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1 Introduction

This work is motivated by the existent concern with the finite-sample properties of the meth-

ods of estimation of the parameters of dynamic panel data models. When a panel data model

includes lagged dependent explanatory variables, the within-group estimator is asymptotically

valid only when the time dimension of the panel gets large. Since the time series dimension (T )

of most panel data sets is a single-digit number, Instrumental Variables (IV) and Generalized

Method of Moments (GMM) estimators, which are consistent for finite T when the number

of cross-section observations (N) tends to infinite, have been considered in the literature (see,

Anderson and Hsiao, 1982; Arellano and Bond, 1991 and Blundell and Bond, 1998). Neverthe-

less, for example, panel data sets where the units of analysis are the regions of a country (or

cross-country panels) most likely have a time dimension larger than a single-digit number, even

though, this gain normally comes at the cost of not having a very large number of cross-section

observations. This leads us to address the following question: how to estimate and conduct

inference in dynamic panel data models in small samples in which the time dimension of the

panel is not short and the cross-section dimension is not that large? Lets denote this case as

a two-sided small sample in opposition to the most standard one-sided small sample panels, in

which T is very small and N is very large. The panels we consider are small in the sense that,

even though N × T may be large, none of the sides gets very large itself.

Many interesting variables exhibit state dependence, that is, the current state of a variable

depends on its last period’s state, even after controlling for unobserved heterogeneity. Thus,

very often, we use panel data to estimate dynamic relationships, namely, models containing

lagged dependent variables among the regressors. A nice example is the wage curve of Blanch-

flower and Oswald (1994). In its simplest form, regional wages are modeled as a dynamic two-

way fixed effect error component model in which regional unemployment is assumed to affect

regional wages negatively (i.e., in self-explaining notation, wi,t = ρwi,t−1 + γui,t + µi + λt + εi,t).

For example, for the U.S., this model is estimated with samples in which N = 50 and T tends

to be less than 20 (see, among others, Blanchard and Katz, 1997). Two issues are at the center

of the debate in this literature: first, whether ρ is one (a Phillips curve form), zero (a static

wage curve) or, as it is more likely the case, somewhere in between (a stable dynamic wage

curve). Thus, there is interest in establishing the type of dynamic process followed by regional

wages. Second, whether γ (the coefficient associated with the unemployment variable) is nega-
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tive and statistically different from zero. To answer these questions, we need to obtain accurate

estimates of both the parameters of the model and their sample variability in small samples

like the ones normally available. Although IV and especially GMM estimators have attractive

asymptotic properties, Monte Carlo simulations show that their finite sample approximations

are poor and sensible to the actual parameter values as well as to the dimension of the data sets

(see, among others, Kiviet, 1995). However, little is known about the reliability of asymptotic

test procedures in this two-sided small sample panels (an exception is Bun and Kiviet (2001)

who consider the case in which T and N are less than 20).

In this paper we consider two-sided small size panels where T is larger than a single-digit

number but N is not very large. We study the finite-sample properties of the dominant methods

proposed in the literature to estimate dynamic panel models. These methods are the least-

squares dummy-variable (LSDV) approach, a LSDV bias-corrected estimator proposed by Kiviet

(1995, LSDVC hereafter) and two GMM procedures, the one proposed by Arellano and Bond

(1991) (AB hereafter) and the one developed by Blundell and Bond (1998) (BB hereafter).

Our simulation design follows a standard specification of a dynamic panel data model, i.e.,

a first order autoregressive model with an additional explanatory variable. We consider two

data generation processes. In the first Monte Carlo experiment, the exogenous variable and

the unobservable time invariant effect are not correlated while in the second experiment they

are correlated. The dynamic adjustment or autoregressive parameter varies between 0.2 (low

persistence) and 0.8 (high persistence).

Our main results are the following: first, standard inference is not valid for any of the

estimators and data generation processes considered in this paper. We find that for all the

estimators studied, the true size of t-type tests may differ substantially from their asymptotic

nominal level although the way they depart from the normal asymptotic approximation vary

among them. Interestingly, this is also the case when we test the null hypothesis of γ = a ∈
[−1, 1] (where γ is the parameter associated to the exogenous variable in the dynamic model

studied) for all the estimators considered in this study. Surprisingly, this result also holds when

the null hypothesis is γ = 0 and, but not necessarily, the dependent and exogenous explanatory

variables are correlated in the data generating process (DGP), which is likely to be the case

in practice. Thus, irrespective of which estimator performs better in terms of bias and root-

mean square error (RMSE), most often the criteria considered to compare the small sample
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performance of these estimators, it is necessary to consider also the finite sample behavior of

t-type tests in order to conduct valid statistical inference in small sample dynamic panel data

models. These results are very important and have not been studied in the literature. Second,

the LSDVC estimator proposed by Kiviet (1995) outperforms all other estimators considered

both in terms of bias and RMSE. Thus, this estimator is recommended for estimating dynamic

panel models on samples of the type studied in this paper (see also Judson and Owen, 1999).

However, to assess its true sample variability, and hence, to conduct valid statistical inference

in small samples, bootstrap standard errors have to be computed. Third, we find that standard

bootstrapping techniques work well except when the autoregressive parameter in the model

is close to one. In this last case, we find that the Grid-t bootstrap procedure due to Hansen

(1999) outperforms any other alternative to estimate the standard errors of the estimates of

the parameters of dynamic panel data models in small samples.

The rest of the paper is organized as follows. Section 2 presents the model and briefly reviews

the estimators we study. Section 3 summarizes the results of our Monte Carlo experiments

and Section 4 evaluates the performance of several bootstrap techniques to assess the sample

variability of the estimates of the parameters of interest by means of the estimator proposed

by Kiviet (1995). Section 5 presents two estimations of the wage curve. Finally, Section 6

concludes the paper.

2 Dynamic Unobserved Effects Model

Consider the following first order autoregressive model with an additional explanatory variable:

yi,t = ρyi,t−1 + γxi,t + µi + ui,t (1)

where i = 1, · · · , N and t = 1, · · · , T indexes cross-section and time series observations, respec-

tively. The unobserved effects (µi), which are modeled as fixed effects, are probably correlated

with the included exogenous regressor x. The {xi,t} are strictly exogenous conditional on the

unobserved effects. We also assume dynamic stability (i.e., |ρ| < 1). For simplicity, the ui,t are

assumed to be independently distributed across units with zero mean and constant variance

σ2
u. Stacking the observations over time and cross-section units we obtain:
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y = W δ + (IN ⊗ ιT ) µ + u (2)

where δ = (ρ, γ)′, y is an NT × 1 vector of stacked observations of the dependent variable

and W = [y−1
...X] is an NT × 2 matrix of stacked observations of the independent variables

of the model. u is the NT × 1 vector of disturbances and ιT = (1, . . . , 1)′ is T × 1. The time

invariant unobserved effects vector µ = (µ1, · · · , µN)′ is a vector of N unknown parameters

corresponding to the fixed effects in model (1).

