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Simple Pricing Schemes for Pollution Control
under Asymmetric Information∗

Peter W. Kennedy, Benoit Laplante, and Dale Whittington

Abstract

Most policies for pricing pollution under asymmetric information proposed in the literature to
date are rarely – if ever – used in practice. This is likely due to their complexity. We investigate the
scope for using somewhat simpler policies that are more closely related to pricing schemes already
used by regulators in many jurisdictions. These schemes have a discrete block pricing (DBP)
structure whereby a given unit price for pollution is applied up to a specified level of pollution
for any given polluter, and a higher unit price is applied to any pollution from that polluter above
the specified level. If the same price schedule is applied uniformly to all firms, we call it UDBP.
We derive the optimal UDBP schedule for any given number of price blocks. We also derive
the optimal limiting case of the UDBP schedule (with an infinite number of price blocks) as a
uniform linear increasing marginal price schedule (ULIMP). The optimal ULIMP scheme strikes
a balance between the information-related benefits of increasing marginal prices on one hand, and
an increase in aggregate abatement cost, due to the non-equalization of marginal abatement costs
across firms, on the other. In particular, the optimal schedule is steeper with larger aggregate
uncertainty about marginal abatement costs, and flatter with more observable heterogeneity across
firms. We then compare our price schemes with those proposed by Weitzman (1978) and Roberts
and Spence (1976).

KEYWORDS: pollution control, pollution pricing, asymmetric information

∗We are grateful to the editor and to two anonymous referees for many substantive and useful
suggestions.



  

 

 

1. INTRODUCTION 
 

The literature on pollution pricing under asymmetric information has proposed a 

variety of innovative regulatory schemes derived from mechanism design theory, 

but these schemes are rarely used in practice.
1
 A key obstacle to the 

implementation of these policies is their complexity, as perceived by the 

regulators tasked with drafting actual statutes, and by regulated firms who 

demand regulatory simplicity. In particular, these schemes typically require the 

implementation of firm-specific pricing whereby each regulated entity faces a 

pricing scheme tailored to fit its own individual characteristics. This requirement 

is not easily reconciled with the practical realities of real-world regulation. 

 Many regulators have nonetheless shown a willingness to use pricing 

schemes that go beyond a single unit price for pollution. A number of 

jurisdictions within the U.S. and in other parts of the world use “stepped rates” – 

or discrete block pricing (DBP) schemes – whereby a given unit price for 

pollution is applied up to a firm-specific level for each polluter, and a higher unit 

price is applied to any pollution from that polluter above the specified level. 

Similar pricing schemes are often used by water and electricity utilities.
2
 These 

schemes typically apply the same price schedule to all firms and so retain a degree 

of simplicity sufficient to allow manageable implementation. The most common 

rationale for such schemes is to create strong abatement incentives for large 

polluters while not imposing a high unit price on all polluters.  

 In this paper we show that a DBP-type scheme can also provide an 

imperfect but relatively simple approach to regulation under asymmetric 

information, one that does not require a dramatic departure from actual regulatory 

practice. The pricing schemes we develop allow the regulator to apply the same 

price schedule to all firms – a property we will call uniform treatment – and hence 

possess a simplicity of structure that might facilitate actual adoption. The obvious 

downside with these schemes is that different sized polluters pay different prices 

on their marginal unit of pollution. Consequently, marginal abatement costs 

(MACs) are not equated across pollution sources, and marginal damage may be 

higher or lower than those MACs. The policy design problem is to balance the 

costs of this shortcoming with the information-related benefits of a price schedule 

in which the marginal price of pollution rises with each firm’s level of pollution. 

This policy design problem is the focus of our paper. 

                                                                                                                                     
1
 See Lewis (1996) for a comprehensive discussion of these regulatory schemes. 

2
 Kaplow and Shavell (2002) point out that such schemes are also familiar to regulators in the 

context of progressive income tax systems. 
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 We address this problem in the context of an admittedly restrictive model 

in which MACs and marginal damage are linear, and in which the information 

asymmetry is limited to the intercept of the MAC schedule (rather than the slope). 

These limitations necessarily restrict the generality of our specific results, but they 

allow the derivation of sharp analytical solutions which in turn shed light on the 

key elements of the policy design problem.  

 We study two types of pricing schemes. The first is a true DBP scheme 

with a finite number of price steps. We derive an analytical solution for the 

optimal DBP scheme for any given number of price steps, and then show that 

under particular conditions, the optimal number of price steps is infinite; that is, 

the optimal scheme is a continuous, and linear, increasing marginal price (LIMP) 

schedule. We then examine this LIMP scheme and show that its optimal structure 

strikes a  balance between the information-related benefits of increasing marginal 

prices on one hand, and an increase in aggregate abatement cost on the other, due 

to the non-equalization of MACs across firms. 

 We then relate our price schemes to those proposed by Weitzman (1978) 

and Roberts and Spence (1976). Weitzman examines a hybrid price-quantity 

scheme in which a traditional Pigouvian tax is combined with a penalty for 

deviating from a prescribed firm-specific quantity target. The hybrid scheme 

effectively provides a “safety valve” for a quantity target that is too restrictive ex 

post, and at the same time limits the overshooting that would arise from a tax that 

is too lax ex post. We show that the Weitzman scheme is equivalent to a LIMP 

scheme in which each regulated firm faces a different LIMP schedule, with an 

intercept tailored to its individual expected abatement cost.  This discrimination 

across firms means that expected MACs are equated across sources, and hence 

that expected abatement cost is minimized. This is a key advantage over a LIMP 

scheme with uniform treatment like the one we examine, but it comes at the cost 

of increased regulatory complexity; the regulator cannot simply specify a price 

schedule that applies to all firms.  

 Roberts and Spence (1976) propose a different sort of hybrid price-

quantity scheme, using a combination of charges and tradable licenses. Their 

scheme can be interpreted as a DBP scheme in which firms are entitled to trade 

unused portions of the price blocks. Adding the possibility of trade improves the 

performance of a DBP scheme because trade ensures that MACs are equated 

across firms in equilibrium, and this equality holds ex post, not just in expectation. 

On the other hand, trade adds an element of administrative complexity to the 

pricing scheme that regulators may find unattractive relative to a DBP scheme 

without trade. Moreover, the optimal policy parameters in the Roberts and Spence 

scheme can be calculated analytically only under very special conditions. 

 The rest of our paper proceeds as follows. In section 2 we present the 

model in which we examine the regulatory problem.  In Section 3 we characterize 
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the Pigouvian tax in the context of that model as a useful benchmark for the 

analysis of the DBP-type schemes. In section 4 we derive the optimal DBP 

scheme and its limiting form as a LIMP schedule.  In section 5 we derive the 

optimal LIMP schedule under more general conditions. In Section 6 we relate our 

pricing schemes to those proposed by Roberts and Spence (1976) and Weitzman 

(1978), and in section 7 we examine the relative performance of these schemes. 

Section 8 provides some concluding remarks. All reported proofs are contained in 

the Appendix. 

