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Abstract

This chapter focuses on two of the developments in panel data economet-
rics since the Handbook chapter by Chamberlain (1984).

The first objective of this chapter is to provide a review of linear panel
data models with predetermined variables. We discuss the implications of as-
suming that explanatory variables are predetermined as opposed to strictly
exogenous in dynamic structural equations with unobserved heterogeneity.
We compare the identification from moment conditions in each case, and the
implications of alternative feedback schemes for the time series properties
of the errors. We next consider autoregressive error component models un-
der various auxiliary assumptions. There is a trade-off between robustness
and efficiency since assumptions of stationary initial conditions or time series
homoskedasticity can be very informative, but estimators are not robust to
their violation. We also discuss the identification problems that arise in mod-
els with predetermined variables and multiple effects. Concerning inference
in linear models with predetermined variables, we discuss the form of opti-
mal instruments, and the sampling properties of GMM and LIML-analogue
estimators drawing on Monte Carlo results and asymptotic approximations.

A number of identification results for limited dependent variable mod-
els with fixed effects and strictly exogenous variables are available in the
literature, as well as some results on consistent and asymptotically normal
estimation of such models. There are also some results available for models
of this type including lags of the dependent variable, although even less is
known for nonlinear dynamic models. Reviewing the recent work on discrete
choice and selectivity models with fixed effects is the second objective of this
chapter. A feature of parametric limited dependent variable models is their
fragility to auxiliary distributional assumptions. This situation prompted
the development of a large literature dealing with semiparametric alterna-
tives (reviewed in Powell, 1994’s chapter). The work that we review in the
second part of the chapter is thus at the intersection of the panel data liter-
ature and that on cross-sectional semiparametric limited dependent variable
models.
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1 Introduction

Panel data analysis is at the watershed of time series and cross-section econometrics.
While the identification of time series parameters traditionally relied on notions of sta-
tionarity, predeterminedness and uncorrelated shocks, cross-sectional parameters ap-
pealed to exogenous instrumental variables and random sampling for identification. By
combining the time series and cross-sectional dimensions, panel datasets have enriched
the set of possible identification arrangements, and forced economists to think more care-
fully about the nature and sources of identification of parameters of potential interest.

One strand of the literature found its original motivation in the desire of exploit-
ing panel data for controlling unobserved time-invariant heterogeneity in cross-sectional
models. Another strand was interested in panel data as a way to disentangle compo-
nents of variance and to estimate transition probabilities among states. Papers in these
two veins can be loosely associated with the early work on fixed and random effects
approaches, respectively. In the former, interest typically centers in measuring the effect
of regressors holding unobserved heterogeneity constant. In the latter, the parameters
of interest are those characterizing the distributions of the error components. A third
strand of the literature studied autoregressive models with individual effects, and more
generally models with lagged dependent variables.

A sizeable part of the work in the first two traditions concentrated on models with just
strictly exogenous variables. This contrasts with the situation in time series econometrics
where the distinction between predetermined and strictly exogenous variables has long
been recognized as a fundamental one in the specification of empirical models.

The first objective of this chapter is to review recent work on linear panel data models
with predetermined variables. Lack of control of individual heterogeneity could result in
a spurious rejection of strict exogeneity, and so a definition of strict exogeneity condi-
tional on unobserved individual effects is a useful extension of the standard concept to
panel data (a major theme of Chamberlain, 1984’s chapter). There are many instances,
however, in which for theoretical or empirical reasons one is concerned with models ex-

hibiting genuine lack of strict exogeneity after controlling for individual heterogeneity.



The interaction between unobserved heterogeneity and predetermined regressors in
short panels -which are the typical ones in microeconometrics- poses identification prob-
lems that are absent from both time series models and panel data models with only
strictly exogenous variables. In our review we shall see that for linear models it is
possible to accommodate techniques developed from the various strands in a common
framework within which their relative merits can be evaluated.

Much less is known for discrete choice, selectivity and other non-linear models of
interest in microeconometrics. A number of identification results for limited dependent
variable models with fixed effects and strictly exogenous variables are available in the
literature, as well as some results on consistent and asymptotically normal estimation of
such models. There are also some results available for models of this type including lags
of the dependent variable, although even less is known for nonlinear dynamic models.

Reviewing the recent work on discrete choice and selectivity models with fixed ef-
fects is the second objective of this chapter. A feature of parametric limited dependent
variable models is their fragility to auxiliary distributional assumptions. This situation
prompted the development of a large literature dealing with semiparametric alternatives
(reviewed in Powell, 1994’s chapter). The work that we review in the second part of the
chapter is thus at the intersection of the panel data literature and that on cross-sectional
semiparametric limited dependent variable models.

Other interesting topics in panel data analysis which will not be covered in this
chapter include work on long T" panel data models with heterogeneous dynamics or
unit roots (Pesaran and Smith, 1995, Canova and Marcet, 1995, Kao, 1999, Phillips
and Moon, 1999), simulation-based random effects approaches to the nonlinear mod-
els (Hajivassiliou and McFadden, 1990, Keane, 1993, 1994, Allenby and Rossi, 1999,
and references therein), classical and Bayesian flexible estimators of error component
distributions (Horowitz and Markatou, 1996, Chamberlain and Hirano, 1999, Geweke
and Keane, 2000), other nonparametric and semiparametric panel data models (Baltagi,
Hidalgo and Li, 1996, Li and Stengos, 1996, Li and Hsiao, 1998, and Chen Heckman

and Vytlacil, 1998), and models from time series of independent cross-sections (Deaton,



1985, Moffitt, 1993, Collado, 1997). Some of these topics as well as comprehensive re-
views of the panel data literature are covered in the text books by Hsiao (1986) and

Baltagi (1995).

2 Linear Models with Predetermined Variables: Iden-
tification

In this section we discuss the identification of linear models with predetermined variables
in two different contexts. In section 2.1 the interest is to identify structural parameters in
models in which explanatory variables are correlated with a time-invariant individual ef-
fect, but they are either strictly exogenous or predetermined relative to the time-varying
errors. The second context, discussed in section 2.2, is the time series analysis of error
component models with autoregressive errors under various auxiliary assumptions. Sec-
tion 2.3 discusses the use of stationarity restrictions in regression models, and section 2.4

considers the identification of models with multiplicative or multiple individual effects.

2.1 Strict Exogeneity, Predeterminedness, and Unobserved Het-
erogeneity

We begin with a discussion of the implications of strict exogeneity for identification
of regression parameters controlling for unobserved heterogeneity, with the objective of

comparing this situation with that where the regressors are only predetermined variables.

Static Regression with a Strictly Exogenous Variable Let us consider a
linear regression for panel data including a fixed effect n;, and a time effect 6; with N

individuals observed T' time periods, where 7' is small and N is large:
Y = By + 6 +m, +vy (i=1,...,N;t=1,...,7T) (1)

We assume that (yi...yir, Zi1..-Zi7,m;) is an iid random vector with finite second-

order moments, while § and the time effects are treated as unknown parameters. The
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variable x;; is said to be strictly exogenous in this model if it is uncorrelated with past,

present and future values of the disturbance v;:
E*(vglzl)=0(t=1,..,T) (2)

where E* denotes a linear projection, and we use the superscript notation z! = (21, ..., 2i)'-

First-differencing the conditions we obtain
E*(vig — Uz'(t—l)‘%?) =0(t=2..T). (3)

Since in the absence of any knowledge about 7, the condition E*(vy|2T) = 0 is not
informative about 3, the restrictions in first-differences are equivalent to those in levels.
Therefore, for fixed T' the problem of cross-sectional identification of 3 is simply that of
a multivariate regression in first differences subject to cross-equation restrictions, and (3
is identifiable with T" > 2.

Specifically, letting E*(n;|x7) = Ao + Nzl the model can be written as
Vit = Tor + By + Nl + ey with E*(eyla?) =0 (t =1,...,T). 4)
where mo; = A\g + 6;. This T' equation system is equivalent to

Yi1 = To1 + ﬂﬂ?il + )\,l';F + il E*(611|l‘;ﬁ) =0 (5)
In the absence of restrictions in A equation (5) is uninformative about 3, and as a

consequence asking under which conditions [ is identified in (4) is equivalent to asking

under which conditions 3 is identified in (6).!

Lack of dependence between v;; and x7 could also be expressed in terms of conditional independence
in mean F(vi|zl) =0 (t =1,...,T). In the absence of any knowledge about 7, this is equivalent to the
(T — 1) conditional moment restrictions E(vi — v;—1)la] ) = 0 (t = 2,...,T) which do not depend on
7; (Chamberlain, 1992a). In the presentation for linear models, however, the use of linear projections
affords a straightforward discussion of identification, and in the context of estimation it allows us to

abstract from issues relating to optimal instruments and semiparametric asymptotic efficiency.



Partial Adjustment with a Strictly Exogenous Variable In an alternative
model, the effect of a strictly exogenous x on y could be specified as a partial adjustment

equation:
Yit = QYit—1) + ﬂol'it + ﬁlﬂfi(tfl) + (5,5 + n; + v (Z = 1, ceey N, t = 2, ceey T) (7)

together with
E(valaf) =0 (t=2,...,T). (8)

Note that assumption (8) does not restrict the serial correlation of v, so that lagged y
is an endogenous explanatory variable. In the equation in levels, y;;—1) will be correlated
with 7, by construction and may also be correlated with past, present and future values
of the errors v; since they may be autocorrelated in an unspecified way. Likewise,
the system in first differences is free from fixed effects and satifies E*(Auvy|zl) = 0
(t=3,..,T), but Ay;;—1) may still be correlated with Av;, for all s.

Subject to a standard rank condition, «, 3, #; and the time effects will be identified
with T > 3. With T" = 3 they are just identified since there are five orthogonality

conditions and five unknown parameters:

(Ayzg — aAyiQ — ﬂOAZEig — ﬂlAZEZ‘Q — A(Sg)] =0 (9)

E (yia — ayin — Boxia — B1xin — 62) = 0.

This simple example illustrates the potential for cross-sectional identification of strict
exogeneity. In effect, strict exogeneity of x permits the identification of the dynamic
effect of x on y and of lagged y on current y, in the presence of a fixed effect and
shocks that can be arbitrarily persistent over time (cf. Bhargava and Sargan, 1983,
Chamberlain, 1982a, 1984, Arellano, 1990).

A related situation of economic interest arises in testing life-cycle models of consump-
tion or labor supply with habits (eg. Bover, 1991, or Becker, Grossman and Murphy,
1994). In these models the coefficient on the lagged dependent variable is a parameter

of central interest as it is intended to measure the extent of habits. However, in the
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absence of an exogenous instrumental variable such coefficient would not be identified,
since the effect of genuine habits could not be separated from serial correlation in the
unobservables.

As an illustration, let us consider the empirical model of cigarette consumption by
Becker, Grossman and Murphy (1994) for US state panel data. Their empirical analysis

is based on the following equation:
cit = Ocig—1) + BOciev1) + YDir +M; + O + Vi) (10)

where ¢;; and p; denote, respectively, annual per capita cigarette consumption in packs
by state and average cigarette price per pack. Becker et al. are interested in testing
whether smoking is addictive by considering the response of cigarette consumption to a
change in cigarette prices.

The rationale for equation (10) is provided by a model of addictive behavior in
which utility in period ¢ depends on cigarette consumption in ¢ and in ¢ — 1. Under
perfect certainty and quadratic utility, the equation can be obtained from the first-
order conditions of utility maximization. The degree of addiction is measured by 6,
which will be positive if smoking is addictive. The current price coefficient + should be
negative by concavity of the utility, and § denotes the discount factor. With certainty,
the marginal utility of wealth is constant over time but not cross-sectionally. The state

2 Finally, the 8,’s represent

specific intercept 7, is meant to capture such variation.
aggregate shocks, possibly correlated with prices, which are treated as period specific
parameters.

The errors vj;41) capture unobserved life-cycle utility shifters, which are likely to
be serially correlated. Therefore, even in the absence of addiction (6 = 0) and serial
correlation in prices, we would expect ¢;; to be autocorrelated, and in particular to find

a non-zero effect of c;;—1) in a linear regression of c¢;; on c¢;;—1), ¢j¢4+1) and p;. Current

consumption depends on prices in all periods through the effects of past and future

2 According to the theory v would also be state specific, since it is a function of the marginal utility

of wealth. Thus the model with constant price coefficient must be viewed as an approximate model.



consumption, but it is independent of past and future prices when c¢;;—1) and ¢;u41) are
held fixed. Thus, Becker et al’s strategy is to identify #, 3, and v from the assumption
that prices are strictly exogenous relative to the unobserved utility shift variables. The
required exogenous variation in prices comes from the variation in cigarette tax rates
across states and time, and agents are assumed to be able to anticipate future prices

without error.

Partial Adjustment with a Predetermined Variable The assumption that
current values of x are not influenced by past values of y and v is often unrealistic. We

shall say that z is predetermined in a model like (7) if

B (vl gl ) =0 (t=2,..,T) (11)

7

That is, current shocks are uncorrelated with past values of y and with current and
past values of z, but feedback effects from lagged dependent variables (or lagged errors)
to current and future values of the explanatory variable are not ruled out.

Note that, in contrast with (8), assumption (11) does restrict the serial correlation
of v. Specifically, it implies that the errors in first differences exhibit first-order auto-

correlation but are uncorrelated at all other lags:
E(A'Uz‘tA'Ui(t,j)) =0 j > 1.

Examples of this situation include Euler equations for household consumption (Zeldes,
1989, Runkle, 1991, and Keane and Runkle, 1992), or for company investment (Bond
and Meghir, 1994), in which variables in the agents’ information sets are uncorrelated
with current and future idiosyncratic shocks but not with past shocks, together with the
assumption that the empirical model’s errors are given by such shocks.

Another example is the effect of children on female labour force participation deci-
sions. In this context, assuming that children are strictly exogenous is much stronger
than the assumption of predeterminedness, since it would require us to maintain that
labour supply plans have no effect on fertility decisions at any point in the life cycle

(Browning, 1992, p. 1462).



The implication of (11) for errors in first differences is that
E*(Uit - Ui(t—l)‘x§717y§72) =0 (t = 37 a3 T) (12)

As before, these restrictions are equivalent to those in levels since in the absence of
any knowledge about 7, the levels are not informative about the parameters.®> Subject
to a rank condition, «, 3,, #; and the time effects will be identified with 7" > 3. With

T = 3 they are just identified from the five orthogonality conditions:
E[ Yi (Ayz3 - OZAyZ'Q - ﬂOAZEig - ﬂleiQ - A(Sg)] =0 (13)

E (yz'z — Y1 — /60$i2 - 51%‘1 - 52) = 0.

It is of some interest to compare the situation in (13) with that in (9). The two
models are not nested since they only have four moment restrictions in common, which
in this example are not sufficient to identify the five parameters. The model with a
strictly exogenous x would become a special case of the model with a predetermined x,

only if in the former serial correlation were ruled out. That is, if (8) were replaced with:

E*(vlzi g ) =0 (t=2,..,7). (14)

7

However, unlike in the predetermined case, lack of arbitrary serial correlation is not an
identification condition for the model with strict exogeneity.

In the predetermined case it is still possible to accommodate special forms of serial
correlation. For example, with T = 4 the parameters in the dynamic model are just
identified with F(AvyAvi;—j)) = 0 for j > 2, which is consistent with a first-order
moving average process for v. This is so because in such case there are still three valid
orthogonality restrictions: F(y;1Avy) =0, E(z;1Avy) =0, and E(x;2Av4) = 0.

Uncorrelated errors arise as the result of theoretical predictions in a number of en-

vironments (e.g. innovations in rational expectation models). However, even in the

3Orthogonality conditions of this type have been considered by Anderson and Hsiao (1981, 1982),
Griliches and Hausman (1986), Holtz-Eakin, Newey, and Rosen (1988), and Arellano and Bond (1991)

amongst others.



absence of specific restrictions from theory, the nature of shocks in econometric models
is often less at odds with assumptions of no or limited autocorrelation than with the
absence of feedback in the explanatory variable processes.*

In the previous discussion we considered models for which the strict exogeneity prop-
erty was unaffected by serial correlation, and models with feedback from lagged y or v
to current values of x, but other situations are possible. For example, it may be the
case that the strict exogeneity condition (2) for model (1) is only satisfied as long as
errors are unpredictable. An illustration is the agricultural Cobb-Douglas production
function discussed by Chamberlain (1984), where y is log output, z is log labor, 71 is
soil quality, and v is rainfall. If 7 is known to farmers and they choose = to maximize
expected profits, x will be correlated with 7, but uncorrelated with v at all lags and
leads provided v is unpredictable from past rainfall. If rainfall in ¢ is predictable from
rainfall in £ —1, labour demand in ¢ will in general depend on v;;—1y (Chamberlain, 1984,
1258-1259).