In this study we consider the case of panels where the sample size in the cross-section

dimension (N) vary between 30 and 50, whereas its time series dimension (T ) is between 20

and 40. This type of small sample panels has received little attention in the literature. Most

of the work on the estimation of small sample dynamic panel data models considers the case

where T is a single-digit number and an asymptotic analysis is conducted by treating T as

a fixed number and letting N tend to infinite. For this specification a number of alternative

estimators have been proposed. We now review those we study in this paper.

2.1 LSDV Estimator

Estimation of the parameters of model (1) can be performed by ordinary least squares by means

of the LSDV or fixed effects (FE) estimator. Using standard regression results, the fixed effects

estimator of δ can be expressed as:

δ̂LSDV = (W ′AW )−1 W ′Ay (3)

where the NT ×NT matrix A = IN ⊗ (IT − 1
T
ιT ι′T ) is the within transformation which wipes

out the individual fixed effects.

As it is well known, the within-group LSDV estimator of the parameters of model (1) is

semi-inconsistent since in the transformed model, the lagged dependent variable is correlated

with the error term. Nevertheless, this estimator is consistent when T →∞. Thus, the LSDV

estimator is supposed to perform well for panels with a large T dimension. But how large T

should be before the bias of the LSDV estimator is ignorable is left unanswered in the literature.
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2.2 GMM Estimators

Several consistent instrumental variables estimators have been proposed in the literature to es-

timate the parameters of model (1) for panels of moderate T size. Here we restrict our analysis

only to those proposed by Arellano and Bond (1991) and Blundell and Bond (1998). When

there are no instruments available that are uncorrelated with the individual effects µi, the

transformation of the model must eliminate this component from the error term. Arellano and

Bond (1991) suggest differencing the regression function (1) to eliminate the individual specific

effects, and estimate the parameters of the differenced model by a GMM estimator using ap-

propriately lagged endogenous and predetermined variables as instruments in the transformed

equations since, after differencing, ∆yi,t−1 is correlated with the differenced equation error,

∆ui,t. However, as long as ui,t is serially uncorrelated, all lags on y and x beyond t − 1 are

valid instruments for the differenced equation at period t. Because the number of instruments

increases with the time series dimension T , the model generates many overidentifying restric-

tions even for moderate values of T , although the quality of these instruments is often poor.

When there are instruments available that are uncorrelated with the individual effects µi, these

variables can be used as instruments for the equations in levels. Blundell and Bond (1998)

propose an estimator, which combines a set of moment conditions relating to the equations in

first differences and a set of moment conditions relating to the equations in levels to obtain

an efficient GMM estimator. They show that this system estimator has superior properties

in terms of small sample bias and RMSE than the estimator proposed by Arellano and Bond

(1991), specially when the DGP presents a high level of persistence.

These GMM estimators are of the form:

δ̂GMM = [(W ∗′
Z) AN (Z ′W ∗)]−1(W ∗′

Z) AN (Z ′y∗) (4)

where

AN =

(
1

N

∑
i

Z ′
iHiZi

)−1

and W ∗ and y∗ denote some transformation of W and y (e.g. levels, first differences, etc.), Zi

is a matrix of instrumental variables, and Hi is an individual specific weighting matrix.

The estimator proposed in Arellano and Bond (1991) uses the first difference transformation

and
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HAB
i =



2 -1 · · · 0

-1 2 · · · 0
...

...
...

...

· · · · · · · · · -1

0 0 · · · -1 2


The corresponding instrumental variable matrix is:

ZAB
i =



yi1 0 0 0 0 0 · · · 0 · · · 0 ∆xi3

0 yi1 yi2 0 0 0 · · · 0 · · · 0 ∆xi4

0 0 0 yi1 yi2 yi3

...
...

...
...

...
...

. . .

0 0 0 0 0 0 · · · yi1 · · · yi,(T−2) ∆xi,T


(5)

The estimator proposed by Blundell and Bond (1998) adds to the first-difference equations

the levels equations. In this case y∗i = (∆ yi3, . . . , ∆yiT , yi3, . . . , yiT )′,

W ∗
i =

 ∆ yi2 . . . ∆yi,(T−1) yi2 . . . yi,(T−1)

∆xi3 . . . ∆xi,T xi3 . . . xi,T

′

and

ZBB
i =


ZAB

i 0 · · · 0 0

0 ∆ yi2 · · · 0 1

· · · ·
0 0 · · · ∆ yi,(T−1) 1


The specific weighting matrix used is:

HBB
i =

 HAB
i 0

0 1
2
IT−2


where IT−2 is the identity matrix with dimension equal to the observed number of levels equa-

tions. Unlike δ̂LSDV , both GMM estimators, AB and BB, are consistent for finite T when

N −→∞.
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2.3 Corrected LSDV Estimation

Finally, we also consider a bias corrected version of the LSDV estimator due to Kiviet (1995).

This estimator is computed by subtracting an approximation, of order O(N−1T−3/2), of the

asymptotic bias of the LSDV estimator. Kiviet (1995) demosntrates that:

E(δ̂LSDV − δ) = −σ2
u(D̄)−1

(
N

T
(ι′T CιT )[2q − W̄ ′AW̄ (D̄)−1q]

+ tr{W̄ ′(IN ⊗ AT CAT )W̄ (D̄)−1}q

+ W̄ ′(IN ⊗ AT CAT )W̄ (D̄)−1q + σ2
uNq′(D̄)−1q

×[−N

T
(ι′T CιT )tr{C ′AT C}+ 2tr{C ′AT CAT C}]q

)
+O(N−1T−3/2) (6)

where tr denotes the trace operator, D̄ = W̄ ′AW̄ + σ2
uNtr{C ′AT C}qq′, AT = IT − 1

T
ιT ι′T ,

q = (1, 0, · · · , 0), AW̄ = E(AW ) and

C =



0 · · · · · 0

1 0 ·
ρ 1 0 ·
ρ2 ρ 1 · ·
...

...
...

...
...

ρT−2 · · · ρ 1 0



Therefore, the asymptotic bias of the LSDV estimator is a function of the true parameters

of the model. Thus, to compute the LSDVC estimator, an estimation of this asymptotic bias

is subtracted from the LSDV estimate. And to obtain an estimation of this asymptotic bias,

we estimate the paremeters of the model by means of the simple IV estimator proposed by

Anderson and Hsiao (1981).

3 Monte Carlo Simulations

In this section we study the finite-sample properties of the estimators presented in the previous

section. Our simulation follows closely the experimental design adopted in Arellano and Bond
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(1991). The dependent variable is generated by model (1), where ui,t ∼ IN(0, 1), µi ∼ IN(0, 1),

i = 1, · · · , N ; t = 1, · · · , T + 10 and yi,0 = 0. The first ten cross-sections are discarded so that

the actual sample size is NT . The exogenous regressor xi,t is generated by the following DGP:

xi,t = 0.8xi,t + λµi + vi,t

where vi,t ∼ N(0, 0.9), xi,0 = 0 and λ takes the values zero or one.

