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Abstract. This study describes a new Stata routine that computes bias-
corrected LSDV estimators and their bootstrap variance-covariance ma-
trix for dynamic (possibly) unbalanced panel data models. A Monte Carlo
analysis is carried out to evaluate the finite-sample performance of the bias
corrected LSDV estimators in comparison to the original LSDV estima-
tor and three popular N-consistent estimators: Arellano-Bond, Anderson-
Hsiao and Blundell-Bond. Results strongly support the bias-corrected
LSDV estimators according to bias and root mean squared error criteria
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1 Introduction
Situations in which past decisions have an impact on current behaviour are
ubiquitous in economics. To mention just one of the most familiar cases, in the
presence of employment adjustment costs the short-run labour demand of the
firm will depend on past employment levels. Another crucial issue in empiri-
cal economics, strictly related to the modelling of dynamic relationships, is the
presence of unobserved heterogeneity in individual behaviour and characteris-
tics. Panel data sets, where the behaviour of N cross-sectional units is observed
over T time periods, provide a solution to accommodating the joint occurrence of
dynamics and unobserved individual heteogeneity in the phenomena of interest.

Since the seminal paper by Nickell (1981), where it is shown that the Least
Square Dummy Variable estimator (LSDV) is not consistent for finite T in au-
toregressive panel data models, a number of consistent instrumental variable
(IV) and Generalised Method of Moments (GMM) estimators have been pro-
posed in the econometric literature as an alternative to LSDV. Anderson and
Hsiao (1982) (AH) suggest two simple IV estimators that, upon transforming
the model in first differences to eliminate the unbserved individual heterogeneity,
use the second lags of the dependent variable, either differenced or in levels, as
an instrument for the differenced one-time lagged dependent variable. Arellano
and Bond (1991) (AB) propose a GMM estimator for the first differenced model
which, relying on a greater number of internal instruments, is more efficient than
AH. Blundell and Bond (1998) (BB) observe that with highly persistent data
first-differenced IV or GMM estimators may suffer of a severe small sample bias
due to weak instruments. As a solution, they suggest a system GMM estimator
with first-differenced instruments for the equation in levels and instrument in
levels for the first-differenced equation.

A weakness of IV and GMM estimators is that their properties hold for N
large, so they can be severely biased and imprecise in panel data with a small
number of cross-sectional units. This is often the case in most macro panels,
but also in micro panels where heterogeneity concerns force the researcher not
to use all information available, but rather to select a subsample of individuals
from the original panel to estimate the parameters of interest. On the other
hand, earlier Monte Carlo studies (Arellano and Bond (1991), Kiviet (1995)
and Judson and Owen (1999)) demonstrate that LSDV although inconsistent
has a relatively small variance compared to IV and GMM estimators.

Moving from the foregoing considerations, an alternative approach based
upon the bias-correction of LSDV has recently become popular in the econo-
metric literature. Nickell (1981) derives an expression for the inconsistency of
LSDV for N → +∞, which is bounded of order T−1. Kiviet (1995) uses higher
order asymptotic expansion techniques to approximate the small sample bias of
the LSDV estimator to include terms of at most order N−1T−1. The approxi-
mations terms however, all evaluated at the unobserved true parameter values,
are of no direct use for estimation, so to make them operational he suggests re-
placing the true parameters by the estimates from some consistent estimators.
Monte Carlo evidence therein shows that the resulting bias-corrected LSDV es-
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timator (LSDVC) often outperforms the IV-GMM estimators in terms of bias
and root mean squared error (RMSE). Another piece of Monte Carlo evidence
by Judson and Owen (1999) strongly supports LSDVC when N is small as in
most macro panels. In Kiviet (1999) the bias expression is more accurate to
include terms of at most order N−1T−2. Bun and Kiviet (2003), upon simpli-
fying the approximations in Kiviet (1999), carry out Monte Carlo experiments
showing that the first order term of the approximation evaluated at the true
parameter values is already capable to account for more than 90% of the actual
bias.

None of the foregoing procedures to correct the LSDV estimator is feasible
for unbalanced panels. This gap is partly filled in Bruno (2005), where the bias
approximations in Bun and Kiviet (2003) are extended to accommodate unbal-
anced panels with a strictly exogenous selection rule. Monte Carlo evidence
therein parallels that in Bun and Kiviet (2003).

This paper presents a new Stata routine, xtlsdvc, which 1) implements LS-
DVC building upon the theoretical approximation formulae in Bruno (2005) and
2) estimates a bootstrap variance covariance matrix for the corrected estima-
tor. Moreover, the relative performance of LSDVC is evaluated in comparison
to LSDV, AB, AH and BB for unbalanced panels with a small N (10 and 20
units) through various Monte Carlo experiments, thus extending the analysis
by Judson and Owen (1999). Results show that the three versions of LSDVC
computed by xtlsdvc outperform all other estimators tried in terms of bias and
RMSE.

The paper is laid out as follows. The next section briefly reviews the theo-
retical results for corrected LSDV estimators. Section 3 describes the xtlsdvc
routine. Section 4 contains the Monte Carlo analysis and Section 5 concludes. A
demonstration of the code in the context of labour demand estimation is offered
into an appendix.

