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SUMMARY

This paper presents computational results for some alternative methods of
analysing mmltivariate data with missing values. We recommend an
algorithm due to Orchard and Woodbury (1972), which gives an estimator
that is maximum likelihood when the data come from a multivariate noymal
population. We include a derivation of the estimator that does not assume
a multivariate normal population, as an iterated form of Buck’s (1960}
method.

We derive an approximate method of assigning standard errors to
regression coefficients estimated from incomplete observations, and quote
supporting evidence from simulation studies.

A brief account is given of the application of these methods to some
school examinations data.
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1. INTRODUCTION

MANY multivariate analysis techniques, and in particular multiple regression, assume
that one starts with an array of numbers x;; representing the value of the jth variable
in the ith observation. This will be for j=1,...,n and i=1,...,N if we have N
observations and » variables. From these raw data one then forms a square matrix
a;y, of sums of squares and products defined by the equation

or, more usually, by the equation
where x; = }é]x,;j-fN. (1.3)

One then can proceed to a multiple regression analysis or any of the more specialized
analyses such as principal component analysis, or factor analysis, or interdependence
analysis.

But what should we do if there are gaps in the original data, that is to say if
individual variables are missing in some observations? Sometimes the fact that the
variable is missing indicates that its true value is probably unusual, and in these
circumstances any mechanical method of analysis may be very misleading. But
information about some variables may simply not be readily available, particularly
if the relevance of this information is doubtful, as in exploratory regression work.
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One natural approach to this problem is to omit all incomplete observations.
This is unsatisfactory if many variables are known for an incomplete observation,
particularly if the variables that are known prove on analysis to include all those
that are important for the study.

The other standard approach is to estimate each %; independently from those
observations where the particular variable is known, and then to estimate each a;
separately as the average value of (x;;— X;)(x;,— X,), where averaging takes place
over all observations where both x;; and x,; are known. This approach apparently
makes more use of the available data, but it can give very poor results, as demon-
strated in simulation studies reported by Haitovsky (1968).

Another approach is to substitute suitable guessed values for the unkmown
quantities, For example, one can assume that any unknown quantity equals the
mean of all known values of the variable. This approach has been used in many
practical analyses and given acceptable results. On the other hand, it can also give
very poor results with highly correlated data.

Yet another approach is to assume that the data came from a multivariate normal
distribution and to estimate the parameters of this distribution by maximum likeli-
hood. Until recently this approach seemed to pose formidable mathematical and
computational problems, but Orchard and Woodbury (1972) have shown that these
parameters can be estimated using a sophisticated version of the method of fitting
suitable approximations to the unknown values in incomplete observations.

Section 2 of this paper derives Orchard and Woodbury’s Missing Information
Principle. The argument follows theirs, but emphasizes that the effect of the principle
is to replace a maximization problem by a fixed point problem. We give a formal
definition of the principle, expressed in a way that reduces the possibility of finding
stationary values of the likelihood other than the maximum. We believe that this
clarifies the logic of the principle. We follow Orchard and Woodbury in showing
that the principle leads to a simple iterative algorithm for finding estimators for our
problem: that are maximum likelihood when the population is multivariate normal.

Section 3 presents an alternative derivation of essentially the same estimators,
as an iterated version of those proposed by Buck (1960), The only difference is that
the adjusted sum of squares and products matrix is divided by (N—1) instead of ¥
to derive the estimated covariance matrix. This correction makes no practical
difference in our simulation studies, but it brings the method into line with con-
ventional practice when all observations are complete. QOur derivation is more
arbitrary than Orchard and Woodbury’s since it appeals to a desire for unbiasedness.
But we think it is of interest since it does not assume that the underlying population
is multivariate normal. We consider the problem of bias in detail for the special case
of one incomplete observation.

Section 4 reports the results of simulation studies comparing six estimators on
artificial data generated from multivariate normal populations subjected to random
deletions. The estimators are found by:

(1) Ordinary least squares using complete observations only.

(2) Buck’s method.

(3) Iterated Buck, or corrected maximum likelihood.

(4) A method that estimates the means, variances and covariances of the
independent variables only by corrected maximum likelihood, uses these to
fit missing values of the independent variables and then uses ordinary
least squares on all observations for which the dependent variable is present.
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(5) Method 4, but with incomplete observations given appropriately reduced
weights,
(6) A combination of Methods 3 and 5.

The conclusion is that corrected maximum likelihood is generally best.

Section 5 discusses the problems of assessing the value of incomplete observations,
and the problem of assessing approximate standard errors to regression coefficients
estimated from incomplete data. We have found by further simulation studies that
ideas based on Method 5 can be used to derive reasonable approximations to the
covariance matrix of regression coefficients estimated by corrected maximum likeli-
hood.

Section 6 outlines the facilities that we recommend for a practical missing values
prograrm.