When λ = 1, the exogenous regressor in model (1) is correlated with the unobserved fixed

effect in that model, while they are uncorrelated when λ = 0. This latter case is the one studied

in Arellano and Bond (1991). The results of the Monte Carlo experiments are very similar for

both DGPs. Thus, we only report those corresponding to the case in which λ = 0.

The choice of the parameters is as follows: ρ = 0.2, 0.5 and 0.8, γ = −1, 0 and 1, N = 30, 50

and T = 20, 30, 40. Table 1 summarizes the resultant combination of parameter values used in

the Monte Carlo experiments. Tables 2, 3 and 4 and Figure 1 summarize the most important

results of these experiments when λ = 0.1

Table 1 about here

Table 2 presents the bias and RMSE for both ρ and γ, for each estimator. It is clear that

the estimator proposed by Kiviet (1995) (K in the table) outperforms the other estimators in

all cases both in terms of bias and RMSE, not only for the estimator of the autoregressive

parameter ρ but also for the estimator of the coefficient of the exogenous regressor γ when the

true parameter value is different from zero.

Table 2 about here

The LSDV estimator of ρ is largely biased in most specifications. As expected, the bias

decreases as ρ and T increase. The bias in the estimate of γ is small. It is less than one percent

when γ = 0 and ranges between 1.2 and 2.7 percent when γ is different from zero.

Figure 1 about here

1The whole set of results, including the case in which λ = 1, is available from the authors upon request.
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In most of the specifications, both AB and BB estimators perform better than the LSDV

estimator, both in terms of bias and RMSE. Finally, as expected, when T increases, there

are not differences among these three estimators. Nevertheless, even for T as high as 40, the

LSDVC estimator dominates the other estimators both in terms of bias and RMSE. Thus, the

estimator proposed by Kiviet (1995) is preferred for estimating the parameters of model (1) in

the class of small samples that we study in this paper.

Tables 3 and 4 present the quantile tabulation of the 1st, 5th, 10th, 90th, 95th and 99th

percentiles of the distribution of the t-statistic for the following null hypotheses: H0 : ρ =

0.2, ρ = 0.5, and ρ = 0.8 (Table 3) and H0 : γ = 0, γ = 1 and γ = −1 (Table 4).

Table 3 about here

The quantiles of the distribution of the t-test do not coincide with those of the asymptotic

standard normal approximation, not only for the LSDV and GMM estimators but also, and

more relevant, for the LSDVC estimator. This result is extremely important because it casts

doubts about the appropriateness of conducting standard asymptotic statistical inference in

small sample dynamic panel data models, irrespective of the method of estimation adopted.

The distribution of the t-test when ρ is estimated by means of the LSDV estimator is clearly

skewed to the left. The same result holds for the two GMM estimators, although the skewness

of the distribution of the t-test seems to be less severe in these cases. More importantly, even

though the distribution of the t-test when ρ is estimated by means of the LSDVC estimator is

not skewed, it is neither a standard normal distribution.

Table 4 shows the critical values of the t-statistics of the postulated null hypothesis for γ.

Irrespective of the method of estimation adopted, the distribution of these tests do not seem

to be skewed, but again, they are not a standard normal distribution even when γ = 0 under

the null hypothesis.

Table 4 about here

Thus, the evidence presented suggest that the LSDVC estimator must be preferred for

estimating the parameters of model (1) in the class of small samples that we study in this

paper. However, the results reported in Tables 3 and 4 also suggest that, even in this case,

standard statistical inference is misleading and hence, bootstrap standard errors have to be
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computed to conduct valid statistical inference. Though, which bootstrap estimator performs

better is not known. In the next section we address this issue.

4 Small Sample Statistical Inference

In this section we consider the problem of constructing bootstrap confidence intervals of 90%

coverage for the estimates of the parameters of model (1) in two-sided small samples. A correctly

constructed confidence interval has the property that in 10% of the samples, the true value of

the parameter lies outside the limits of the interval.

All the experiments reported in this section are based on 1000 replications of samples gen-

erated by model (1), where T = 20, N = 30, ρ = 0.2, 0.5 and 0.8, γ = 1, λ = 0 and the errors

are independent and Gaussian as in section 3.

We compare several methods to assess the sample variability of the estimates of the parame-

ters of model (1). Conventional asymptotic confidence intervals are computed as α̂±1.645 s(α̂),

where α is either ρ or γ and s(α̂) is the estimated standard deviation of the coefficient. Stan-

dard bootstrapping confidence intervals are constructed by means of the Percentile-t bootstrap

technique (see Hall, 1992). We generate B = 1999 simulated samples to construct bootstrapped

confidence intervals for the estimates of the parameters of model (1).

Each bootstrapping sample is generated as follows:

1. Obtain LSDVC estimates of ρ, γ and µ = (µ1, · · · , µN)′. Denote these estimates as: ρ̂,

γ̂, and µ̂ = (µ̂1, · · · , µ̂N)′ respectively. Using these coefficients, generate the series of

predicted residuals ûi,t.

2. Generate a simulated sample of yb
i,t, t = 1, · · · , T , for each i = 1, · · · , N , by drawing errors

independently from the set of estimated residuals (ûi,1, · · · , ûi,T ), and then, by computing

yb
i,t = ρ̂yb

i,t−1 + γ̂xi,t + µ̂i + ûb
i,t, t = 1, · · · , T

where xi,t is taken as fixed and yb
i,0 = 0.

For each resampled data set {yb
i,t, xi,t}, b = 1, . . . , B, estimate model (1) and obtain boot-

strap LSDVC estimates of ρ̂b, γ̂b and of their respective standard deviations sb(ρ̂b) and sb(γ̂b).
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Then, the bootstrap confidence intervals are constructed in a standard way. First, compute

the 5% and 95% quantiles of the t-statistic distribution (t1, t2, . . . , tB), where tb = α̂b−α̂
sb(α̂b)

and

α = ρ, γ. Denote these quantiles qb
5 and qb

95. Second, for each coefficient, its confidence interval

is given by: [α̂− qb
5s(α̂), α̂ + qb

95s(α̂)].

Since the standard bootstrap confidence interval fails to provide an asymptotic correct

coverage when the autoregressive coefficient is close to one (see Basawa et al. (1991)), we

also consider three other bootstrap methods when ρ = 0.8. The biased-corrected percentile

bootstrap due to Kilian (1998), and the Grid-α and Grid-t bootstrap due to Hansen (1999).

The bootstrap method proposed by Killian (1998) is as follows: first, compute the bootstrap

bias of the estimate of the autoregressive parameter of the model as: bias = ρ̄b−ρ̂ where ρ̄b is the

mean of the bootstrap LSDVC estimate ρ̂b. Second, compute a bias corrected estimate of ρ by

means of: ρ̂∗ = 2ρ̂− ρ̄b. Finally, generate B = 1999 simulated samples, {yb
i,t, xi,t}, b = 1, . . . , B,

following the procedure described above to construct standard bootstrap confidence intervals

with the only difference that in step 2, instead of using the LSDVC estimate of ρ to generate

yb
i,t, the bias corrected estimate ρ̂∗ is used.