2 Bias corrected LSDV estimators
I consider the standard dynamic panel data model

yit = γyi,t−1 + x′
itβ + ηi + εit; |γ| < 1; i = 1, ..., N and t = 1, ..., T, (1)

where yit is the dependent variable; xit is the ((k − 1) × 1) vector of strictly
exogenous explanatory variables; ηi is an unobserved individual effect; and εit is
an unobserved white noise disturbance. Collecting observations over time and
across individuals gives

y = Dη + Wδ + ε,

where y and W =
[
y−1

...X
]

are the (NT × 1) and (NT × k) matrices of stacked

observations; D = IN ⊗ ιT is the (NT × N) matrix of individual dummies, (ιT
is the (T × 1) vector of all unity elements); η is the (N × 1) vector of individual

effects; ε is the (NT × 1) vector of disturbances; and δ =
[
γ
...β′

]′
is the (k × 1)

vector of coefficients.
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It has been long recognized that the LSDV estimator for model (1) is not
consistent for finite T . Nickell (1981) derives an expression for the inconsistency
for N → +∞, which is O

(
T−1

)
. Kiviet (1995) obtains a bias approximation

that contains terms of higher order than T−1. In Kiviet (1999) a more ac-
curate bias approximation is derived. Bun and Kiviet (2003) reformulate the
approximation in Kiviet (1999) with simpler formulae for each term.

Bruno (2005) extends Bun and Kiviet’s (2003) formulae to unbalanced panels
with a strictly exogenous selection rule. A more general version of model (1)
is considered, which allows missing observations in the interval [0, T ] for some
individuals. Below, I briefly present the approximation formulae for (possibly)
unbalanced data and show their use to obtain LSDVC.

Define a selection indicator rit such that rit = 1 if (yit, xit) is observed and
rit = 0 otherwise. From this define the dynamic selection rule s (rit, ri,t−1)
selecting only the observations that are usable for the dynamic model, namely
those for which both current values and one-time lagged values are observable:

sit =
{

1 if (ri,t, ri,t−1) = (1, 1)
0 otherwise

i = 1, ..., N and t = 1, ..., T.

Thus, for any i the number of usable observations is given by Ti =
∑T

t=1 sit.

The total number of usable observations is given by n =
∑N

i=1 Ti; and T =
n/N denotes the average group size. For each i define the (T × 1)-vector si =
[si1..., siT ]′ and the (T × T ) diagonal matrix Si having the vector si on its
diagonal. Define also the (NT × NT ) block-diagonal matrix S = diag (Si).
The (possibly) unbalanced dynamic model can then be written as

Sy = SDη + SWδ + Sε. (2)

The LSDV estimator is given by

δLSDV = (W ′MsW )−1
W ′Msy,

where
Ms = S

(
I − D (D′SD)−1

D′
)

S

is the symmetric and idempotent (NT × NT ) matrix wiping out individual
means and selecting usable observations.

Bias approximation terms for unbalanced panels are the following

c1

(
T

−1
)

= σ2
ε tr (Π) q1; (3)

c2

(
N−1T

−1
)

= −σ2
ε

[
QW

′
ΠMsW + tr

(
QW

′
ΠMsW

)
Ik+1+

2σ2
ε q11tr (Π′ΠΠ) Ik+1

]
q1;

c3

(
N−1T

−2
)

= σ4
ε tr (Π)

{
2q11QW

′
ΠΠ′Wq1 +

[(
q′1W

′
ΠΠ′Wq1

)
+

q11tr
(
QW

′
ΠΠ′W

)
+ 2tr (Π′ΠΠ′Π) q2

11

]
q1

}
;
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where Q = [E (W ′MsW )]−1 =
[
W

′
MsW + σ2

ε tr (Π′Π) e1e
′
1

]−1

; W = E (W );

e1 = (1, 0, ..., 0)′ is a (k × 1) vector; q1 = Qe1; q11 = e′1q1; LT is the (T × T )
matrix with unit first lower subdiagonal and all other elements equal to zero;L =
IN ⊗ LT ; ΓT = (IT − γLT )−1; Γ = IN ⊗ ΓT ; and Π = MsLΓ. Clearly, in any
balanced design S ≡ INT , so Ms = I − D (D′D)−1

D′, and the above terms
reduce to Bun and Kiviet’s (2003).

With an increasing level of accuracy, the following three possible bias ap-
proximations emerge

B1 = c1

(
T

−1
)

; B2 = B1 + c2

(
N−1T

−1
)

; B3 = B2 + c3

(
N−1T

−2
)

. (4)

In principle, bias corrected LSDV estimators could be obtained by subtract-
ing any of the above terms from LSDV. In practice, however, depending upon
the unknown parameters σ2

ε and γ, approximations (4) are not feasible for bias
correction. Nevertheless, consistent bias corrected estimators can be obtained
by finding consistent estimators for σ2

ε and γ, plugging them into the bias ap-
proximations formulae, and then subtracting the resulting bias approximation
estimates, B̂i, from LSDV as follows:

LSDV Ci = LSDV − B̂i, i = 1, 2 and 3. (5)

Possible consistent estimators for γ are AH, AB, or BB, for example. Depending
on the estimator of choice for γ, say h, a consistent estimator for σ2

ε is then given
by

σ̂2
h =

e′hMseh

(N − k − T )
, (6)

where eh = y − Wδh, and h = AH, AB and BB.