 

 

2. THE MODEL 
 

Our model has  N regulated firms. The MAC for firm i is given by  

 

(1)  
a

ex
eMAC ii

ii

−
=)(  

 

where ie  is emissions by firm i, ix  is the unregulated (or no-abatement) level of 

emissions for that firm, and a  is a positive parameter.  Thus, ii ex −  measures 

abatement.  Note that firms differ with respect to their MAC intercepts ( ix ) but 

share the same slope parameter.
3
  We assume that individual firms know their 

own ix  but the regulator faces uncertainty over this parameter.  In particular, from 

the perspective of the regulator, 

 

(2)  η++= iii vzx  

 

where iz  is observable, iν  is an unobserved idiosyncratic random variable, and η  

is an unobserved industry-wide random variable.  We assume that η  is drawn 

from a distribution with 0][ =ηE  and 22 ][ ρη =E ; the iv ’s are drawn from 

                                                                                                                                     
3
 This specification of marginal abatement cost is common in the literature; for example, see Adar 

and Griffin (1976), Blair (1985) and Stavins (1996). Our assumption that the slope of the MAC 

function is the same across firms and known by the regulator is clearly restrictive. We adopt it 

because it facilitates the derivation of analytical solutions. Relaxing this assumption means that 

our optimal pricing schemes must be derived numerically, as do the alternative schemes to which 

we compare our results in sections 6 and 7. This is not necessarily an obstacle to their 

implementation, but it does render comparative analysis less transparent. For treatments of optimal 

regulation under slope uncertainty (though not in the context of DBP-type schemes), see Watson 

and Ridker (1984) and Hoel and Karp (2001).  
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independent and identical distributions with 0][ =ivE  i∀  and 22 ][ ω=ivE  i∀ ; 

and η  and iv  are independent. It is worth noting that these assumptions on the 

random variables together mean that ii zxE =][ . We let v  denote the mean of the 

realized iv ’s. Note that v  will generally not be equal to zero (if N is finite and 

02 >ω ); it is a random variable from the perspective of the regulator.
4
 This has 

important implications for the policy design problem under the Roberts and 

Spence (1976) scheme in particular. 

 Firms differ according to the realized value of their iv  parameter (which 

we call unobservable heterogeneity) but they also potentially differ according to 

their observable parameter iz  (which we call observable heterogeneity).  We will 

see later that this distinction is important for the policy design problem. The mean 

and variance of the observed iz ’s are denoted 0>z  and 2σ  respectively.  

 We assume the following proportional marginal environmental damage 

schedule: 

 

(3)  ∑
=

=
N

i

ieMD
1

δ  

 

where 0≥δ .  Emissions are assumed to be observable and verifiable.
5
 

Throughout our analysis we assume that the first-best solution is always an 

interior one (with positive emissions for all firms).
6
 

 

                                                                                                                                     
4
 One should think of v  as the mean of a sample of size N drawn from a population whose mean 

is zero and whose variance is 2ω . 
5
 If emissions are observable, then it might seem reasonable to suppose that the “no abatement” 

emissions level should also be observable prior to the implementation of policy. In reality, most 

firms currently face some form of regulation that causes actual emissions to deviate from their no-

abatement emissions. We envisage a setting where the regulator is moving to a new form of 

regulation based on emissions pricing, and where current emissions may not correspond to the no-

abatement level, due to existing regulations. 
6
 This is not an unrestrictive assumption. In particular, it must be violated when 02 >ω  or 02 >σ  

and N is sufficiently large (because our MAC has a finite intercept). This means that one cannot 

infer anything from taking the limit as ∞→N  in any of our results. This limitation is not 

especially important from a practical perspective, but it does explain why the reader might arrive 

at puzzling results if tempted to examine this limiting case.  

4
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3. THE PIGOUVIAN TAX 
 

The Pigouvian tax – levied on a per unit basis – is the textbook benchmark for 

pollution pricing, and it is useful to characterize the properties of the tax in this 

setting in order to later compare it to the other pricing schemes. It should be noted 

that the Pigouvian tax we derive here is the second-best Pigouvian tax, as distinct 

from the first-best tax that would be levied in the absence of uncertainty about 

abatement cost, because it is set ex ante (before the uncertainty is resolved). For 

the sake of brevity, we henceforth simply use the term “Pigouvian tax” to refer to 

this second-best per unit tax. Moreover, we restrict attention to a setting in which 

the regulator makes a once-and-for-all choice of the tax rate (rather than one in 

which the rate can be adjusted over time, a possibility discussed further below).  

 If the regulator imposes a per unit tax t on emissions, then the cost-

minimizing response by firm i is 

 

(4)  atxte ii −=)(  

 

The regulator’s problem is to choose the tax rate that minimizes expected social 

cost (aggregate abatement cost plus environmental damage), given the response 

behaviour in equation (4):  

 

(5)  
t

min  )]()([E tDtC +    s.t   atxte ii −=)(  i∀  

 

where C(t) is aggregate abatement cost, given by 

 

(6)  ∑
=








 −
=

N

i

ii

a

tex
tC

1

2

2

)]([
)(  

 

and D(t) is environmental damage, given by 

 

(7)  
2

)(

)(

2

1









=
∑
=

N

i

i te

tD

δ
 

 

Given our assumptions on the random variables, the solution to this problem is 

 

(8)  
Na

Nz
t

δ
δ

+
=

1

*  
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In response to this tax, emissions from firm i are  

 

(9)  
Na

Nazxx
te ii

i δ
δ

+

−+
=

1

)(
)( *  

 

In comparison, first-best (full information) emissions from firm i are 

 

(10)  
Na

Naxxx
e ii

i δ
δ

+

−+
=

1

)(*  

 

where Nxx
N

i i∑ =
=

1
. Thus, emissions from a given firm under the Pigouvian tax 

will differ from the first-best emissions level for that firm by an amount 

proportional to the difference between the average of the true no-abatement 

emission levels for the industry (x) and the regulator’s expectation of that industry 

average (z).  

 The potential for error under the Pigouvian tax is illustrated in Figure 1, 

where emissions are measured on the horizontal axis. It illustrates a simple case 

with only one regulated firm and just two possible states of the world. In state A 

the firm has AMAC  and in state B the firm has BMAC . The Pigouvian tax is 

based on the expected MAC, labeled E[MAC]. The firm will respond to that tax 

with emissions )( *teA  if it has AMAC  and with emissions )( *teB  if it has BMAC . 

In comparison, the first-best emission levels are *

Ae  and *

Be  respectively. Thus, the 

expected welfare loss under the Pigouvian tax – relative to first-best – is the 

probability-weighted sum of the two shaded areas. 

 Figure 1 illustrates the basic problem the regulator faces in attempting to 

price emissions under uncertainty, about abatement costs; it also serves to 

illustrate a potential solution. If the regulator abandons the per-unit Pigouvian tax 

approach and instead simply presents the firm with a price schedule that 

corresponds to the MD function then it is clear from the figure that the firm will 

always choose the first-best level of emissions, regardless of whether its true 

MAC schedule is AMAC  or BMAC . 