Another situation of interest is a case where the model is (1) or (7) and we only

condition on x!. That is, instead of (11) we have
E*(vy | 2t) = 0. (15)

In this case serial correlation is not ruled out, and the partial adjustment model is
identifiable with 7" > 4, but (15) rules out unspecified feedback from lagged y to current
x. As an example, suppose that v; = (,;;+¢€; is an Euler equation’s error given by the sum
of a serially correlated preference shifter (;, and a white noise expectation error £;;. The
v’s will be serially correlated and correlated with lagged consumption variables y but not
with lagged price variables z. Another example is an equation v}, = Sxz;: + 1, + v}, where
v}, is white noise and x;; depends on y;*(t_l), but v}, is measured with an autocorrelated

error independent of x and y* at all lags and leads.

4As an example, see related discussions on the specification of shocks in Q investment equations by

Hayashi and Inoue (1991), and Blundell, Bond, Devereux, and Schiantarelli (1992).



Implications of Uncorrelated Effects So far, we have assumed that all the
observable variables are correlated with the fixed effect. If a strictly exogenous x were
known to be uncorrelated with 7, the parameter 3 in the static regression (1) would be
identified from a single cross-section (7" = 1). However, in the dynamic regression the
lagged dependent variable would still be correlated with the effects by construction, so
knowledge of lack of correlation between x and 7 would add T" orthogonality conditions to
the ones discussed above, but the parameters would still be identified only when T > 3.7
The moment conditions for the partial adjustment model with strictly exogenous x and
uncorrelated effects can be written as

E[( 1T ) (yit — QYit-1) — ﬂofﬂz’t - ﬂlfl?z‘(t—l) - 5t)] =0 (t =2, ...,T). (16)

T;

A predetermined x could also be known to be uncorrelated with the fixed effects if
feedback occurred from lagged errors but not from lagged y. To illustrate this point

suppose that the process for x is

Tit = PTis—1) + Vig—1) + O1; + Eit (17)

where €, v;s and 7; are mutually uncorrelated for all ¢ and s. In this example x is
uncorrelated with  when ¢ = 0. However, if v;;_1) were replaced by y;—1) in (17), x
and n will be correlated in general even with ¢ = 0. Knowledge of lack of correlation
between a predetermined x and n would also add T' orthogonality restrictions to the
ones discussed above for such case. The moment conditions for the partial adjustment
model with a predetermined = uncorrelated with the effects can be written as

E[( ml¢ ) (it — Wi—1) — BoTar — Brzig—1y — &) = 0 (t=2,...,T) (18)

1

E[yf_2 (Ayit — aAy;—1) — BoAxiy — B1 AT 1) — A(St)] = 0(t=3,..,71)

Again, the parameters in this case would only be identified when T" > 3.

®Models with strictly exogenous variables uncorrelated with the effects were considered by Hausman
and Taylor (1981), Bhargava and Sargan (1983), Amemiya and MaCurdy (1986), Breusch, Mizon and
Schmidt (1989), Arellano (1993), and Arellano and Bover (1995).
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Relationship with Statistical Definitions To conclude this discussion, it may
be useful to relate our usage of strict exogeneity to statistical definitions. A (linear
projection based) statistical definition of strict exogeneity conditional on a fixed effect

would state that x is strictly exogenous relative to y given n if
E*(yulzl s n;) = E* (yurl 25, m;) (19)

This is equivalent to the statement that y does not Granger-cause x given 7 in the sense
that
E*(wige4)| 75, 75 m5) = B (@igeeny 2, m,). (20)

(t+1)T

Namely, letting z; = (Tit41), ---, Tir)" if we have

E*(yit|xzrv n;) = ;txf + &tffz('tH)T + YN (21)

and
EX(ziernlah, yi,mi) = Yixs + Syi + semy, (22)

it turns out that the restrictions 6; = 0 and ¢, = 0 are equivalent. This result general-
ized the well-known equivalence between strict exogeneity (Sims, 1972) and Granger’s
non-causality (Granger, 1969).5 It was due to Chamberlain (1984), and motivated the
analysis in Holtz-Eakin, Newey, and Rosen (1988), which was aimed at testing such
property.

Here, however, we are using strict exogeneity relative to the errors of an econometric
model. Strict exogeneity itself, or the lack of it, may be a property of the model suggested
by theory. We used some simple models as illustrations, in the understanding that the
discussion would also apply to models that may include other features like individual
effects uncorrelated with errors, endogenous explanatory variables, autocorrelation, or

constraints in the parameters. Thus, in general strict exogeneity relative to a model may

6Tf linear projections are replaced by conditional distributions, the equivalence does not hold and
it turns out that the definition of Sims is weaker than Granger’s definition. Conditional Granger
non-causality is equivalent to the stronger Sims’ condition given by f(y¢|zT,y'™1) = f(ys|zt, yt™1)

(Chamberlain, 1982b).
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or may not be testable, but if so we shall usually be able to test it only in conjunction
with other features of the model. In contrast with the econometric concept, a statistical
definition of strict exogeneity is model free, but whether it is satisfied or not, may not
necessarily be of relevance for the econometric model of interest.”

As an illustration, let us consider a simple permanent-income model. The observ-
ables are non-durable expenditures c¢;;, current income w;;, and housing expenditure x;;.
The unobservables are permanent (w},) and transitory (e;;) income, and measurement
errors in non-durable (¢,;) and housing (¢;) expenditures. The expenditure variables

are assumed to depend on permanent income only, and the unobservables are mutually

independent but can be serially correlated. With these assumptions we have

wy = wh+ey (23)
cir = Puwh+&, (24)
Ty = Ywh + s (25)

Suppose that 3 is the parameter of interest. The relationship between c¢;; and w

suggested by the theory is of the form
Cit = PBwir + vy (26)

where vy = £, — Pei. Since wy and v, are contemporaneously correlated, w;; is an
endogenous explanatory variable in (26). Moreover, since E*(vy|zl) = 0, x; is a strictly
exogenous instrumental variable in (26). At the same time, note that in general linear
predictors of x given its past can be improved by adding lagged values of ¢ and/or w
(unless permanent income is white noise). Thus, the statistical condition for Granger
non-causality or strict exogeneity is not satisfied in this example. A similar discussion

could be conducted for a version of the model including fixed effects.

"Unlike the linear predictor definition, a conditional independence definition of strict exogeneity
given an individual effect is not restrictive, in the sense that there always exists a random variable 5
such that the condition is satisfied (Chamberlain, 1984). This lack of identification result implies that
a conditional-independence test of strict exogeneity given an individual effect will necessarily be a joint

test involving a (semi) parametric specification of the conditional distribution.
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2.2 Time Series Models with Error Components

The motivation in the previous discussion was the identification of regression responses
not contaminated from heterogeneity biases. Another leading motivation for using panel
data is the analysis of the time series properties of the observed data. Models of this
kind were discussed by Lillard and Willis (1978), MaCurdy (1982), Hall and Mishkin
(1982), Holtz-Eakin, Newey and Rosen (1988), and Abowd and Card (1989), amongst
others.

An important consideration is distinguishing unobserved heterogeneity from genuine
dynamics. For example, the exercises cited above are all concerned with the time series
properties of individual earnings for different reasons, including the analysis of earnings
mobility, testing the permanent income hypothesis, or estimating intertemporal labour
supply elasticities. However, how much dependence is measured in the residuals of
the earnings process depends crucially, not only on how much heterogeneity is allowed
into the process, but also on the auxiliary assumptions made in the specification of the
residual process, and assumptions about measurement errors.

One way of modelling dynamics is through moving average processes (e.g. Abowd
and Card, 1989). These processes limit persistence to a fixed number of periods, and
imply linear moment restrictions in the autocovariance matrix of the data. Autoregres-
sive processes, on the other hand, imply nonlinear covariance restrictions but provide
instrumental-variable orthogonality conditions that are linear in the autoregressive co-
efficients. Moreover, they are well suited to analyze the implications for identification
and inference of issues such as the stationarity of initial conditions, homoskedasticity,
and (near) unit roots.

Another convenient feature of autoregressive processes is that they can be regarded
as a special case of the regression models with predetermined variables discussed above.
This makes it possible to consider both types of problems in a common framework,
and facilitates the distinction between static responses with residual serial correlation

8

and dynamic responses.® Finally, autoregressive models are more easily extended to

8In general, linear conditional models can be represented as data covariance matrix structures, but
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limited-dependent-variable models.
In the next subsection we discuss the implications for identification of alternative
assumptions concerning a first-order autoregressive process with individual effects in

short panels.

2.2.1 The AR(1) process with fixed effects’

Let us consider a random sample of individual time series of size T, {y,i = 1,..., N},
with second-order moment matrix F(ylyl") = Q = {w;}. We assume that the joint

distribution of ¢ and the individual effect n, satisfies:
Vit = 0Yip—1) + 0+ v (=1, N;t=2,....T) |af <1 (27)

B (valyt ) =0 (t = 2,...T) (A1)

where E(n;) = v, E(v;;) = 07, and Var(n;) = o7. Notice that the assumption does not
rule out correlation between 7, and v;, nor the possibility of conditional heteroskedastic-
ity, since E(v2|y! ™) need not coincide with 0. (27) and (A1) can be seen as a specializa-
tion of (7) and (11). Thus, following the discussion above, (A1) implies (T'—2)(T'—1)/2

linear moment restrictions of the form
By (Ayy — aAy;-1y)] = 0. (28)

These restrictions can also be represented as constraints on the elements of €.
Multiplying (27) by ;s for s < t, and taking expectations gives wy, = aw—1)s + Cs,
(t=2,..,T;s =1,..,t — 1), where ¢; = E(y;sn;). This means that, given assumption
A1, the T'(T +1)/2 different elements of {2 can be written as functions of the 27" x 1 pa-
rameter vector 6 = (a, ¢y, ..., c7_1, w11, -..,wrr) . Notice that with 7' = 3 the parameters

(o, c1, o) are just identified as functions of the elements of 2

a = (wa — wll)_l(win — way)

typically they involve a larger parameter space including many nuisance parameters, which are absent

from instrumental-variable orthogonality conditions.

9This section follows a similar discussion in Alonso-Borrego and Arellano (1999).
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1 = W2 — Wi

Cy = W32 — OWa.

The model based on Al is attractive because the identification of o, which measures
persistence given unobserved heterogeneity, is based on minimal assumptions. However,

we may be willing to impose additional structure if this conforms to a priori beliefs.

Lack of Correlation Between the Effects and the Errors One possibility is to

t—
)

assume that the errors v; are uncorrelated with the individual effect 7, given y'~*. In a
structural context, this will often be a reasonable assumption if, for example, the v;; are
interpreted as innovations that are independent of variables in the agents’ information
set. In such case, even if 7, is not observable to the econometrician, being time-invariant
it is likely to be known to the individual. This situation gives rise to the following
assumption

E*(ielyi " m) =0 (t=2,...,T). (A1)

Note that in a short panel assumption Al’ is more restrictive than assumption Al.
Nevertheless, lack of correlation between v;; and {yi(t_l), oo Yi(t— J)} implies lack of cor-

relation between v; and 7, in the limit as J — oco. This will be so as long as

J—00

J
o1
n; =p lim 7 Z (Yit—i) — Wie—j-1) -
j=1

Thus, for a process that started at —oo we would have orthogonality between 7, and
vit, and any correlation between individual effects and shocks will tend to vanish as ¢
increases.

When T' > 4, assumption A1’ implies the following additional T'—3 quadratic moment
restrictions that were considered by Ahn and Schmidt (1995):

El(yit — avit—1)) (Ayig—1) — aAyip—2))] =0 (t =4,...,T). (29)

In effect, we can write E[(yi — ayi—1) — ;) (Ayie—1) — aAy;p—2))] = 0 and since
E(n;Av;g—1)) = 0 the result follows. Thus, (29) also holds if Cov(n;, vi) is constant over
t.
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An alternative representation of the restrictions in (29) is in terms of a recursion
of the coefficients ¢; introduced above. Multiplying (27) by 1, and taking expectations
gives ¢; = a1 + ¢, (t = 2,...,T), where ¢ = E(n?) = 7> + 0727, so that ¢q,...,cr can
be written in terms of ¢; and ¢. This gives rise to a covariance structure in which 2
depends on the (7' + 3) x 1 parameter vector § = (a, ¢, ¢1, w11, ...,wrr) . Notice that

with T' = 3 assumption A1’ does not imply further restrictions in €2, with the result that

« remains just identified. One can solve for ¢ in terms of «, ¢; and c¢s:
¢ = (W32 - u121) - a(w22 - wn)-

Time Series Homoskedasticity If in addition to A1’ we assume that the mar-

ginal variance of v;; is constant for all periods:
Ewi)=0c*(t=2,..T), (A2)
it turns out that
Wy = a2w(t_1)(t_1) + o+’ 4200 (t=2,..T).

This gives rise to a covariance structure in which  depends on five free parameters:
a,$,c1,wir, 0. This is a model of some interest since it is one in which the initial
conditions of the process are unrestricted (governed by the parameters ¢ and c;), but

the total number of free parameters does not increase with 7.

Mean Stationarity of Initial Conditions Other forms of additional structure
that can be imposed are mean or variance stationarity conditions. The following as-
sumption, which requires that the process started in the distant past, is a particularly

useful mean stationarity condition:
Cov(yir — Yie—1),m:) =0 (t =2,...,T). (B1)

Relative to assumption A1, assumption B1 adds the following (7'—2) moment restrictions

on €

El(yit — aie—1)) Ayie—1) = 0 (t = 3,...,T), (30)
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which were proposed by Arellano and Bover (1995). However, relative to assumption
A1, assumption Bl only adds one moment restriction which can be written as F[(y;3 —
ayin)Ayiz] = 0. In terms of the parameters ¢;, the implication of assumption B1 is that
¢1 = ... = cr if we move from assumption Al, or that ¢; = ¢/(1 — a) if we move from
assumption A1l’. This gives rise to a model in which Q depends on the (7" + 2) x 1
parameter vector 0 = («, ¢, w11, ..., wpr)’. Notice that with T" = 3, « is overidentified

under assumption B1l. Now a will also satisfy
o = (w2 — wa) (w2 — way).

It is of some interest to note that the combination of assumptions Al and B1 pro-
duces the same model as that of A1’” and B1. However, while A1" implies orthogonality
conditions that are quadratic in o, A1 or A14+-B1 give rise to linear instrumental-variable
conditions (Ahn and Schmidt, 1995). While A1 implied the validity of lagged levels as in-
struments for equations in first-differences, B1 additionally implies the validity of lagged
first-differences as instruments for equations in levels. The availability of instruments
for levels equations may lead to the identification of the effect of observable components
of n; (i.e. time-invariant regressors), or to identifying unit roots, two points to which we
shall return below.

The validity of (B1) depends on whether initial conditions at the start of the sample
are representative of the steady state behaviour of the model or not. For example,
for young workers or new firms initial conditions may be less related to steady state

conditions than for older ones.

Full Stationarity By combining A1’ with the homoskedasticity and the mean
stationarity assumptions, A2 and Bl, we obtain a model whose only nonstationary
feature is the variance of the initial observation, which would remain a free parameter.
For such model wy, = 0®w_1y¢—1)+02+¢(1+a)/(1—a) (t =2,...,T). A fully stationary
specification results from making the additional assumption:

o o
-2 (-a)

(B2)

w11 =
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This gives rise to a model in which §2 only depends on the three parameters «, ¢, and
o%. Nevertheless, identification still requires 7' > 3, despite the fact that with 7' = 2, Q)
has three different coefficients. To see this note that in their relationship to «, ¢, and o

the equation for the second diagonal term is redundant:
Wy = 0'%* +o7 (t=1,2)
W12 = a(wu — 0'727*) + 0'727*

where o7, = 07 /(1 — ) and 07 = /(1 — ). The intuition for this is that both 7, and

Yit—1) induce serial correlation on y;;, but their separate effects can only be distinguished
if at least first and second order autocorrelations are observed.

