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1. INTRODUCTION

Implementation theory studies the extent to which social goals can be
achieved by decentralized decision making procedures. The social goals
are given by a social choice correspondence. A procedure is represented
by a mechanism, which specifies the possible actions available to members
of a society, as well as the outcomes of these actions. Once an assumption
is made about what determines individual or group behavior, the equilib-
rium outcomes to the mechanism are precisely the social objectives that
can be achieved by the decentralized procedure. If these outcomes coin-
cide with the social choice correspondence (SCC), then the SCC is imple-
mentable in the precise sense that it can be decentralized.

The implementation problem is made non-trivial by two considerations.
First, the socially desirable outcome may conflict with the interests of
some individual or group of individuals. Second, information relevant to
the determination of a socially desirable outcome may not be commonly
available. In either case, the decentralized procedure must ensure that
individual or group incentives are controlled so that socially desirable
outcomes emerge from the social decision making process.

Implementation theory has proceeded along two lines. One branch stud-
ies the outcomes of specific mechanisms, such as sequential majority
voting or the agenda process, and characterizes what can be decentralized
by such procedures. The second branch has been less concerned with the
mechanism, and has concentrated on characterizing those social objectives
which can be decentralized by some mechanism, not necessarily one
corresponding to any specific class of decision making procedures.

This second branch has been successful in characterizing which SCCs
are implementable using a variety of solution concepts and for various
information structures.' Much of this work stems from the early contribu-
tion of Maskin (1977), who identified an intuitive condition, called mono-
tonicity, which is necessary for Nash implementation when there are

! Complete information studies include implementation in Nash equilibrium (Maskin (1977,
1985), Saijo (1988), Moore and Repullo (1990), Dutta and Sen (1991b), Danilov (1992)),
subgame perfect equilibrium (Moore and Repullo (1988), Abreu and Sen (1990)), undominated
Nash equilibrium (Palfrey and Srivastava (1991)), strong equilibrium (Dutta and Sen (1991a)),
undominated equilibrium (Jackson (1992)), backward induction (Herrero and Srivastava
(1992)), iterated elimination of dominated strategies (see Moulin (1983), for a summary),
virtual implementation (Matsushima (1988), Abreu and Sen (1991), Abreu and Matsushima
(1990a, 1992a)), and the early results on dominant strategies (Gibbard (1973), Satterthwaite
(1975)). Characterizations when there is incomplete information include Postlewaite and
Schmeidler (1986), Palfrey and Srivastava (1987, 1989a), Mookherjee and Reichelstein (1990),
and Jackson (1991), all of whom employ Bayesian equilibrium, and Palfrey and Srivastava
(1989b), who study undominated Bayesian equilibrium. A recent survey can be found in
Palfrey (1992).
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no informational asymmetries across agents in society. Monotonicity is
satisfied by some normative criteria of interest in specific domains, such
as the Pareto correspondence in pure exchange economies. Unfortunately,
many important normative criteria, including most criteria in the social
choice literature such as the (Condorcet) top cycle set and the uncovered
set, fail to satisfy monotonicity, as do other desirable objectives such as
the (unconstrained) Walrasian correspondence in exchange economies.
This has led to investigations of implementation with stronger equilibrium
concepts such as subgame perfect equilibrium and undominated Nash
equilibrium.

Our concern here is with undominated Nash implementation. An un-
dominated Nash equilibrium is a Nash equilibrium in which no one uses
a weakly dominated strategy. Palfrey and Srivastava (1991), show that
with this refinement of Nash equilibrium, any social choice correspon-
dence? can be implemented. This is a striking result in that it says that for
almost any normative criterion, it is possible to construct a decentralizing
procedure and control individual incentives to ensure that the outcomes
are precisely those prescribed by the criterion. It also implies that there
is no conflict between the normative goal of social choice theory (which
develops normative criteria) and the positive goal (which examines if these
criteria are attainable).