Section 7 describes the results of using this program on some data kindly supplied
by Dr Robert Wood and Miss Carolyn Ballantyne of the Schools Examination
Department of the University of London.

2. ORCHARD AND WOODBURY'S MISSING INFGRMATION PRINCIPLE

The Missing Information Principle is concerned with the situation in which there
are random variables that can be grouped into two vectors z and y with a joint
distribution depending on the vector € of parameters, where y has been observed but
z has not been observed. In our application of the principle 8 represents the set of
means and the covariance matrix for the multivariate normal distribution, y represents
the complete observations and the known variables in the incomplete observations,
while z represents the missing values in the incomplete observations.

We wish to find 8, the estimate of 8 which maximizes the log-likelihood L(y: 8)
of y given 8. But it may not be easy to compute this directly. On the other hand,
it may be much easier to find the value of 8 that maximizes the log-likelihood
L(z,y; 0) of z and y given 8, for any complete set of data (z,y¥). Furthermore, we
may be able to find the value of 8 which maximizes the expected value of Z(z,y; 6)
if z is treated as a random variable with some known distribution. The appropriate
formulae can often be derived by imagining that the sample is replicated an
arbitrarily large number of times, with y taking the same value in all replications but
with z having its known distribution. This procedure is central to the Missing
Information Principle, which is now described.

Let /(z] y; 8) denote the probability density function for the conditional distribution
of z given y and 8, and let L(z]y; 6) denote In f(z|y; ). Then we know that

L(z,y; 0) = L(y; 8)+L(z|y; 6). @10

Now take any assumed value 6, for 8. This, together with the observed value of y,
defines a distribution for z, and we can now take expectations of both sides of (2.1),
integrating out with respect to z. This is expressed by the equation

E{L(z]y; 0)|y; 0.4} = L(y; )+ E{L(z]y; 0)|y; 8.} 2.2)

If the distribution of z has a probability density element f(z|y; 6 ,)dz then (2.2)
can be equivalently written as

fL(z, v 8) /(2 y,0,)dz = L(y; 0)+ fL(z| v;0) fely: 0.0dz.  (23)
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We can now find the value 8, of 6 that maximizes the left-hand side of (2.3). This
may depend on 8, so we may write

GM = 4’(34)- 24)

Equation (2.4) represents a transformation from the vector 8, to the vector 8.
We now define the Missing Information Principle.

The Missing Information Principle _
Estimate 8 by a fixed point of the transformation ¢, namely a value of @ such
that

8 = &(o). 2.5)

We call (2.5) the “fixed point equation”. We justify this approach by two theorems,
which show that the maximum likelihood estimator of € is a root of the fixed point
equation, and conversely every root of the fixed point equation is a maximum or
stationary value of the likelihood.

Hence, if the likelihood function is differentiable, any solution of the fixed point
equations automatically satisfies the ‘“‘likelihood equations™ found by setting the
partial derivatives of the likelihood equal to zero. Some solutions of the likelihood
equations may not be fixed points, since the fixed point method involves finding
0,, giving a global maximum, and not merely a stationary value, of the left-hand side
of (2.3). (In this respect our approach differs slightly from that of Orchard and
Woodbury, who implicitly define ¢ be setting the derivatives of (2.2) with respect to
8 equal to zero.) N

Theorem 1. The maximum likelihood estimator 8 satisfies (2.5).

Theorem 2. If L(z|y; 8) is a differentiable function of 8, then any other value
of 8 satisfying (2.5) must represent either a maximum or a stationary value of L(y; ).

To prave these theorems, consider the last term on the right-hand side of (2.3).

We have

jL(zI y; 8) £(z|y: 0.0 dz,

regarded as a function of 8, is maximized when 8 =8 ,. This is simply Jensen’s
_inequality. The proof is elementary: see, for example, Kendall and Stuart (1967),
pp. 39-40.

The theorems now follow immediately. If 8 , = 8, then the value & = & maximizes
both terms on the right-hand side of (2.3) simultaneously. It therefore certainly
maximizes their sum. This proves Theorem 1.

To prove Theorem 2, we note that 8 = 8, maximizes the second term on the
right-hand side of (2.3), and by hypothesis this is differentiable. It cannot then be a
maximum of the left-hand side of (2.3) unless it is either a maximum or a stationary
value of the first term on the right-hand side.