Under full stationarity (assumptions Al, A2, B1, and B2) it can be shown that
E(Ayi4+1)Ayir) (1—a)

E[(Ayq)?] B 2
This is a well known expression for the bias of the least squares regression in first-
differences under homoskedasticity, which can be expressed as the orthogonality condi-

tions
E{Ayi[(2yit+1) — Yit — Yie—1)) — @Ayy]} =0 (t =2,...,T - 1).

With T' = 3 this implies that o would also satisfy

a = (wag + w1 — 2way) H2(ws2 — wa1) + wir — waa).

2.2.2 Aggregate Shocks

Under assumptions Al or Al’, the errors v;; are idiosyncratic shocks that are assumed to
have cross-sectional zero mean at each point in time. However, if v;; contains aggregate
shocks that are common to all individuals its cross-sectional mean will not be zero in

general. This suggests replacing A1 with the assumption
E*(Uit‘yfil) :515 (t:277T)7 (31)

which leads to an extension of the basic specification in which an intercept is allowed to
vary over time:

Yit = Ot + Q¥ie—1) +1; + U;‘rta (32)
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where v}t = v;z — 0. We can now set E(n;) = 0 without lack of generality, since a nonzero
mean would be subsumed in ;. Again, formally (32) is just a specialization of (7) and
(11).

With fixed T, this extension does not essentially alter the previous discussion since
the realized values of the shocks ¢; can be treated as unknown period specific parameters.

With T' = 3, o, 8, and 85 are just identified from the three moment conditions!®

E(yiz — 62 —aya) = 0 (33)
E(yiz — 03 —ay) = 0 (34)

In the presence of aggregate shocks the mean stationarity condition in assumption
B1 may still be satisfied, but it will be interpreted as an assumption of mean stationarity
conditional upon an aggregate effect (which may or may not be stationary), since now
E(Ay;) is not constant over ¢. The orthogonality conditions in (30) remain valid in this
case with the addition of a time varying intercept. With 7' = 3, (B1) adds to (33)-(35)

the orthogonality condition:

E[Ayia(yiz — 63 — ayiz)] = 0. (36)

2.2.3 Identification and Unit Roots

If one is interested in the unit root hypothesis, the model needs to be specified under
both stable and unit roots environments. We begin by considering model (27) under
assumption (A1) as the stable root specification. As for the unit root specification, it is

natural to consider a random walk without drift. The model can be written as
Yit = aYie—1) + (L — a)nj + vy (37)

where 1} denotes the steady state mean of the process when |a| < 1. Thus, when o = 1

we have

Yit = Yie—1) + Vit, (38)

W Further discussion on models with time effects is contained in Crepon, Kramarz and Trognon (1997).
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so that heterogeneity only plays a role in the determination of the starting point of the
process. Note that in this model the covariance matrix of (y;1,n}) is left unrestricted.
An alternative unit root specification would be a random walk with an individual
specific drift given by 7;:
Yit = Yit—1) T 1; + Vi, (39)

but this is a model with heterogeneous linear growth that would be more suited for
comparisons with stationary models that include individual trends.

The main point to notice here is that in model (37) « is not identified from the
moments derived from assumption A1l when o = 1. This is so because in the unit
root case the lagged level will be uncorrelated with the current innovation, so that
Cov(Yi(t—2), Ayit—1)) = 0. As a result, the rank condition will not be satisfied for the
basic orthogonality conditions (28). In model (39) the rank condition is still satisfied
since Cov(yit—2), Ayie—1)) # 0 due to the cross-sectional correlation induced by the
heterogeneity in shifts.

As noted by Arellano and Bover (1995), this problem does not arise when we con-
sider a stable root specification that in addition to (A1) satisfies the mean stationarity
assumption (B1). The reason is that when o = 1 the moment conditions (30) remain

valid and the rank condition is satisfied since Cov(Ay;—1), Yig—1)) # 0.

2.2.4 The Value of Information with Highly Persistent Data

The cross-sectional regression coefficient of y;; on y;;—1), p;, can be expressed as a func-
tion of the model’s parameters. For example, under full stationarity it can be shown to

be

Cov(n;, Yit—1)) — ot (1— )N >
Var (yie—) N+(l-a)/(l+a) =

where A = 0, /0. Often, empirically p is near unity. For example, with firm employment

data, Alonso-Borrego and Arellano (1999) found p = 0.995,« = 0.8, and A\ = 2. Since

p= (40)

for any 0 < a < p there is a value of A such that p equals a pre-specified value, in view

of lack of identification of a from the basic moment conditions (28) when a = 1, it is of
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interest to see how the information about « in these moment conditions changes as T’
and « change for values of p close to one.
For the orthogonality conditions (28) the inverse of the semiparametric information

bound about a can be shown to be

U?Z&{EiEWMﬁMﬂ%%N*E@WQ} (41)

where the y}, are orthogonal deviations relative to (i1, ..., yir—1))’."* The expression

o2 gives the lower bound on the asymptotic variance of any consistent estimator of «
based exclusively on the moments (28) when the process generating the data is the fully
stationary model (Chamberlain, 1987).

In Table 1 we have calculated values of o7 for various values of T' and for different
pairs (a, A) such that p = 0.99.'2 Also, the bottom row shows the time series asymptotic

standard deviation, evaluated at T"= 15, for comparisons.

Table 1
Inverse Information Bound for « (o)
p = 0.99
o 0 0.2 0.5 0.8 0.9 0.99
A 9.9 7.2 4.0 1.4 0.7 0

3 14.14 1550 17.32 18.97 19.49 19.95
=4 1.97 266 445 814 950 10.00
) 1.21 155 243 471 588 6.34
=10 0.50 057 071 118 1.61 1.85
T =15 035 038 044 061 082 096

a2\ /2
(——£;> 026 025 022 016 0.11 0.04

Table 1 shows that with p = 0.99 there is a very large difference in information
between 7' = 3 and T" > 3. Moreover, for given T' there is less information on « the
closer « is to p. Often, there will be little information on a with 7' = 3 and the
usual values of N. Additional information may be acquired from using some of the

assumptions discussed above. Particularly, large gains can be obtained from employing

11That iS, y:‘s is given by y:‘s = Cs[y’is - (T —S5— 1)71(%‘(5-&-1) +o+ yi(T—l))] (5 - 17 "7T - 2)7 where
2= (T —s5—1)/(T —s) (cf. Arellano and Bover, 1995, and discussion in the next section).

12Under stationarity 0% depends on a, A and T but is invariant to o2.
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mean stationarity assumptions, as suggested from Monte Carlo simulations reported by
Arellano and Bover (1995) and Blundell and Bond (1998).

In making inferences about a we look for estimators whose sampling distribution
for large N can be approximated by N(a,02/N). However, there may be substantial
differences in the quality of the approximation for a given N, among different estimators
with the same asymptotic distribution. We shall return to these issues in the section on

estimation.

2.3 Using Stationarity Restrictions

Some of the lessons from the previous section on alternative restrictions in autoregres-
sive models are also applicable to regression models with predetermined (or strictly

exogenous) variables of the form:
Yir = 6'wip +1; + vy (42)
E*(vigJw!) =0

where, for example, wy; = (Yig—1), Zi)'. As before, the basic moments are F [w! ™ Ay —
§'Awy)] = 0. However, if E*(vy|w!,n;) = 0 holds, the parameter vector § also satisfies

the Ahn-Schmidt restrictions
E[(yzt — 5'wit)(Ayi(t,1) — 6Awl(t,1))] = 0. (43)

Moreover, if Cov(Aw;,n;) = 0 the Arellano-Bover restrictions are satisfied, encompass-

ing the previous ones:'3

Blundell and Bond (1999) use moment restrictions of this type in their empirical
analysis of Cobb-Douglas production functions using company panel data. They find

that the instruments available for the production function in first differences are not very

13Gtrictly exogenous variables that had constant correlation with the individual effects were first

considered by Bhargava and Sargan (1983).
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informative, due to the fact that the series on firm sales, capital and employment are
highly persistent. In contrast, the first-difference instruments for production function
errors in levels appear to be both valid and informative.

Sometimes the effect of time-invariant explanatory variables is of interest, a parame-

ter 7, say, in a model of the form
Yie = 8wy + yzi + 1y + vy

However, v cannot be identified from the basic moments because the time-invariant
regressor z; is absorbed by the individual effect. Thus, we could ask whether the addition
of orthogonality conditions involving errors in levels such as (43) or (44) may help
to identify such parameters. Unfortunately, often it would be difficult to argue that
E(n,Aw;;) = 0 without at the same time assuming that F(z;Aw;) = 0, in which case
changes in w;; would not help the identification of v. An example in which the levels
restrictions may be helpful is the following simple model for an evaluation study due to

Chamberlain (1993).

An Evaluation of Training Example Suppose that 39 denotes earnings in the
absence of training, and that there is a common effect of training for all workers. Actual
earnings y;; are observed for ¢t = 1,...,s — 1,s + 1,...,T. Training occurs in period s
(1 <s<T),sothat y; = 3% for t = 1,...,s — 1, and we wish to measure its effect on

earnings in subsequent periods, denoted by 3, ,, ..., B7:
Yit :y?t—i_ﬁtdz (t:S+17-"7T)7 (45)
where d; is a dummy variable that equals 1 in the event of training. Moreover, we assume
0_ .0
Yit = WYj—1) T N; T Vit (46)

together with E*(vy |y, (t_l)) = 0 and Cov(AyS,n;) = 0. We also assume that d; de-
pends on lagged earnings y;1, ..., ¥i(s—1) and n;, but conditionally on these variables it is

randomly assigned. Then we have:

Yits+1) = CYics—1) + Bo1di + (1 + a)n; + (vigs41) + i)
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Yit = OYi(t—1) + (/Bt — O‘/Btfl)di + 1, + Ui (t =S+ 2, ceey T)

>From our previous discussion, the model implies the following orthogonality con-
ditions:

E[yf_Q(Ayz‘t - aAyi(t,l))] =0(t=1,..,s—1) (47)

E{y; [yis11) — (L+ o+ &®)yigs—1) + (1 + @)yis—2) — Bei1dil} = 0 (48)

_ 1+ a+ a?) a?
E{ys vy, — (— . — i
{yz [y1(5+2) (1 ‘I— a) yl(5+1) + (1 —I— a) y’l(s 1)
(1+a+a?)
—(Bi(sr2) — Wﬁi(sﬂ))di]} -0 (49)
Bl (Ayy — alyig-1) + AB, — af,_1)d)] =0 (t =s+3,...,T) (50)

The additional orthogonality conditions implied by mean stationarity are:

E[Ayi(t71)<yit - O‘yi(tfl))] =0 (75 =1,...,5s— 1) (51)
EIAYi(s—1) Yigs+1) — @ Yis—1) — Byy1di)] =0 (52)
E[Ayi(s—1)<yz’t — Q¥Yi—1) + (B —aB,_1)d)] =0 (t=s5+2,...T) (53)

We would expect E(Ay;s—1yd;) < 0, since there is evidence of a dip in the pretraining
earnings of participants (eg. Ashenfelter and Card, 1985). Thus, (52) can be expected
to be more informative about 3, ; than (48). Moreover, identification of 3, from (48)
requires that s > 4, otherwise only changes in [, would be identified from (47)-(50). In

contrast, note that identification of 3, ; from (52) only requires s > 3.

2.4 Models with Multiplicative Effects

In the models we have considered so far, unobserved heterogeneity enters exclusively
through an additive individual specific intercept, while the other coefficients are as-
sumed to be homogeneous. Nevertheless, an alternative autoregressive process could,
for example, specify a homogeneous intercept and heterogeneity in the autoregressive

behaviour:

Yie = + (@ + ;) Yi—1) + Vit
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This is a potentially useful model if one is interested in allowing for agent specific
adjustment cost functions, as for example in labour demand models. If we assume

E(vg|yt™") = 0 and y;; > 0, the transformed model

yity{(tl,l) = ’Yy;(;,l) +a+mn + v

where v} = Uityi_(tl_l), also has E(vji|y:™") = 0. Thus, the average autoregressive coeffi-
cient a and the intercept v can be determined in a way similar to the linear models from
the moment conditions E(n; + v;f) = 0 and E(y! ?Av};) = 0. Note, that in this case,
due to the nonlinearity, the argument requires the use of conditional mean assumptions
as opposed to linear projections.

Another example is an exponential regression of the form

E(yalal, vt m;) = exp(Bai + ;).

This case derives its motivation from the literature on Poisson models for count data.
The exponential specification is chosen to ensure that the conditional mean is always
non-negative. With count data a log-linear regression is not a feasible alternative since
a fraction of the observations on y; will be zeroes.

A third example is a model where individual effects are interacted with time effects
given by

Vit = Bxig + 0m; + Vit

A model of this type may arise in the specification of unrestricted linear projections as
in (21) and (22), or as a structural specification in which an aggregate shock 6, is allowed
to have individual-specific effects on y;; measured by 7,.

Clearly, in such multiplicative cases first-differencing does not eliminate the unobserv-
able effects, but as in the heterogeneous autoregression above there are simple alternative

transformations that can be used to construct orthogonality conditions.

A Transformation for Multiplicative Models Generalizing the previous spec-

ifications we have
ft(wz'Ta v) = ge(w}, B)n; + va (54)
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E(vg|lw}) =0
where g;; = g;(w!, 8) is a function of predetermined variables and unknown parameters
such that g; > 0 for all w! and 3, and fi; = f;(w!,~) depends on endogenous and

predetermined variables, as well as possibly also on unknown parameters. Dividing by

gir and first differencing the resulting equation, we obtain

fict—1) — (95 Gigr—1)) fir = vit (55)
and
E(vi|wi™") = 0.
where U;; = Vi@t-1) — (gi;lgz‘(t—l))ﬂit-

Any function of w!™' will be uncorrelated with v;f and therefore can be used as an
instrument in the determination of the parameters § and . This kind of transformation
has been suggested by Chamberlain (1992b) and Wooldridge (1997). Notice that its use
does not require us to condition on n,. However, it does require g; to be a function of

predetermined variables as opposed to endogenous variables.

Multiple Individual Effects We turn to consider models with more than one
heterogeneous coefficient. Multiplicative random effects models with strictly exogenous
variables were considered by Chamberlain (1992a), who found the information bound
for a model with a multivariate individual effect. Chamberlain (1993) considered the
identification problems that arise in models with predetermined variables when the indi-
vidual effect is a vector with two or more components, and showed lack of identification
of o in a model of the form

Yit = Q¥ie—1) + BiTa +1m; + v (56)
E(vulz, g7 ) =0 (t=2,..,T), (57)
As an illustration consider the case where x; is a 0 — 1 binary variable. Since

E(n,|2T,yF ") is unrestricted, the only moments that are relevant for the identification

1

of o are
E<Ayzt - O‘Ayi(t—l)|x§717 y’?72) = E(ﬁiA‘rit‘xfilv 9572) (t = 37 ceey T)
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Letting w! = (zf,y!), the previous expression is equivalent to the following two condi-

tions:
E(Ay;y — aAyi(t_1)|wf_2, Tit—1) = 0)
= E(B;|w! ™2, zii—1) = 0)Pr(zy = 1w! >, zi4_1) = 0) (58)
and
E(Ay; — aAyi(t_1)|wff2, Tit—1) = 1)
—E(B;w! ™ i1y = 1) Pr(zy = O|w 2, 2441y = 1) (59)
Clearly, if E(8;|w!™? zi;—1) = 0) and E(B;|w} % 441y = 1) are unrestricted, and

T is fixed, the autoregressive parameter o cannot be identified from equations (58) and
(59).

Let us consider some departures from model (56)-(57) under which o would be po-
tentially identifiable. Firstly, if x were a strictly exogenous variable, in the sense that

we replaced (57) with the assumption E(vy|2,yi™") = 0, a could be identifiable since
E(Ay; — aAyig_n|z] ¥ % Az, = 0) = 0. (60)

Secondly, if the intercept n were homogeneous, identification of a and 7 could result

from
E(yy —n— O‘yi(t—l)|wfila zy =0)=0. (61)

The previous discussion illustrates the fragility of the identification of dynamic re-
sponses from short time series of heterogeneous cross-sectional populations.

If z;; > 0 in model (56)-(57), it may be useful to discuss the ability of transformation
(55) to produce orthogonality conditions. In this regard, a crucial aspect of the previous
case is that while x;; is predetermined in the equation in levels, it becomes endogenous in
the equation in first differences, so that transformation (55) applied to the first-difference
equation does not lead to conditional moment restrictions. The problem is that although
E(Avy|2zt™t 9!7%) = 0, in general E[(Azy)  Avylat™t i 7% #£ 0.