Finally, we consider the estimation of the grid bootstrap confidence intervals. First, we

need to estimate bootstrap quantiles as a function of ρ, qg
c (ρ), where c is the relevant quantile

(i.e. 5 and 95%). In order to estimate these functions we first select a fine grid of values

of the autoregressive parameter, AG = [ρ1, ρ2, . . . , ρG]. Second, we compute qg
c (ρ) for each

ρ ∈ AG. Third, the grid-α (grid-t) bootstrap confidence interval is computed as the intersection

between the ρ̂−ρ (t-statistic) function and the qg
5(ρ) and qg

95(ρ) quantile functions. In practice,

to implement any of these grid bootstrap methods we construct a grid of G = 50 evenly

spaced points (ρ̂g g = 1, . . . , G) spread over the interval [ρ̂ ± 6s(ρ̂)], where ρ̂ and s(ρ̂) are

the LSDVC estimates of the autoregressive parameter and its standard deviation respectively.

Then, generate B = 1999 simulated samples at each grid point following the procedure

described above to construct standard bootstrap confidence intervals with the only difference

that in step 2, for each g = 1, . . . , G, instead of using the LSDVC estimate of ρ to generate yb
i,t,

ρ̂g is used (see Hansen, 1999).

Table 5 summarizes the results. Each cell of the table reports the percentage of samples in

which the true value of the parameter lies outside the estimated confidence interval. Ideally,

each of these percentages should be 0.1.
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As expected, in the case of ρ, inference based on the asymptotic normal approximation

rejects too often the null hypothesis under consideration. In addition, the coverage of the

confidence interval based on the asymptotic normal approximation deteriorates substantially

as the true value of ρ increases. The standard bootstrap confidence interval provides a very

accurate coverage for low values of ρ, instead. However, it provides a very conservative coverage

for ρ = 0.8 (high values of ρ). The three alternative bootstrap methods perform better than the

standard bootstrap technique when ρ = 0.8. The bootstrap-after-bootstrap confidence interval

(Killian, 1998) rejects the null hypothesis 4.6% of the times, and even though this coverage is

still conservative, it performs better than the standard bootstrap procedure. The percentage

of samples in which the true value of the parameter lies outside of the estimated Grid-α and

Grid-t confidence intervals are 5.2 and 6.3% respectively.

Table 5 about here

For γ, both the confidence interval based on the normal approximation and the standard

bootstrap estimator provide very good coverage in the cases where ρ = 0.2, 0.5. When ρ = 0.8,

however, standard asymptotic inference is misleading while the standard bootstrap technique

provides a slightly conservative coverage.

In light of the evidence presented in this section, the best alternative to assess the true

sample variability of the estimates of the parameter of model (1) in two-sided small samples

is to rely on standard bootstrap procedures when the true value of ρ, appraised by the point

estimate obtained by means of the LSDVC estimator, is not large; and to rely on the Grid-t

bootstrap method when the true value of ρ approaches one.

5 Empirical Application: The Wage Curve

The responsiveness of real wages to unemployment is a fundamental parameter in macroeco-

nomic analysis. A higher degree of wage flexibility implies, ceteris paribus, a lower equilibrium

unemployment rate. Early empirical work on the relationship between wages and unemploy-

ment is based on time-series data. More recently, in a very important contribution, Blanchflower

and Oswald (1994) shifted the emphasis to the use of micro data sets. They use repeated cross-

sectional data at the individual level to study the wage-unemployment relationship for several
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countries. They find that in any given region, if local unemployment rises, wages fall ceteris

paribus. They have labeled this negative relationship between local wages and local unemploy-

ment, the wage curve. Moreover, they claim that the relationship between local wages and

local unemployment is static and that the unemployment elasticity of pay is approximately -0.1

for most countries. However, these two last results have been questioned. Card and Hyslop

(1997) and Blanchard and Katz (1997) present evidence which supports that regional wages

are highly persistent and also cast doubts about the degree of responsiveness of wages to local

unemployment.

Generally, the wage curve refers to the following dynamic two-way fixed effect error compo-

nent model:

wi,t = ρwi,t−1 − γui,t + λt + µi + εi,t (7)

where wi,t is a measure of regional wages and ui,t is a measure of regional unemployment.

Model (7) is estimated in two-steps. In the first-step, individual earnings are modeled as a

log-linear function of a set of regional dummy variables and a set of individual characteristics

including education, gender, industry affiliation and age or potential experience. In the second-

step, equation (7) is estimated using the regional dummy variables estimated in the first stage

of the analysis as the measure of regional wages (i.e., the regional expected wages).

There are two important questions associated to the parameters of model (7). First, the fact

that aggregate wages seem to be non-stationary does not imply that ρ equals one since the time

effects themselves may be a unit-root non-stationary process. Contrary, market equilibrium

may impose ρ to be strictly less than one since wages across regions must be cointegrated (see

Galiani, 1999). Hence, it is important to establish whether the true value of ρ is less than

one, and, in that case, whether it is different from zero. Thus, there is interest in establishing

the type of dynamic process followed by regional wages. Second, does regional wages fall if

local unemployment increases? And, more specifically, is the unemployment elasticity of pay

−0.1? To answer these questions, it is necessary to obtain accurate estimates of both the

parameters of the model and their sample variability. In the previous section we show that the

best approach to estimate model (7) is to estimate their coefficients by means of the LSDVC

estimator and to assess their sample variability by means of standard bootstrap techniques or

the Grid-t bootstrap estimator. We now illustrate this method by estimating a wage curve for
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both Argentina and the U.S.

Table 6 reports the estimate of the wage curve for the U.S. for the 1980-1991 period. We

report the estimates of the parameters of the model by means of the LSDV, GMM AB and

LSDVC estimators. In addition, in the latter case we also report 95% bootstrap confidence

intervals. The only difference in the parameter estimates is between the AB estimator and

both the LSDV and LSDVC estimators of γ. This is consistent with our finding that, for high

values of ρ and large N (as is the case in this example), all the estimators of ρ converges among

them. Additionally, standard inference on the AB estimate does not reject the null hypothesis

of ρ = 1 at the 5% confidence level while this is rejected in the other cases reported in Table

6.

Figure 2 illustrates the results reported in Table 6. The dashed lines plot the 5% and

95% quantile functions of the standard bootstrap distribution of the t-statistic for the LSDVC

estimator of ρ, while the doted and dashed lines, constant at −1.96 and 1.96, represent the

quantile functions of the asymptotic normal approximation for the same estimator. It is clear

from the figure that these two pairs of quantile functions do not coincide, invalidating statistical

inference that relies on conventional asymptotic approximations.

