with the expression ob
reveals that computatic
is somewhat simpler be
independently distribut.

cannot be estimated consistently when the number of periods that individual The marginal maxi
i is observed (T;) is small and this inconsistency is transmitted to the other el:alized in a,.number 0!
coefficient estimators in models with limited dependent variables (see, e.g., vidual e.ffect in t%le I_’l'o1
Chamberlain [1980]). In our model this inconsistency occurs so long as o,, # 0. concerning the distribu
Although Heckman [1981b] has provided some Monte—Carlo evidence that the MOﬂ?tt and Runkle (1
bias is fairly small in a fixed effects probit model with T = 8, it is not clear probit error term can
to what extent his results hold for the present model. In addition, one has to ' will usual]y.r.equire tha
optimize the likelihood function with respect to a large number of parameters, grals). Addltxona.lbf ; th
which is computationally unattractive. within transformation «

transformation is perfor
Finally, if z,, contains
the marginal ML estim
properly taken into acc
heterogeneity (cf. Heck

Verbeek [1990] proposes a solution to the incidental parameters problem,
which is provided by transforming the data in such a way that the individ-
ual effects are eliminated and maximizing the likelihood of the transformed
data. This can be seen as an application of marginal maximum likelihood
(Kalbfleisch and Sprott [1970), Gourieroux and Monfort [1989] (p. 208)) since
(in general) only the likelihood of part of the original data is used. As
in the standard model, the “within” transformation, i.e., taking deviations
from observed individual means, works well, since it eliminates the incidental
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parameters (i;) and thus yields a consistent estimator which is asymptotically
normal.

Denoting by Q:.’"' the T; vector of observed #;’s, the marginal likelihood
function of r; and g:" is given by

log f(r:, 52**) = log f(z: | ;) + log £(5;™)- (13-63)

Since (13-63) does not involve y; the incidental parameters problem is solved
and maximizing the marginal likelihood function will lead to consistent and
asymptotically normally distributed estima.tors.ﬁs in the random effects case
the conditional distribution of the error term in the probit equation is such that
the dimension of numerical integration can be reduced to two. In particular,
this distribution is identical to the distribution of e;; + v1; + ritv2; With, in this
case,
E{vy} = E{VZ-'} =0, E{eit} = Ay,

V{ei} = 02 —ruol, [o] = s,

V{vu} = 0}, V{vu} =02,/(0)T0)
and all covariances equal to zero, where A;; is given by
Ait = (00,/02)(Fix — Z:8)- v
The marginal likelihood contribution can now be computed from (13-62) using
the appropriate definitions of vy;, vo; and changing c;; into A;:. Comparison
with the expression obtained in the random effects case given in (13-62)
reveals that computation of the numerical integrals in the fixed effects case

is somewhat simpler because the two variables over which is integrated are
independently distributed.

The marginal maximum likelihood estimator presented above can be gen-
eralized in a number of ways. First, the normality assumption of the indi-
vidual effect in the probit equation can be replaced by any other assumption
concerning the distribution of §;, including semi—parametric ones (cf. Keane,
Moffitt and Runkle [1988]). More general autocorrelation patterns of the
probit error term can also be allowed, although computational tractability
will usually require that 7" is small (because of the T-variate numerical inte-
grals). Additionally, the strict exogeneity of the z,, variables required for the
within transformation can be relaxed to predeterminedness if an alternative
transformation is performed, for example the one proposed by Arellano [1988].
Finally, if z;, contains the lagged dummy variable 7;;_1, the consistency of
the marginal ML estimator will still hold if the initial conditions problem is
properly taken into account. In this case, state dependence and unobserved
heterogeneity (cf. Heckman [1978], [1981a]) can be distinguished.
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13.6 Testing for Non—Ignorability

In the previous section we have seen that maximum likelihood estimation of
a random effects or fixed effects model jointly with a random effects probit
selection equation is computationally not very attractive. Therefore one would
like to have tests to check whether the selection process is ignorable or not
before one starts complicated estimation procedures. In this section we shall
discuss several relatively simple tests for non—ignorability of the selection rule.