The parameters «, § = E(f3;), and v = FE(n;) could be identifiable if x were a
strictly exogenous variable such that E(vy|zl,yi™') = 0 (t = 2,...,7), for in this
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case the transformed error v;i = (Azy) 'Av; would satisfy Efvii|zT, 4! = 0 and

E[Av;|aT 4% = 0. Therefore, the following moment conditions would hold:

Ay; Ayi— Ay Ay _
E[( Yie _ DYie 1))_a< Yit-1)  AYi 2))|xf,yf 3]:0 (62)
Axy Ami(tfl) Az Ami(tfl)

)
Alyi/ma)  Alyig-—1)/Tie-1) —a Alyie—n /)  Alyie—2)/Tie-1) al % =
E[( A1) A(1/zi 1)) ) < A(1/xy) A(1/i-1)) ) o ’y264]) ’
Alya/za)  Algien/za) ) _
BBty o Ry ) =0 (65)

A similar result would be satisfied if x;; in (56) were replaced by a predetermined
regressor that remained predetermined in the equation in first differences like x;;_).
The result is that transformation (55) could be sequentially applied to models with
predetermined variables and multiple individual effects, and still produce orthogonality
conditions, as long as T is sufficiently large, and the transformed model resulting from
the last but one application of the transformation still has the general form (54) (i.e. no

functions of endogenous variables are multiplied by individual specific parameters).

A heterogeneous AR(1) model As another example, consider a heterogeneous

AR(1) model for a 0 — 1 binary indicator y;:
Yit = N; T 0GYi—1) + Vit (66)

E(viely; ™) =0,

and let us examine the (lack of) identification of the expected autoregressive parameter
E(a;) and the expected intercept F(n,). With T' = 3, the only moment that is relevant
for the identification of E(q;) is

E(Ayislyin) = E(0iAyi|yi),
which is equivalent to the following two conditions:
E(Ayislyn = 0) = E(ailya = 0,92 = 1) Pr(yiz = 1|yi = 0) (67)
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and
E(Ayislyn = 1) = —E(ailya = 1,42 = 0) Pr(yi2 = Olyir = 1). (68)
Therefore, only E(a;|yin = 0,2 = 1) and E(o;|yin = 1,52 = 0) are identified. The
expected value of a; for those whose value of y does not change from period 1 to period

2 is not identified, and hence E(a;) is not identified either.

Similarly, for T' > 3 we have
E(Ayily! >, vig—2) = 0) = Byl >, yie—2) = 0, Yie—1) = 1) Pr(yie—1) = Ly, %, yir—2) = 0)

E(Ayit|y§_3a Yit—2) = 1) = —E(ai|y§_3, Yit—2) = 1, Yit—1) = 0) Pr(yi(tq) = 0|yf_3, Yi(t—2) = 1)-

Note that E(oy|y!™? JYit—2) = J,Yie—1 = j) for j = 0,1 is also identified provided

E(cily! ™, yiu—2) = j) is identified on the basis of the first 7" — 1 observations. The
conclusion is that all conditional expectations of a; are identified except E(o;|y;1 = ... =
Yir—1) = 1) and E(ailyin = ... = yier—1) = 0).

Concerning 7;, note that since E(n;|y; ) = Byl |yl ) —yir—1)E(cily! '), expecta-
tions of the form E(n;|y] 2, yir—1) = 0) are all identified. Moreover, E(n;|y! 2, yir—1) =
1) is identified provided E(ai|y§p—2,yi(T,1) = 1) is identified. Thus, all conditional ex-
pectations of 7); are identified except E(n;|yi1 = ... = yir—1) = 1).

Note that if Pr(y;; = ... = yyr—1) = j) for j = 0,1 tends to zero as 1" increases,
E(«a;) and E(n;) will be identified as T" — oo, but they may be seriously underidentified

for very small values of T

3 Linear Models with Predetermined Variables: Es-

timation

3.1 GMM Estimation

Consider a model for panel data with sequential moment restrictions given by

yir = 2B, +uy (t=1,...,T;i=1,..,N) (69)
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Ujp = 1); + Vit
E*(vy]2f) =0

where z;; is a k x 1 vector of possibly endogenous variables, z; is a p x 1 vector of
instrumental variables, which may include current values of z;; and lagged values of
yi and zy, and 2! = (zl4,...,25)’. Observations across individuals are assumed to be
independent and identically distributed. Alternatively, we can write the system of T'

equations for individual 7 as

Yi = Xi/Bo + u; (70)

where y; = (Yi1, -, Yir)', Xi = (@}y, ..., hp), and u; = (win, ..., wir)'-

We saw that this model implies instrumental-variable orthogonality restrictions for
the model in first-differences. In fact, the restrictions can be expressed using any (1" —
1) x T upper-triangular transformation matrix K of rank (7" — 1), such that K. = 0,
where ¢ is a T x 1 vector of ones. Note that the first-difference operator is an example.
We then have

E(Z!Ku;)) =0 (71)

where Z; is a block-diagonal matrix whose ¢-th block is given by 2. An optimal GMM
estimator of (3, based on (71) is given by

3= (M AM.,) ' M AM.,, (72)

where M., = (3.1, ZIK X;), M, = (3N, Z!Ky;), and A is a consistent estimate of the
inverse of F(Z!Ku;u,K'Z;) up to a scalar. Under “classical” errors (that is, under condi-
tional homoskedasticity E(v|zf) = o2, and lack of autocorrelation E(v;v;(+j) |21ty =0

for j > 0), a “one-step” choice of A is optimal:
" ~1
Ac = (Z Z{KK/ZZ-) . (73)
i=1
Alternatively, the standard “two-step” robust choice is
N ~1
Ap = (Z Z{KﬂiﬂgK’Zi> (74)
i=1
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where u; = y; — XZ-B is a vector of residuals evaluated at some preliminary consistent
estimate ,5’

Given identification, 3 is consistent and asymptotically normal as N — oo for fixed
T (Hansen, 1982). In addition, for either choice of A, provided the conditions under

which they are optimal choices are satisfied, the asymptotic variance of B is

Var(B)r = {E(X{K'Z)|B(Z KuaK'Z)| " E(Z{K X)), (75)

which is invariant to K. Under classical errors this becomes'4

Var(B)e = o{E(X.K'Z)|E(Z/KK'Z)| " E(Z/K X;)} .

Moreover, as shown by Arellano and Bover (1995), a GMM estimator of the form
given in (72), and (73) or (74), is invariant to the choice of K provided K satisfies the
required conditions (see also Schmidt, Ahn, and Wyhowski, 1992).

As in common with other GMM estimation problems, the minimized estimation crite-
rion provides an asymptotic chi-squared test statistic of the overidentifying restrictions.

A two-step Sargan test statistic is given by

N
Sk = [Z(yz — XiBr)'K'Z;| Ag

=1

N
Z ZiK (yi — XiBR)] — X{gt) (76)

i=1

where 3 r is the two-step GMM estimator.!®

Orthogonal Deviations An alternative transformation to first differencing, which
is very useful in the context of models with predetermined variables, is forward orthog-
onal deviations:

N 1
Uy = clui — m(ui(t+1) + w7 )] (77)

Under classical errors, additional moment restrictions would be available, with the result that a
smaller asymptotic variance could be achieved. The expression above simply particularizes the asymp-
totic variance to a situation where additional properties occur in the population but are not used in

estimation.

2

15Similarly, letting & and BC be, respectively, a consistent estimate of o2

and the one-step estimator, the one-step Sargan statistic is given by S¢ =

7 | = XiBe) K'Zi] Ac |, ZiK (i — XiBe)]
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where ¢ = (T —t)/(T — t + 1) (Arellano and Bover, 1995). That is, to each of the
first (7" — 1) observations we subtract the mean of the remaining future observations
available in the sample. The weighting ¢; is introduced to equalize the variances of the
transformed errors. A closely related transformation was used by Hayashi and Sims
(1983) for time series models.

Unlike first differencing, which introduces a moving average structure in the error
term, orthogonal deviations preserve lack of correlation among the transformed errors if
the original ones are not autocorrelated and have constant variance. Indeed, orthogonal
deviations can be regarded as the result of doing first differences to eliminate fixed effects
plus a GLS transformation to remove the serial correlation induced by differencing.

The choice of K that produces this transformation is the forward orthogonal devia-

tions operator A = diag[(T —1)/T,...,1/2]'/2A*, where

1 —(T-1)"' —(T-1)"' -+« —(T=1)"' —(T-1)" —(T-1)"!

0 1 —(T_Q)—l _(T_2)—1 _(T_2)—1 _(T_2)_1
A= 3 3 z z ;

0 0 0 0 1 -1

It can be verified by direct multiplication that AA" = I\p_1y and A’A = Ir — /)T =
(2, which is the within-group operator. Thus, the OLS regression of y}, on z, will give
the within-group estimator, which is the conventional estimator in static models with
strictly exogenous variables. Finally, since Q = K'(KK')'K, also A = (KK')"'?K
for any upper-triangular K.
A useful computational feature of orthogonal deviations, specially so when T is not
a very small number, is that one-step estimators can be obtained as a matrix-weighted
average of cross-sectional IV estimators:
T-1 “Lr
8= (Z XZ"Zt(Zt'Zt)_lzéXf> > X Z(Z7) 2yt (78)

t=1 t=1

where X = (23}, ..., %) ¥f = (Ui, - yny) s and Z, = (2, ..., 2%

An Illustration: Female Labour Force Participation and Fertility We il-

lustrate the previous issues with reference to an empirical relationship between female
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participation and fertility, discussing a simplified version of the results reported by Car-
rasco (1998) for a linear probability model.'¢

A sample from PSID for 1986-89 is used. The data consists of 1442 women aged 18-
55 in 1986, that are either married or cohabiting. The left-hand side variable is a binary
indicator of participation in year t. Fertility is also a dummy variable, which takes the
value one if the age of the youngest child in ¢t + 1 is 1. The equation also includes an
indicator of whether the woman has a child aged 2-6. The equations estimated in levels
also include a constant, age, race, and education dummies (not reported).

In this sample it is observed that women with two children of the same sex have a
significantly higher probability of having a third child. Thus, the sex of the first two
children is used as an instrument for fertility, which is treated as an endogenous variable.
The presence of a child 2-6 is the result of past fertility decisions, and so it should be
treated as a predetermined variable (see Carrasco, 1998, for a comprehensive discussion,
and additional estimates of linear and nonlinear models).

Table 2 reports the results for two versions of the model with and without lagged
participation as a regressor, using DPD (Arellano and Bond, 1988). The last column
presents GMM estimates in orthogonal deviations that treat fertility as endogenous,
and the “kids 2-6” and “same sex” indicators as predetermined variables. The table also
reports the results from other methods of estimation for comparisons.

There is a large gap between the OLS and 2SLS measured effects of fertility, possibly
due to measurement errors. Both OLS and 2SLS neglect unobserved heterogeneity,
despite evidence from the serial correlation statistics m1 and m2 of persistent positive
autocorrelation in the residuals in levels. Note that we would expect the “same sex”
instrumental variable to be correlated with the fixed effect. The reason is that it will be
a predictor of preferences for children, given that the sample includes women with less
than two children.

The within-groups estimator controls for unobserved heterogeneity, but in doing so

we would expect it to introduce biases due to lack of strict exogeneity of the explanatory

16We thank Raquel Carrasco for allowing us to draw freely on her dataset and models.
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variables. The GMM estimates in column 4 deal with the endogeneity of fertility and
control for fixed effects, but treat the “kids 2-6” and “same sex” variables as strictly
exogenous. This results in a smaller effect of fertility on participation (in absolute
value) than the one obtained in column 5 treating the variables as predetermined. The
hypothesis of strict exogeneity of these two variables is rejected at the 5 percent level
from the difference in the Sargan statistics in both panels. (Both GMM estimates are

“one-step”, but all test statistics reported are robust to heteroskedasticity.)

Table 2
Female Labour Force Participation
Linear Probability Models (N=1442, 1986-1989)
Variable OLS 2SLS' WITHIN GMM? GMM?3
(St.Exog.) (Predet.)

Fertility -0.15  -1.01 -0.06 -0.08 -0.13
(8.2) (2.1) (3.8) (2.8) (2.2)
Kids 2-6 -0.08 -0.24 0.001 -0.005 -0.09
(5.2) (2.6) (0.04) (0.4) (2.7)

Sargan test 48. (22) 18. (10)
ml 19. 5.7 -10. -10. -10.
m2 16. 12.0 -1.7 -1.7 -1.6

Models including lagged participation

Fertility -0.09 -0.33 -0.06 -0.09 -0.14
(5.2)  (1.3) (3.7) (3.1) (2.2)
Kids 2-6 -0.02  -0.07 -0.000 -0.02 -0.10
(2.1) (1.3) (0.00) (1.1) (3.5)
Lagged Partic. 0.63  0.61 0.03 0.36 0.29
(42.)  (30.) (1.7) (8.3) (6.3)

Sargan 51. (27) 25. (15)
ml -7.0  -54 -13. -14. -13.
m2 3.1 2.8 -1.3 1.5 1.2

Heteroskedasticity robust ¢-ratios shown in parentheses.

'External instrument: Previous children of same sex.

2IVs: All lags and leads of "kids 2-6” and "same sex” variables.
3IVs: Lags of "kids 2-6” and ”same sex” up to t — 1.

GMM IVs in bottom panel also include lags of partic. up to ¢t — 2.

Finally, note that the m1 and m2 statistics (which are asymptotically distributed as
a N(0,1) under the null of no autocorrelation) have been calculated from residuals in
first differences for the within-groups and GMM estimates. So if the errors in levels were

uncorrelated, we would expect m1 to be significant, but not m2, as is the case here (cf.
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Arellano and Bond, 1991).

Levels & Differences Estimators The GMM estimator proposed by Arellano
and Bover (1995) combined the basic moments (71) with E(Az;u;) =0, (t = 2,...,T).
Using their notation, the full set of orthogonality conditions can be written in compact
form as

E(Z Hu;) =0 (79)

where Z;" is a block diagonal matrix with blocks Z; as above, and Z;; = diag(Azly, ..., Azlp).
H is the 2(T — 1) x T selection matrix H = (K',I), where I, = (0:I7_1). With this
changes in notation, the form of the estimator is similar to that in (72).

As before, a robust choice of A is provided by the inverse of an unrestricted estimate
of the variance matrix of the moments N~* 3"~ Z Hua, H' Z;". However, this can be
a poor estimate of the population moments if N is not sufficiently large relative to T,
which may have an adverse effect on the finite sample properties of the GMM estimator.
Unfortunately, in this case an efficient one-step estimator under restrictive assumptions
does not exist. Intuitively, since some of the instruments for the equations in levels are

not valid for those in differences, and conversely, not all the covariance terms between

the two sets of moments will be zero.

3.2 Efficient Estimation Under Conditional Mean Independence

If lack of correlation between vy and z! is replaced by an assumption of conditional
independence in mean E(vy|2}) = 0, the model implies additional orthogonality restric-
tions. This is so because v;; will be uncorrelated not only with the conditioning variables
z! but also with functions of them. Chamberlain (1992b) derived the semiparametric
efficiency bound for this model. Hahn (1997) showed that a GMM estimator based on
an increasing set of instruments as IV tends to infinity would achieve the semiparametric
efficiency bound. Hahn discussed the rate of growth of the number of instruments for
the case of Fourier series and polynomial series.

Note that the asymptotic bound for the model based on E(vy|z!) = 0 will be in
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general different from that of E(vi|z!,n,;) = 0, whose implications for linear projections
were discussed in the previous section.

Similarly, the bound for a version of the model with levels and differences restrictions
based on conditional mean independence assumptions cannot be obtained either as an
application of Chamberlain’s results. The reason is that the addition of the level’s
conditions breaks the sequential moment structure of the problem.

Let us now consider the form of the information bound and the optimal instruments
for model (69) together with the conditional mean assumption E(vy|zf) = 0. Since
E(n;|z]") is unrestricted, all the information about (3 is contained in E(vi — v;z+1)]2f) = 0
fort=1,...7T — 1.