Figure 2 also allow us to read confidence intervals. The solid line plots the t-statistic function

of the autoregressive coefficient for several values of ρ. The two open arrows projected from

the intersection between the solid line and the doted and dashed lines (marked by a star in the

figure) onto the ρ-axis give the asymptotic normal confidence interval of the parameter estimate.

The parametric percentile-t bootstrap confidence interval for the estimate of ρ is constructed

by evaluating the sampling t-statistic distribution at the estimate of ρ (in this case by means

of the LSDVC estimator). This interval is obtained as follows: first, the point estimate of

ρ (ρ̂ = 0.9113), marked by a filled black circle, is projected vertically onto the 5% and 95%

bootstrap quantile functions, with intersections marked by open diamonds. Second, these two

points are horizontally projected onto to the t-statistic function, where the intersection points

are marked by open squares. Finally, projecting these points onto the ρ-axis (white arrow

heads) gives the 95% percentile-t bootstrap interval [0.903, 0.974].

As Hansen (1999) points out, the percentile-t bootstrap confidence interval assumes implic-

itly that the bootstrap quantile functions are constant for any parameter value. Figure 2 shows

that this is not the case, and, in that way, it explains why the conventional bootstrap fails to
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provide a correct coverage. As we show in the previous section, this confidence interval was

too conservative for large values of ρ. Finally, the projection of the intersections between the

bootstrap quantile functions and the t-statistic function onto the ρ-axis gives the 95% Grid-t

confidence interval of the estimated autoregressive coefficient.

Figure 2 about here

Table 7 reports the estimation of the wage curve for Argentina for the 1991-1997 period

using six-monthly data (i.e., T = 14). Again, we report the estimates of the parameters of the

model by means of the LSDV, GMM AB and LSDVC estimators. In addition, in the latter case

we also report 95% bootstrap confidence intervals. Now, there is a large difference between the

LSDVC and both the LSDV and AB estimates of ρ. This is consistent with our finding that the

estimator proposed by Kiviet (1995) performs substantially better than the other estimators

when ρ is not that large and N is small (as is the case in this example). The null hypothesis

of ρ = 1 as well as the hypothesis of ρ = 0 are rejected. In addition, there are also important

differences among the estimates of γ. Furthermore, standard inference on the AB estimate does

not reject the null hypothesis of γ = 0 at the 5% confidence level while this is clearly rejected

in the case of the LSDVC estimate. Evidently, we do reject that the short-run unemployment

elasticity of pay is −0.1 in all cases. However we do not reject that the long-run unemployment

elasticity of pay is −0.1 when the coefficients are estimated by means of the LSDVC estimator.

Clearly, it is invalid to test this latter hypothesis by means of standard asymptotic statistical

inference. Thus, we conduct a bootstrap test by computing the statistic of contrast of the test

for each of the 1999 bootstrap samples and by obtaining the 2.5 and 97.5 percentiles of the

distribution of this statistic. The interval delimited by these two percentiles determines the

zone of nonrejection of the null hypothesis of the test.

Finally, Figure 3 illustrates the results reported in Table 7. In this case, the 95% Grid-t

confidence interval is included in the 95% percentile-t bootstrap interval, illustrating why, in

most cases, the former confidence interval gives a better coverage than the latter one.

Figure 3 about here
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6 Conclusions

In this paper we study the inference and estimation of dynamic panel data models in a special

and increasingly important class of small samples that we denoted two-sided small samples

(i.e., panels where the time dimension (T ) is larger than a single-digit number but where the

cross-section dimension (N) is not that large neither). We study the finite-sample properties

of the most important methods of estimation proposed in the literature. Our main results are

the following:

Even though one may have expected the LSDV estimator to perform well in samples where

T is large, the bias of the fixed effect estimator was sizeable, even for T = 30 when N = 50.

This result demonstrates the poor performance of this estimator in two-sided small samples.

Thus, it is invalid to use it in most of the panel data sets available.

The LSDVC estimator proposed by Kiviet (1995) performs much better than all other

estimators considered in the literature both in terms of bias reduction and by the RMSE

criteria. This estimator is quite accurate and, hence, must be the one adopted to estimate

dynamic panel data models in small samples.

More importantly, we find that standard inference is not valid for any of the estimators and

data generating process considered in this paper. We find that for all the estimators studied, the

true size of t-type tests may differ substantially from their asymptotic nominal level although

the way they depart from this asymptotic approximation vary among them. Interestingly, this

result holds for ρ as well as for the true value of the coefficient associated to the exogenous

variable (γ). Surprisingly, this result also holds for the null hypothesis γ = 0 and, but not

necessarily, when the dependent and exogenous explanatory variables are correlated in the

DGP. Indeed, in our application to the U.S. data, where N is reasonable large (N = 51), we

find that the main bias in the GMM estimates occur in the case of γ, where the coefficient

estimated by LSDVC is 60% higher than the one estimated by means of the AB estimator. In

the application to the Argentine data, where N is not large (N = 17), we find that the GMM

estimates of both coefficients are substantially biased downward. In this case, based on the

GMM estimate and standard statistical inference we do not reject the null hypothesis of no

impact of local unemployment on local wages, contradicting a standard finding of the literature

and what is know about wages and unemployment in Argentina during the period studied.

Consequently, irrespective of which estimator performs better in terms of bias reduction and
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RMSE in the class of small samples we study, it is necessary to consider also the finite sample

behavior of t-type tests in order to conduct valid statistical inference.

Thus, the evidence presented in this paper shows that the LSDVC estimator must be pre-

ferred for estimating the parameters of a dynamic panel data model in two-sided small panels.

However, it also shows that standard statistical inference is misleading and, hence, bootstrap

standard errors have to be computed to conduct valid statistical inference on the parameters

of this model.

Finally, we find that standard bootstrap techniques work well except when the autoregressive

parameter in the model is close to one. In this case we find that the Grid-t bootstrap estimator

due to Hansen (1999) outperforms any other alternative to estimate the standard errors of the

estimates of the parameters of dynamic panel data models in two-sided small samples. Thus,

we recommend to estimate the parameters of the model by means of the estimator proposed by

Kiviet (1995) and to assess their sample variability by means of standard bootstrap procedures

when the true value of ρ, appraised by the point estimate of it, is not large; and to rely on the

Grid-t bootstrap method due to Hansen (1999) when the true value of ρ approaches one.
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Table 1: Monte Carlo Design. 45 different parameter combinations.