3 The xtlsdvc routine
The Stata routine xtlsdvc written by the author calculates LSDVC for model
(1) using estimates for the bias approximations in (4). The basic syntax of
xtlsdvc is the following

xtlsdvc depvar
[
varlist

] [
if exp

]
, initial(estimator)

[
level(#)

bias(#) vcov(#) first lsdv
]

So the routine can estimate the simple autoregressive model with no covari-
ates. The options for xtlsdvc are described below.

level(#) specifies the confidence level, in percent, for confidence intervals
of the coefficients. The default is level(95) or as set by set level; see
[U] 23.5 Specifying the width of confidence intervals.

initial(estimator) is required and specifies the consistent estimator chosen to
initialize the bias correction.
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estimator description
ah AH estimator, with the dependent variable lagged two times

used as an instrument for the first differenced model with no
intercept ([R] ivreg.)

ab standard one-step AB estimator with no intercept ([XT] xtabond.)
bb standard BB estimator with no intercept, as implemented by the

user-written Stata routine xtabond2 by David Roodman (2004).
my a row vector of initial values supplied directly by the user.

To implement the last instance of this option the user has to create a (1 ×
(k+1)) matrix to be named my, the i.th element of which serves as an initial
value for the coefficient on the i.th variable in varlist and the last, (k+1).th,
element as an estimate for the error variance. This may be useful in Monte
Carlo simulations or if the user whishes to try initial estimators other than
ah, ab or bb.

bias(#) determines the accuracy of the approximation: #=1 (default) forces
an approximation up to O(1/T ); #=2 forces an approximation up to O(1/NT );
#=3 forces an approximation up to O(N−1T−2).

vcov(#) calculates a bootstrap variance-covariance matrix for LSDVC using
# repetitions (# may not equal 1). The default is no bootstrap estima-
tion of the variance-covariance matrix and standard errors. Notice that the
bootstrap continues to work also in the presence of gaps in the exogenous
variables, although in this case bootstrap samples for each unit are truncated
to the first missing value encountered. Gaps in the dependent variable, in-
stead, bear no consequence to the bootstrap sample size. This is explained
in more detail in Section 3.2. Also consider that bootstrap standard errors
are downward biased when values for the unknown parameters are supplied
through matrix my, since the procedure in this case, keeping the values in my
fixed over replications, neglects a source of varibility for LSDVC.

first requests that the first-stage regression results be displayed.
lsdv requests that the original LSDV regression results be displayed.

To work out the approximations xtlsdvc invokes the subroutine xtlsdvc 1
that accomplishes the following tasks. In the first place, xtlsdvc 1 obtains the
uncorrected LSDV estimates via a a call to xtreg..., fe ([XT] xtreg.)

Second, xtlsdvc 1 obtains initial estimates for γ and β through one of the
following instructions, depending on which estimator is specified in initial:

if "‘initial’"=="ah" ivreg D.y D.x (LD.y=L2.y), noconstant
if "‘initial’"=="ab" xtabond y x, noconstant
if "‘initial’"=="bb" xtabond2 y L.y x, gmm(L.y) iv(x) noconstant.

Then σ̂2
h, h = AH, AB and BB, is computed as in (6).

Finally, xtlsdvc 1 computes the bias approximations via the Stata matrix
commands ([P] matrix), and corrects the LSDV estimates as indicated in (5).
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3.1 Saved results
xtlsdvc saves in e():
Scalars

e(N) number of observations e(sigma) estimates of σ from the first
stage regression

e(Tbar) average number of time
periods

e(N g) number of groups

Macros
e(cmd) xtlsdvc e(depvar) name of dependent variable

Matrices
e(b) xtlsdvc estimates e(V) var–cov matrix of

the xtlsdvc estimator
e(b lsdv) xtreg,fe estimates e(V lsdv) var–cov matrix of

the xtreg,fe estimator

Functions
e(sample) marks estimation sample

3.2 The bootstrap variance-covariance matrix
Kiviet and Bun (2001) show that LSDVC, however initialized, is asymptoti-
cally normal, and derive the analytical expression for the asymptotic variance-
covariance matrix of LSDVC in the version initialized by AH. Monte Carlo
simulations therein, however, demonstrate that the analytical variance estima-
tor performs poorly for a large γ, perhaps because of the unstable behavior of
AH (documented also by the Monte Carlo analysis of this paper, see Section 4).
In alternative, therefore, Kiviet and Bun (2001) suggest a parametric bootstrap
procedure to estimating the asymptotic variance-covariance matrix of LSDVC,
which seems superior to the analytical expression for at least three reasons: 1)
it is simpler; 2) it always turns out as relatively accurate; and 3) it can be ap-
plied to any version of LSDVC. Thus, xtlsdvc adapts Kiviet and Bun’s (2001)
bootstrap procedure for use with unbalanced panels, as described below.

A first difficulty here is brought about by the dependency in the data implied
by the autoregressive data generation process (DGP), which does not permit to
adopt any of the official Stata bootstrap instructions, bootstrap and bsample.
A parametric bootstrap is instead followed, which upon maintaining a normal
distribution for the disturbances takes full account of the dependency in the
DGP.