13.6.1 The Lagrange Multiplier Test

Let us, for the moment, restrict attention to the random effects model, i.e.,
model (13-49) where y; can be treated as random (uncorrelated with z,). In
that case the selection rule is ignorable for 3 if the null hypothesis Ho holds,
where Hy : 0y = 0, = 0. An obvious test for the null hypothesis which does
not require estimation under the alternative is the Lagrange Multiplier test or
score test. To compute the score test statistic we need the derivatives of the
(log) likelihood function with respect to all parameters, evaluated under Hj.
Because under H, the two terms in the right hand side of (13-61) depend on
non—overlapping subsets of the vector of parameters, the score contributions
with respect to the parameters in (13-49) can be found in Hsiao [1985] (p. 39),
while those for the parameters in (13-57) can be derived from a standard
random effects probit likelihood. The most difficult score contributions are
those with respect to the two covariances o,, and 0.

Looking at (13-62) one should first note that integrating and differen-
tiating of this expression is not interchangeable, because the density of vy;
and vy, is not defined with respect to the same measure under H, and the
alternative). This problem can easily be solved by defining two new integration
variables that are both standard normally distributed (under the null and the
alternative), 7; and 7, say. Then we obtain

ks : it T Oyt bir
.f(L |£:b:) — //H o (d“éxtl'l" Ci +si1 1+ T2> ¢(T1)¢(T2)d7'1d1'2 ,
= (13-64)

where

R ~1/2
Gir = Wy + Tuwipwy T,

and
- 2 —1y1/2
by = Ti(wy — whwr Y2

Since f(y;"”) does not depend on oy, and oy, differentiating the log of the
expression above and evaluating the result under H, yields the scores with
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respect to the two covariances. Using the fact that for any element 1 of the
parameter vector (7,07, 0yy, Ouc),

dlog f(r; | y?™) _ 0f(ri | y™)/09
v T flmly)

with

F;) obs
HEd) - [ [ T 8075 em)6trmyindn,

s=11t=1t#s

the score with respect to o, can easily be derived using the following equality
(under H,)

aQ ( ) —ltl+ af‘rl dﬂ actt awllz
30“5 - ¢(d“ [ ) (60',,5 30",5 i )

Similarly, for o,,, we use
dis

0%.(.) Zyy +oemn Ocit 0'2
= di = - i
300y #(di o )0,,(36,,,, + 71T 73(o? +T¢72))

from which the score with respect to o,, under H, can be derived. Note that
both 7, and 73 occur in the integrand such that numerical integration over two
dimensions will be required. For the scores with respect to y and ae =1- a
it suffices under Hy to look at df(r;)/dy and 3f(r;)/ 00, where (cf Heckman
[1981a))

fr) = /H ‘D(d,,—‘n +o¢T, Yb(r)drs.
=1
Because estimation under H, requires numerical integration (for each in-
dividual) for the probit part of the model and computation of each score
contribution also requires numerical integration over one or two dimensions
(for o,,), the LM test is rather unattractive in applied work, even though
estimation under the alternative is not required.

13.6.2 Hausman Type of Tests

Because of the computational burden of the LM tests as well as the generalized
Heckman [1979] procedure discussed in Section 13.5, it will be worthwhile to
have some simple tests to check for non-ignorable selection. As discussed in
Verbeek and Nijman [1992], it is possible to construct such tests based on
the differences between the four standard estimators discussed in the previous
section, viz. the fixed effects and the random effects estimators based on
the unbalanced panel and the balanced sub—panel. All these estimators are
consistent under H, and may be inconsistent under the alternative. Unless
the estimators are consistent it is quite unlikely that the pseudo true values

[, Hoarg s ka C,(.vxm"(~ ft {\p

Y] VRN b )
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of either two estimators are identical and this feature can be exploited in
constructing Hausman type of tests. Letting