We now apply this theory to our problem. Denote by the (N x#) matrix X the
complete set of variables, by P, the set of variables observed in observation i, and
by P the total set of variables observed. Then in the above notation

0= (. 2), 0,=(n,2y, 05 = $(0)) = (g, Zipr)
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The log-likelihood for the multivariate normal distribution is

N
LX; 1 B) =~} X

=17

1

n
]?-d;l(xij — ) ot — pi) — N log (det T),

where af* denotes the jkth element of Z-!, Taking expectations with @ = 8 , and the
known variables fixed,

N a n .
E{L(X; W, E) | Pryp 2} =—3 El 21 kzl(-fijx_ﬂj) (Rigea — i)+ cjkA.P;} ik
i=1i= =
—iNlog(detX),
where
£ia = Eliy| P o 2
and

Tipd.p, = COV {x::j:xa‘.kl P AR TIPS
Maximizing with respect to @ and X gives the analogue of (2.4):

1 &
Pnr = 35 i Eiia

| A ”
TjeM = 3 El{(xﬁa — tim) Rioa — Bans) * Gjrap s

for 1</, k<n. Now set =y =4, L, =Z;, =X, The fixed point equations
are

-"fﬁ' = E(xiji P, 2), (2.6)
1 ¥~
K= Elfﬁ, 2.7)
1 5
Tjp = }T;rigl{(xﬁ ~ pi} Xy — pi) + G p 3 (2.8)
Ojip, = COV Xy, Xl Prs 2, B). (2.9}

These are the equations found by Orchard and Woodbury. To find the maximum
likelihood estimates we obtain initial estimates of ., & and cycle through (2.6)—(2.9)
until we find no significant changes in the estimates between successive iterations.
Note that

%y = Xy if X is observed,
= a linear combination of the variables in P,
if x;; is missing.

At each iteration the data are completed by equation (2.6), and the means and a sum
of squares and products matrix found for the variables. This matrix is adjusted by
adding oy, p, for every observation i to the jkth element. Note that this adjustment
is zero unless both x,; and x;; are missing.
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It seems reasonable to hope that in this case we have a unique fixed point of the
transformation (2.4), since the effect of changing one component of 8 is to change
the corresponding component of the 8;; by a smaller amount in the same sense. Thus
cyeling through equations (2.6)—(2.9) represents an iterative procedure for finding
the maximum likelihood estimates &, &;;, which is much simpler to carry out than
warking directly from the likelihood equations.

3. A DErRIVATION via BUCk’S METHOD

We now derive essentially the same estimators using the approach due to Buck
(1960).

Buck starts by using the complete ohservations to estimate the means of all the
variables, and also the covariance matrix. These values can then be used to estimate
any missing quantities x;; as linear functions of the variables that are known for this
observation. If we then substitute the estimates for the unknown variables, we can
build up the vector %; and the matrix (a;;,) defined by (1.2) and (1.3}).

This is a useful improvement over the estimators found by setting unknown
variables equal to their sample means. But the g;, calculated in this way provide a
biased estimate of the values that they would have taken if none of the data had been
incomplete. Buck's method therefore estimates this bias, and subtracts it from the
computed value of (x;— %;} (x;,— %;) to derive the final assumed value of a;;.

Let us express this in symbols. We write %;; for the assumed value of the jth
variable in the ith observation. If this value has been observed then £;; = x,;. Other-
wise it is a fitted value. We then modify (1.2) and (1.3} to read

Qi = % (R — MR — ) + €y (3.1)

%;= D %y/N. (3.2)

The prablem remains to determine suitable formulae for the correction terms ¢,z
This problem is a subitle ane, and is discussed rather briefly by Buck. The selution
has been indicated at the end of Section 2, but it is of interest to explore it in more
detail, discussing terms of order N—1 in a special case. Suppose that we have only
one incomplete observation, where only the first p{<n} variables are known. For
notational convenience we assume that the incomplete observation has i = [,
Let % denote
1 N
o1&

i.e. the mean value of the /th variable over all complete observations. Define &y,
forj=1,...,mk=1,...,pas

b;;, = partial] regression coefficient of x; on x;, estimated from the
complete data, if j>p,

=0, ifj<pandj#k,
=1, ifjgpandj==~F.
Then

a
flj‘ = £J+I§‘bjz(xﬁ_fl) (_} = 1, vy H).
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We are then interested in evaluating the expected balue of
N
Sir = By~ E) Ry — X))+ ‘%(xm‘ —X;) Xy — X1,

where Nx; = £y; +(N—1}&; and Nx), = %, +(N—1) %,.
We can manipulate the expression for S;;, so that it reads

. . X 1 na .
Sip = % %+ _%xﬁ xi!c—w(xlj +N-—DE)(E +(V-1) %)

%+t EI: by~ 3‘;)} {ffc + ? by — f;)}
N
+ XXy xﬁk_lN[ij+ 2 by~ fl)] {Nf:ﬁ 2 bu(xu*f:)}
i=2 4 t

N .. N1 " -
= sz«;j X —(N—1) %%y T [E [E by, by, Coy, — %y }0xy, — %)
= 1 Iy

We are now concerned with the expected value of S;;. We must therefore define some
properties of the population from which the observations are drawn.

Without loss of generality we may assume that the true means of all variables
are zero.