The subroutine xtlsdvc b is called in xtlsdvc by the option vcov. It is
designed to yield a bootstrap sample and bootstrap LSDVC estimates and is
iterated for vcov(#) times by xtlsdvc.

Let us focus on the generic iteration (*) of xtlsdvc b. It basically goes
through the steps below.

1. Upon obtaining LSDVC estimates γ̂ and β̂ and σ̂2 from xtlsdvc 1, it
calculates the N-vector of fixed effect estimates η̂ = y − γ̂ · y−1 − β̂ · x,
where y, y−1 and x, indicate N-vectors of group means.

2. It obtains bootstrap errors ε(∗) as a draw from N
(
0, σ̂2

)
.
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3. Given x, S and y0, it obtains a bootstrap sample from sity
(∗)
it = sit(γ̂ ·y(∗)

i,t−1

+β̂ · xit+ η̂i + ε
(∗)
it ), i = 1, ..., N and t = 1, ..., T.

4. It applies LSDVC to
(
y(∗), S, x

)
to yield γ̂(∗) and β̂(∗).

While computational aspects of steps 1 and 2 are straightforward and step 4
only requires a call to xtlsdvc 1 to calculate the corrected estimates from the
generated bootstrap sample, step 3 is instructive and deserves some explanation.
One possible way to implement step 3 would be to “manually” generate y(∗) by
recursion as a function of ε(∗), y0 and x. But this is both computationally
cumbersome and unnecessary in Stata. In fact one can exploit the ability of
replace ([R] generate, replace) to work sequentially1 to obtain y(∗) in an
effortless way:

by ivar: gen obs= n
replace y= GAMMA*L.y + BETA*x +THETA +EPSILON if obs>1.

Unbalancedness without gaps does not cause any trouble here, since different
start-up dates can be dealt with very easily by the time series operators in Stata.
The presence of gaps, instead, may cause a specific difficulty as long as they are
found in any of the independent variables x’s, regardless of the way step 3 is
implemented. In fact, since the recursion process generates y(∗) from (y0, S, x) ,
it must stop at the first missing value encountered in the x’s, so that eventually a
shorter sample is created at each replication. This may deteriorate the accuracy
of the estimates or even break down the identification of some coefficients in
the shorter bootstrap sample and, consequently, of their standard errors. For
example, if for all individuals there is a gap for a given time period, then the
coefficients on the time dummies subsequent to the missing period would not
be identified in each bootstrap sample, so that their bootstrap standard errors
could not be computed too. To the opposite, gaps in the dependent variable are
clearly immaterial for the size of the bootstrap samples, since only the start-up
values of y are used in the recursion process.

A simulate call ([R] simulate) in xtlsdvc replicates xtlsdvc b for vcov(#)

times, yielding a data set of bootstrap LSDVC estimates δ̂∗, of dimension
(vcov× k). Hence, xtlsdvc gets the bootstrap variance-covariance matrix V :

V =
δ̂∗′δ̂∗

(vcov− 1)

via matrix accum ([P] matrix.)
The bootstrap variance-covariance matrix V is then used to construct as-

ymptotic t-ratio tests of parameter significance as described in Kiviet and Bun
(2001).

1I learnt this from the messages by N. J. Cox and D. Kantor to Statalist on May 25, 2004
in response to a question of D. V. Masterov.
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Attention should be paid when supplying the initial values through the ma-
trix my. In this case, in fact, the bootstrap procedure would not be reliable,
since keeping the values in my fixed over replications, it neglects a source of
varibility for LSDVC, so that the resulting bootstrap standard errors may be
severely downward biased.

Finally, users should be warned that the bootstrap procedure may require a
considerable amount of time. This tends to increase linearly with the number
of replications. Also, the procedure seems slightly faster if LSDVC is initialized
by AH. Examples are given in the appendix.

4 Monte Carlo experiments
The Monte Carlo analyses in Kiviet (1995), Kiviet and Bun (2001) and, espe-
cially, Judson and Owen (1999) provide support for LSDVC in balanced panels,
compared to the traditional IV and GMM estimators. Moreover, Monte Carlo
results in Bun and Kiviet (2003) for balanced panels and in Bruno (2005) for
unbalanced panels demonstrate that the bias approximations (4), evaluated at
the true γ and σ2

ε , account for a significant portion of the bias, never less than
90% and often virtually 100%. The relative merit of LSDVC in unbalanced
panels is still to be explored, though. This is exactly what accomplished here,
where I evaluate the three versions of LSDVC as implemented by my code in a
Monte Carlo study that extends Judson and Owen’s (1999) under four respects.
First, I evaluate LSDVC in the presence of various unbalanced designs; second,
the performance of LSDVC is examined for the three different levels of accu-
racy; third, initial observations for the simulated data are generated following
the procedure by McLeod and Hipel (1978), also adopted in Kiviet (1995) and
Bruno (2005), which avoids the waste of random numbers and small sample
non-stationary problems; finally, the comparison is extended to BB.