Case T N ρ γ Case T N ρ γ Case T N ρ γ

I 20 30 0.2 0 XVI 20 30 0.2 1 XXXI 20 30 0.2 −1

II 20 30 0.5 0 XVII 20 30 0.5 1 XXXII 20 30 0.5 −1

III 20 30 0.8 0 XVIII 20 30 0.8 1 XXXIII 20 30 0.8 −1

IV 30 30 0.2 0 XIX 30 30 0.2 1 XXXIV 30 30 0.2 −1

V 30 30 0.5 0 XX 30 30 0.5 1 XXXV 30 30 0.5 −1

VI 30 30 0.8 0 XXI 30 30 0.8 1 XXXXVI 30 30 0.8 −1

VII 20 50 0.2 0 XXII 20 50 0.2 1 XXXVII 20 50 0.2 −1

VIII 20 50 0.5 0 XXIII 20 50 0.5 1 XXXVIII 20 50 0.5 −1

IX 20 50 0.8 0 XXIV 20 50 0.8 1 XXXIX 20 50 0.8 −1

X 30 50 0.2 0 XXV 30 50 0.2 1 XL 30 50 0.2 −1

XI 30 50 0.5 0 XXVI 30 50 0.5 1 XLI 30 50 0.5 −1

XII 30 50 0.8 0 XXVII 30 50 0.8 1 XLII 30 50 0.8 −1

XIII 40 50 0.2 0 XXVIII 40 50 0.2 1 XLIII 40 50 0.2 −1

XIV 40 50 0.5 0 XXIX 40 50 0.5 1 XLIV 40 50 0.5 −1

XV 40 50 0.8 0 XXX 40 50 0.8 1 XLV 40 50 0.8 −1
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Table 2: Monte Carlo Results.
% Bias RMSE % Bias RMSE

ρ γ ρ γ ρ γ ρ γ

I FE −31.866 0.067 0.076 0.036 XIII FE −16.277 0.042 0.039 0.018
K 0.880 0.066 0.044 0.034 K −0.549 0.042 0.022 0.017
AB −22.258 −0.216 0.067 0.051 AB −11.459 0.018 0.034 0.023
BB −14.777 −0.221 0.059 0.052 BB −7.579 −0.068 0.031 0.023

II FE −16.841 0.076 0.093 0.037 XIV FE −8.254 0.044 0.046 0.018
K 0.100 0.075 0.043 0.035 K −0.236 0.044 0.020 0.017
AB −13.774 −0.252 0.087 0.051 AB −6.565 −0.028 0.041 0.023
BB −10.174 −0.295 0.073 0.052 BB −4.937 −0.090 0.036 0.024

III FE −14.023 0.095 0.117 0.039 XV FE −6.527 0.043 0.054 0.019
K −2.024 0.088 0.046 0.037 K −0.152 0.045 0.017 0.018
AB −16.291 −0.348 0.144 0.052 AB −6.824 −0.060 0.059 0.024
BB −12.674 −0.406 0.116 0.054 BB −5.702 −0.093 0.051 0.025

XVI FE −14.998 2.436 0.042 0.047 XXVIII FE −7.567 1.368 0.021 0.026
K 0.713 −0.038 0.031 0.041 K −0.157 0.071 0.015 0.022
AB −13.634 1.981 0.047 0.056 AB −7.965 1.515 0.024 0.030
BB −11.032 1.946 0.045 0.056 BB −6.795 1.415 0.024 0.030

XVII FE −5.353 2.715 0.036 0.049 XXIX FE −2.556 1.533 0.017 0.026
K 0.293 −0.055 0.024 0.041 K −0.02 0.056 0.011 0.022
AB −5.682 2.338 0.044 0.057 AB −2.957 1.797 0.021 0.031
BB −5.362 2.531 0.043 0.059 BB −2.902 1.879 0.021 0.032

XVIII FE −2.303 2.067 0.023 0.042 XXX FE −0.951 1.252 0.010 0.023
K 0.658 0.229 0.019 0.041 K 0.035 0.016 0.006 0.020
AB −2.777 1.351 0.031 0.049 AB −1.216 1.359 0.013 0.026
BB −2.570 1.315 0.030 0.052 BB −1.198 1.301 0.013 0.028

XXXI FE −15.412 −2.366 0.042 0.047 XLIII FE −7.689 −1.307 0.022 0.026
K 0.320 0.115 0.030 0.041 K −0.280 −0.011 0.016 0.022
AB −12.658 −2.164 0.044 0.055 AB −6.039 −1.167 0.022 0.028
BB −10.185 −2.156 0.042 0.056 BB −4.822 −1.138 0.021 0.028

XXXII FE −5.629 −2.710 0.036 0.049 XLIV FE −2.601 −1.476 0.017 0.027
K 0.016 0.065 0.024 0.041 K −0.065 0.000 0.012 0.022
AB −5.130 −2.440 0.040 0.055 AB −2.356 −1.419 0.018 0.029
BB −4.821 −2.683 0.039 0.057 BB −2.258 −1.515 0.018 0.030

XXXIII FE −2.431 −2.029 0.024 0.043 XLV FE −0.967 −1.190 0.010 0.023
K 0.497 −0.213 0.018 0.040 K 0.020 0.045 0.006 0.020
AB −2.526 −1.516 0.029 0.048 AB −0.940 −1.037 0.011 0.024
BB −2.267 −1.569 0.027 0.05 BB −0.932 −1.025 0.011 0.025

Note: 1000 replications.

20



Table 3: Monte Carlo Results. t-statistic for ρ̂

FE K AB BB FE K AB BB
I 1% −3.956 −1.794 −3.449 −5.439 XIII 1% −3.759 −1.727 −4.020 −5.768

5% −3.055 −1.165 −2.669 −4.273 5% −2.999 −1.179 −2.998 −4.670
10% −2.765 −0.922 −2.181 −3.378 10% −2.640 −0.899 −2.296 −3.541
90% −0.241 0.967 0.443 1.355 90% −0.247 0.848 0.309 1.349
95% 0.041 1.199 0.817 1.854 95% 0.102 1.093 0.650 1.767
99% 0.584 1.610 1.373 2.852 99% 0.623 1.455 1.410 3.081

II 1% −4.599 −1.833 −3.936 −6.088 XIV 1% −4.353 −1.822 −4.808 −7.114
5% −3.744 −1.247 −3.217 −4.952 5% −3.550 −1.189 −3.475 −5.183
10% −3.417 −0.967 −2.758 −4.051 10% −3.226 −0.938 −2.723 −4.456
90% −0.882 1.040 0.000 0.553 90% −0.838 0.841 −0.167 0.47
95% −0.614 1.232 0.472 1.237 95% −0.445 1.123 0.089 1.145
99% −0.071 1.674 0.921 2.254 99% 0.094 1.597 1.269 2.375

III 1% −5.772 −2.718 −5.311 −7.482 XV 1% −5.629 −1.921 −5.040 −7.907
5% −5.155 −2.052 −4.544 −6.273 5% −4.953 −1.281 −4.798 −6.266
10% −4.815 −1.683 −4.109 −5.621 10% −4.552 −0.993 −4.106 −5.974
90% −2.409 0.905 −1.166 −1.124 90% −2.258 0.985 −1.422 −1.524
95% −2.087 1.185 −0.853 −0.601 95% −1.900 1.281 −0.935 −0.530
99% −1.466 1.701 −0.303 0.376 99% −1.185 1.888 −0.509 0.523