Let u;;, denote the covariance of x; and x,. Let v, denote the “partial covariance”
of x; and x;, by which we mean the covariance of

(xj—“ Zﬁjixl) and (x;a_ Eﬁmxz)s
l=p 1=p

where f; and f3,; are the (partial) regression coefficients defining the best linear
approximations to x; and x; respectively in terms of the variables known in the first
observation. Note that vy, = 0 unless x; and x;, are unknown, i.e. j>p and k> p.

Now

N
B X it = (= 1) 2] = (V=2
o " N-1
E(xu, — %) 00, — %) = N g

and by and b, are virtually independent of (xy, — % ) and (x;, — %, ). This independence
is exact if the population is multivariate normal. We therefore deduce that

E(S; )= (N-Duy+ sE !E g, E(by by ).
Now

Elby b)) = By P, tcoviby.by)
and

% %”u, ﬁﬂlﬁmz = E{(% ﬁquzk) (E Bu, x,_,)}

= Uy~ V)
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while
cav{by,, by) = 85, Uy

where g4 is the (;, L)th element of the inverse of the (p x p) matrix G where

N
&, = ‘Ez(xﬂl — X)) (xg,— %)
=

Hence
E(S;))=(N=-Dup+uy—v+ % IE’ t, 8 Vi
But now
E(ﬁzlz,) =(N-2) Hprs
0

1
E(gﬂ},)ﬁmuﬂ},,

where 4, denotes the (; L)th element of the inverse of the p x p matrix (4, ). Hence

t
B0 = (= D= {1775 T T )

P
= (N— 1) ujk— Ujk(l —m)

N—p—2
= (N— 1)y — (ﬁ) o

So that if we want to modify Sj; to obtain an approximately unbiased estimate of
(N —1) 13, we must add an unbijased estimate of

N—p-2
—N—7 U

The computational requirements, to estimate z;; and also the regression
coefficients b; and b;, are not nearly as severe as one might think, because the same
computation provides all these data simultaneously. This important computational
point has been known for some time. It is discussed for example by Jowett (1963),
and an expository account with more emphasis on computational aspects is contained
in Beale (1970).

To form these quantities we may take the matrix (d;,) defined by

. 1 ¥ o "
U = 57— Ez(xﬁ —®) (X —X),
and form §;; by pivoting on the first p diagonal elements. This gives a biased estimate
of vy, since it ignores the degrees of freedom associated with the variables on which
pivoting has taken place. Specifically,
N—p-=-2
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It therefore follows that an appropriate formula for the correction term ¢y, in (4) is
Cyr = By, 1f Xy and x;;, are both unknown
=0 otherwise. (3.3)

It is somewhat remarkable that all the various terms of order I/N in the above
analysis cancel, and that the resulting formula for ¢, is the “naive” estimate for the
partial covariance of x; and x;, given the known variables. This cancellation does not
happen exactly with more complicated deletion patterns, but there is no simple
correction formula for the bias of order 1/N.

The analysis implicitly assumes that the probability of a particular variable being
missing is independent of the numerical values of any of the variables for this
observation. This important assumption was noted in the Introduction. But the
analysis does not assume that the underlying population is multivariate normal.
This is of some practical significance, since multiple regression is widely applied to
non-normal data. On the other hand, it is worth noting that if the population is not
multivariate normal, then any unknown variable is not necessarily best estimated by
a linear function of the known variables for the observation. So it may be possible
to develop slightly more powerful estimators for particular non-normal populations.

This analysis has concentrated on the gituation where we have (W — 1) complete
observations and a single incomplete observation. We now consider what to do
when more observations are incomplete. Buck’s method uses only the complete
observations to define the means %; and the estimated covariance matrix 4. But our
simulation studies suggest that an iterated version of Buck’s method is generally
superior. This method takes trial values for the X; and the &;;, uses them to compute
the £;; and ¢;;; and hence a;;, and %; from (3.1) and (3.2). We then set

=%, 3.4
thiy, = 4 /(N —1), (3.5

and repeat the process until there are no further changes on any %; or 4.

We noted in Section 2 that Orchard and Woodbury have derived the same
algorithm, with N substituted for N—1 in (3.5), as giving maximum likelihood
estimates when the population is muitivariate normal.

4, A SIMULATION STUDY COMPARING DIFFERENT ESTIMATORS

In this section we report briefly on a simulation study comparing estimators
found by six different methods which are listed in Section 1. No further comment is
necessary for the first three methods; we now describe methods 4-6 in more detail.