Data for yit are generated by model (1) and for xit by

xit = ρxi,t−1 + ξit, ξit ∼ N
(
0, σ2

ξ

)
, i = 1, ..., N and t = 1, ..., T.

Initial observations yi0 and xi0 generated through the McLeod and Hipel (1978)
procedure are kept fixed across replications. The long-run coefficient β/ (1 − γ)
is kept fixed to unity, so β = 1− γ; σ2

ε is normalized to unity; γ and ρ alternate
between 0.2 and 0.8. The individual effects ηi are generated by assuming ηi ∼
N

(
0, σ2

η

)
and ση = σε (1 − γ).

Two different sample sizes are considered,
(
N, T

)
= (20, 20) and

(
N, T

)
=

(10, 40). Then, following Baltagi and Chang (1994), I control for the extent of
unbalancedness as measured by the Ahrens and Pincus index: ω = N/

[
T

∑N
i=1 (1/Ti)

]
(0 < ω ≤ 1, ω = 1 when the panel is balanced). For each sample size I analyze
a case of mild unbalancedness (ω = 0.96) and a case of severe unbalancedness
(ω = 0.36). Individuals are partitioned into two sets of equal dimension: one set
contains the first N/2 individuals, each with the last h observations discarded,
so Ti = T − h; the other contains the remaining N/2 individuals, each with
Ti = T . I set T and h so that T and ω take on the desired values (the four
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panel designs are summarized in Table 1).

Table 1

Unbalanced designs

N T T Ti ω

20 20 24 16 (i ≤ 10), 24 (i > 10) 0.96
36 4 (i ≤ 10), 36 (i > 10) 0.36

10 40 48 32 (i ≤ 5), 48 (i > 5) 0.96
72 8 (i ≤ 5), 72 (i > 5) 0.36

The simple AH estimator is the one chosen to initialize the correction proce-
dure, based on the finding by Kiviet and Bun (2001) that differences in the initial
estimators have only a marginal impact on the LSDVC performance. Then, the
LSDVC estimator is calculated for each of the three levels of accuracy in the
estimated bias approximations.

4.1 Results
Results for γ are presented in figures 1 to 4, while results for β are presented in
figures 5 to 8. In each figure the first graph is for T = 20 and the second for T =
40. The bias and the RMSE are measured onto the vertical axis, while the points
onto the horizontal axis always correspond to the eight possible combinations
for γ, ρ and ω (only the combinations with ω = 0.36 are labeled). Since BB
is specifically designed for highly persistent series, comparisons involving this
estimator are restricted to γ = 0.8.

As a first general comment on the Monte Carlo results I observe that ac-
cording to a bias criterion the three versions of LSDVC and, interestingly, AH
have the best performances for both γ and β, with virtually zero bias in sev-
eral cases. Turning to a RMSE criterion, the LSDVC estimators maintain the
best performance, while AH shows the worst RMSE levels, also in comparison
to LSDV, AB and, for highly persistent series, BB. This evidence highlights
LSDVC as the preferred estimator for dynamic panel data models with a small
N. These results are in line with what obtained by Kiviet (1995), Judson and
Owen (1999) and Kiviet and Bun (2001) in similar Monte Carlo analyses.

This said, some interesting patterns seem to emerge when the behavior of
each estimator is examined in more depth.

4.1.1 Estimating γ : bias

LSDVC3 tends to perform slightly better than the other two LSDVC versions,
especially when T and γ increases. When γ = 0.8 and ρ = 0.8, however, all
LSDVC estimators are slightly worse than AH (see Fig. 1).

After noting that the bias of LSDV and AB is always negative, confirming
the findings by earlier studies (Kiviet and Bun (2001), Bond (2002), Bun and
Kiviet (2003) and Bruno (2005)), I observe that LSDVC estimators, LSDV and
AB show similar patterns with respect to the degree of unbalancedness and
average group size. As already found for LSDV in Bruno (2005), the biases of
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such estimators are decreasing in ω. This, always for AB and LSDV and often
for LSDVC, brings with it an increase in the bias magnitude. The impact of ω,
then, seems particularly strong for AB when T = 20, always reversing to the
worse the relative performance of that estimator with respect to LSDV. When
T increases, however, besides observing an expected general tendency towards
a smaller bias magnitude, I also notice an attenuation of the ω effect for all
foregoing estimators. The bias of AH, instead, is always positive and increasing
in ω, implying each time a worsening of the bias when unbalancedness reduces.
The bias of BB is always positive and expectedely the largest in magnitude with
lowly persistent series, but it dramatically improves when the persistence in y
and x increases, reaching lower magnitudes than AB and LSDV when T = 20
and comparable to AB and LSDV when T = 40 (see Fig. 2).

4.1.2 Estimating γ : RMSE

The RMSE of the LSDVC estimators are almost coincident and always the
smallest. To the opposite, AH almost always presents the highest RMSE, which
hinders the attractiveness of such estimator in empirical work, despite its sim-
plicity and good bias performance (see Fig. 3).

The RMSE for all estimators but BB is increasing in γ and ρ, especially so
for AH, AB and LSDV. For BB, instead, I notice a stable behavior. As already
observed discussing bias performances, LSDVC estimators, AB and LSDV all
experience a worse RMSE when unbalancedness reduces. Again, this effect is
particularly strong for AB and when T = 20. BB has a satisfactory RMSE in
the presence of highly persistent series, performing generally better than AB
and LSDV. In particular, when T = 40 and ω = 0.96 its RMSE gets very close
to that of the LSDVC estimators (see Fig. 4).