B = (B.p(B).Brp(U), Brg(B) Bg @) — B, N = o0,

and V the corresponding asymptotic variance covariance matrix, the hypoth-

esis Ré = 0 can be tested using

¢a=NGR (RVE) RS, (13-65)
which is asymptotically distributed as a central Chi-square with d degrees of

freedom under R = 0 (the null hypothesis), where A~ denotes a generalized
inverse of A and d is the rank of RV R’. In order to be able to compute the test
statistic in (13-65) for the restrictions we would like to test, the full matrix
V is needed. Using the definitions of the four estimators it can be shown that
all blocks in the matrix V are a function of the variance covariance matrices

of the four estimators in é only. In particular,

Vin Vi Vas Vas

Voo VaaVi1'Vas Vi
Vas Vas |’

Vaa

where Vi = V{B,.(B)}, Vaa = V{Bz(U)}, Vas = V{Byz(B)} and
Vis = V{ERE(U)}. Using (13-66) any test statistic given in (13-65) can easily
be computed from the routinely computed estimators and their variances.
Two obvious candidates from the tests that compare two out of four possible
estimators, are those comparing the fixed or random effects estimators from
the balanced sub—panel and the unbalanced panel, where R = R, = [I -1 0 0]
or R= Ry, =[0 0 I — I, respectively. Two other choices, R3 = [ 0 — I 0]
and R, = [0 I 0 — I], result in the standard Hausman specification test for
uncorrelated individual effects and its generalization to an unbalanced panel,
respectively. These tests are easy to compute since the variance covariance
matrix RV R’ in the test statistic is simply the difference between two diagonal
blocks of V, in particular, the difference between the variance of the consistent
estimator and the (more) efficient estimator.

V= (13-66)

Unlike in the standard case the Hausman tests presented above are based
on estimators which are all inconsistent under the alternative. In the unlikely
case where all estimators would have identical asymptotic biases these tests
will have no power at all. An analytical analysis of the power properties
does not seem to be possible but a numerical analysis is presented in Verbeek
and Nijman [1992). Their results suggest that, although the Hausman tests
have poor power properties in some cases, they may be a good instrument for
checking the importance of the selection problem. In several cases the power of
some of the Hausman tests is quite reasonable compared to the (asymptotically
efficient) Lagrange Multiplier test. For practical purposes two Hausman tests
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are recommended: the one comparing the random effects estimators from the
unbalanced and balanced panel and the one comparing the fixed effects and
random effects estimators in the unbalanced panel. The advantage of the
Hausman tests compared to the LM test is, apart from their computational
simplicity, that they do not require a specification for the selection process.

13.6.3 Variable Addition Tests

Because of the computational burden of the generalized Heckman {1979
procedure, it is worthwhile to have some simple variables that can be used
instead, to approximate the true correction terms to check for selection bias.
If nonresponse leads to selection bias, one could have the intuitive notion that
the pattern of missing observations has in one way or another an influence
on the relationship between the endogenous and the exogenous variables. A
simple way to check whether such influence is present is to include a variable
in the model comprising the effect of the missing data pattern, for example
the number of waves the individual is participating or a dummy variables
indicating whether the individual is observed in all waves or not, an to check
whether this variable enters the equation significantly. In fact this is just a
simple way of trying to approximate the correction terms from the two step
estimation method, which are known to have nonzero coefficient when the
null is not true. In many cases the additional variables are constant over
time for each individual implying that the corresponding parameters are not
identified when the individual effects y; are treated as fixed. Following Verbeek
and Nijman [1992] we propose three simple variables to be included in the
regression equation: T, the number of waves individual 7 participates, ¢;, a
0-1 variable equal to 1 iff individual ¢ is observed in all periods and finally,
Ti 11, indicating whether individual  is observed in the previous period. Note
that r;p = 0 by assumption. In estimation the unbalanced panel has to be
used because in the balanced sub-panel the added variables are identical for
all individuals and thus incorporated in the intercept term.