 This well-known result – identified by Dasgupta et. al. (1980) and 

exposited more accessibly by Kaplow and Shavell (2002) – illustrates the 

information benefits of using a pricing scheme in which the marginal price on 

emissions rises with the level of emissions. If the firm in Figure 1 has AMAC  then  

6
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FIGURE 1 

 

 

a lower marginal price is needed to ensure the right balance between MAC and 

MD; conversely, if the firm has BMAC  then a higher price is required.  A price 

schedule in which the marginal price rises with the level of emissions allows this 

lower or higher price to arise endogenously without the regulator needing to know 

the true MAC schedule.  In the case of a single firm, this kind of pricing scheme 

achieves the first-best solution.  

 The pricing problem becomes more complicated when the setting involves 

two or more firms, because MACs will generally not be equated across firms – 

and so aggregate abatement cost will not be minimized – unless all firms face the 

same price on their marginal unit of emissions. This condition cannot be satisfied 

if different firms face the same increasing marginal price scheme. One potential 

solution to this problem is to use a hybrid tax-quantity scheme that effectively 

confronts different polluters with a single price [Roberts and Spence (1976) and 

Weitzman (1978)]. These schemes add a layer of regulatory complexity beyond 

simple pricing schedules with uniform treatment. An alternative solution is to set 

a single Pigouvian tax rate for all firms but to adjust that tax rate over time 

towards its optimal level in response to the observed behaviour of firms [Karp and 

Livernois (1994) and Kaplow and Shavell (2002)]. This approach is vulnerable to 

7
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strategic gaming by the regulated firms and requires continual regulatory 

revisions. Our goal in the following sections is to design a once-and-for-all 

pricing scheme that retains the regulatory simplicity of a policy in which all firms 

in the industry face the same fixed price schedule but which optimally balances 

the information benefits of a rising marginal price with the costs associated with 

forcing MACs to differ across firms in equilibrium. 

 

 

4. DISCRETE BLOCK PRICING  
 

We begin with a DBP scheme with a finite number of blocks (or steps) and 

associated unit prices. (Most such schemes in practice have just two blocks). 

Critically, the same price schedule is applied to all firms in the regulated industry 

or region. We will refer to such a scheme as exhibiting uniform treatment (a 

UDBP scheme).  

 To enable the derivation of an explicit analytical solution for the optimal 

UDBP scheme, we initially restrict attention to a simplified case in which 

02 >ω , but 02 =σ  and 02 =ρ . This implies unobservable heterogeneity across 

firms ( 02 >ω ), where all firms are the same in expectation ( 02 =σ ), and  no 

industry-wide uncertainty ( 02 =ρ ).  This is the simplest possible setting in which 

to capture both uncertainty and heterogeneity across firms, and thus create a 

meaningful trade-off in the policy design problem. These assumptions are 

retained for the remainder of section 4. 

 Consider a UDBP scheme with m discrete price blocks and m associated 

unit prices, of the form:  

 

(11)  1p  for ],0[ 1bei ∈    and   jp  for ],( 1 jji bbe −∈  for mj ,...,2=  

 

That is, firm i pays a price 1p  per unit on its emissions up to 1b , a higher unit 

price 2p  on its emissions greater than 1b  but not exceeding 2b , a still higher unit 

price 3p  on its emissions greater than 2b  but not exceeding 3b , and so on.  Such a 

scheme is illustrated as the step function labeled *
UDBP in Figure 2, for the case 

of 3=m ; ignore the line labeled )(* ep  for now. Facing such a price scheme, firm 

i will respond in the following way: 

 

(12)  


 −
=

j

ji

i b

apx
bpe ),(      if     





+≤≤+

+<<+

+

−

1

1

jjijj

jjijj

apbxapb

apbxapb
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The regulator’s problem is to choose },{ jj bp  to minimize the sum of )],([E bpD  

and )],([E bpC . The first-order conditions for this problem are given by equations 

(A2) – (A6) in the Appendix. It is generally not possible to solve these conditions 

for a closed form solution, even for a specified distribution for iv . An exception is 

where iv  has a uniform distribution, and the following proposition describes the 

optimal UDBP scheme in that case. 

 

PROPOSITION 1. If 02 =σ  and 02 =ρ , and iv  is distributed uniformly with 

support  ],[ ξξ− , then the optimal UDBP scheme is given by },{ **

jj bp , where 

 

(13)  )]()12(1[ **
mmjtp j γ−−+=  

 

(14)  )]()2(1[ ̂*
mmjNeb j γ−+=  

 

(15)  
])1([

)1(
)(

δ
ξδ

γ
ammzN

Na
m

−+
+

=  
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and where 

 

(16)  
Na

z
e

δ+
=

1
ˆ  

 

is the emissions level for the average firm under the Pigouvian tax, *
t .  

 

COROLLARY. The optimal UDBP scheme described in Proposition 1  

(a) reduces to the Pigouvian tax when 1=m . 

(b) is symmetric around the Pigouvian tax; that is, 

 

 (i) for m odd: *

2

1 tp m =+  

 (ii) for m even: *1

2

22 t
pp mm

=
+

+
 

 

This property is illustrated in Figure 2, where *
t  passes through the “center” 

of the UDBP schedule.  

(c) is symmetric around the linear function ceep += δ)(* , where 

 

Na

Nz
c

δ
δ
+

−
=

1

)1(
 

That is,  

 

cb
pp

j

jj +=
+ + δ
2

1
  ]1,1[ −∈∀ mj  

and 

e
ee jmj ˆ
2

~~
1 =

+ +−
  ],1[ mj∈∀    where  ll pce =+~δ  

 

This property is also illustrated by the line labeled )(* ep  in Figure 2. 

(d) has uniform price steps (above 1p ) and uniform price blocks (above )1b ; that 

is,  

(i) jmjmjj pppp −−++ −=− 11  j∀  

(ii) 11 −+ −=− jjjj bbbb  j∀  

(e) approaches the Pigouvian tax as uncertainty vanishes; that is, **
tp j →  j∀   as 

0→ω . 

10

The B.E. Journal of Economic Analysis & Policy, Vol. 10 [2010], Iss. 1 (Advances), Art. 12

http://www.bepress.com/bejeap/vol10/iss1/art12



  

 

 

 It is important to note that these specific properties of the optimal UDBP 

scheme are based on the assumption that iv  is distributed uniformly. Departures 

from this assumption will typically yield different results. To provide a sense of 

this sensitivity we next present two examples that we have solved numerically, in 

which iv  is assumed to have a beta distribution with parameters 1η  and 2η , 

normalized to have support ]1,1[−  and zero mean.
7
 In each example the following 

parameter values are assumed: 25.0=a , 25.0=δ , 2=z  and 2=N . The 

benchmark for comparison is a uniform distribution with support ]1,1[− . 

 First consider a symmetric beta distribution with 321 ==ηη . The 

corresponding optimal UDBP scheme (for 3=m ) is illustrated by the dashed line 

in Figure 3, alongside the optimal scheme associated with the benchmark uniform 

distribution (the solid line).  Note that the greater central tendency of the beta 

distribution means that the UDBP scheme under that distribution is flatter and has 

a narrower central price block than the scheme under a uniform distribution. Both 

schemes are nonetheless symmetric around the Pigouvian tax (labeled PT in the 

figure) and around the )(* ep  function identified in the Corollary to Proposition 1.  