For a single period the information bound is Jo; = F(d;d}, /wi) where d;y = E(x; —
zipeny|2t) and wy = El(vy — vigs1))?|2] (cf. Chamberlain, 1987). Thus, for a single
period the optimal instrument is m; = d;/w;, in the sense that under suitable regu-
larity conditions the statistic E(t) = (Zf\il mitAx;(t H))l (Zfil mitAyi(tH)) satisfies
VN (B(t) - f) 4N (0, J;;'). If the errors were conditionally serially uncorrelated, the
total information would be the sum of the information bounds for each period. So
Chamberlain (1992b) proposed the following recursive forward transformation of the

first-differenced errors:

51‘(T—1) = Vy(r-1) — VUiT

~ E[(Uz't - Uz‘(t+1))5i(t+1)|zf+1] E[(Uz't - Ui(t+1))5i(t+2)\zf+2]~

Vit = (Uz‘t - Ui(t+1)) - ZN%(tﬂ) - Vi(t42)
E(U?(tH) |2i7) E@;'Z(Hz) |272)
E Vit — U5 @IZ _ Z;Til .

E(@_ylz ™)

for t = T — 2,...,1. The interest in this transformation is that it satisfies the same

conditional moment restrictions as the original errors in first-differences, namely
E(vi|2) =0, (81)

but additionally it satisfies by construction the lack of dependence requirement:
E@ubigp) ) =0for j=1,..,T —t— 1. (82)
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Therefore, in terms of the transformed errors the information bound can be written

as
T-1

Jo =Y E(dyd}, /&) (83)

t=1
where dy = E(Zy|2!) and &y = E(92]2!). The variables Z;; and Jj; denote the corre-
sponding transformations to the first-differences of x;; and y;; such that vy = v;; — ., 0.
Thus, the optimal instruments for all periods are m;; = &;t /Wi, in the sense that under
suitable regularity conditions the statistic 8 = (Zfil S %thzt) - (Zf\il S ﬁuty’}t)
satisfies VN (3 — ) <, N(0,J5 ).

If the v;’s are conditionally homoskedastic and serially uncorrelated, so that E(vZ|z!) =
o? and F (vitvi(tﬂ)\zfﬂ ) =0 for j > 0, it can be easily verified that the v;;’s blow down

to ordinary forward orthogonal deviations as defined in (77):

~ 1 1,
Vit = Vit — )(Ui(t+1) +..+ur) = avit fort=T-1,..,1

(T-1)

In such case my = c;o 2F(x}]2!) so that

B = (Zimmzf)xzz) (ZZE il y) (84)

i=1 t=1 i=1 t=1
and
=
Jo=—5 D BB(}|2) B(wy]2)] (85)
t=1

If we further assume that the conditional expectations E(z}|2!) are linear, then

= LS Bl B B ) (6)

zzt

which coincides with the inverse of the asymptotic covariance matrix of the simple IV
estimator given in (78) under the stated assumptions. Note that the assumptions of
conditional homoskedasticity, lack of serial correlation, and linearity of F(x}|zf) would
imply further conditional moment restrictions that may lower the information bound for
(. Here, we merely particularize the bound for 3 based on E(vy|zl) = 0 to the case
where the additional restrictions happen to occur in the population but are not used in

the calculation of the bound.
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3.3 Finite Sample Properties of GMM and Alternative Esti-

mators

For sufficiently large N, the sampling distribution of the GMM estimators discussed
above can be approximated by a normal distribution. However, the quality of the ap-
proximation for a given sample size may vary greatly depending on the quality of the
instruments used. Since the number of instruments increases with 7', many overidentify-
ing restrictions tend to be available even for moderate values of T', although the quality
of these instruments is often poor.

Monte Carlo results on the finite sample properties of GMM estimators for panel data
models with predetermined variables have been reported by Arellano and Bond, 1991,
Kiviet, 1995, Ziliak, 1997, Blundell and Bond, 1998, and Alonso-Borrego and Arellano,
1998, amongst others. A conclusion in common to these studies is that GMM estimators
that use the full set of moments available for errors in first-differences can be severely
biased, specially when the instruments are weak and the number of moments is large
relative to the cross-sectional sample size.

>From the literature on the finite sample properties of simultaneous equations esti-
mators, we know that the effect of weak instruments on the distributions of 2SLS and
LIML differs substantially, in spite of the fact that both estimators have the same as-
ymptotic distribution. While LIML is approximately median unbiased, 2SLS is biased
towards OLS, and in the case of lack of identification in the population it converges to a
random variable with the OLS probability limit as its central value. In contrast, LIML
has no moments, and as a result its distribution has thicker tails than that of 2SLS
and a higher probability of outliers (cf. Phillips, 1983). Anderson, Kunitomo and Sawa
(1982) carried out numerical comparisons of the distributions of the two estimators, and
concluded that LIML was to be strongly preferred to 2SLS, specially in cases with a

large number of instruments.

LIML Analogue Estimators It is thus of interest to consider LIML analogues for

our models, and compare their finite sample properties with those of GMM estimators.
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Following Alonso-Borrego and Arellano (1999), a non-robust LIML analogue BL IML1

minimizes a criterion of the form

(v = X*B)'M(y" — X*f)
(y — X*B)'(y* — X*P)

where starred variables denote orthogonal deviations, y* = (y7, ..., y~¥), X* = (X7, ..., X¥)',

Z=(Zy,...2Z),and M = Z(Z'Z)~'Z'. The resulting estimator is

lo(B) = (87)

BL[ML:[ — (X*/MX* o ZX*/X*)fl(X*/My* o ZX*/y*) (88)

where  is the minimum eigenvalue of the matrix W*M W*(W*W*)~1 and W* =
(v, X7).

The estimator in (88) is algebraically similar to an ordinary single-equation LIML
estimator provided the model is in orthogonal deviations. This is so in spite of hav-
ing a system of equations, due to the fact that the errors in orthogonal deviations of
different equations are serially uncorrelated and homoskedastic under classical assump-
tions. However, the non-robust LIML analogue does not correspond to any meaningful
maximum likelihood estimator (for example, it does not exploit the homoskedasticity
restrictions). It is only a “LIML” estimator in the sense of the instrumental-variable
interpretation given by Sargan (1958) to the original LIML estimator, and generalized
to robust contexts by Hansen, Heaton, and Yaron (1996).

The robust LIML analogue B Limvre, or continuously updated GMM estimator in the

terminology of Hansen et al. (1996), minimizes a criterion of the form
~1
w(B) =ty = XY 2 (S Nz (D (9 %) 2 - X'B)  (89)

where u}(5) = yF — X/ . Note that LIML2, unlike LIML1, does not solve a standard

minimum eigenvalue problem, and requires the use of numerical optimization methods.!”

17Other one-step methods that achieve the same asymptotic efficiency as robust GMM or LIML
estimators are the empirical likelihood (Back and Brown, 1993, Qin and Lawless, 1994, and Imbens,
1997) and exponential tilting estimators (Imbens, Spady, and Johnson, 1998). Nevertheless, little is
known as yet on the relative merits of these estimators in panel data models, concerning computational

aspects and their finite sample properties.
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In contrast to GMM, the LIML estimators are invariant to normalization. Hillier
(1990) showed that the alternative normalization rules adopted by LIML and 2SLS were
at the root of their different sampling properties. He also showed that a symmetrically
normalized 2SLS estimator had similar properties to those of LIML. Alonso-Borrego
and Arellano (1998) considered symmetrically normalized GMM (SNM) estimators for
panel data, and compared them with ordinary GMM and LIML analogues by mean of
simulations. The main advantage of robust SNM over robust LIML is computational,
since the former solves a minimum eigenvalue problem while the latter does not. It
also avoids potential problems of non-convergence with LIML2, as reported by Alonso-
Borrego and Arellano.

The Monte Carlo results and the empirical illustrations for autoregressive models
reported by Alonso-Borrego and Arellano showed that GMM estimates can exhibit large
biases when the instruments are poor, while the symmetrically normalized estimators
(LIML and SNM) remained essentially unbiased. However, LIML and SNM always had
a larger interquartile range than GMM, although the differences were small except in

the almost unidentified cases.

3.4 Approximating the Distributions of GMM and LIML for
AR(1) Models when the Number of Moments is Large

Within-groups estimators of autoregressive models, and more generally of models with
predetermined variables, are known to be consistent as T' tends to infinity, but are
inconsistent for fixed T and large N (cf. Nickell, 1981, Anderson and Hsiao, 1981).
On the other hand, the estimators reviewed above are consistent for fixed T" but the
number of orthogonality conditions increases with 7T. In panels in which the value of
T is not negligible relative to N (such as the PSID household incomes panel in the
US, or the balance sheet-based company panels that are available in many countries),
the knowledge of the asymptotic behaviour of the estimators as both T" and N tend to
infinity may be useful in assessing alternative methods.

Alvarez and Arellano (1998) obtained the asymptotic properties of within-groups
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(WG), one-step GMM, and non-robust LIML for a first-order autoregressive model when
both N and T tend to infinity. Hahn (1998) also obtained the asymptotic properties
of WG under more general conditions. The main results can be summarized in the

following proposition.

Proposition 1 Let yi = ay;—1) +1; + vie, with vg|y; " m; ~ @dN(0,0?%), (t =1,..,T)
and yio|n; ~ Nn;/(1 — a),0%/(1 — a?)]. Also let n; ~ 1idN(0,07). Then, as both N and
T tend to infinity, provided T/N — ¢, 0 < ¢ < 2, within-groups, GMM1, and LIML1
are consistent for a. Moreover,

VNT [aGMMl - (a - %(1 + a)ﬂ 4 N(0,1 — a?), (90)

~ 1
VAT (G - (0 Grmgi )] £ NO -0 o
Also, provided N/T? — 0:

VNT {aWG - <a - %(1 + a))] < N(0,1 - a?). (92)

Proof: See Alvarez and Arellano (1998).'%

The consistency result contrasts with those available for the structural equation
setting, where 2SLS is inconsistent when the ratio of number of instruments to sample
size tends to a positive constant (cf. Kunitomo, 1980, Morimune, 1983, and Bekker,
1994). Here the number of instruments, which is given by T'(T" — 1)/2, increases very
fast and yet consistency is obtained. The intuition for this result is that in our context
as T tends to infinity the “simultaneity bias” tends to zero, and so closeness of GMM1
or LIML1 to OLS in orthogonal deviations (ie. within-groups) becomes a desirable
property.

Note that when 7'/N — 0 the fixed T results for GMM1 and LIML1 remain valid, but

within-groups, although consistent, has an asymptotic bias in its asymptotic distribution

18Here, for notational convenience, we assume that g, is also observed, so that the effective number

of time series observations will be T" + 1.
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(which would only disappear if N/T" — 0). However, when 7//N tends to a positive
constant, within-groups, GMM1, and LIML1 exhibit negative biases in their asymptotic
distributions. The condition that ¢ > 2 is not restrictive since GMM1 and LIML1 are
only well defined for (T'—1)/N < 1. Thus, for T'< N the GMM!1 bias is always smaller
than the within-groups bias, and the LIML1 bias is smaller than the other two.

Another interesting feature is that the three estimators are asymptotically efficient
in the sense of attaining the same asymptotic variance as the within-groups estimator
as T — oo. However, Alvarez and Arellano show that the standard formulae for fixed
T estimated variances of GMM1 and LIML1, which depend on the variance of the fixed
effect, remain consistent estimates of the asymptotic variances as T' — oc.

These results provide some theoretical support for LIML1 over GMM1. They also
illustrate the usefulness of understanding the properties of panel data estimators as
the time series information accumulates, even for moderate values of T: In a fixed T
framework, GMM1 and LIML1 are asymptotically equivalent, but as 7" increases LIML1
has a smaller asymptotic bias than GMMI1.

The Crude GMM Estimator in First Differences Alvarez and Arellano also
show that the crude GMM estimator (CIV) that neglects the autocorrelation in the
first differenced errors (ie. one-step GMM in first-differences with weight matrix equal
to(Z'Z)71) is inconsistent as T/N — ¢ > 0, despite being consistent for fixed T. The

result is:

% » (1+a) c
aerv AT T (2—(1—|—a)(2—c)/2) (93)

The intuition for this result is that the “simultaneity bias” of OLS in first differences
(unlike the one for orthogonal deviations) does not tend to zero as T — oo. Thus, for
fixed T" the IV estimators in orthogonal deviations and first differences are both consis-
tent, whereas as T increases the former remains consistent but the latter is inconsistent.
Moreover, notice that the bias may be qualitatively relevant. Standard fixed-T' large-N
GMM theory would just describe the CIV estimator as being asymptotically less efficient

than GMM1 as a consequence of using a non-optimal choice of weighting matrix.
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4 Nonlinear Panel Data Models

The ability to difference out the individual specific effect as was done in the previous
sections relies heavily on the linear or multiplicative way in which it entered the model.
Many simple cross sectional models have a constant that does not enter in this way. This
is for example true for all the limited dependent variable models discussed in Chapters
9 and 10 of Amemiya (1985). Introducing an individual specific effect as an individual
specific constant in those models, therefore results in models that cannot be estimated
by the methods discussed so far. As will be seen in the following sections, the currently
available methods for dealing with these models, rely on insights that are model-specific
and that do not always seem to be useful for similar, but slightly different models.
The main exception to this is the conditional maximum likelihood approach which has
been used to construct estimators for some exponential family models. We discuss this
method in the next section.

Unfortunately, there are many models for which it is not possible to use the condi-
tional likelihood approach to eliminate the individual specific effect. For some of those
models, alternative appoaches have been developed. In sections 6 and 7, we will review
some of the progress that has been made in the area of estimation of limited dependent
variable models with individual-specific, “fixed”, effects'?. This literature is closely re-
lated to the literature that deals with estimation of semiparametric limited dependent
variables models, in that it is usually not necessary to specify a parametric form for the
distribution of the underlying errors. The models are also semiparametric in the sense
that the distribution of the individual specific effects conditional on the explanatory
variable, is left unspecified. It is therefore not surprising that there is a close rela-
tionship between some of the approaches that are discussed here, and some approaches

that have been taken to estimation of semiparametric limited dependent variables mod-

9Even though one often imagines a random sample of individuals, and hence random draws of the
individual specifc effects, it is customary to call the effect “fixed” when no assumptions are made on its
relationship with other explanatory variables. A random effect is one which has been modelled in some

manner.
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els. Indeed, in some cases the estimators for the panel data models have preceded the
“corresponding” estimators for the cross sectional models.

The main limitation of much of the literature on nonlinear panel data methods, is
that it is assumed that the explanatory variables are strictly exogenous in the sense that
some assumptions will be made on the errors conditional on all (including future) values
of the explanatory variables. As was pointed out earlier in this chapter, many of the
recent advances in estimation of linear panel data models have focused on relaxing this
assumption. In section 8, we will discuss how some of the methods can be generalized
to allow for lagged dependent variables, but at this point very little is known about
estimation of nonlinear panel data models with predetermined explanatory variables.

The discussion of nonlinear panel data models in the next three sections will focus
entirely on standard nonlinear econometric models in which the parameter that is usually
interpreted as an intercept, is allowed to be individual specific. This seems like a natural
first step in understanding the value and limitations of panel data when the model of
interest is nonlinear. However, it is clear that knowing the “parameters of interest”
in the models discussed below does not always allow one to infer all the quantities of
interest. For example, in the fixed effects logit model below, knowing 3 will not allow
one to infer the effect of one of the explanatory variables on the probability distribution
of the dependent variable, although knowing the vector of (3’s will allow one to infer the
relative effects of the explanatory variables. This problem is due to the semiparametric
nature of the nonlinear models considered here, and is not particular to panel data. On
the other hand, if the censoring in equation (103) below is due to top— or bottom— coding
of the true dependent variable of interest, then the interpretation of the parameters of
the censored regression model is exactly the same as the interpretation of the parameters
of a linear panel data model. The same can sometimes be said for the selection models
discussed below.

Another limitation of most of the discussion here is that it focuses on the extreme case
where no assumptions are made on the relationship between the individual specific effect

and the explanatory variables. Whether a more “random” effects approach where some
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assumptions are made on how the distribution of this effect depends on the explanatory
variables is more useful, depends on the context (and one’s taste). In section 9 we
briefly discuss some recent advances in this area. We devote much less space to that
topic because many of the new developments there are by—products of developments in
other areas of econometrics. For example, recent developments in Bayesian econometrics
and in simulation—based inference have implications for nonlinear random effects panel
data models, but the main new insights are more general, and not really tied to panel

data.