XVI 1% −3.496 −1.761 −3.243 −5.295 XXVIII 1% −3.129 −1.570 −3.503 −5.756
5% −2.648 −1.171 −2.523 −3.832 5% −2.538 −1.132 −2.909 −4.498
10% −2.271 −0.885 −2.195 −3.227 10% −2.225 −0.904 −2.043 −3.140
90% 0.264 0.981 0.557 1.204 90% 0.203 0.828 0.373 0.744
95% 0.584 1.236 0.952 1.871 95% 0.632 1.135 0.630 1.317
99% 1.274 1.722 1.663 2.833 99% 1.199 1.555 1.427 1.924

XVII 1% −3.682 −1.743 −3.407 −5.074 XXIX 1% −3.320 −1.559 −3.926 −5.893
5% −2.827 −1.153 −2.708 −3.936 5% −2.665 −1.137 −2.782 −4.375
10% −2.465 −0.856 −2.328 −3.486 10% −2.319 −0.871 −2.201 −3.288
90% 0.137 1.024 0.427 0.796 90% 0.115 0.896 0.205 0.274
95% 0.475 1.266 0.694 1.133 95% 0.504 1.148 0.517 0.693
99% 1.105 1.796 1.489 2.622 99% 1.159 1.637 0.991 1.604

XVIII 1% −4.108 −1.872 −3.451 −5.188 XXX 1% −3.555 −1.587 −4.210 −5.905
5% −3.120 −1.136 −2.811 −4.012 5% −2.961 −1.193 −3.164 −4.733
10% −2.686 −0.857 −2.370 −3.477 10% −2.648 −0.947 −2.651 −3.640
90% −0.068 1.434 0.205 0.405 90% −0.055 0.915 0.119 0.202
95% 0.223 1.989 0.644 1.052 95% 0.405 1.279 0.449 0.626
99% 1.062 3.064 1.310 2.422 99% 0.967 1.706 0.959 1.547

Note: 1000 replications. The 1th, 5th, 10th, 90th, 95th and 99th quantiles for
the standard normal distribution are −2.32, −1.64, −1.28, 1.28, 1.64 and 2.32, respectively.

21



Table 3: Monte Carlo Results. t-statistic for ρ̂ (Cont.)
FE K AB BB FE K AB BB

XXXI 1% −3.404 −1.695 −2.899 −4.383 XLIII 1% −3.424 −1.789 −3.267 −4.886
5% −2.722 −1.186 −2.264 −3.514 5% −2.635 −1.198 −2.235 −3.577
10% −2.319 −0.915 −1.976 −2.905 10% −2.230 −0.916 −1.892 −2.881
90% 0.240 0.972 0.661 1.258 90% 0.209 0.830 0.609 1.337
95% 0.498 1.134 1.028 1.724 95% 0.636 1.145 0.788 1.487
99% 1.156 1.619 1.457 2.530 99% 1.258 1.602 1.167 2.462

XXXII 1% −3.598 −1.722 −3.285 −4.971 XLIV 1% −3.497 −1.689 −3.847 −5.128
5% −2.881 −1.231 −2.354 −3.562 5% −2.749 −1.167 −2.336 −3.49
10% −2.543 −0.949 −2.142 −3.078 10% −2.437 −0.959 −1.982 −2.997
90% 0.081 0.976 0.513 0.794 90% 0.140 0.874 0.410 0.715
95% 0.397 1.213 0.871 1.482 95% 0.487 1.164 0.887 1.187
99% 1.062 1.661 1.448 2.292 99% 1.025 1.551 1.134 1.728

XXXIII 1% −4.031 −1.847 −3.126 −4.793 XLV 1% −3.603 −1.619 −3.469 −5.155
5% −3.256 −1.220 −2.589 −3.675 5% −3.021 −1.173 −2.506 −3.751
10% −2.887 −0.913 −2.266 −3.268 10% −2.645 −0.934 −2.245 −3.208
90% −0.139 1.428 0.165 0.522 90% −0.071 0.961 0.162 0.193
95% 0.259 1.940 0.542 1.128 95% 0.287 1.157 0.647 1.125
99% 0.977 3.053 1.135 2.181 99% 0.850 1.583 1.193 1.543

Note: 1000 replications. The 1th, 5th, 10th, 90th, 95th and 99th quantiles for
the standard normal distribution are −2.32, −1.64, −1.28, 1.28, 1.64 and 2.32, respectively.
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Table 4: Monte Carlo Results. t-statistic for γ̂

FE K AB BB FE K AB BB
I 1% −2.557 −1.724 −2.736 −3.695 XIII 1% −2.566 −1.770 −2.634 −3.755

5% −1.627 −1.101 −1.750 −2.593 5% −1.662 −1.122 −1.568 −2.250
10% −1.252 −0.849 −1.369 −1.886 10% −1.253 −0.883 −1.228 −1.899
90% 1.249 0.865 1.232 1.693 90% 1.396 0.961 1.280 1.748
95% 1.744 1.176 1.594 2.257 95% 1.761 1.224 1.487 2.269
99% 2.413 1.644 2.429 3.319 99% 2.520 1.767 2.159 3.133

II 1% −2.597 −1.779 −2.724 −3.651 XIV 1% −2.628 −1.811 −2.588 −3.608
5% −1.629 −1.111 −1.765 −2.650 5% −1.666 −1.129 −1.641 −2.324
10% −1.295 −0.853 −1.402 −1.927 10% −1.310 −0.896 −1.240 −1.809
90% 1.321 0.885 1.265 1.742 90% 1.409 0.960 1.294 1.683
95% 1.749 1.188 1.577 2.318 95% 1.790 1.237 1.468 2.302
99% 2.465 1.641 2.506 3.452 99% 2.532 1.759 2.197 3.009

III 1% −2.724 −1.901 −2.769 −3.718 XV 1% −2.690 −1.867 −2.610 −3.520
5% −1.741 −1.244 −1.859 −2.764 5% −1.694 −1.152 −1.739 −2.248
10% −1.350 −0.928 −1.449 −2.047 10% −1.370 −0.911 −1.228 −1.943
90% 1.405 0.957 1.261 1.809 90% 1.476 0.957 1.250 1.688
95% 1.906 1.299 1.693 2.363 95% 1.888 1.274 1.631 2.394
99% 2.648 1.928 2.576 3.467 99% 2.714 1.778 2.247 3.079

XVI 1% −1.633 −1.526 −1.866 −2.839 XXVIII 1% −1.623 −1.565 −1.563 −2.269
5% −1.091 −1.194 −1.351 −1.792 5% −1.048 −1.165 −1.058 −1.501
10% −0.675 −0.914 −0.934 −1.439 10% −0.662 −0.890 −0.620 −1.083
90% 1.781 0.860 1.637 2.302 90% 1.907 0.927 1.732 2.228
95% 2.130 1.099 1.870 2.760 95% 2.230 1.170 2.152 3.008
99% 2.830 1.598 2.662 3.796 99% 2.944 1.675 2.623 3.544