Monte-Carlo results reported in Verbeek and Nijman [1992] suggest that,
apart from the latter variable, testing the significance of the proposed variables
may be a reasonable procedure to check for the presence for selection bias. Of
course, if the tests do not reject, there is no reason to accept the null hypothesis
of no selection bias, because the power of the tests may be disappointing.
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13.7 Some Examples of Selection Problems
in Panel Data

Until now, attention was concentrated on the technical aspects of handling
incomplete panel data, with explicit attention to the problem of nonresponse.
In many cases however, the presence of a selection rule is not necessarily
associated with the occurrence of nonresponse. Often, economic agents select
themselves in a certain state (“working”, “union member”, “participant in a
social program”, etc.) and this self-selection is likely to be of a non—ignorable
kind, because those individuals are likely to select themselves which benefit the
most from this particular state. In this section, we pay some more attention
to two examples of economic models of self-selection.

13.7.1 Attrition in Experimental Data

As mentioned in Section 13.5, the paper of Hausman and Wise [1979] was
the first to discuss the problem of attrition bias in experimental or panel
data. Their analysis was aimed at measuring the effects of the Gary income
maintenance experiment. In this experiment people were exposed to a par-
ticular income/tax policy, and the effects of this policy on monthly earnings
were studied. Their sample consisted of 585 black males observed before the
experiment took place (¢ = 1). In the second period, a treatment (i.e., an
income guarantee/tax rate combination) was given to 57 % of them, the other
part was kept in the sample as a “control group”. So to analyse the effects
of the experiment, Hausman and Wise were able to compare the behaviour
of a treatment group with that of a contemporaneous control group, and also
with its own pre-experimental behaviour.® The problem with estimating the
effects of the experiment on earnings was that the second period suffered from
high rates of attrition. From the experimental group 31 % dropped out of the
sample, while almost 41 % of the individuals in the control group were not
observed in the second period. Moreover, it is not unlikely that those indi-
viduals stay in the sample that benefit most from the experiment, i.e., those
individuals that experience an increase in earnings due to the experiment.
Obviously, selection is correlated with the endogenous variable in the model,
which makes the selection rule non-ignorable for the parameters of interest.

The model considered by Hausman and Wise [1979] is fairly simple. For
each individual a treatment dummy variable d;, is defined, which is equal to
zero if ¢ = 1 for all individuals, and equals 1 in period 2 for those individuals
that receive treatment. The model is then given by

Yie = dua + 2B+ pi + vy, t=1,2, (13-67)

A set-up like this may be close to optimal, see, for example, the analyses of Aigner and
Balestra [1988] and Nijman and Verbeek [1992].
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where o measures the effect of the treatment (“the treatment effect”), and
where z;, contains (individual specific) exogenous variables, including an in-
tercept or a time trend. Because (it is assumed that) selection takes place
in the second period only, the model describing the attrition process can be
univariate probit. In particular, it is assumed that y;, is observed if r; = 1,
where r; = I (r! > 0) and

i = Wi + yi2d +vi. (13-68)

All error terms are assumed to be normally distributed, with mutual indepen-
dence of ¥;, p; and v;;. As long as & # 0, attrition depends on the endogenous
variable y;; and OLS estimation of (13-67) is inconsistent. Because y;; is not
observed for those individuals with r; > 0, we substitute (13-67) to get

5 = w8 + (diza + 23,8)8 + (1 + vi2)é + vi, (13-69)
or, after some appropriate definitions,
7 = 2y + M (13-70)

The probit error term 7;; will be correlated with both p; and v;; as long as
6 # 0. Consequently, if one selects on participation in period 2 (r; = 1), this
may not only affect inferences for period 2, but also inferences for period 1
(unless o2 = 0).

The loglikelihood contributions of the model consisting of (13-67) and
(13-70) are given in Hausman and Wise [1979] and are a special case of those
considered in Section 13.5. If specification (13-67) contains a time effect and
a treatment dummy only, ordinary least squares produces an estimate of the
treatment effect of -0.06. Correcting for attrition bias, maximum likelihood
increases this effect to -0.11. If (13-67) contains a number of additional
explanatory variables, both approaches yield roughly the same answer: -0.08.
Consequently, Hausman and Wise conclude that within the context of a
structural model, some attrition bias seems to be present, but not enough
to substantially alter the estimate of the experimental effect.