4.1.3 Estimating β : bias

LSDVC estimators and AH continue to show the best bias performance. While
for ρ = 0.2 also AB and LSDV exhibit a negligible bias magnitude, for ρ = 0.8
their bias magnitude dramatically increases. With small T I notice a relatively
bad perfomance of BB. When T = 40 and ω = 0.36, however, the bias attains
acceptable levels, to worsen back when the degree of unbalancedness decreases
(see Figg. 5 and 6).

4.1.4 Estimating β : RMSE

Results here parallel what evidenced for γ, with two differences: 1) There seems
to be no clear role for the degree of unbalancedness. For example, when T = 20
the RMSE of the LSDVC estimators benefits from a decreased unbalancedness,
but when T = 40 exactly the opposite occurs. 2) The RMSE for BB is now
markedly increasing in ρ (see Figg. 7 and 8).

The documented evidence for a favourable impact of unbalancedness on bias
and RMSE values, apparently surprising, can be explained by the fact that
under investigation here is a notion of pure unbalancedness, not involving either
gaps or any loss in degrees of freedom and average group size. Although more
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theoretical work, accompanied by broader Monte Carlo experiments, is needed
to reach conclusive results on this issue, there is still a simple lesson to be learnt
from my Monte Carlo analysis, that is smoothing unbalancedness at the cost of
less time observations for the largest groups may be detrimental for estimation
performances in dynamic panel data models, especially if the average group size
is small.

5 Conclusion
This paper has presented the new Stata code xtlsdvc implementing LSDVC
estimators for dynamic (possibly) unbalanced panel data models. The procedure
is based upon the bias approximations derived in Bruno (2005), who extends the
result by Kiviet (1999) and Bun and Kiviet (2003) to unbalanced panels. The
code also computes the bootstrap variance-covariance matrix of the estimators.

Monte Carlo experiments highlight the LSDVC estimators as the preferred
ones in comparison to the original LSDV and widely used IV and GMM consis-
tent estimators when the number of individuals is small.

Future improvements of the code will enlarge the class of initial estimators,
allowing also more flexibility in the definition of the instrument set for the IV
and GMM estimators.
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A Appendix: Demonstrating xtlsdvc
I demonstrate the use of xtlsdvc in the context of labour demand estimation,
using the data set abdata.dta (Arellano and Bond (1991)), a typical micro panel
of firm data with a moderately large N (140 firms). The labour demand of
the firm is modelled according to specification (1), with the natural log of firm
employment, n, as the dependent variable and the natural log of the real product
wage, w, the natural log of the gross capital stock, k, and a set of time dummies
as explanatory variables. The log of employment lagged one time is also included
as a right-hand variable to allow costly employment adjustments.

Differently from the customary approach I do not use all information avail-
able to estimate the regression parameters. Instead, I follow a strategy that,
exploiting the industry partition of the cross-sectional dimension as defined by
the categorical variable ind, lets the slopes be industry-specific. This is easily
accomplished by restricting the usable data to the panel of firms belonging to
a given industry. While such a strategy leads to a less restrictive specification
for the firm labour demand, it causes a reduced number of cross-sectional units
for use in estimation, so that the researcher must be prepared to deal with a
potentially severe small sample bias in any of the industry regressions. Clearly,
xtlsdvc is the appropriate solution in this case.

The demonstration is kept as simple as possible considering regressions for
only one industry panel (ind=4). It has been carried out on a pc endowed with
a Pentium 4 2.80 GHz CPU and 496 MB of RAM.

The routine is reasonably fast when the bootstrap procedure is not invoked.
Otherwise, the waiting time may be considerable, linearly increasing in the
number of repetitions. To get an idea of this, a message at the end of each
execution displays the amount of time consumed by the code.

. sysuse abdata,clear
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.

. * Data description for industry 4

. xtdes if ind==4

id: 16, 18, ..., 133 n = 29
year: 1976, 1977, ..., 1984 T = 9

Delta(year) = 1; (1984-1976)+1 = 9
(id*year uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
7 7 7 7 7 8 9

Freq. Percent Cum. Pattern

18 62.07 62.07 1111111..
8 27.59 89.66 .1111111.
1 3.45 93.10 ..1111111
1 3.45 96.55 .11111111
1 3.45 100.00 111111111

29 100.00 XXXXXXXXX

.

. set rmsg on
r; t=0.00 17:29:43

.

. * LSDVC initialized by AH.

.

. * Level 1 of accuracy.

. * AH and (uncorrected) LSDV estimates are also displayed.

. xtlsdvc n w k yr1977-yr1984 if ind==4, init(ah) l f

note: yr1983 dropped due to collinearity
(when the lagged dependent variable L.n is included)

Bias correction initialized by Anderson and Hsiao estimator

Instrumental variables (2SLS) regression

Source SS df MS Number of obs = 148
F( 10, 138) = .

Model 1.35967485 10 .135967485 Prob > F = .
Residual .933924166 138 .006767566 R-squared = .