XVII 1% −1.609 −1.619 −1.997 −3.049 XXIX 1% −1.609 −1.620 −1.745 −2.752
5% −1.072 −1.213 −1.288 −1.827 5% −0.944 −1.158 −0.710 −1.176
10% −0.602 −0.923 −0.836 −1.235 10% −0.617 −0.923 −0.409 −0.647
90% 1.868 0.858 1.789 2.654 90% 1.982 0.922 1.757 2.629
95% 2.234 1.126 2.024 2.926 95% 2.404 1.210 2.245 3.225
99% 2.818 1.578 2.614 3.822 99% 2.956 1.628 2.831 4.014

XVIII 1% −1.975 −1.775 −1.933 −3.715 XXX 1% −1.684 −1.672 −1.760 −2.958
5% −1.097 −1.172 −1.469 −2.485 5% −0.948 −1.147 −0.882 −2.029
10% −0.716 −0.878 −1.023 −1.789 10% −0.614 −0.895 −0.674 −1.333
90% 1.784 1.007 1.541 2.494 90% 2.030 1.000 1.664 3.047
95% 2.137 1.242 1.893 3.069 95% 2.381 1.252 2.144 3.455
99% 2.765 1.907 2.532 4.251 99% 3.094 1.778 2.518 4.82

Note: 1000 replications. The 1th, 5th, 10th, 90th, 95th and 99th quantiles for
the standard normal distribution are −2.32, −1.64, −1.28, 1.28, 1.64 and 2.32, respectively.
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Table 4: Monte Carlo Results. t-statistic for γ̂ (Cont.)
FE K AB BB FE K AB BB

XXXI 1% −2.758 −1.594 −2.980 −4.207 XLIII 1% −3.030 −1.709 −2.280 −3.182
5% −2.149 −1.095 −2.096 −2.967 5% −2.316 −1.239 −1.746 −2.579
10% −1.758 −0.820 −1.640 −2.333 10% −1.867 −0.913 −1.617 −2.412
90% 0.700 0.915 0.821 1.206 90% 0.722 0.933 0.830 1.175
95% 1.060 1.182 1.040 1.637 95% 1.156 1.257 1.109 1.681
99% 1.693 1.661 1.751 2.483 99% 1.696 1.635 1.650 2.243

XXXII 1% −2.891 −1.603 −3.026 −4.403 XLIV 1% −3.060 −1.711 −2.604 −4.310
5% −2.243 −1.156 −2.148 −3.104 5% −2.387 −1.218 −1.995 −2.906
10% −1.878 −0.859 −1.737 −2.630 10% −2.033 −0.967 −1.748 −2.536
90% 0.610 0.931 0.725 1.073 90% 0.612 0.932 0.654 0.876
95% 0.911 1.155 1.036 1.490 95% 1.014 1.230 0.891 1.452
99% 1.537 1.606 1.629 2.426 99% 1.590 1.645 1.729 2.011

XXXIII 1% −3.017 −1.961 −2.787 −4.298 XLV 1% −3.106 −1.737 −3.198 −5.465
5% −2.179 −1.321 −2.010 −3.236 5% −2.243 −1.134 −1.861 −3.308
10% −1.763 −0.968 −1.642 −2.576 10% −1.917 −0.900 −1.674 −2.608
90% 0.739 0.888 0.897 1.560 90% 0.764 0.979 0.637 1.285
95% 1.068 1.145 1.216 2.323 95% 1.076 1.213 1.082 1.572
99% 1.676 1.560 1.754 2.940 99% 1.833 1.755 1.677 2.653

Note: 1000 replications. The 1th, 5th, 10th, 90th, 95th and 99th quantiles for
the standard normal distribution are −2.32, −1.64, −1.28, 1.28, 1.64 and 2.32, respectively.
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Table 5: Monte Carlo Design. 90% Confidence Level Intervals.

ρ 0.2 0.5 0.8

Asymptotic 0.138 0.197 0.408

Percentile-t 0.104 0.115 0.036

Kilian 0.046

Grid-α 0.052

Grid-t 0.063

γ 1 1 1

Asymptotic 0.098 0.115 0.168

Percentile-t 0.116 0.113 0.071

Table 6. The Wage Curve: U.S. States, 1980-1991

Dependent variable = Log State Wage (wit)

LSDV GMM (AB) LSDVC

Lagged log wage (wit−1) 0.9054 0.9095 0.9113

Standard Inference (0.871, 0.939) (0.814, 1.004) (0.875, 0.948)

Standard Bootstrap (0.903, 0.974)

Kilian Bias-Corrected (0.901, 0.951)

Grid-α (0.903, 0.965)

Grid-t (0.899, 0.998)

Log unemployment rate (uit) −0.0417 −0.0296 −0.0477

Standard Inference (−0.049, −0.035) (−0.041, −0.018) (−0.055, −0.040)

Standard Bootstrap (−0.048, −0.032)

State Fixed Effects Yes Yes Yes

Year Fixed Effects Yes Yes Yes

Notes: 1. All regressions contain 612 observations (51 states over 12 years) for the period 1980 to 1991.
Wages and individual controls are from the Merged Outgoing Rotation Group Files of CPS. Wages are

earnings per hour. We restrict the sample only to employee workers. Unemployment is the state

unemployment rate.

2. Figures in parentheses are 95% confidence intervals.
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Table 7. The Wage Curve: Argentine Regions, 1991-1997

Dependent variable = Log Region Wage (wit)

LSDV GMM (AB) LSDVC

Lagged log wage (wit−1) 0.5327 0.5698 0.6877

Standard Inference (0.424, 0.641) (0.406, 0.734) (0.582, 0.794)

Standard Bootstrap (0.481, 0.731)

Kilian Bias-Corrected (0.537, 0.712)

Grid-α (0.558, 0.709)

Grid-t (0.538, 0.704)

Log unemployment rate (uit) −0.0314 −0.0270 −0.0485

Standard Inference (−0.059, −0.004) (−0.059, 0.005) (−0.076, −0.021)

Standard Bootstrap (−0.076, −0.023)

Region Fixed Effects Yes Yes Yes

Year Fixed Effects Yes Yes Yes

Notes: 1. All regressions contain 238 observations (17 regions over 14 semester) for the period 1991 to 1997.
Wages and individual controls are from the Permanent Household Survey conducted by INDEC. Wages are

earnings per hour. We restrict the sample only to employee workers. Unemployment is the regional

unemployment rate for males.

2. Figures in parentheses are 95% confidence intervals.
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Figure 1

              (a) T=20,  N=30,  γ=0          (b) T=20,  N=30,  γ=1

              (c) T=30,  N=30,  γ=0          (d) T=30,  N=30,  γ=1

           (e) T=40,  N=50,  γ=0          (f) T=40,  N=50,  γ=1
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