5 Conditional Maximum Likelihood Estimation

In a static linear model, one can justify treating the individual specific effects as pa-
rameters to be estimated by reference to the Frisch-Waugh Theorem: OLS (or normal
maximum likelihood) on individual specific dummy variables is numerically equivalent to
OLS on deviations from means. This means that including individual specific dummies
yields a consistent estimator of the slope parameters (as n goes to infinity), even though
the number of parameters is also going to infinity. Unfortunately, as was pointed in the
classic paper by Neyman and Scott (1948), it is generally not the case that the max-
imum likelihood estimator will retain its nice asymptotic properties when the number
of parameters is allowed to increase with sample size. This is for example seen by con-
sidering the maximum likelihood estimator of the variance in a static linear panel data
model with normal errors: because the maximum likelihood estimator does not make
the degrees—of—freedom correction, it will be inconsistent if the number of parameters is
of order n.

Conditional maximum likelihood estimation is a method which, when it is applicable,
can be used to construct consistent estimators of panel data models in the presence of
individual specifc effects. The idea is as follows. Suppose that a random variable, y;,
has distribution f (+;0, ;) where 6 is the parameter of interest and is common for all

1, whereas «; is a nuicance parameter which is allowed to differ across ¢. A sufficient
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statistic, T}, for «; is a function of the data such that the distribution of the data given
T; does not depend on «;. However, it might well depend on 6. If that is the case, then
one can estimate 6 by maximum likelihood using the conditional distribution of the data
given the sufficient statistics. Andersen (1970) proved that the resulting estimator is
consistent and asymptotically normal under appropriate regularity conditions. In the
two subsections below, we give examples of how the conditional maximum likelihood
estimator can be used to construct estimators of the panel data logit and the panel data
poisson regression models.

The problem with conditional maximum likelihood estimation as a general prescrip-
tion for constructing estimators of nonlinear panel data models is that it is not always
possible to find sufficient statistics such that the conditional distribution of the data
conditional on the sufficient statistic will depend on #. This is the case for many of the

nonlinear models used in econometrics.

5.1 Conditional Maximum Likelihood Estimation of Logit Mod-

els

The simplest interesting nonlinear model for which the conditional likelihood approach
works, is the “textbook” logit model studied in Rasch (1960, 1961). With two time

periods and an individual specific constant we have,
yi = 1{zyB+a;+e4 >0 t=12 i=1,.,n

where €;; and €;, are independent and logistically distributed, conditional on «;, 1, x;o.

It follows that
exp (0 + o)
Pr i :]_LL'Z',LL'Z‘,O[Z‘ = 94
(i i1, Tiz, ) 1+ exp (zyf + o) (94)

In this case it is easy to see how the conditional likelihood approach “eliminates”

the individual specific effect. Define events A and B by A = {y;; = 0,42 = 1} and
B ={yin = 1,y;s = 0}. It is then an easy exercise to show that

Pr(ya =0,y = lya +yie = L, 21, Ti, ;) = (95)
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1

Pr(AJAU B, z;1, T2, o) 1+ exp ((zi1 — 212) B)

In words, if we restrict the sample to the observations for which y; changes, then the
individual specific effects do not enter the distribution of (v;1, yi2) given (x;1, 2, ;) and
the distribution of y;; given (z;1,x;2) has the form of a logit model with explanatory
variable x;; — x;o and coefficient . Intuitively, the implication is that if we restrict the
sample to the observations for which y;; changes over time, then 3 can be estimated by
estimating a logit in the restricted sample without having to specify the distribution of
the individual specific effects. In a sense, conditioning on ¥;; + ;2 = 1 has the same
effect as differencing the data in a linear panel data model.

More generally, if there are 7" > 2 observations for each individual, the conditional

distribution of (y;1, ..., ¥i) given ZtT:l Vit 18

exp (Zf:l yit£it6)
T
Z(d17~-~7dt)€B exp (thl dtxitﬁ)

T
P (yz-l,...,yit\Zyit,xﬂ,.”,x@-t,a@-> = (96)
t=1
where B is the set of all sequences of zeros and ones that have Zle diy = Zle Yit -
Formally this means that ZtT:l yi is a sufficient statistic for «;, and the implication is
that one can used (96) to estimate §. Chamberlain (1980) generalized (96) by deriving
the conditional likelihood for the multinomial logit model.

When T is large, the number of terms in the denominator of (96)will be large,
and and it can be computationally burdensome to calculate the conditional maximum
likelihood estimator. In that case one can estimate 3 by applying the logic leading to
(95) to all pairs of observations for a given individual. In other words, one can maximize

i exp (yi (T — xi5) B)
> (Z log <1 + exp ((Ti — Tis) 5)))

=1 s<t

Unless T" = 2, this objective function is not a (log—)likelihood, and it will generally
be less efficient than the conditional maximum likelihood estimator. The asymptotic

distribution of the estimator can be found by noting that it is an extremum estimator.
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5.2 Poisson Regression Models

The Poisson regression model with individual specific constants provides another ex-
ample in which the conditional maximum likelihood estimator can be used. This is a
special case of the multiplicative model discussed earlier. For simplicity, consider the

case where there are two observations for each individual:
Yir ~ po (exp(a; + z403)) t=1,2 1=1,...,n. (97)

One way to understand why the conditional likelihood approach will work in this model,
is to recall that if two independent random variables are both Poisson distributed with
means 4, and p,, respectively, then the distribution of one of them given the sum has a
binomial distribution with probability parameter u_lilﬁ and trial parameter given by the

sum of the two random variables. It therefore follows that if 3;; and y;» are drawn from

(97) and we restrict attention to the observations for which y;; + y;2 = K (say), then

) ~ . exp(milﬁ) . . . . . . . « .
yi1 ~ bi (K ) oxp(@nf)texp (@2 B))' Since this distribution does not involve the individual
specific effects, it can be used to make inference about 3. For example, one could

estimate 3 by maximizing
L= Z —Yi1 In (]. + eXp((IEiQ — le)b)) — Yi2 In (]. + eXp((!Ifil — Qﬁzg)b))

(see, for example, Hausman, Hall and Griliches (1984)).

Recent papers by Blundell, Griffith and Windmeijer (1997), and Lancaster (1997)
have pointed out that for the Poisson regression model, (97), the conditional maximum
likelihood estimator is identical to the maximum likelihood estimator of 3 based on
maximizing the likelihood function for (97) over b and all the individual specific effects,

Q5.

6 Discrete Choice Models with “Fixed” Effects

Manski (1987) made the first successful attempt of consistently estimating a nonlinear

panel data model with individual specific “fixed” effects in a situation in which the
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conditional maximum likelihood approach cannot be applied. His estimator is based on

the maximum score estimator (see Manski (1975)) for the binary choice model

yi = H{xif + & > 0} (98)

Since P (y; = 1| ;) = F_.,js, (z30) it follows that if Median(e;|z;) = 0 (uniquely),
then observations with z;0 > 0 will have probabilities greater than % and observations

with x;6 < 0 will have probabilities less than % In other words,
sgn (Pr (y; = 1]z;) — Pr(y; = 0|z;)) = sgn(z:0)

Under mild regularity conditions, this implies that E [sgn (2y; — 1) sgn (x;0)] is uniquely

maximized at b = 3, and the analogy principle therefore suggests estimating (3 by

g8 = arg méixZ; sgn (2y; — 1) sgn (z;b)

Under mild conditions, this estimator is consistent (see Manski, 1985), but it does not
converge at rate root—n and it is not asymptotically normal (see Cavanagh(1987) and
Kim and Pollard (1990)).2°

The insight behind Manski’s (1987) estimator of the (“non-logit”) binary choice
model with individual specific effects, is that under mild conditions, exactly the same
conditioning that leads from the logit model with individual specific fixed effects (94)
to a logit model without the individual specific “fixed” effects, (95), will also lead from

the model

yie = H{zgB+ai+e4 >0} t=12; i=1,...,n (99)

to a model in which the maximum score estimator can be applied. The key assumption

is that the distribution of ¢;; is stationary, in the sense that ¢;; and e;5 are identically

20Under assumptions that are slightly stronger than Manski’s, Horowitz (1992) proposed a smoothed
version of the maximum score estimator which does have an asymptotic normal distribution, although
the rate is, again, slower than root—n. The rate of convergence of Horowitz’s estimator depends on

the assumed degree of smoothness of the distribution of the explanatory variables.
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distributed conditional on (z;1, Z, ;). With this assumption, Manski showed that
Pr (yio = 1|z, Tio, Yir + Yiz = 1) § 1/2

depending on whether
(o — xi1) B ; 0.

The intuition for this result is simple. If the distribution of —&;; (and —&;5) for individual
i is F; (+), then the probability that y;; = 1 for individual i is F; (x;;0 + «;); this means
that for a given individual, higher values of x;( are more likely to be associated with
yit = 1.

Mimicking Manski (1975), this suggests a conditional maximum score estimator de-

fined by

3 = arg max Z sgn (Yi2 — ¥i1) sgn ((zi2 — 2i1)b) (100)
=1

If the panel is of length longer that 7', one can estimate 3 by considering all pairs of

observations

B = argmax > 3 (sen (s — g s (@10 — )t) (100)

i=1 s<t
As was the case for the cross sectional maximum score estimator, this estimator will
be consistent under mild regularity conditions. In particular, compared to the logit
model considered earlier, it not only leaves the distribution of the errors unspecified, but
it also allows for general serial correlation and heteroskedasticity across individuals (but
not over time). However, the estimator is not root—n consistent, and not asymptotically
normal.?!
Since on one hand, Manski’s estimator is not root—n consistent, but makes very weak

assumptions on the errors, and on the other hand assuming a logistic distribution on the

errors leads to a root—n consistent and asymptotically normal estimator, it is natural to

21 Kyriazidou (1995) and Charlier, Melenberg and van Soest (1995) have shown that the same trick
used by Horowitz (1992) to modify the maximum score estimator can be used to modify the conditional
maximum score estimator. This results in a smoothed conditional maximum score estimator which does

have an asymptotic normal distribution, although the rate is, again, slower than root—n.
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ask whether there are alternative assumptions on the errors that lead to a situation where
it is possible to estimate the §— vector at the usual root—n rate. Perhaps surprisingly,
the answer to that question seems to be negative. Subject to weak regularity conditions
Chamberlain (1993), showed that even if &;; in (99) are i.i.d. with known distribution
and independent of (z;1, 2, ), B can be estimated root—n consistently only in the logit
case.

It is clear that scale normalizations are needed in each period in order for § in (99)
to be identified. Both the logit version of (99) and Manski’s treatment impose such
scale normalizations. In the logit case, this normalization comes from the variance of
the logistic distribution. In Manski’s case it is through a scale normalization on (3
and through the assumption that the errors are identically distributed in the two time
periods. In addition to these scale normalizations, the estimators of (99) also assume
that the effect of the fixed effect is the same in the two periods. This is in contrast to the
linear model in which it is possible to estimate time specific coefficients (factor loadings)
on the fixed effect. It is clear that the logic behind the two estimators of the binary
choice panel data model discussed here would break down with such factor loadings, but

it is less clear whether they would make the model unidentified.

7 Tobit-Type Models with “Fixed” Effects

7.1 Censored Regression Models

The censored regression model is given by
yi = xif+e; (102)
yi = max{y;,c}

In text-book treatments, c is usually 0. Note that for ¢ = —oo, (102) becomes the
linear regression model, and that one can change the max to a min by a simple change
of sign. The censored regression model has been used in many different contexts. In

some, c is the lowest possible value that some economic variable can take, and y* is
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the desired level of that variable in the absence of this constraint. In other cases, the
censoring is induced by the way the data is constructed. For example, earnings variables
are sometimes top—coded for confidentiality reasons.

In a panel data context, the censored regression model may be described by

Vi = Taf+a;+ i (103)
Yy = max{y},c}
This model was introduced by Heckman and MaCurdy (1980) in the context of female
labor supply.

Because the individual specific effect a; does not enter linearly or multiplicatively, it
is not possible to “difference” it out as was the case for the linear regression model, and
it is also unclear under what conditions a conditional likelihood approach can be used to
eliminate a;. Honoré (1992) proposed a different approach to estimating [ in this model.
The motivation for the estimators given below is different from that in Honoré (1992)
because we want to motivate a larger class of estimators. Honoré (1992) also considered
estimation of the truncated version of the model. The latter is less interesting and will
not be discussed here.

The idea behind the estimator in Honoré (1992) is to artificially censor the depen-
dent variable in such a way that the individual specific effect can be differenced away.
This is similar to the approach in Powell (1986) who artificially censored the dependent
variable in a cross sectional censored regression model, in such a way that the moment
conditions for OLS apply. Specifically, one can define pairs of “residuals” that depend
on the individual specific effect in exactly the same way. Intuitively, this implies that

differencing the residuals will eliminate the fixed effects.

Define
Vst (b) = max {yis, ¢ + (45 — i) b} — max {c,c+ (x;5s — xi) b}
At b = 3, we have

Vist (B) = max{yis,c+ (255 — i) B} — max{c,c+ (z;s — ) B}

= max{o; + &is, ¢ — T35, ¢ — x4} — max {c — x;3, ¢ — x5}
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The key observation is that vy () is symmetric in s and t. Therefore, if ey,
t = 1,...,T, are independent and identically distributed conditional on (z;, «;), where
x; denotes all the explanatory variables for individual i, then v;4 (3) and vy, (5) are
independent and identically distributed (conditional on (x;,;)). This means that any
function of v;s () minus the same function of vy, () will be symmetrically distributed

around 0. We therefore have the conditional moment condition

E[(§ (¢ (vits (B)) — ¥ (vist (8))))| i, ai] = 0 (104)

for any increasing function % (-) and any increasing and odd function & (), provided
that the expectations are well-defined. The reason why # (-) and £ () are assumed to
be increasing will become clear shortly.

One could in principle consider estimation of 5 on the basis of (104). One problem
with this is that although [ satisfies (104), it does not follow from the previous discussion
that there are no other values of the parameter that also satisfy (104). However (104)

implies

E (€ (¢ (vits (8)) = ¢ (vist (8)))) (@i — wi)] = 0 (105)

which has the form
E 1 (Yis, Yit, (Tis — xit) B) (is — i) = 0 (106)

where 7 (-, -,-) is a monotone function of its third argument, because of the assumption
that 9 (-) and £ (-) are increasing®®. By integrating 7 (-) with respect to its third argu-
ment, one can typically turn (106) into the first order condition for a convex minimization
problem of the form

mbin E [R (yi57 Yit, (x’is - xit) b)] . (107)

20,5t () = max {yis, ¢ + (w5 — 24) b} —max {c, c + (w;5 — ;1) b} is monotone in (z;5 — x;;) b because
Yis > ¢ It therefore follows that & (¢ (vits (b)) — ¥ (vist (b)) depends on b only through (x;s — )b

and that it is monotone in (z;s — x) b.

93



The parameter 3 can then be estimated by minimizing a sample analog of (107). It
follows from standard results about extremum estimators that the resulting estimator
will be consistent and root-n asymptotically normal.

For example, with £ (d) =1 (d) = d, ¢ =0 and T' = 2, the function to be minimized
in (107) becomes

E [(max{yﬂ, Ax;b} — max{y;2, —Ax;b} — Amib)2

+2- 1{%’1 < Afﬁz‘b}(ﬁiﬂib — Y)Yz + 2 1{?/1‘2 < —AflSz‘b}(—AfEib - yi2)yi1]

which suggests estimating 5 by

B = arg mbmz (max{y;, Axb} — max{yip, —Azb} — Ax;b)?
i=1
+2- Hyn < Azb}(Axib — yi1)yo + 2 - Hyin < —Axib}(—Axib — yi2)ya

Letting & (d) = sign (d) and ¢ (d) = d, results in the estimator

B = arg mbin; (1= Ny < Axb,yin < 0})

(1= Hyiz < —Azib, yin < 0}) [yin — yio — Az
These are the estimators discussed in detail in Honoré (1992). Honoré and Kyriazidou
(1999) discuss estimators defined by a general ¢ (d) and £ (d) = d as well as ¢ (d) = d
and general £ (d). The case with panels of length 7" > 2 can be dealt with by considering
all pairs of time periods, s and ¢, as in (101)

The moment condition, (105), was derived from the assumption that e;; and e;
are independent and identically distributed conditional on (x;, ;). This assumption is
stronger than necessary. To see why, assume the conditional exchangeability assump-
tion that (g;,e,) is distributed like (e4,¢€;s) conditional on (x;, ;). This implies that
(¥ (vist (B)) , ¥ (vys (B))) is distributed like (1) (vis (8)) , % (vist (B))) , which in turn im-
plies that ¢ (vist (8)) — ¥ (vits (B)) is symmetrically distributed around 0 (all conditional
on (x;, a;)). The moment condition, (105) then follows.