 Next consider a skewed beta distribution with 21 =η  and 32 =η . The 

median of this distribution is below the mean. The corresponding optimal UDBP 

scheme (for 3=m ) is illustrated in Figure 4 (dashed line), alongside the optimal 

scheme associated with the benchmark uniform distribution (solid line). The key 

feature of the UDBP scheme in this case is that it is not symmetric around the 

Pigouvian tax nor around the )(* ep  schedule. The UDBP schedule under the 

skewed distribution is skewed to the right relative to the symmetric case, 

reflecting the fact that more than half the firms have an abatement cost below the 

mean.  

 These numerical examples point to important limitations of the UDBP 

scheme: its optimal structure is sensitive to distributional assumptions; and the 

solution is not straightforward to derive analytically except where iv  has a 

uniform distribution. These shortcomings can be traced to the sharply 

discontinuous nature of the pricing scheme associated with the finite number of 

price blocks. It is therefore natural to ask whether we can do better under a 

scheme with more continuity. Proposition 2 provides a partial answer. 

 

                                                                                                                                     
7
 The uniform distribution is a special case of the beta distribution where 121 ==ηη . Higher 

values of 1η  and 2η  yield a distribution with more central tendency than the uniform distribution. 
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PROPOSITION 2. If iv  is distributed uniformly with support  ],[ ξξ− , then the 

optimal UDBP scheme has an infinite number of price blocks.  

 

 This is an intuitive result, and our conjecture is that it generalizes to any 

distribution – and numerical simulations support that conjecture – but we have not 

been able to construct a complete proof of the result beyond the case of the 

uniform distribution. We can however demonstrate the following result. 

 

PROPOSITION 3. The optimal UDBP scheme for any given number of blocks 

m converges to the continuous price schedule ceep += δ)(*  (as defined in the 

Corollary to Proposition 1) in the limit as ∞→m , for any distribution of iv  for 

which the cumulative density is differentiable.  

 
 This result tells us that the optimal continuous price schedule is linear. 

This too is an intuitive result in view of the assumed linearity of MACs and 

marginal damage in our model. The result – coupled with Proposition 2 and our 

conjecture regarding its generality – suggest that a continuous linear pricing 

scheme is superior to a UDBP scheme with a finite number of price blocks. 

Moreover, such a scheme is easier to derive than the UDBP scheme under fairly 

general conditions. We investigate the optimal linear pricing scheme in the next 

section. 

 

 

5. THE OPTIMAL ULIMP SCHEME 
 

Recall that our results in section 4 were based on a simplified setting in which 

02 =σ  and 02 =ρ . In this section we relax those assumptions and allow 02 >σ  

and 02 >ρ , together with 02 >ω . We do not impose any other distributional 

assumptions on the random variables. 

 Suppose all firms face an emissions price schedule of the form 

 

(17)  kseep ii +=)(  

 

where s and k are parameters set by the regulator.  That is, the unit price on a 

firms’ emissions comprises a constant term k, plus a component that rises with the 

level of the firm’s emissions. In response to this price schedule, firm i chooses 

emissions 

(18)  
as

akx
kse i

i +

−
=

1
),(   
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and aggregate emissions are 

 

(19)  
as

Nakx
ksE

+
−

=
1

)(
),(  

 

The induced values of expected environmental damage and expected aggregate 

abatement cost are, respectively, 
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The planning problem is to choose s and k to minimize )],([E)],([E ksCksD + .  

The solution to this problem is straightforward to derive, and is described in the 

following proposition. 

 

PROPOSITION 4. The optimal ULIMP schedule is given by **)( kesep ii += , 

where 
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This optimal ULIMP schedule is illustrated in Figure 5. It has a number of 

noteworthy properties. First, in the special case where 02 =σ  and 02 =ρ , we 

have δ=*
s  and ck =* ; the optimal ULIMP schedule coincides with the optimal 

UDBP scheme as ∞→m  (recall Proposition 3). Second, in the case with no 

uncertainty (that is, if 022 ==ωρ ), 0* =s  and **
tk = ; the optimal schedule 

reduces to the Pigouvian tax. Third, if 1=N  then δ=*
s  and 0* =k ; the optimal 

schedule coincides with the marginal damage function. Fourth, in the most 

general case where 1>N , 02 >ρ , 02 >σ  and 02 >ω , we have 0* >s  and  
**

tk <  (as illustrated in Figure 5), and the following sets of comparative static 

results obtain: 
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 The first set of results capture the essence of the tradeoff underlying the 

optimal ULIMP schedule: an increasing marginal price schedule has 

informational advantages but comes with the cost of unequalized MACs when 

firms are heterogeneous. Accordingly, the optimal price schedule is steeper for 

higher degrees of aggregate uncertainty (as measured by 2ρ ) and flatter for 

higher degrees of (observable) heterogeneity across firms (as measured by 2σ ). 

The second set of results state that an increase in unobservable heterogeneity 

across firms (as measured by 2ω ) has an ambiguous effect on the optimal price 

schedule. The reason for that ambiguity is that an increase in 2ω  raises the degree 

of uncertainty faced by the regulator but also raises the degree of heterogeneity 

across firms, thereby creating conflicting forces on the optimal schedule. The net 
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effect depends on the relative size of 2σ  and 2ρ : if the degree of observable 

heterogeneity ( 2σ ) is large, then the additional heterogeneity introduced by a 

larger value of 2ω  is unimportant relative to the additional uncertainty it 

introduces, and hence the optimal schedule should be steeper. The converse is true 

if 2σ  is relatively small.  

 One additional property of the optimal ULIMP schedule is worth noting 

here: emissions for firm i under the optimal ULIMP schedule are less than its 

emissions under the per unit Pigouvian tax if and only if zxi < ; otherwise its 

emissions are greater under the ULIMP schedule.  That is, below-average 

polluters pollute less under the ULIMP scheme than under the Pigouvian tax, 

while the converse is true for above-average polluters. This property is evident in 

Figure 5, where the optimal ULIMP schedule, labeled )(* ep , is equal to the 

Pigouvian tax at the intersection with the average MAC curve, labeled ][E MAC . 

 

 

6. RELATIONSHIP TO OTHER PRICING SCHEMES 
 

An extensive existing literature studies pollution pricing under asymmetric 

information.
8
 Here we confine consideration to the two papers most closely 

related to ours: Weitzman (1978) and Roberts and Spence (1976).  