Methods 4 and 5 adopt a least squares approach. Suitable fitted values are found
for the missing independent variables in every observation where y is observed, and a
least squares analysis carried out on these completed observations. This approach
has the intuitive appeal that the data on the dependent variable ¥ are not used when
ntissing independent variables are fitted, for the following reason: the best fitted
value for a missing independent variable x,;, prior to least squares analysis, is its
conditional mean given the known independent variables in observation i. We thus
estimate this best value by regressing the unkmown on the known independent
variables within each observation, using an estimated covariance matrix of the x's.
This covariance matrix is found by using iterated Buck on the independent data,
with the 1’s excluded.
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After fitting missing values in this way, Method 4 proceeds with an ordinary
least squares analysis. But this is inefficient since it amounts to giving the same weight
to incomplete observations as that given to complete observations. Method 35
computes a weight w, for each observation i, and carries out a weighted least squares
analysis.

To find the weights, let

o2, denote the conditional variance of y given the known independent variables
in observation i,
o  denote the residual variance of y when all the independent variables are

fitted.

The effect of fitting missing values by Method 4 is to give “neutral™ values to the
missing independent variables given the known independent variables. The mean
square error in the dependent variable is then the mean square error when this is
fitted as a function only of those independent variables known for this observation,
ie. a2,

Ti&us, if complete observations are given weight 1, the correct weight for
observation { is

TG T

Given an estimated covariance matrix of all the variables, we therefore estimate
o}, and o2 by pivoting on the independent variables. Let s2; and s% be the corre-
sponding estimates. Then define

w; = s2fs2. if the dependent variable y, is present
=0 otherwise. 4.1

In Method 3, the initial estimated covariance matrix is found by giving complete
observations weight 1, and incomplete observations weight 0. The new weights are
found by equation (4.1}, and a new weighted sum of squares and products matrix
formed. This, divided by the sum of the weights, gives a new estimated covariance
matrix, from which new weights are found. The procedure is repeated until the
weights do not change significantly.

The final method, Method 6, is a combination of Methods 3 and 5. An estimate
of the covariance matrix of all the variables is found by Method 3; call it X. Then
missing values for the independent variables are found as in Methods 4 and 3, using
the submatrix of X corresponding to the independent variables. Then weights w,
are found directly from (4.1) by pivoting on ¥, and a weighted least squares analysis
carried out on the data with y present.

The six methods are thus:

Method 1: Ordinary least squares on complete observations only.

Method 2: Buck’s (1960} method.

Method 3: Iterated Buck, ie. corrected maximum likelihood.

Method 4: Ordinary least squares on observations with y present, after fitting
missing values of the independent variables by modified maximum
likelihood using the independent variables only.

Method 5: Method 4, but with incomplete observations given fractional weights.

Method 6: Method 5, but using a covariance matrix for all the variables, found
by Method 3, to find the fitted values and estimate the weights.
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For each method we must decide when an observation is so incomplete that it should
be ignored. For all methods we ignore observations with all variables missing. For
Method 4 we also ignore observations with all independent variables missing, since
the inclusion of such observations with full weight was found to make the results
significantly worse,

In all cases the data were generated from a multivariate normal population with
1 variable identified as the dependent variable, and between 2 and 4 independent
variables. Some of the populations were the same as those studied by Haitovsky,
but other had smaller values of R%. We took 50, 100 or 200 observations and deleted
either 5, 10, 20 or 40 per cent of the observed values of each variable. The values
to be deleted were chosen randomly, and independently for each variable. Our
criterion for judging the effectiveness of each estimator was the residual sum of
squares of deviations of the observed and fitted values of the dependent variable when
the deleted values were restored. In symbols we may write this as

N 2

§S=2 {J&;—bo—zbjxﬁ] )
Te=] 3§

where by and b; are the constant term and regression coefficients estimated from

incomplete data by one of the six methods, and x;; and y; are the true values of all

variables without deletions.

Clearly a small value of .S represents a successful method. It seems more sensible
to judge a method by the overall success of the regression equation rather than by the
closeness of individual regression coefficients to their true values.

We computed the average value of § for each of our 6 methods over 10 sets of
random numbers for each covariance matrix and each number of observations and
deletion pattern. The results are expressed in Table 1 as percentage increases over
the absolute minimum possible value of S for each set of data. This minimum is
obtained by ordinary least squares on the data before the missing values are deleted.
Notice that these results are the same for Method I for Problems € to ¢. This arises
because the data for each of these cases are generated by transforming the same set
of uncorrelated data. The statistic Sfmin S is invariant under these transformations
for Method 1, which uses only complete observations.

We draw the following conclusions from Table I,

Methods 2 and 3 consistently beat the Standard Method 1. Method 3 always
improves on Method 2, except for three very marginal cases with 5 per cent deletions.
The improvement is often considerable, for example in Problems C and D. Method 3
reqlires more computing than Method 2, but it can be used when there are no
complete observations, and is therefore a more general method.

Method 4 is only appreciably better than Method 3 for two cases in Problem E;
otherwise it is usuajly slightly worse, and much worse on Problems F and G, where
R?2>098. In these problems the method performs badly, because relatively useless
observations are given the same weight as complete abservations. Thas we do not
recommend this method.