Adj R-squared = .
Total 2.29359902 148 .015497291 Root MSE = .08227

D.n Coef. Std. Err. t P>|t| [95% Conf. Interval]

n
LD .2204939 .4445225 0.50 0.621 -.658462 1.09945

w
D1 -.3771841 .134876 -2.80 0.006 -.643875 -.1104933

k
D1 .2204505 .0979079 2.25 0.026 .0268569 .4140442

yr1977
D1 .1988839 .1633361 1.22 0.225 -.1240813 .521849

yr1978
D1 .1719693 .1507414 1.14 0.256 -.1260923 .4700308

yr1979
D1 .1489565 .1597643 0.93 0.353 -.166946 .464859

yr1980
D1 .0922867 .157367 0.59 0.559 -.2188757 .4034491

14



yr1981
D1 -.0171367 .1401022 -0.12 0.903 -.2941613 .2598879

yr1982
D1 -.0650494 .0811056 -0.80 0.424 -.2254199 .095321

yr1984
D1 .0512528 .0581115 0.88 0.379 -.0636513 .1661569

Instrumented: LD.n
Instruments: D.w D.k D.yr1977 D.yr1978 D.yr1979 D.yr1980 D.yr1981 D.yr1982

D.yr1984 L2.n

LSDV dynamic regression

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1 .4056509 .0731424 5.55 0.000 .2622945 .5490074

w -.3541811 .1315442 -2.69 0.007 -.612003 -.0963593
k .2541555 .0525718 4.83 0.000 .1511167 .3571944
yr1977 .1590321 .0412702 3.85 0.000 .0781441 .2399201
yr1978 .1480011 .0376338 3.93 0.000 .0742401 .2217621
yr1979 .1166947 .0388859 3.00 0.003 .0404799 .1929096
yr1980 .0615435 .0388128 1.59 0.113 -.0145281 .1376152
yr1981 -.0333848 .036903 -0.90 0.366 -.1057134 .0389438
yr1982 -.0528846 .03139 -1.68 0.092 -.1144079 .0086387
yr1984 .1019097 .0592481 1.72 0.085 -.0142145 .2180339

Bias correction up to order O(1/T)

LSDVC dynamic regression
(SE not computed)

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1 .5389829 . . . . .

w -.3375203 . . . . .
k .2218794 . . . . .
yr1977 .1231041 . . . . .
yr1978 .1191318 . . . . .
yr1979 .0871871 . . . . .
yr1980 .0324267 . . . . .
yr1981 -.0580636 . . . . .
yr1982 -.0634494 . . . . .
yr1984 .0928311 . . . . .

r; t=0.74 17:29:44

.

. * Level 2 of accuracy.

. xtlsdvc n w k yr1977-yr1984 if ind==4, init(ah) bi(2)
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note: yr1983 dropped due to collinearity
(when the lagged dependent variable L.n is included)

Bias correction initialized by Anderson and Hsiao estimator

Bias correction up to order O(1/NT)

LSDVC dynamic regression
(SE not computed)

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1 .5354691 . . . . .

w -.3380943 . . . . .
k .2226967 . . . . .
yr1977 .1238945 . . . . .
yr1978 .1197488 . . . . .
yr1979 .0878223 . . . . .
yr1980 .0330506 . . . . .
yr1981 -.0575616 . . . . .
yr1982 -.0633143 . . . . .
yr1984 .092829 . . . . .

r; t=0.75 17:29:45

.

. * Level 3 of accuracy

. xtlsdvc n w k yr1977-yr1984 if ind==4, init(ah) bi(3)

note: yr1983 dropped due to collinearity
(when the lagged dependent variable L.n is included)

Bias correction initialized by Anderson and Hsiao estimator

Bias correction up to order O(1/NT^2)

LSDVC dynamic regression
(SE not computed)

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1 .6338054 . . . . .

w -.3258186 . . . . .
k .1988694 . . . . .
yr1977 .0973986 . . . . .
yr1978 .0984595 . . . . .
yr1979 .0660618 . . . . .
yr1980 .0115782 . . . . .
yr1981 -.0757634 . . . . .
yr1982 -.0711084 . . . . .
yr1984 .0861093 . . . . .

r; t=0.75 17:29:45
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.

.

. * LSDVC (level 3 of accuracy) initialized by AH, plus bootstrap SE

.

. * 100 replications

. xtlsdvc n w k yr1977-yr1984 if ind==4, init(ah) bi(3) vcov(100)

note: yr1983 dropped due to collinearity
(when the lagged dependent variable L.n is included)

Bias correction initialized by Anderson and Hsiao estimator

Bias correction up to order O(1/NT^2)

LSDVC dynamic regression
(bootstrapped SE)