 

 

(a) WEITZMAN (1978) 

 

Weitzman (1978) addresses a very general problem: the design of optimal 

rewards for economic agents when the benefit function is non-separable in the 

                                                                                                                                     
8
 Formal analysis of environmental regulation under asymmetric information arguably began with 

Weitzman (1974) where he analyzes the relative merits of price-based regulation and quantity-

based regulation under uncertainty about abatement costs.  (See Adar and Griffin (1976) for a 

graphical treatment).  The subsequent literature has followed several different directions.  One 

branch has extended the Weitzman (1974) comparative analysis to stock pollutants (for example, 

Hoel and Karp (2001) and Newell and Pizer (2003)) and to uncertainty about the marginal damage 

function (for example, Stavins (1996)).  A second branch has focused on the design of  revelation 

mechanisms for polluting firms (see for example, Spulber (1988) and Lewis (1996)).  A third 

branch has examined regulatory mechanisms for multiple firms where fees are based on aggregate 

emissions (for example, Segerson (1988) and McKitrick (1999)).  A fourth branch has analyzed 

dynamic tax adjustment (see Karp and Livernois (1994)).  A fifth branch has focused on second-

best non-linear pricing schemes and hybrid price-quantity schemes; Roberts and Spence (1976), 

Weitzman (1978), Yohe (1981) fall into this last category. 
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agents’ actions, and both the benefit function and the agents’ cost functions are 

uncertain.  He shows that the optimal reward function in this setting comprises a 

traditional price signal combined with a penalty for deviating from a prescribed 

quantity target.
9
  In the context of the model in this paper, Weitzman’s optimal 

reward function can be interpreted as a penalty function: 

 

(24)  2* )~(
2

)( iiiii eeeteP −+=
δ

 

 

where *
t  is the per unit Pigouvian tax (which minimizes expected social cost), 

and ie~  is the expected first-best emission level for firm i.  This hybrid penalty 

function has the following rationale.  If the regulator uses only the Pigouvian tax, 

based on expected abatement costs, then emissions will be too low relative to 

first-best if the MAC is lower than expected, and vice versa.  Conversely, if the 

regulator uses only a quantity instrument, specifying ie~ , then emissions will be 

too high if the MAC is lower than expected, and vice versa.
10

  The hybrid scheme 

in (24) combines elements of both instruments, and is therefore superior to either 

one alone.  It effectively provides a “safety valve” for a quantity target that turns 

out to be too restrictive ex post, and at the same time limits the overshooting that 

would arise from a tax that turns out to be too lax ex post.  

 Note that the  penalty function in (24) corresponds to a marginal price 

schedule given by 

 

(25)  )~()( *

iii

W

i eetep −+= δ  

 

where the “W” superscript denotes the Weitzman scheme.  Thus, Weitzman’s 

penalty function is equivalent to a LIMP scheme with δ=W
s  and i

W

i etk ~* δ−= , 

but it is crucially different from the ULIMP scheme described in section 5 above.  

In particular, the Weitzman price schedule does not involve uniform treatment 

across firms; each firm faces a different LIMP schedule, with an intercept tailored 

to its individual expected abatement cost.  This is a crucial distinction because it 

means that expected MACs are equated across sources under Weitzman’s scheme.  

To see this, note from (18) that emissions from firm i in response to the price 

schedule in (25) are 

                                                                                                                                     
9
 Yohe (1981) addresses the same basic problem. 

10
 This comparison between prices and quantities is the essence of Weitzman (1974).  In that paper 

he shows that the ranking of the associated expected losses under the two instruments depends on 

the relative slopes of the MAC and MD functions. 
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Making substitutions for *
t  from (8) and for ie~  from (10), noting that ][E~ *

ii ee = , 

and calculating the MAC yields 
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Thus, *)],;([E tveMAC i

W

ii =η  i∀  since 0][E =η  and 0][E =iv  i∀ .  This 

solution is illustrated in Figure 6 for the case of 2=N  and 02 >σ .  The two 

firms face different price schedules tailored to the known component of their 

MAC schedules, and expected MACs are equated.
 
 Thus, we face no tradeoff 

between information benefits and expected abatement costs. (Note however that 

MACs may not be equated ex post, so the Weitzman scheme generally does not 

achieve first-best). 
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FIGURE 6 
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Now compare the Weitzman scheme with the optimal ULIMP scheme.  For 

simplicity, consider the case where 02 =ρ .  In this case it is straightforward to 

show that 
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where W
k  is the average of the Weitzman intercepts across firms; that is,  
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Thus, *
k  is a weighted average of the per-unit Pigouvian tax and the average of 

the Weitzman intercepts, where the weights reflect the degree of uncertainty 

( 02 >ω ) and the degree of observable heterogeneity across firms ( )02 >σ  

respectively.  Since W
kt >* , it follows that W

kk >* .  Note too that δ<*
s .  

Thus, the optimal ULIMP schedule is flatter and has a higher intercept than the 

average of the Weitzman schedules.
11

  This reflects the fact that the optimal 

ULIMP scheme drives a wedge between MACs across firms while the Weitzman 

scheme does not (in expected terms).  The optimal ULIMP scheme must therefore 

be flatter than the average of the Weitzman schedules.  This difference diminishes 

as 2ω  rises relative to 2σ  because information-related benefits increasingly 

outweigh the inflation of abatement costs associated with heterogeneity across 

firms.  

 The optimal ULIMP schedule and the Weitzman scheme coincide in three 

special cases.  First, if 02 =ω  and 02 =ρ  then both mechanisms reduce to the 

Pigouvian tax. Second, if 02 =σ  then all firms face the same price schedule 

under the Weitzman scheme, and that schedule coincides with the optimal ULIMP 

schedule.  The same outcome arises when 1=N . 

 

 

                                                                                                                                     
11

 It is not possible to draw such sharp conclusions when 02 >ρ .  The optimal ULIMP is steeper 

and higher in that case, and cannot be compared unambiguously with the average Weitzman 

schedule. 
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(b) ROBERTS AND SPENCE (1976) 

 

Roberts and Spence (1976) – henceforth RS – propose a different sort of hybrid 

price-quantity scheme, using charges and tradable licenses, where “each 

[instrument] can protect against the failings of the other.  Licenses can be used to 

guard against extremely high levels of pollution while, simultaneously, effluent 

charges can provide a residual incentive to clean up more than the licenses 

required, should costs be low”. (p.194) 

 The simplest version of the RS mixed scheme works as follows.  The 

regulator issues a total of L licenses.  A firm holding il  licenses pays a penalty 

equal to )(2 ii lep −  if ii le > , and receives a subsidy equal to )(1 ii elp −  if ii le < , 

where 21 pp ≤ .
12

  Thus, in terms of opportunity cost, firm i effectively faces a 

two-step marginal price function, much like the UDBP scheme illustrated in 

Figure 2 (but with 2=m ).  However, the RS scheme is importantly different from 

a simple UDBP scheme because the licenses in their scheme are tradable at an 

endogenous equilibrium price.  Thus, the RS scheme functions like a UDBP 

scheme in which firms are entitled to trade unused portions of the price blocks. 

Adding this possibility of trade adds an element of administrative complexity to a 

UDBP pricing scheme, but it also improves its performance. In particular, trade 

ensures that MACs are equated across firms in equilibrium, and this equality 

holds ex post, not just in expectation.  Thus, the tradeoff between information 

benefits and an increase in aggregate abatement cost that arises with a simple 

UDBP scheme does not arise with the RS scheme. 

 In an appendix to their paper, RS extend their two-step scheme to one with 

j types of tradable licenses.  Allowing trade in all license types means that the 

regulated firms effectively act as if they were a single firm facing a marginal price 

schedule with j steps that approximates the marginal damage schedule.
 
 In the 

limit as ∞→j , the effective marginal price schedule, in terms of aggregate 

industry emissions, is a LIMP scheme with δ=s  and 0=k .
13

 This limiting 

scheme achieves first-best results.   