The effect of the assumption that agents do not use dominated strategies
is thus quite startling. We generally expect stronger equilibrium concepts
to expand the class of implementable SCCs, since in designing an imple-
menting mechanism, it is usually quite easy to obtain a desired outcome
as an equilibrium.? The difficulty is usually in ruling out other undesired
equilibria. Stronger solution concepts tend to be more powerful in ruling
out undesired equilibria, hence allowing larger classes of SCCs to be
implemented. While we would expect this refinement to expand the class
of implementable SCCs relative to Nash implementable SCCs, such a
great expansion is surprising.

It turns out that some of the power of this result derives from the
fact that we have not imposed any restrictons on the implementing
mechanism. In particular, some undesired outcomes are ruled out
through infinite strings of dominated actions, where each action domi-
nates a previous action, but where no dominating action is undominated
itself. Hence, it is possible that an agent playing the constructed
mechanism has no undominated best response to the strategies of the

X Their result covers correspondences satisfying no veto power when there are at least
three agents in society.

3 There are some exceptions, such as implementation in *‘strict”” Nash equilibrium or
implementation in dominant strategies.
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others. For such a mechanism, it is no longer clear that an agent will
not play a dominated action, and suggests that it may not be appropriate
to apply the concept of undominated Nash equilibrium to such mecha-
nisms. Consequently, it is important to investigate what can be imple-
mented by mechanisms in which every agent always has an undominated
best response.

The restriction on mechanisms which prevents the use of an infinite
chain of dominated strategies is defined by Jackson (1992). This restriction
is called ‘‘boundedness,’” and requires that if an action is weakly domi-
nated, then it is weakly dominated by an undominated action. Jackson
provides an example (see Example 1 in Section 3 below) to show that
boundedness restricts the set of SCCs which can be implemented in un-
dominated Nash equilibrium.

This brings us to the topic of this paper, which is to characterize
the class of SCCs which are implementable in undominated Nash
equilibrium by bounded mechanisms. We provide a characterization of
SCCs which are implementable in undominated Nash equilibrium by
bounded mechanisms. While the restriction to bounded mechanisms
eliminates some SCCs which are undominated Nash impiementable
with unbounded mechanisms, it still admits a large set of implementable
SCCs. This set is larger than that for Nash implementation; the
“‘chained’’ condition we identify can be seen as a weakening of monoton-
icity. We show that many SCCs of interest, including those identified
in the social choice literature and those relating to “*economic’’ settings*
(including public goods), can be implemented by bounded mechanisms.
Finally, we investigate implementation under more stringent require-
ments on the implementing mechanism, namely, that the mechanism
not only be bounded, but also not admit any mixed strategy equilibrium
for any von Neumann-Morgenstern representation of the ordinal prefer-
ences. We solve this problem for economic settings, but leave as an
open question the full characterization for completely general environ-
ments. The mechanism constructed for economic environments is simple
and intuitive, and is dominance solvable. It also covers the two-agent
case.

The next section contains the model and basic definitions. In Section
3, we study in detail the case of strict preferences. In Section 4, we
consider the use of mixed strategies and prove a general possibility
result for a class of economic environments. Independently, Sjostrom
(1994), has obtained results similar to those presented in Section 4 of
this paper.

*In fact, we work with ‘‘separable’” environments. An environment is separable if it is
possible to “*punish’’ a group of agents without affecting any of the other agents. This is
possible in environments such as economic ones where there exists a private good.
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2. THE MoDEL

The set of alternatives is denoted by A. There are a finite number, N,
of agents, indexed by i = 1, . . ., N. S denotes the set of states, where
s € S summarizes the preferences of all agents. In state s, R(s) denotes
the complete and transitive preference relation of agent i. We denote by
Pi(s) the strict preference relation corresponding to Ri(s) and by F(s) the
indifference relation corresponding to R(s). If alfi(s)b for all ¢, b € A,
then we say that { is completely indifferent at s. The state is known by
each agent.

F:S — 2% is a social choice correspondence; for each s, it selects a
subset of A. This is interpreted as the set of socially desirable outcomes
in state s. We turn next to a formal description of decentralized decision
making procedures.