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1 .6338054 .2384333 2.66 0.008 .1664848 1.101126

w -.3258186 .1624866 -2.01 0.045 -.6442865 -.0073507
k .1988694 .0652599 3.05 0.002 .0709623 .3267765
yr1977 .0973986 .0709764 1.37 0.170 -.0417126 .2365098
yr1978 .0984595 .0686167 1.43 0.151 -.0360267 .2329456
yr1979 .0660618 .0732827 0.90 0.367 -.0775695 .2096932
yr1980 .0115782 .075663 0.15 0.878 -.1367186 .159875
yr1981 -.0757634 .0618594 -1.22 0.221 -.1970056 .0454788
yr1982 -.0711084 .0356703 -1.99 0.046 -.141021 -.0011958
yr1984 .0861093 .0703664 1.22 0.221 -.0518064 .224025

r; t=73.50 17:30:59

. * 200 replications

. xtlsdvc n w k yr1977-yr1984 if ind==4, init(ah) bi(3) vcov(200)

note: yr1983 dropped due to collinearity
(when the lagged dependent variable L.n is included)

Bias correction initialized by Anderson and Hsiao estimator

Bias correction up to order O(1/NT^2)

LSDVC dynamic regression
(bootstrapped SE)

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1 .6338054 .2366395 2.68 0.007 .1700005 1.09761

w -.3258186 .1740695 -1.87 0.061 -.6669885 .0153514
k .1988694 .082856 2.40 0.016 .0364747 .3612641
yr1977 .0973986 .07895 1.23 0.217 -.0573406 .2521377
yr1978 .0984595 .0755014 1.30 0.192 -.0495206 .2464395
yr1979 .0660618 .080673 0.82 0.413 -.0920542 .2241779
yr1980 .0115782 .0812952 0.14 0.887 -.1477575 .1709138
yr1981 -.0757634 .06819 -1.11 0.267 -.2094133 .0578865
yr1982 -.0711084 .039987 -1.78 0.075 -.1494814 .0072647
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yr1984 .0861093 .0714245 1.21 0.228 -.05388 .2260987

r; t=145.13 17:33:24

.

.

. * LSDVC (level 3 of accuracy) initialized by AB,

. * plus bootstrap SE (100 replications).

. * AB estimates are also displayed.

.

. xtlsdvc n w k yr1977-yr1984 if ind==4, init(ab) f bi(3) vcov(100)

note: yr1983 dropped due to collinearity
(when the lagged dependent variable L.n is included)

Bias correction initialized by Arellano and Bond estimator
note: yr1977 dropped due to collinearity

Arellano-Bond dynamic panel-data estimation Number of obs = 148
Group variable (i): id Number of groups = 29

Wald chi2(.) = .

Time variable (t): year Obs per group: min = 5
avg = 5.103448
max = 7

One-step results

D.n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
LD .5713301 .0697836 8.19 0.000 .4345568 .7081034

w
D1 -.5627737 .1291909 -4.36 0.000 -.8159832 -.3095643

k
D1 .149354 .0597419 2.50 0.012 .0322619 .266446

yr1978
D1 .0200412 .019743 1.02 0.310 -.0186544 .0587369

yr1979
D1 -.008996 .0206913 -0.43 0.664 -.0495503 .0315582

yr1980
D1 -.0598638 .0208495 -2.87 0.004 -.1007281 -.0189995

yr1981
D1 -.1533807 .0202301 -7.58 0.000 -.1930309 -.1137305

yr1982
D1 -.1424881 .0191927 -7.42 0.000 -.1801052 -.1048711

yr1984
D1 .0673006 .0514889 1.31 0.191 -.0336159 .1682171

Sargan test of over-identifying restrictions:
chi2(27) = 77.04 Prob > chi2 = 0.0000

Arellano-Bond test that average autocovariance in residuals of order 1 is 0:
H0: no autocorrelation z = -2.12 Pr > z = 0.0337

Arellano-Bond test that average autocovariance in residuals of order 2 is 0:
H0: no autocorrelation z = -1.06 Pr > z = 0.2878

Bias correction up to order O(1/NT^2)

LSDVC dynamic regression
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(bootstrapped SE)

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1 .7206262 .1205431 5.98 0.000 .4843659 .9568864

w -.3331545 .1600705 -2.08 0.037 -.646887 -.0194221
k .1844672 .0624622 2.95 0.003 .0620436 .3068907
yr1977 .0762851 .0377489 2.02 0.043 .0022987 .1502716
yr1978 .0865282 .0361974 2.39 0.017 .0155826 .1574739
yr1979 .0516378 .0386154 1.34 0.181 -.0240469 .1273225
yr1980 -.0033252 .0384388 -0.09 0.931 -.0786639 .0720134
yr1981 -.0895199 .0367064 -2.44 0.015 -.1614631 -.0175767
yr1982 -.0766998 .0326953 -2.35 0.019 -.1407815 -.0126182
yr1984 .0679823 .0687112 0.99 0.322 -.0666891 .2026537

r; t=79.67 17:34:44

.

B Appendix: Figures
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Figure 1: Biases of LSDVC1, LSDVC2, LSDVC3 and AH for γ.
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Figure 2: Biases of all estimators for γ.
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Figure 3: RMSE’s of LSDVC1, LSDVC2, LSDVC3 and BB for γ.
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Figure 4: RMSE’s of all estimators for γ.
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Figure 5: Biases of LSDVC1, LSDVC2, LSDVC3 and AH for β.
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Figure 6: Biases of all estimators for β.
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Figure 7: RMSE’s of LSDVC1, LSDVC2, LSDVC3 and BB for β.
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Figure 8: RMSE’s of all estimators for β.
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