Method 5 is an improvement on Method 4, but is generally less effective than
Method 3, and is sometimes beaten by Method 1 in Problems F and &. In these
problems the value of the fitted neutral values are critical, and a better estimate af
the covariance matrix of the independent variables used to fit these values produces
a considerably better fit. In Method 6 all the data are used in finding this covariance
matrix, and the results are seen to be an improvement on Method 3.
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TABLE 1

Average percentage increase in residual sum of squares over best fit when all variables
are known (averaged over 10 runs)

5% 10% 20%, 40%,
Deletions Deletions Deletions Deletions

100 200 350 100 200 50 100 200 200

Problem Method obs. obs. obs. obs. obs. obs. obs. obs. obs. Av
A 1 04 03 27 14 05 39 39 1-3 64 23
3 war. 2 02 01 20 -8 02 21 30 Q-7 33 1-4
R* = 09316 3 02 01 19 08 02 19 24 07 19 11

4 03 02 221 09 03 24 29 09 23 14
5 03 02 20 10 03 24 28 09 22 13
6 a3 02 20 1-0 -3 23 2:8 0-8 22 1-3
B 1 09 o4 4-5 2-5 07 86 4-7 31 306 62
4 var. 2 05 @2 31 8 0-4 4-3 1-8 1-5 157 31
R = (-0838 3 a6 02 30 0-8 &4 3-8 1-4 1-2 31 16
4 a6 02 30 -8 04 38 1-3 1-2 33 1-6
5 06 02 30 -8 a4 338 1-4 1-2 34 16
[ 06 02 30 08 04 33 14 12 3-6 1.7
C 1 1-6 08 77 33 2-4 362 1241 73 37-4 121
§ var. 2 a8 03 3-4 1-8 &9 231 4-1 25 25-3 6-9
R = (:4402 3 08 03 26 1-7 0-8 9.5 29 1-5 6-8 30
4 09 03 29 1-8 a7 11-0 30 1-3 71 33
5 0-8 03 29 1-8 -8 10-7 29 14 68 32
6 08 03 29 1-8 Q-8 13-4 30 1-4 68 31
D 1 1-6 08 77 3-3 2-4 362 121 73 37-4 121
5 var. 2 09 03 4-2 240 10 246 4-8 2-8 25-2 73
R? = 06339 3 a9 O3 32 1-8 a9 11-2 34 19 65 33
4 1.1 ¢4 39 22 09 151 34 16 86 4-1
5 1-0 03 36 20 9 139 32 1-6 81 3-8
[ 10 03 36 20 10 129 34 1-8 80 38
E 1 1-6 8 77 33 24 362 121 73 374 12-1
5 var. 2 07 03 57 1-5 1:2 256 6-1 3-4 273 80
R* = 07173 3 07 03 52 1:3 1-1 16-3 58 2-5 97 48
4 03 03 74 14 1-2 14-2 47 28 18-8 57
5 a8 03 6-1 14 1-2 12-1 48 23 17-7 52
[ a8 03 3-8 1-3 12 12-8 52 2.3 146 49
F 1 1-6 08 77 33 24 362 1241 13 374 12-1
§ var. 2 1-4 07 64 29 2.0 32:6 99 64 329 10-6
R? = (9846 3 1-5 07 53 30 19 270 &7 55 235 85
4 159 42 779 332 130 2454 655 264 1182 66-6
5 1-6 06 13-5 40 22 784 154 57 776 22:1
6 1-4 06 56 31 20 253 8-5 5.5 258 86
G 1 1-6 08 77 33 24 362 121 73 374 12-1
5 wvar. 2 14 07 63 2-8 20 336 101 65 334 10-8
R = 09904 3 15 07 53 30 240 309 84 58 24-4 91
4 21-5 55 1042 478 201 3729 966 372 178-3 g2
5 16 06 105 39 22 1121 183 68 119-5 306
6 14 06 56 31 2-1 282 83 5-8 2647 91
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TABLE 1 (continued)