 It is worth noting that if 1=N , then the limit of the generalized RS 

scheme coincides with the Weitzman (1978) scheme, which in turn coincides with 

the optimal ULIMP scheme.  To see this, recall from (25) that the Weitzman 

                                                                                                                                     
12

 The original notation used in RS is s and p for our 1p  and 2p  respectively. 
13

 Collinge and Oates (1982) propose essentially the same scheme – a sequence of numbered 

tradeable permits with differing rental prices – to ensure correct incentives for entry and exit in the 

polluting industry.  The outcome is a pricing scheme in terms of aggregate industry emissions that 

approximates the actual marginal damage schedule. 
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scheme corresponds to a LIMP scheme with δ=s  and ii etk ~* δ−= .  In the case 

of a single firm, iet ~* δ= , so 0=ik .  Thus, the Weitzman marginal price function 

coincides with the marginal damage function, as does the limiting RS price 

function.  Both schemes achieve first-best results in that case. 

 When 1>N  the Weitzman scheme and the RS scheme take different 

approaches to the information asymmetry problem.  The Weitzman scheme fixes 

individualized quantity targets and allows the marginal price of deviations from 

those targets to differ across firms (recall Figure 6).  In contrast, the RS scheme 

fixes only an aggregate quantity target and allows firms to trade in quantities; 

deviations from those individual (endogenous) quantity targets are then priced at 

the same rate for all firms.  This means that MACs are equated across firms ex 

post.  In contrast, MACs under the Weitzman scheme are equated only in 

expectation.   

 The primary drawback with the RS scheme is that it is generally not 

possible to derive exact solutions for the optimal subsidy and penalty prices ( 1p  

and 2p ) unless the distribution of the actual MACs – as opposed to the 

population distribution from which they are drawn – is known. The problem is the 

following. Even the simplest form of the RS scheme (with just two steps) has 

three possible equilibria in the license market, corresponding to where the 

equilibrium license price is equal to 1p  or 2p  or some value strictly between 1p  

and 2p .  The conditional distribution of the MACs in each of these three possible 

equilibria must be known in order for the optimal values of 1p , 2p  and L to be 

calculated, and this in turn generally requires that the sample distribution of the 

MACs be known. This is a significant information requirement for the regulator. 

 In the following section we compare the performance of the RS scheme 

using two steps with the Weitzman scheme and our ULIMP scheme in a 

simplified setting in which an approximate analytical solution can be found for 

the optimal RS scheme. However, even in this simplified setting we will see that 

an exact analytical solution for the optimal RS scheme can be derived only under 

very special conditions.  

 

 

7. COMPARATIVE PERFORMANCE 
 

We focus on the special case where 02 >ω  but 02 =σ  and 02 =ρ , and where 

the iv ’s are drawn from a uniform distribution with support  ],[ ξξ− . Recall that 

this is the same setting examined in section 4, where we derived the optimal 

UDBP scheme. This setting implies unobservable heterogeneity across firms 
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( 02 >ω ), but all firms are the same in expectation ( 02 =σ ), with no industry-

wide uncertainty ( 02 =ρ ). We have already learned two things about this special 

case: the optimal UDBP scheme has an infinite number of steps and converges to 

the ULIMP scheme; and the Weitzman scheme and the ULIMP scheme 

coincide.
14

 Thus, the comparison of interest is between two second-best schemes: 

the ULIMP/Weitzman scheme and the RS scheme. We begin by deriving the 

optimal two-step RS scheme (denoted RS2) in this setting. 

 

 

(a) THE OPTIMAL RS2 SCHEME 

 

The details of the derivation are relegated to the Appendix, but some key elements 

of the derivation warrant discussion. First, three types of equilibrium can arise 

under the RS2 scheme, as characterized by the equilibrium price of licenses. In 

particular, the equilibrium license price can be equal to 1p , or 2p , or some value 

strictly between 1p  and 2p . The linear functional forms we have specified for 

MAC and MD mean that the type of equilibrium that arises depends only on the 

mean of the realized iv ’s, denoted v , and not on the higher moments of the 

sample distribution. This simplifies the derivation significantly. Nonetheless, v  is 

a random variable from the perspective of the regulator, and its distribution must 

be known in order for the optimal scheme to be calculated. In the special case 

where the population distribution of the iv ’s is uniform on  ],[ ξξ− , and 2=N  

(two regulated firms) , it can be shown that the distribution of v  is a symmetric 

triangular distribution with zero mean and variance equal to .6/2ξ  In this special 

case, it is possible to derive an exact analytical solution for the optimal RS2 

scheme. 

 When 2>N  the distribution of v  cannot be found analytically, but the 

central limit theorem can be invoked to approximate that distribution as a normal 

distribution. (This of course is true for any population distribution of the iv ’s).  

This approximation is useful for finding a numerical solution for the optimal 

scheme, but it is still not possible to find a closed-form analytical solution. 

However, any normal distribution can be approximated by a symmetric triangular 

distribution. We use this approach to derive an approximate analytical solution for 

the RS2 scheme when 2>N  (when 2=N  our analytical solution is exact). The 

approximate (or if N=2, exact) solution is as follows. 

                                                                                                                                     
14

 They may result in unequal MAC’s, however, so they do not coincide with the first-best 

performance of an RS scheme with an infinite number of steps. 
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PROPOSITION 5. If 02 =σ  and 02 =ρ , and iv  is distributed uniformly with 

support  ],[ ξξ− , then the approximately optimal RS2 scheme is given by 

},,{ 21

RSRSRS Lpp , where 
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is the emissions level for the average firm under the Pigouvian tax, *
t . These 

solutions are exact when 2=N . 

 

 This optimal RS2 scheme has a number of key properties. First, it is 

symmetric around the Pigouvian tax (just like the UDBP scheme).  Second, it is 

symmetric around the linear function Neep δ=)( . Recall that this is the limiting 

case of the RS scheme as the number of steps approaches infinity. In contrast, the 

UDBP scheme is symmetric around the optimal ULIMP. Third, in the case where 

2=N , the optimal RS2 scheme is steeper than the UDBP schedule in the sense 

that *

11 pp RS <  and *

22 pp RS > . These properties of the RS2 scheme are illustrated 

in Figure 7.  

 The steeper profile of the RS2 price schedule relative to the UDBP scheme 

reflects the fact that the RS scheme does not have to trade off the information 

benefits of the rising marginal price profile against higher abatement costs, 

because trade in licenses ensures that MACs are equated in equilibrium. In 

contrast, the UDBP scheme does have to make this tradeoff, and the price profile 

is flatter as a consequence (so as to reduce the risk of markedly different MACs 

across firms in equilibrium). It is not possible to prove an unambiguous analytical 

relationship between the price profiles of the two schemes when 2>N , but we 

suspect that this reflects the approximate nature of our RS2 solution in that case, 

rather than some breakdown in the logic of the comparison. 
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 We now examine the relative performance of the RS2 and ULIMP 

schemes. We focus on the ULIMP scheme because we know it is superior to a 

UDBP scheme with finite steps, both in terms of performance and ease of 

derivation for the regulator. Our performance comparison has two parts. We first 

consider an analytical comparison of the minimized expected social cost under the  

two schemes. We then construct a Monte Carlo simulation to compare their 

performance in terms of the distribution of actual social cost outcomes. 