In the Hausman and Wise model, it is assumed that selection into the
experiment is random. In many other cases, however, individuals are allowed
to select themselves into the experiment. Even in the absence of attrition,
this may lead to a selection bias problem. A large number of studies has
appeared on estimating the impact of interventions on earnings. For example,
Heckman and Robb [1985a,b] consider the problem of estimating the effect of
training on earnings when enrollment into training is the outcome of a non-—
random selection process, while Chowdhury and Nickell [1985] consider closely
related problems regarding the impact of unionization, schooling, sickness and
unemployment. A general discussion on the identification and selection bias
free estimation of experimental effects is given in Heckman [1990b]. See also

Manski [1990b).
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13.7.2 Real Wages Over the Business Cycle

Keynes [1936] believed that the movement of real wages over the business
cycle was countercyclical. A large number of empirical studies on this point,
based on macro as well as micro data, have lead to a diversity of results. In an
attempt to reconcile these results, Keane, Moffitt and Runkle [1988] consider
the question to what extent aggregation bias (or selection bias) is able to
explain the differences. Aggregation bias arises if people going in or out of
the labour force are not random. In that case the average wage changes over
time due to a changing composition of the work force, even though real wage
levels are unaffected. If, for example, low-wage industries are more cyclically
sensitive, a countercyclical bias in the conclusions is expected.

Keane, Moffitt and Runkle use panel data from the National Longitudinal
Survey of Young Men (NLS) over the period 1966 to 1981. The use of micro
data has the advantage that a large part of the individual heterogeneity is
observed. Their model is the following.

Yir = U + 2,0 + pi + Vi, (13-71)

where y;, is the logarithm of the real hourly wage, u; denotes the national
unemployment rate and z,, contains a number of individual specific variables
(education, experience, race, etc.), as well as a time trend. The parameter a is
the main parameter of interest: a positive value for & corresponds to a coun-
tercyclical behaviour in the wage, while a negative value indicates procyclical
behaviour. To correct for the possibility of selection bias (aggregation bias),
there is an additional equation explaining employment,

i = Ziy & + M (13-72)

An individual is employed (and its wage y;; is observed) if ryy = 1 (r}, > 0). The
vector z,, is included in z;,. Again, note that from a statistical point of view
this model is a special case of the models considered above. Now, aggregation
bias is procyclical if the covariance between the error terms in (13-71) and
(13-72) is negative. In that case, people with relatively high wages are more
likely to leave the labour market in case of increasing unemployment.

Keane, Moffitt and Runkle [1988] estimate two different specifications of
the model: one excluding individual specific variables in (13-71) and (13-72)
and one including a (small) number of these variables. In addition, four
different estimation strategies are used: ordinary least squares without any
corrections, maximum likelihood without individual effects in (13-71) and
(13-72), with random effects and with fixed effects. Where needed, normality
of the error components is assumed. The OLS estimate for a of -0.0071 shows
evidence of significant procyclical behaviour in the wage. The addition of
the extra regressor set results in an estimate of -0.0096, implying that failure
to control for observed heterogeneity leads to a countercyclical bias. The
estimates from the fixed effects model show insignificant unemployment rate
coefficients, implying an acyclic wage. The correlation coefficient between
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v; and 7 is estimated to be -0.222. This result implies that the OLS
unemployment coefficient is procyclically biased. Finally, if a random effects
specification is estimated, the unemployment rate coefficients are negative
and significant in both specifications. For the specification including observed
heterogeneity the unemployment rate coefficient of -0.0066 is still considerably
below the corresponding OLS effect of -0.0096, an indication that procyclical
bias is still present, but weaker than was indicated by the fixed effects model.
The random effects results indicate a negative correlation of the transitory
errors (the correlation coefficient between v; and 7, is -0.252), but a positive
correlation of the permanent errors (the correlation coefficient of p; and §; is
0.436). The resulting composite correlation is virtually equal to zero.