The exchangeability condition is useful because it yields symmetry of ¥ (vis (5)) —

¥ (vits (B)), which then yields the moment condition for any choice of the odd function,
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&. On the other hand, if ¢ is the identity function, then the moment condition follows if
¥ (vige (B)) is distributed like ¥ (vys (3)), which is implied by €;5 and €;; being identically
distributed. In other words, the stationarity assumption that was the key to Manski’s
estimator for the panel data binary choice model, is also the key to the class of estimators
for the panel data censored regression model based on the moment condition (106) (and
the minimization problem (107)) with £ (d) = d, whereas the larger class of estimators
based on (106) with general ¢ seems to require the stronger assumption that €;; and €

are exchangeable.

7.2 Type 2 Tobit Model (Sample Selection Model)

Kyriazidou (1997) studied the more complicated model

Yie = TutBy + i+ e
Yoir = T2ify + Q2 + E2it
where we observe:
yie = 1{y5, >0} (108)
me= {0 e (109

This is a panel data version of the sample selection model that Amemiya (1985) calls
the Type 2 Tobit Model.

It is clear that 3, can be estimated by one of the methods for estimation of discrete
choice models with individual specific effects discussed earlier. Kyriazidou’s insight into
estimation of 3, combines insights from the literature on estimation of semiparametric
sample selection models with the idea of eliminating the individual specific effects by
first—differencing the data. Specifically, to difference out the individual specific effects
oo, one must restrict attention to observations for which 3, is observed. With this

“sample selection”, the mean of the error term in period ¢ is
it = B (€2 €10 > —m108 — 4, €145 > —T1is8) — a4, ()
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where (; = (Z1is, Tais, T1it, T2it, 41, Qi2). The key observation in Kyriazidou (1997) is
that if (€14, €211, €1is, €2is) and (€145, E2:s, E1it, €2i¢) are identically distributed (conditional

on (T1is, Tais, T1it, T2it, Vi1, O42) ), then for an individual, 4, who has x40, = %1504,

At = E(ean] 1 > —x1af1 — iy €1is > —T1isB1 — 14, () (110)
= K (52i5| €1is > —T1isP1 — iy €10t > — L1t — 014, G;)

= )\is-

This implies that for individuals with z143; = 21,503, the same first differencing that will
eliminate the fixed effect will also eliminate the efect of sample selection. This suggests
a two—step estimation procedure similar to Heckman’s (1976, 1979) two—step estimator
of sample selection models: first estimate ; by one of the methods discussed earlier,
and then, secondly, estimate 3, by applying OLS to the first differences, but giving more

weight to observations for which (214 — o145) 31 is close to zero:

n . -1
e ! T1it — Tlis
By = [Z Z (ot — X2is) (T2it — Tois) K <( 1 hnl )ﬂ1> ylitylis]

=1 s<t

- T1it — Tlis G
X [Z Z (@2t — T2is) (Y2ir — Yois) K <( - hnl )Bl> ylitylis]

=1 s<t

where K is a kernel and h,, is a bandwidth which shrinks to zero as the sample size
increases. Kyriazidou showed that the resulting estimator is v/nh,—consistent and as-
ymptotically normal.

Kyriazidou estimator is closely related to the estimator proposed by Powell (1987).
That paper considered a cross sectional sample selection model and applied the argument

leading to (110) to all pairs of observations, ¢ and j.

7.3 Other Tobit—type Models

As pointed out in Honoré and Kyriazidou (1999), the estimators proposed in Honoré
(1992) and Kyriazidou (1997) can be modified fairly trivially to cover the other Tobit—

type models discussed in Amemiya (1985). Consider for example, the Type 3 Tobit
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model with individual-specific effects,
Yrie = Tre1 + a1 + €1

*
Uit = T2itPy + Qo; + €2t

Yir = Yie i Y >0
W00 i oy, <0

Yo = Yoy if yiu >0
L0 i g, <0

In that model, the event

E = {ylz‘s > maX{Oa (l‘us — «’Elz‘t)ﬁl}; Y1it > maX{O, («’Eut - «’Eus)ﬁﬂ’}

is the same as the event

{é‘us > maX{—$1isﬁ1 — Oy, —Z1it3 — CYM-};

€13t > max{—T1;50; — Oy, — Tt — Oéh-}}

With the exchangeability assumption that (€15, €9it, €145, €2is) and (€15, €2is, E1it, E2it) ar€

identically distributed (conditional on (x1;5, Tois, T1it, T2it, i1, O2))
€1is — E1it :(y2is - yQit) - (fﬂzz‘s - ﬂfzit)ﬁg

is symmetrically distributed around 0 conditional on F and conditional on (x1;s, T2;s, T1it, Toit, Qi1, Qo)
This suggests a two-step approach, where the first step is estimation of 3; by one of the

estimators of the panel data censored regression, and the second step is estimates 3, by

By = arg mblnz Z 1 {yus > max{0, (z1;s — $1z't)/671}7

i s<t

it > maX{Oa (Jlut - l‘us)/@l}} = ((yzs - yz't) - (l‘z‘s — l‘z‘t) b)

where Z is some symmetric loss function such as = (d) = d? or =(d) = |d|.

The Type 3 Tobit model was also considered by Ai and Chen (1992) who presented
moment conditions similar to those implied by the two—step estimator above, although
they derived their conditions under the assumption that the errors are independent over

time.
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It is also straightforward to consider panel data versions of Amemiya’s Type 4 and

Type 5 Tobit Models. Let

*

Y = Tuefy + o+ e
*

Yoir = T2itfo + Qo + €23t
*

Yaie = T3t + Qi + €34

In the Type 4 Tobit model we observe (Y1, Y2it, Y3it) from:

Yt = max {07 Z/L't} (111)
o Yo iyl >0

Yair = { 0 otherwise (112)
S y3  ifyi, <0

Y = { 0 otherwise (113)

and we can estimate the parameters of this model by considering (111) and (112) as on
Type 3 Tobit model and (111) and (113) as a Type 2 sample selection model.
In the Type 5 Tobit model we observe (Y1, Yoit, Y3i) from:

Yt = 1{y:>fit > O} (114)
o Yo Ly =1

Your = { 0 otherwise (115)
o Y3 gy =0

Yaie = { 0 otherwise (116)

and we can treat the two outcome equations (115) and (116) separately and apply

Kyriazidou’s (1997) estimator to 5, and ;.

7.4 Monotone Transformation Models
Estimation of 3 in the cross sectional linear transformation model,
h(yi) = z:i8 + &, (117)

has been the topic of a large number of recent papers in econometrics and statistics.

In this model, 3 is often considered the primary parameter of interest with A and the

o8



distribution of € left unspecified except that h(-) is assumed to be monotone and e
independent of z. In some cases, h is assumed to be strictly monotone, whereas other
papers do not require this, in which case (117) contains both the binary discrete choice
and the censored regression model as special cases. When h is assumed to be strictly
monotone, one might think of (117) as a generalization of the Box—Cox model. It is
clear that 4 can only be estimated up to scale, unless a scale normalization is imposed
on h(-) or . In the following, we will therefore only be concerned with estimation of 3
up to scale.

In a recent paper, Abrevaya (1999) proposed an estimator of 5 in a fixed effects
version of (117),

he(yir) = 2348 + i + €t (118)

where h; (+) is assumed strictly increasing. His estimator is similar in spirit to that of
Han (1987) for the cross sectional transformation model. The key insight in Abrevaya’s
paper is to difference across individuals in a given time period, rather than across time

periods for a given individual,
hi(yie) — ha(yse) = (i — 250) B+ (i — o) + (et — €jt)-
Because h; is strictly increasing,

Pr(y: > yjt|$itaxisaaiaxjtamjsaaj) (119)

= Pr(é‘jt — & < (l‘it — !Ejt)/ﬁ + (CYz' - aj) ‘ Tit, Tis, Oy Tty Tjs, Oéj)

where the motivation for conditioning of the explanatory variables in both time periods
t and s, is that we will compare this probability in time period ¢ to the same probability
in time period s.

Assume that the errors are stationary (given the explanatory variables in all periods
and given the fixed effect). This is the same assumption that was made for the discrete
choice model and for the censored regression model. This assumption, combined with
random sampling, implies that the distribution of €, — ey (given (x4, Zis, i, Tjt, Tjs, )

is the same in the two periods. The right hand side of (119) can then be written as
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Fij ((xit — zj1)'6 + (0 — ). On the other hand, by simple inspection it is clear that
A%;,B > A$;ﬁ <~ ($it — $jt)/ﬁ + (Oéi — Oéj) > (mis — $js)//6 + (CYZ' — Oéj) (120)
where Az = x; — x,. Combining (119) and (120) we then have®

Az > Azif = (121)

Pr(ys > yji | Tis, Tat, 0, Tjs Tje, ) > Pr(yis > yjs | Tis, Tir, iy Tjs, T, @)
Equation (121) implies that the function
S(b) = E [sign ((Az; — Az;)'b) (1 (yie > yse) — 1 (vis > Yss))] (122)

is maximized at b = 3. For the case where there are only two time periods, Abrevaya

therefore proposed an estimator defined by maximizing the sample analog of (122),

Sn(b) = (Z) ZSlgn((Al‘Z — Aﬁj)/b)(l(yﬂ > ij) — 1(y11 > yjl)) (123)
i#]

Abrevaya (1999) showed that his estimator is consistent and (root—n) asymptotically
normal under appropriate regularity conditions. He also showed that although there
are n? terms in the sum in (123), it is possible to calculate the sum using O (nlog (n))
operations. The computational burden associated with the estimator is therefore much
smaller that it appears. The case with T' > 2 observations for each individual can again
be dealt with by considering all pairs of time periods.

Abrevaya (2000) proposed an estimator for a model which is more general than (118).
That estimator is based on the same idea as Manski’s (1985) maximum score estimator of
the panel data binary choice estimator. As is the case for the maximum score estimator,
it is possible to show that a smoothed version of Abrevaya’s estimator is consistent and

asymptotocally normal, although the rate of convergence is slower than root—n.

23Some smoothness of the distribution of the errors is needed for the inequality between the proba-

bilities to be strict.

60



7.5 Nonparametric Regression and Fixed Effects

Porter (1997) introduced individual-specific additive effects in a nonparametric regres-
sion model by specifying

Yir =y (Tir) + o + it (124)

where £;; has mean 0 conditional on all (past, current and future) values of the explana-
tory variables, x;;. Porter noted that (124) implies that the conditional mean of y; — y;s
given (xit xis) is £ (Tit, Tis) = my (i) —ms (245). The latter can be estimated by standard
techniques for nonparametric regression (see e.g. Hiirdle and Linton (1994)), and m; (+)
can then be recovered (except for an additive constant) by averaging ¢ over its second

argument.

7.6 Relationship with Estimators for Some Cross Sectional Mod-

els.

The estimators for the panel data versions of the discrete choice model, the censored
and truncated regression models, the sample selection model and the monotone trans-
formation model all have “cousins” for the cross sectional versions of the models. The
relationship is most easily understood by considering a simple cross sectional linear

regression model where the observations consist of 7.i.d. draws of
yi=a+zif+e (125)

In this model, any two observations have the same intercept, a. With some poten-
tial loss of information, one can therefore think of any two observations as if they are
from a (static) linear panel data model with 7" = 2. This suggests forming all pairs of
observations, and then estimating the slope—parameters, 3, in (125) by
5= argmin 3 (5 — ) — (s — )b’
i<j
It is an easy exersice to show that this is nothing but the OLS estimator of 3 in the

regression of (125).
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The same logic can be applied to nonlinear models. If the model under consideration
is such that the parameter § can be estimated from a two—period panel by, say, some

minimization problem

~

B = arg mbinzg (yila Yi2, Ti1, Ti2, b)

then a cross sectional version of the model can be estimated by

B= argmbinZg (Yir Yj, Ti, T, b) .

i<j
Honoré and Powell (1994) applied this insight to construct estimators for the cross
sectional censored and truncated regression models based on the panel data estimators
in Honoré (1992).

The panel data estimators for the discrete choice and sample selection models also
have cross sectional versions. If Manski’s (1987) estimator is applied to all pairs of obser-
vations from a cross sectional binary choice model, then the maximum rank correlation
estimator of Han (1987) results (although his motivation was quite different and his
estimator applies to a more general class of transformations models). Likewise, apply-
ing the logic behind Kyriazidou’s (1997) estimator of the sample selection model to all
pairs of observations in a cross sectional sample selection model results in the estimator
proposed by Powell (1987). It is interesting to note that the cross sectional estimator
that uses all pairs of observations is root—n consistent in both of these cases, although
the corresponding panel data estimator converges at a slower rate.

The situation is a little more complicated for the monotone transformation model
because the panel data estimator of that model is itself based on pairwise comparisons
across individuals. The cross sectional version that treats each pair of observations as
if they came from a panel of lenght 2, is therefore based on comparing pairs of pairs,
resulting in an estimator defined by a quadruple sum. This estimator is analyzed in
Abrevaya (1999).

Table 3 summarizes the relationship between the panel data estimators and their
pairwise comparison counterparts. It also lists the estimator for the cross sectional

model which we find to be closest in spirit to the panel data estimator.
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Type 3 Tobit

Monotone
Transformation

Table 3: Relationship between Panel Data Estimators

and Pairwise Comparison Estimators

Han (1987)

Honoré and
Kyriazidou (1999)

Abrevaya (1999)

Model “Motivating” Panel Data Pairwise
Estimator Estimator Comparison

Discrete . .

Choice Manski (1975) Manski (1987) Han (1987)

Censored , Honoré and

Regression Powell (1986) Honoré (1992) Powell (1994)

Selection Powell (1987) Kyriazidou (1997) Powell (1987)

Honoré, Kyriazidou
and Udry (1997)

Abrevaya (1999)

8 Models with Lagged Dependent Variables

With the exception of the models with multiplicative effects, the non—linear models dis-
cussed so far all assume that the explanatory variables are strictly exogenous. This
assumption is in sharp contrast to the discussion in the first part of this chapter which
focused on linear models with predetemined variables. The assumption of strict exogene-
ity is important. For example, with two time-periods, the basic idea in the logit model
was to consider the probability that y;; = 1 conditional on the explanatory variables in
both periods and conditional on y;; # ;2. If the explanatory variables include a lagged
dependent variable, then the conditioning set includes y;; and y;; # ;2. This means
that the probability is either 1 or zero and cannot be used to make inference about j.
By reviewing each of the other methods described in the previous section, it is clear that
the motivation for all of them is based on some statement about the joint distribution
of (yi1,vi2) given (x;1,x;2). If the explanatory variable in the second time—period, x;s,

includes the lagged dependent variable, y;; then the arguments fail.
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In this section, we will review some recently proposed methods for dealing with
lagged dependent variables in nonlinear models with fixed effects. It will be seen that
some progress has been made in this area, but that the methods that have been proposed
are case—specific and often lead to estimators that do not converge at the usual root-n
rate. One might conclude from this that it would be more fruitful to take a random
effect approach that makes some assumptions on the distribution of the individual—
specific effects. However, estimation of dynamic nonlinear models is very difficult even
in that case. The main difficulty is the so—called initial conditions problem: if one starts
observing the individuals when the process in question is already in progress, then the
first observation will depend on the dependent variable in the period before the sample
starts. Even if that is observed (or one drops the first observation) one will have to
deal with relationship between the first lagged dependent variable and the individual—
specific effect. That relationship will depend (in a complicated way) on the parameters
of the model, but also on the distribution of the explanatory variables in periods prior to
the start of the sample, which is typically unknown. In practice one might “solve” this
problem by assuming a flexible functional form for the distribution of the first observation
(see for example Heckman (1981b) for a discussion of this approach. One case where
one can ignore the initial conditions problem is when one can reasonably assume that
the process is observed from the start. For example, if the dependent variable is labor
supply and the sample consists of people observed (say) from the time they graduated
from high school, then there will be no initial conditions problem.