 

 

(b) EXPECTED SOCIAL COST 

 

We present the comparison between the two schemes in terms of their percentage 

deviations from the expected first-best social cost. This allows us to conduct 

comparative statics on the relative performance measure while controlling for the 

impact of parameter changes on absolute costs. Let FB
SC  denote the expected 

value of social cost when emissions are chosen optimally for any realization of 

the iv ’s. Let 2RS
SC  denote expected social cost under the RS2 scheme, and let 
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ULIMP
SC  denote expected social cost under the ULIMP scheme. Then we obtain 

the following results on comparative performance. 

 

PROPOSITION 6. If 02 =σ  and 02 =ρ , and iv  is distributed uniformly with 

support  ],[ ξξ− , then  
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(c) 02 >− RSULIMP
RR  for all 0>ξ  and 2≥N ; and when 2=N , this difference 

is increasing in a, δ  and ξ , and decreasing in z. 

 

 The primary message from Proposition 6 is that the RS2 scheme always 

outperforms the ULIMP/Weitzman scheme. This superior performance of the RS2 

scheme stems from the fact that it makes use of increasing marginal prices 

without sacrificing the equality of MACs in the way that the ULIMP scheme 

does. It should be noted too that it achieves this superior performance even in its 

simplest form, with just two steps in the price function. The comparative static 

results in part (c) indicate that the superiority of the RS scheme is greatest when 

uncertainty and damage are relatively high (since the ULIMP scheme is steep in 

that case, which creates greater differences in MACs across firms), and when 

firms are highly responsive to price differences (as when a is high and/or z is 

low). While these comparative static results can be proven only when 2=N  (in 

which case our RS2 solution is exact), it seems reasonable to suppose that they 

would also hold for larger values of N under the true optimal RS2 scheme.  

 

 

(c) MONTE CARLO SIMULATION 

 

In this section we present the results a Monte Carlo simulation in which we 

compare the realized performance of the two schemes for each of 30,000 draws of 

the iv ’s from a uniform distribution with support  ],[ ξξ− . Our parameter values 

for the simulation are the same as those used for the numerical examples of the 

UDBP scheme in section 4: 25.0=a , 2=z , 25.0=δ , 1=ξ , and 2=N  (so our 

solutions for the RS2 scheme are exact). Our qualitative results do not seem to be 

especially sensitive to changes in these parameters. 
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 Our results are summarized in Figure 8 and Table 1(a). Figure 8 plots 

relative frequencies of percentage deviations from minimum social cost, for the 

RS2 scheme, the ULIMP scheme, and the per unit Pigouvian tax (labeled “PT”). 

These results are broadly consistent with the analytical results on expected cost; 

the RS2 scheme has a lower frequency of large deviations than either of the other 

policies. Table 1(a) reports the summary statistics for each policy. Note that while 

the RS2 scheme performs slightly better on average than the ULIMP scheme, the 

latter has a somewhat lower variance and a lower maximum deviation. The simple 

ex ante Pigouvian tax is unambiguously the worst performer.  

 It is noteworthy that the magnitude of the percentage deviations from 

minimum social cost is generally very small for all three policies. Even the 

Pigouvian tax has an average deviation of less than 1%, and among 30,000 

samples, the maximum deviation is less than 13%. It is tempting to conclude from 

these numbers that more complicated schemes like the RS2 scheme and even the 

ULIMP scheme may simply not be worth the administrative trouble relative to the 

Pigouvian tax. However, the picture looks somewhat different when we examine 

the components of social cost: abatement cost and damage. Figures 9 and 10 

present the relative frequencies of percentage errors in abatement costs and 

damage (and hence, emissions), respectively. Tables 1(b) and 1(c) report the 

corresponding summary statistics. A positive deviation in damage means that 

damage is higher than in the first-best solution; a negative deviation means that 

damage is lower than in the first-best solution. Similarly for abatement cost. All 

three policies have the potential to perform quite badly on these measures, 

especially with respect to abatement costs. While the assumed policy objective 

focuses only on total social cost, the political implications of drastically sub-

optimal outcomes for emissions and abatement costs are likely to be an issue of 

concern to regulators. The RS2 scheme still outperforms the ULIMP scheme on 

these measures in terms of averages, but it finishes second behind the ULIMP in 

terms of variability. The Pigouvian tax finishes last on both fronts. 

 On balance, our results suggest that the ULIMP scheme does not perform 

significantly worse on average than the RS2 scheme, and produces less variability 

in performance outcomes. The optimal ULIMP scheme can also be derived 

analytically under much weaker distributional assumptions than are required for 

an exact analytical solution for the RS2 scheme.  Coupled with the fact that the 

RS2 scheme requires an additional administrative layer associated with license 

trading, these considerations may make the ULIMP scheme a more appealing 

choice to regulators tasked with implementing a simple but reasonably effective 

policy.  
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FIGURE 8 

 

 
(a) % Difference from First-Best Value of Total Social Cost 

 PT ULIMP RS2 

maximum 12.2388 2.7103 4.9831 

minimum 0 0 0 

mean 0.7137 0.2955 0.2065 

std deviation 1.3322 0.3005 0.4185 

(b) % Difference from First-Best Value of Total Abatement Cost 

 PT ULIMP RS2 

maximum 295.8095 114.8117 166.1423 

minimum -55.4686 -28.8602 -37.9945 

mean 14.7937 6.7765 4.3125 

std deviation 55.0174 23.8841 27.7239 

(c) % Difference from First-Best Value of Damage   

 PT ULIMP RS2 

maximum 8.4900 3.9522 5.3847 

minimum -23.2076 -11.3023 -15.1618 

mean -1.0463 -0.5146 -0.3068 

std deviation 5.7476 2.7339 3.1645 

 
TABLE 1 
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8. CONCLUSION 
 

Most policies for pricing pollution under asymmetric information proposed in the 

literature to date are rarely – if ever – used in practice. This is likely due to their 

complexity. We have investigated the scope for using somewhat simpler policies 

that are more closely related to pricing schemes already used by regulators in 

many jurisdictions. These schemes involve a schedule of increasing marginal 

prices applied uniformly across firms. Under fairly restrictive assumptions, we 

have derived the optimal form of the uniform discrete block pricing (UDBP) 

scheme. We have also derived the optimal limiting case of the UDBP schedule 

(with an infinite number of price blocks) as a linear increasing marginal price 

schedule with uniform treatment across firms (ULIMP). The latter can be derived 

directly under less restrictive assumptions and is arguably no more complicated to 

implement in practice than the UDBP with a finite number of steps.  

 The optimal ULIMP scheme strikes a balance between the information-

related benefits of increasing marginal prices on one hand, and an increase in 

aggregate abatement cost on the other, due to the non-equalization of MACs 

across firms. In particular, the optimal schedule is steeper for larger aggregate 

uncertainty about MACs, and flatter for more observable heterogeneity across 

firms.   