The general conclusion from the results is that the failure to account for
selection effects, biases the behaviour of the real wage in a procyclical direction.
Apparently, high-wage workers are more likely to become unemployed in a
downturn.

13.8 Concluding Remarks

In this chapter we presented an overview of the literature on incomplete panels
and selection bias. In case of selection bias a rule other than simple random
sampling determines how sampling from the underlying population takes place.
This selection rule may distort inferences based on the observed data using
standard methods. Distorting selection rules may be the outcome of decisions
of sample survey statisticians, self-selection decisions of agents or nonresponse
of agents. In Section 13.1 we started with discussing nonresponse in panel
data sets. This problem is likely to be more severe in panel data than in
cross—sectional data, because nonresponse may increase with each new wave
in time and often attrition is an absorbing state (i.e., once someone has left
the panel he will never return).

By using standard methods based on the observed data, one is implicitly
conditioning upon the outcome of the selection process. Ideally, this condi-
tioning does not affect the distribution of interest and we can say that the
selection rule is ignorable. In that case one can ignore the selection process
when making inferences without affecting the consistency or efficiency of the
standard estimators. Several concepts of ignorability are introduced in Section
13.2. The important point from this section is that whether or not the selection
rule can be ignored, when making inferences, this not only depends upon the
selection rule itself, but also on the parameters of interest. Conditions for
ignorability when estimating the parameters in the conditional expectation of
y given z are much weaker than when estimating the parameters in the joint
distribution of y and z.

Assuming an ignorable selection rule, adjusting standard estimators to
take into account the incomplete nature of the data is straightforward. This




;
i
i
i
!
%
J
i
!

298 Incomplete Panels and Selection Bias

is discussed in Section 13.3. When the model of interest is a linear regression
model with individual effects only, both fixed effects as well as random effects
estimation procedures are fairly simple. Given the gain in efficiency that
results from using the incomplete observations in estimation, it is certainly
worthwhile to adjust estimators in this way.

When the selection rule is not ignorable for the parameters of interest,
it should be taken into account when making inferences. The first problem
a researcher faces in this case is that the selection rule is generally unknown
and that without additional assumptions it is not possible to identify the pa-
rameters of interest. This identification problem is the subject of Section 134,
where it is shown that in the absence of prior information the identification
problem is fatal for estimating the (parameters in the) conditional expectation
of y given z. Some common solutions are also discussed. The properties of
standard fixed effects and random effects estimators in the linear model when
the selection mechanism is non-ignorable are discussed in Section 13.5. In
particular, it is shown that the fixed effects estimator is more robust with
respect to a non-ignorable selection rule than the random effects estimator.
Subsequently, a consistent two-step estimator is discussed for the random ef-
fects regression model when the (non-ignorable) selection rule can be described
by a random effects probit model, as well as the efficient maximum likelihood
estimator. For the fixed effects regression model, standard maximum likeli-
hood is inconsistent because of the incidental parameters problem and Section
13.5 shows how this can be solved.

Because consistent estimation in case of a non-ignorable selection rule is
much more complicated than in the ignorable case, one would like to have
tests that can be used to check whether the selection process is ignorable
or not. Several relatively simple tests, as well as the Lagrange Multiplier
test are discussed in Section 13.6. The simple test we propose are either
variable addition tests are Hausman tests comparing two estimators that are
easily computed. To conclude, Section 13.7 discusses some economic models
of self-selection.

Throughout this chapter, attention was restricted to relatively simple
models, like the linear regression model with individual effects only. The main
reason for this was that we could keep the presentation relatively simple. In
addition, the linear model has been discussed extensively in the literature and
a number of results are available now. Such results are much more scarce for
more complicated models, like dynamic models, models with non-continuous
endogenous variables and duration models. Undoubtedly, these topics are an
important part of the research agenda of many researchers.
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