Covariance matrices for the problems

Xy
Xz

X3

X3

Xy
Xg
Xa
Xy
¥

Xy
1-0000
0-9817
0-9722

Xy
1-0004
0-9128
0-8730
0-2570

X1
1-0000
(-8385
4596
03618
0-7522

Xy

1-0000
09697

Xz

1-0000
0-9529
0-2851

Xg

1-0000
0-6077
0-4706
0-5958

¥

1-0000

X3

1-0000
0-2977

*a

1-0000
0-7962
0-6979

D as C except that var () = 1-5625

E
Xy
X3
Xa
Xy
¥

Xy
X
X3
Xy
¥

X
X,
Xg
Xy
¥

Xr
1-0000
0-8743
04570
03765
0-3705

X1
1-0000
0-8738
0-5166
0-4267
-7852

X3
1-0000
(-8385
(-4596
0-3618
07522

X3z

1-0000
0-8255
0-5181
0-4575

Xg

1-G000
0-6314
0-4650
0-6137

Xp

10080
0-6077
0-4706
0-5958

X3

1-0000
0-6080
0-5039

X3

1-0000
07119
06389

X3

1-0000
0-7962
0-6979

1-0000

Xy

1-0000
0-8232

Xy

1-0000
08261

Xy

1-0000
0-8283

Xy

1-0000
(-8232

2-2500

1-0000

1-0000

1-0000

R? = 09516
R? = 0:0888
R = (-4402
R? = 06339
R = 07173
R? = 09866
R = 0-9904
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It remains to compare the best of the least squares approaches, Method 6, with
Iterated Buck, Method 3. There is not much to choose between the methods, but
Method 3 is marginally better in a large majority of the cases considered. From a
computing point of view the methods are very similar, and the weighting procedures
in Methods 5 and 6 are used to derive approximate standard errors in the regression
coefficients for Method 3. We return to this point in Section 5 below.

It is perhaps worth noting that we also tested the straight Maximum Likelihood
Method of Orchard and Woodbury. The results are almost identical to those of
Method 3. Mostly they are worse, but by less than -1 per cent. We therefore see
no reason to use straight maximum likelihood, in preference to the conventional
correction represented by Method 3.
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5. TuE VALUE OF INCOMPLETE OBSERVATIONS AND STANDARD ERRORS
OF REGRESSION COEFFICIENTS

Now that we have a satisfactory method of analysing data with missing values,
two important subsidiary questions arise. One, which is particularly relevant at the
data-collection or design of experiment stage, is the value of incomplete data. The
other is the assignment of approximate standard errors to regression coefficients
estimated from incomplete data.

Fortunately, both these questions can be answered in the same way, using the
ideas underlying Methods 5 and 6 as described in Section 4. There we found a weight
w, to associate with observation { when neutral values of the independent variables
are fitted. This also measures the value of that observation. For the weighted least
squares analysis we form

w;, as in equation (4.1),

N N
= Xow ki f X Wy, (5.1)
i1 iml
N e e
S = _;lwi(xﬁ_xj) (Xgp—Xp). (5.2)

Let Sy be the matrix formed from elements s, for all independent variables.
Then put €= Spts2. Then C represents the estimated covariance matrix for the
regression coefficients found by Methods 5 and 6. This analysis assumes that we have
enough data to estimate the means and covariance matrix, in order to derive both the
fitted neutral values and the weights. The analysis is in that sense a large-sample
analysis, but seems useful as such.

To estimate the covariance matrix of the regression coefficients estimated by
Iterated Buck, C was found in exactly the same way as for Method 5, using equations
(4.1), (5.1}, (5.1} and (5.2). This obviously requires more computing than con-
ventional least squares analysis with complete data, since it involves forming and
inverting a new matrix Sp. But it requires substantially less work than Method 5,
since it does not require a second iterative loop to derive the weight w,.

We abtain the fitted values %;; by regression on all variables that are known for
the ith observation. It would arguably be more logical, though less convenient
computationally, to obtain them by regression only on the independent variables.

To test the validity of this approximate covariance matrix in the conditions of
our stimulation study, we could have taken each regression coefficient individually
and formed an approximate y?* variable from the sum of squares of the deviations of
the estimated regression coefficients from their true values, each divided by its
estimated variance. But it seems preferable to form a single y? variate on r.p. degrees
of freedom, where ¢ is the number of replications (here 10) and p is the number of
regression coefficients estimated. We do this by forming

2 @-BTSE-bys,

where the summation extends over all replications.

The results are tabulated in Table 2 as multiples of the corresponding y? statistic
obtained from ordinary least squares on the complete data before deletions. Hence
values > [ suggest an underestimate of the standard errors, and values <1 an over-
estimate, compared with those found from the complete data. The results suggest
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that the approximate theory is adequate to give general guidance about the precision
of the estimates. But we should point out that we have not tested the theory with
more systematic deletion patterns. Such systematic patterns of missing data often
arise in practice, and may not be quite as well covered by our approximate theory.