In the next three sub—sections we discuss some approaches that have been used to
generalize the limited dependent variable models discussed earlier to the case where one
of the explanatory variables is the lagged dependent variable. Very little is know about

how to deal with general predetermined variables in the models that we consider.
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8.1 Discrete Choice with State Dependence

Including a lagged dependent variable among the explanatory variables in the discrete

choice model with individual specific effects gives the model
Vit = L{xufB + VWir1+a; +ex >0 t=1,...T; i=1,..,n (126)

In its most general setting, this model allows for three sources of persistance (af-
ter controlling for the observed explanatory variable, z) in the event described by ;.
Persistance can be the result of serial correlation in the error term, ¢, a result of the
“unobserved hererogeneity”, «, or a result of true state dependence through the term
YYii—1. Distinguishing between these sources of persistance is important in many situ-
ations because they have very different policy implications. A policy that temporarily
increases the probabality that y = 1 will have different implications about future proba-
bilities in a model with true state dependence than in model where the persistance is due
to unobserved heterogeneity. See, for example, Heckman (1981a) for a discussion of this.
Distinguishing between persistance due to state dependence and due to heterogeneity is
also important because they sometimes correspond to different economic models. For
example, Chiappori and Salanie (2000) and Chiappori (1998) argue it can be used to dis-
tinguish between moral hazard and adverse selection. The pricing system in the French
automobile insurance market is such that the incentives for not having an accident are
stronger if the driver has had fewer accidents in the past. Thus suggests that accident
data should show true state dependence: having an accident this period should lower
the probability of an accident next period. On the other hand adverse selection suggests
that some drivers are permanantly more likely to have accidents, which corresponds to
the individual specific effect «; in (126).

It is clear that even if the errors are serially independent, the conditions discussed
earlier for conditional maximum likelihood estimation of the fixed effects logit model
are not satisfied because they implied that ¢ in time period t is independent of the
explanatory variables in time period ¢t — 1, — a condition which clearly fails when one

of the explanatory variables is the lagged dependent variable. By the same argument,
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the conditions for the conditional maximum score estimator will not be satisfied in the
presence of lagged dependent variable. On the other hand it is also clear that the two
sources of persistance in (126) have very different implications. For example consider the
case where there are no other explanatory variables: if there is no “state dependence”
(v = 0) then the sequence (0,1,0,1) would be as likely as the sequence (0,0,1,1). On
the other hand if v < 0 then the first sequence would be more likely, whereas the second
would be more likely if v > 0. As pointed out by Heckman (1978), this suggests that
one should be able to test for “no state dependence” in a model like (126). As will be
seen below, this observation can also be used to estimate v and [ in (126).

Consider first the special case of a logit model where the lagged dependent variable

is the only explanatory variable,
Yie = L{VWig1 +i+ep >0y t=1,...T; i=1,..,n

where €;; is i. i. d., independent of «;, and logistically distributed. Considering only the

first three observations (and the initial condition), we have

exp (VYis—1 + ;)
1+ exp (Vi1 + )

Pr (yir = 1o, Yio, - Yip—1) = t=1,2,3

It is then an easy exercise to see that

1
1+ exp (7 (yio — ¥i3))

Pr(ya = 0|y + vi2 = 1, a4, Yio, Yi3) =

which does not depend on «;, and which can therefore be used to make inference on
v (Chamberlian (1978)). More generally, with 7" observations for each individual, the

conditional distribution of of (y;1, ..., ¥ir) given yi1. 23:1 Yir and y;r is

) exp (7 S yityi,tfl)
n T
Z(dl,,..,dt)eB eXp ('Y thz dtdt—l)

where B is the set of all sequences of zeros and ones that have ZL diy = Zthl Yits

T
P <yi17"'7yiT|yilazyitvyiT7ai (127)

t=1

di1 = yi1 and dyy = y;r. Magnac (1997) presents similar results for the multinomial logit
version of this model. He also presents the conditional likelihood function for models

with more than one lag.
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Honoré and Kyriazidou (2000) modify the calculations leading to the conditional
maximum likelihood estimator of a fixed effects logit in such a way that it can be ap-
plied to (126). Specifically, assume that e; in (126) are i.i.d. logistically distributed
and that each observation is observed for at least four periods (three periods in which
both the exogenous variables and the dependent variable are observed, plus the initial
value of y). Unlike the case where the lagged dependent variable is the only explana-
tory variable, P (yil, s Ui | Yios Zle Yit> YiT'» {xit}tT:l ,ai) will in general depend on «;,
and the conditional likelihood approach will therefore generally break down. However
(considering the case with 7" = 3 for simplicity), Honoré and Kyriazidou (2000) showed
that

3 \ 1
P (yﬂ’ o Yis| Yo ;yit’ is, {ieimy s 0 Tiz = xi3> T 1+ exp((wa — @i2) B + ¥(Yio — ¥i3))
(128)
which does not depend on «;. This suggests estimating 3 and v by maximizing a con-
ditional likelihood function based on (128). However of one of the explanatory variables
is continuously distributed, there will typically be no observations for which x;; = x;o.
This is similar to the situation when one wants to estimate a conditional expectation of
one random variable given that another takes a particular value. One remedy in that
case is to use a kernel estimator to average over observations close to the value. Based
on this idea, Honoré and Kyriazidou (2000) estimate v and 3 by
(B.4) = argmaxy_ ya +y = 1}K (%) (129)

(b.g) i=1

x In ( exp((zin — Zi2)b + g(dio — diz))"" )
1+ exp((zi1 — zi2)b + g(dio — ds3))

124

where K(-) is a kernel** which gives the appropriate weight to observation ¢, and h — 0

as n — 00. The main limitation of this approach is that it uses only observations in

24The term K (M;—‘Lﬁ) in (129) plays the same role as the kernel does in non-parametric regression.
In a sample, there will be no two observatiosn for which z; = x; if x is continuously distributed.
However if the object of interest (typically the conditional expectation) is sufficiently smooth, then we
can use observations where x; is close to x;, where “close” is defined appropriately. See e.g. Hirdle and

Linton (1994) for a description of non—parametric regression.
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a neighborhood of z;5 = x;3, so it is necessary to assume that distribution of x;5 —
x;3 to have support in a neighborhood of 0. This rules out time-dummies. Honoré
and Kyriazidou (2000) give conditions under which this estimator is consistent and
asymptotically normal (although it does not converge at rate root—n), and they discuss
generalizations to general T', to multinomial models and to models with more lags.
The same trick as above can be used to modify Manski’s conditional maximum score

estimator in such a way that it applies to the model

Vi = LH{zaf + i1+ +e: >0 t=1,23; i=1,...,n

where ¢;; is i.i.d. (independent of («;, z;)) with distribution function F. With A and B

defined as before, we have

3
sgn (P (in = 1| yio, Zyihyi?n {iﬂz‘t}le , Oy Tijg = fEiS)

t=1

3
- P (yﬂ = 1| yiﬂazyitayii’n {xit}le y Oy Tijg = Jizs))

t=1
= sgn((zi2 — za)B +v(dis — dio))
Mimicking the logic in Manski (1987), this means that we can consistenty estimate (
and ~ up to scale by
RN - Ti2 — T53
, = argmax K|———
(ﬁ ,Y) & (b,9) Py < h
-sgn ((Tig — 231)b + g(diz — dio))

> sgn (yz'2 - Z/z‘1)

8.2 Dynamic Tobit Models

We next turn to the possibility of allowing lagged dependent variables to enter the
censored regression model considered earlier. Depending on the context, the relevant
lagged dependent variable is either the lagged observed variable or the lagged latent

(unobserved variable). Here, we consider only the former case. Specifically, assume that

L
yl-t:max{o,ai+xitﬂ+zwyz-,tg+eit}, t=1,....,T i=1,...,n. (130)
/=1
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Honoré (1993) demonstrated that for this model, it is possible to obtain moment
conditions that must be satisfied at the true parameter values. To see how this can be

done, assumed that v, > 0 for £ =1,..., L, and define “residuals” by

L

Vist(b, g) = max {0, (@i — Tis)b, Yis — Y géyi,té} —Z;tb.

=1
Then

L
Uz’st(ﬁv 7) max {07 («Tz‘t — l‘z’s)ﬁa Yit — Z Wyz‘,te} —z3
=1

= max{—zuf, —xis0, ; + it}

If {:Eit}le is strictly exogenous in the sense that ¢; and €;; are identically distributed

conditional on {z;},_, then for any function 1 (-),

E [ @ia(8,7)) = ¥ (wies (8, 7)) | {za} ] = 0 (131)

which suggests that (3, ) can be estimated by GMM. Honoré and Hu (2000) presents a
set of sufficient conditions under which (131) is uniquely satisfied at the true parameter
value. The most restrictive assumption is that x;; — z;s has support in a neighborhood
around 0, which rules out time-dummies.

Honoré and Hu (2000) also discuss how a modification of the same idea can be
used to construct moment conditions for model with general predetermined explanatory
variables, and Hu (2000) shows how to generalize the approach so that it can be used to
construct moment conditions for a model in which the lagged variables in (130) are the
lagged uncensored variables. This is, for example, the relevant model if the censoring is

due to top—coding.

8.3 Dynamic Sample Selection Models
Kyriazidou (1999) generalizes her approach to estimation of
Y = PoYi—1 T Tulbo + 05 + &y

Y = dity;kt

di = 1{¢odit—1 +wiryy +n; — uy < 0}
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This is the same model that Kyriazidou considered in her (1997) paper, except that
the model is now dynamic, with both the dependent variables, y}, and d;; depending
on their own lagged value. The key insight is to combine the insights from the dy-
namic linear panel data models with the insight in Kyriazidou (1997). For simplicity
assume that (&}, u;) is i.i.d. over time and independent of all other right hand side
variables. Applying the methods discussed in the first part of this chapter to observa-
tions for which y}; is observed in three consequetive periods (so di; = diy—1 = diz—2 = 1),
will result in a sample selection bias term which after first differencing has the form
E e} ui > ¢o + wiyo + 1) — E [€)_1| wir—1 > ¢ + wir—17o + ;). This sample selec-
tion term will be 0 for observations for whom w;;y, = wit—17,- The idea therefore is to
apply the methods discussed in the first part of this paper augmented by kernel-weights
that give more weight to observations for which w;7 is close to wy_17, where 7 is an
estimate of v, (using, for example, the method proposed in Honoré and Kyriazidou

(2000)).

9 “Random” Effects Models

Since little is known about how to deal with fixed effects in nonlinear models other than
the ones discussed above, it is often appealing to make assumptions on the distribution
of the individual effects. When the distribution of the error is parameterized completely,
then the resulting model is usually refered to as random effects model. As mentioned
in the previous section, this appoach is problematic in dynamic model if one does not
observe the start of the process. On the other hand, there are no conceptual difficulties in
estimating the parameters of a random effects model by maximum likelihood or methods
of moments if the explanatory variables are strictly exogenous, and the distribution of
the errors, €, is specified. The downside is that there might be practical difficulties in
implementing these methods, since the likelihood function and the conditional moments
will typically involve multivariate integration. In that case, simulation based inference

can be extremely useful. See for example Hajivassillou and Ruud (1994) or Keanne
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(1994). It is also straightforward to consistently estimate the parameters of certain
semiparametric random effects models. Consider for example the censored regression
model in Section 7.1. If the errors and the individual specific effects are independent
of each other and both are independent of the regressors, then 3 can be estimated by
applying one of the many semiparametric estimators of the censored regression model to
the pooled data set consisting of the observations for all ¢ and . The main complication
in that case is that one must correct the variance of the estimator to account for the
fact that the observations for a given i are not independent (because they all depend on
the same individual-specific effect).

A number of papers propose estimators of models that make assumptions that fall
between fixed and random effects models. These papers are motivated by the tradeoff
between the difficulties in estimating fixed effects versions of nonlinear models and the
fairly strong assumptions that one must make in a random effects approach. As an
example, consider the discrete choice model of Section 6. Following Chamberlain (1984),
if the individual specific effect, a;, happens to be of the form a; = Zthl x},y, +u; where
u; and the transitory errors, e;, are jointly independent of (z;1,...,z;7) then one can
apply an estimator of the semiparametric discrete choice model to the data for each
time—period to estimate (fyl, Yoy oo Vo1 Ve + By YVegts - ’7T) up to scale. These can then
be combined (via minimum distance) to obtain estimators of {v,};_, and 8 (up to
scale). In Chamberlain’s example, the €;’s and the u;’s were assumed to be normally
distributed, so the estimation could be done by probit maximum likelihood. Although
the functional form assumption made on the individual specific effect makes the model
much less general than the fixed effects model, it should be noted that the approach
does not require the transitory errors to be homoskedastic over time. This is in contrast
to the fixed effects estimators which all assumed some kind of stationarity of the errors.

Newey (1994) considered estimation of the Chamberlain’s model but with «; =
p(xi,...,zi7) + u; where the function p is unknown. If F; is the cummulative distri-

bution function for u; + ¢;; then

P (yit = Yz, ooy xir) = Fy (p(Ti1y ooy Tir) + Tit5)
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or
Ffl (P (yir = 1z, oo, ir)) = p (@i, ..o, Tir) + a5 (132)

When the errors are jointly normally distributed, this implies

Var[u; +€is) . 4

! (P(yit = 1| Zi1, ---,fﬁz‘T)) = % [u 4 5.t]

(P (yis = 1 @iy -os TiT))

1

m (l‘z’t - sz‘s) /8

Since discrete choice models can only be estimated up to scale, one can normalize
Var [u; + €] = 1 and then estimate (5 and y/Var [u; + ;5] by regressing a nonparametric
estimate of P (y;; = 1| x;1, ..., Ty7) on a nonparametric estimate of P (y;s = 1| 241, ..., Zir)
and on (r; — x;5). Newey (1994) derived the limiting distribution of this estimator.
Chen (1998) generalized the model further by allowing the distribution of the errors u
and ¢ to be unknown. His insight is to note that if one normalizes one of the components

1
(say, the first) of 5 to be one so § = < 3 > then (132) implies that

ffilt =—p (96@'17 ---wTiT) - fitfg + Ffl (P(yit = 1| Zi1, ---’sz‘T))

or

xy, — 2y, = — (T — Tis) B+ F7 (P (yie = 1| 2iny oos ir)) — FS (P (yis = 1| 21, ooy 2ir))

(133)
Here P (yy; = 1| @1, ..., xyr) and P (y;s = 1| 21, ..., zy7) can be estimated nonparametri-
cally and ,5’ can be estimated by observing that (133) is a partially linear regression
model of the type studied by e.g. Robinson (1988).

The idea of writing the individual specific effect as a; = p (21, ..., 1) +u; where u; is
treated as an error term can also be applied to the other models discussed above. See for
example Jacubson (1988) or Charlier, Melenberg and van Soest (2000) for applications
of this idea in the context of the censored regression model, and Nijman and Verbeek
(1992), Zabel (1992) and Wooldridge (1995) for a discussion of this approach in sample

selection models.
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In a linear model, there is no loss of generality in making assumptions of the form
o = Zle x},v,+u; because one can always interpret Zle x},7y, as the projection of «v; on
(i1, ..., Ti7). Making such an assumption in a non—linear model is much more restrictive.
In particular, if o; = p (21, ..., Tir) + u; where u; is independent of (x;1, ..., z;r) for some
T then the same assumption will typically not be satisfied for some other T". This means
that the model which is estimated (and which is assumed to be true) depends on the
number of time—series observations, the econometrician happens to observe.

Other alternatives to the “pure” fixed approach have been proposed. For example,
Lee (1999) makes assumptions on the joint distribution of the regressors and the indi-
vidual specific effects which allow him to construct a maximum rank correlation—type
estimator of the static discrete choice panel data model. Honoré and Lewbel (2000) ex-
ploit the assumption that one of the regressors is independent of the individual specific
effect to construct an estimator of a discrete choice panel data model with predetermined

explanatory variables.

10 Concluding Remarks

Our discussion has focused on two of the developments in panel data econometrics since
the Handbook chapter by Chamberlain (1984). In the first part of the paper we have
reviewed linear panel data models with predetermined variables, and in the second we
have discussed methods for dealing with nonlinear panel data models. Unfortunately, the
intersection of these two literatures is very small. With the exception of multiplicative
models and models where the only source of “predetermined—ness” is lagged dependent
variables, almost nothing is known about nonlinear models with general predetermined
variables. One step in this direction was taken in Arellano and Carrasco (1996). This is

an exciting area for future research.
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