 We have also compared our pricing schemes with the more sophisticated 

schemes proposed by Weitzman (1978) and Roberts and Spence (1976), which 

can achieve information-related benefits without sacrificing cost-effectiveness (at 

least in expected terms).  While clearly superior in theoretical terms, these 

schemes are more complex from a practical perspective, requiring different firms 

in the same regulated industry to face different price schedules (as in Weitzman) 

or a mix of discrete block pricing and license trading (as in Roberts and Spence). 

Moreover, the informational requirements for the optimal Roberts and Spence 

scheme – with respect to the distribution of the actual MACs – are significant. 

Our comparative performance results confirm the superiority of the Roberts and 

Spence scheme in terms of expected cost, even in its simplest two-step form, but 

the ULIMP scheme does not perform significantly worse, and produces less 

variable results. 

 While the relative simplicity and familiarity of the price schemes we have 

proposed here may have some appeal to regulators, it must be noted that even 

these schemes are complicated to design in practice. The regulator needs 

information about the mean and variance of the unknown parameters, and must 

make some conjecture about the shape of MACs. The linear functional forms we 

have assumed here may be a reasonable approximation to reality in many 

circumstances, but not in others. In such cases the policy design problem is 

considerably more complicated, and any actual pricing scheme is likely to be only 
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a rough approximation to an optimal scheme, derived not from pure analytics but 

from numerical simulations. We view the analytical results we have derived here 

as a potentially useful point of departure. 

 

 

APPENDIX 
 

Note on Proposition 1.  

We solved equations (A2) to (A6) below for m=2, m=3, m=4 and m=5 (using 

Maple Version 8) and from those solutions derived by induction the general 

solution reported in Proposition 1. The Maple code is available from the authors. 

 

Proof of Proposition 2. 
It is straightforward to show that total social cost under the optimal UDBP 

scheme is given by 

 

(A1)   
2

22222

])1()[1(6)1)(1(6

)]1()1(3[
)(

δδδ
ξδ

δδ
δξδδ

aama

Na

Naa

NaaNzN
mSC UDBP −++

+
++

+++
=  

 

This is decreasing in m. Thus, total social cost is minimized by setting m as large 

as possible.
15

  

 

Proof of Proposition 3. 

It is instructive to first prove this result in the context of the special case where 

)(vf  is a uniform distribution. Recall that equations (13) – (16) describe the 

optimal UDBP scheme in that case. In the limit as ∞→m , a different price is set 

for every level of emissions. So from (14) set eb j =*  and solve for )(ej . Then 

substitute )(ej  for j in *

jp  from (13) to yield )(* ep . 

 Now consider the general proof. Let )(vf  denote the distribution of v on 

support ],[ HL vv  and let )(vF  denote the associated cumulative density. We 

assume that )(vF  is twice continuously differentiable. Then the first-order 

conditions for a minimum are given by equations (A2) to (A5): 

 

(A2) ( ) 0)(][E)1()]()([
11

111 =+−−+−−+ ∫
−+ zapb

v

L

L

dvvvfeNazpvFzapbF δδ  

                                                                                                                                     
15

 It is worth noting that setting m=1 in (A1) yields the total SC under the Pigouvian tax. 
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For 2=j  to 1−m : 
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For 1=j  to 1−m : 
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In equation (A4), divide throughout by )( 1−− jj bb  and take the limit as jj bb →−1  

to obtain 

 

(A7) ( ) ∫
−+

−+
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Similarly, in equation (A5), divide throughout by )( 1+− jj ppa  and take the limit 

as jj pp →+1  to obtain 
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It then follows from (A7) and (A8) that 

 

(A9) ][E)1)(1(][E)1( eNazbeNazp jj −−++=−−+ δδδδδ  

 

which reduces to 

 

(A10) ][E)1( eNbp jj −+= δδ  

 

Now in (A6) take the limits as jj bb →−1  and jj pp →+1  and substitute for jp  

from (A10) to obtain 

 

(A11) ∫ −−−+=
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Now set eb j = , note that 0][E =v , and then solve (A11) to obtain 
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Then substituting (A12) into (A10) we obtain 
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Sketch Proof of Proposition 5. 

Let q denote the equilibrium price of licenses. Without loss of generality, suppose 

the regulator issues an equal number of licenses, NLl = , to each firm. There are 

three equilibrium types: (1) 1pq = ; (2) 2pq = ; and (3) 21 pqp << .  First 

consider equilibrium type (3). Faced with license price ),( 21 ppq ∈ , firm i emits 

aqvzqe ii −+=)( . Firms for whom lqei <)(  are license suppliers, and sell 

)()( aqvzlqs ii −+−=  licenses. Firms for whom lqei >)(  are license buyers, 

and demand laqvzqd ii −−+=)( . Equilibrium occurs where 
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where K is the number of seller firms. Solution of (A14) yields 

 

(A15) 
a

lvz
q
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where ∑ =
=

N

i i Nvv
1

/ . The associated level of aggregate emissions is L. This 

outcome can be an equilibrium only if 21
~ pqp << . If 1

~ pq <  then no firm will be 

willing to sell licenses at qq ~=  since it can instead receive a per unit payment of 

qp ~
1 >  from the regulator for reducing emissions below its license holdings. In 

that case we have equilibrium type (1), where 1pq = . The equilibrium level of 

emissions in that case is  

 

(A16) LapvzNpeE
N

i

i <−+== ∑
=

)()( 1

1

11  

 

Conversely, if 2
~ pq >  then no firm will be willing to buy licenses at qq ~=  since 

it can instead pay the regulator qp ~
2 <  per unit to emit beyond its license 

holdings. In that case we have equilibrium type (2), where 2pq = . The 

equilibrium level of emissions in that case is 

 

(A17) LapvzNpeE
N

i

i >−+== ∑
=

)()( 2

1

22  

 

We can now characterize the complete equilibrium in terms of a partition of the 

interval ],[ ξξ−∈v , since the sample mean v  can lie anywhere within this 

interval. In particular, we have equilibrium type (1) if and only if zaplv −+< 1 ; 

equilibrium type (2) if and only if zaplv −+> 2 ; and equilibrium type (3) if and 

only if zaplvzapl −+<<−+ 21 . 

 To make further progress it is necessary to specify the distribution of v . If 

the population distribution of the iv ’s is uniform on  ],[ ξξ− , then it can be shown 

that the mean ( v ) of a sample of size 2=N  has a symmetric triangular 

distribution with support ],[ ξξ− , zero mean and a variance equal to .6/2ξ  If 

2>N  then we must invoke the central limit theorem. In particular, the 
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distribution of v  is approximately normal, with zero mean and a variance equal to 

.3/2 Nξ  This distribution can in turn be approximated by a symmetric triangular 

distribution with support ],[ θθ− , zero mean and a variance equal to 6/2θ , where 

N2ξθ = . It is then possible to construct a conditional density for iv  for 

each equilibrium type, conditional on v  satisfying the restriction corresponding to 

that particular equilibrium type. In each case that conditional density is a 

truncated triangular distribution whose distribution can be derived exactly. It is 

then straightforward to calculate expected social cost as a function of },,{ 21 Lpp . 

Choosing these policy parameters to minimize expected social cost yields the 

solution reported in Proposition 5. 
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