TABLE 2

Approximate yt statistic for covariances of regression coefficients estimated by modified
maximum likelihood as a wmultiple of the y? statistic for covariances of regression
coefficients estimated from complete data before deletions

5% Deletions 105 Deletions 20% Deletions 405 Deletions
a0 200 50 100 200 50 100 200 200
Problem ohs.  obs. obs, obs.  obs obs. obs. obs. obs. Auw,
A 1-14 (98 1-13  1-50 075 088 077 052 114 0-98
B 090 102 121 076 118 1-03 1-09 107 1-71 110
C 095 1-12 110 1-44 067 1-11 102 120 0-94 1-G6
D 97 1-11 1413 141 067 117 102 126 091 1-07
E 095 105 1-14 1-33 0-84 1-40  1-43 141 091 116
F 1-04 1-07 1-04  1-44 083 1-48 119 1-33 119 1-18
G 1-06 1-09 1-02 143 090 1-69 116 134 1-20 1-21

6. PracTicAL CONSIDERATIONS IN A MISSING VALUES PROGRAM

In this section we outline some features that we think are important for practical
programs for missing variable analysis.t

The input parameters should include a maximum number of iterations for the
calculation of corrected maximum likelihood estimates. A default option of 100 is
suggested for this parameter, because, as Orchard and Woodbury remark, the
convergence can be quite slow. For the random deletion patterns in our simulation
study 10 iterations were often enough, but one problem required 171 iterations.

The finishing tolerance Ty has a standard value of Q-0l. Iterations stop if the
changes in successive values of %, are all less than Ty J4;; and the changes in successive
values of &, are all less than Ty (4, t,,)-

It is characteristic of modern multivariate analysis that one wants to be able to
consolidate the data before deciding on the precise form of the analysis to be carried
out. This poses some problems. We suggest allowing each variable to be coded in
one of four alternative ways:

I or blank An independent variable.

D A dependent variable, to be fitted as a linear function of all indepen-

dent variables.
ID An independent variable, but one which is also required to be fitted

as a linear function of all other independent variables.

N A variable not to be used as either an independent or a dependent
variable, but which is to be used to build up the maximum likelihood
estimate of the covariance matrix of all variables,

1 These are included in the Scicon program.
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The overall covariance matrix for all variables is then estimated by corrected
maximum likelihood, and the appropriate submatrices are extracted for any desired
regression analyses. The standard errors of the resulting regression coefficients can
then be estimated by the method described in Section 5. This approach may under-
estimate precision when missing variables are highly correlated with known variables
that are excluded from the regression analysis, but it seems a reasonably safe
procedure.

Another feature is concerned with the problem discussed by Woodbury (1971).
If two variables are never observed together, then the data give no evidence about
their conditional correlation, given all other variables. Woodbury then recommends
setting this conditional correlation equal to zero. The iterative procedure converges
to this solution, but incredibly slowly.

7. AN ANALYSIS OF SCHOOL EXAMINATION DATA

Our program has been used on some data kindly supplied by Dr Robert Wood
and Miss Carolyn Ballantyne of the School Examinations Department of the
University of London.

The background to the data is described by Pr Wood as follows:
“In testing a wide ability range of candidates, it is thought that a single test
of conventional length (50-60 questions) may fail to provide adequate
discrimination between individuals at certain parts of the range, notably the
extremes. To rectify this the idea of administering different tests to different
candidates has been proposed where one or more elements are common. If,
for instance, there are three tests of increasing difficulty, with the middle
one common, the able candidates are encouraged to choose the two harder
tests while the less able are pointed towards the two easier tests. Having
administered the tests, the problem becomes one of placing all candidates on
the same scale for the purpose of awarding grades.

Recently we experimented with a two-stage test which had the following
choice structure:

Test
1 2 3 4 5 [
Strategy  (10)  (25) (15 U0} A5 25
A x x b
B ® X X x
C % X b

There were six parts, the number of items in each part appears in brackets.
Three choice strategies 4, B and € were available, and each strategy is picked
out with crosses. Although 100 questions were presented, each candidate was
only required to tackle 50. The problem, then, is to estimate what scores the
candidates who went for strategy 4 would have obtained on parts 4, 5 and 6,
and then to cumulate actual and estimated scores to obtain an overall mark.”

There were 321 observations, 73 following Strategy 4, 188 Strategy B and 60
Strategy C. Tests 2-6 are in increasing order of difficulty.

We analysed the data on two different bases: once applying the corrected
maximum likelihood method to the data as presented, the other time after making
angular transformations on all the scores. The final results were very similar, The
calculations using angular transformations converged after 92 jterations and required
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50 seconds of CPU time on the Univac 1108 computer. Without angular trans-
formations the calculations terminated after 100 jterations and had nearly but not
quite converged. This run required 70 seconds of CPU time. The structure of the
problem is revealed by the way the assumed means of the 6 variables changed as
the iteration proceeded. The initial estimates of the means, based on the observations
for which each variable was obtained, were

572, 20-10, 10-12, 5-51, 723 and 11-18.
The final estimates were
572, 21-35, 10-57, 547, 664 and 674.

This indicates that the fitted scores on the easier Tests 2 and 3 for the candidates who
did not take them were somewhat higher than the scores obtained by the candidates
who did take them. But the opposite effect is seen with the more difficult Tests 5
and 6. This is as it should be.
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