A mechanism (or game form) is a pair (M, g) consisting of a message
space M = M' x M? x - -+ x M" and an outcome function g :M —
A. M'is called the message space of i. An element m' € M’ is referred
to as a strategy for i, and we write m € M in the form m = (m’, m™"),
and call m a strategy profile.

DEFINITION |. A strategy profile m € M is a (pure strategy)® Nash
equilibrium at s it glm', m)Ri(s)g(n', m~") for all i and all n' € M'.

Given a mechanism (M, g), let
NE(s) = {a € A| 3 m € M with g(m) = a and m is a Nash equilibrium at s}

be the set of Nash equilibrium outcomes at s.

DEFINITION 2. A strategy m' is weakly dominated at s if there exists
a strategy n' such that g(n’, m IR(s)g(m’, m~') for all m~* and g(n',
m PUs)g(m', m™*) for some m ™"

DEFINITION 3. A strategy profile m € M is an undominated Nash
equilibrium at s if m is a Nash equilibrium at s and for all i, »’ is not
weakly dominated at s.

Given a mechanism (M, g), let
UNE(s) = {a € A| 3 m € M with g(m) = a and m is an undominated
Nash equilibrium at s}

be the set of undominated Nash equilibrium outcomes at s.

DEFINITION 4. A social choice correspondence F : § — 24 is undomi-

’ A discussion of the role of mixed strategies is given in Section 4.
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nated Nash implementable if there exists a mechanism (M, g) with
UNE(s) = F(s) for all s.

The following condition was identified by Palfrey and Srivastava (1991),
for undominated Nash implementation.

Property Q. (Value distinction): Forsand s', ifa € F(s)and a & F(s'),
then there exists / with Ri(s) # R(s’) and i is not completely indifferent at
s’

DEFINITION 5. F satisfies no veto power if for all s, if there exists
a € A such that for at least N — 1 agents, aR'(s)b for all b, then a €

F(s).

THEOREM (Palfrey and Srivastava (1991)). If F is undominated Nash
implementable then F satisfies Property Q. Further, if N = 3 and F
satisfies no veto power and Property Q, then F is yndominated Nash
implementable.

The strength of the above theorem is that it substantially expands the
class of implementable SCCs relative to Nash implementation. That is,
property @ is is a much weaker condition than monotonicity, which is
necessary for Nash implementation.® For example, when A is a finite set
and the set of preferences is the set of all linear orders (strict preferences)
then any social choice function satisfying no veto power is undominated
Nash implementable (by the above theorem), while only dictatorial social
choice functions are Nash implementable (Dasgupta er al., (1979)).

As discussed in the introduction, some of the power of the above result
is due to the fact that we have not imposed any restrictions on the mecha-
nism. As shown by Jackson (1992), excluding infinite chains of dominated
strategies can restrict the set of implementable SCCs (see Example 1 in
the next section). The following definition rules out such constructions.

DEFINITION 6 (Jac_kson (1992)). A mechanism (M, g) is bounded if for
all s, i, and m', if m' is weakly dominated at s, then there exists n' € M’
which weakly dominates m' at s and is not weakly dominated at s.

3. BOUNDED IMPLEMENTATION IN GENERAL ENVIRONMENTS

A. An Example

We begin with an example from Jackson (1992), which not only shows
that boundedness restricts the class of implementable SCCs but also moti-
vates the condition we identify.

® A SCC is monotonic if for every s and s', if ¥ € F{s) and x & F(s') then there exists an
agent { and an outcome ¥ € A such xR'(s)y and vP(s')x.
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ExampLE | (Jackson (1992)). S = {s,s'}, A ={x, ¥y}, N =5, F(s) =
{x}, F(s") = {y}, and preference are

s s
1 2 3 4 5 1 2 3 4 5
y vy X y Yy ¥ x x x
X X y X X x y y ¥

This social choice function satisfies no veto power and N = 3. Therefore,
by the theorem of Palfrey and Srivastava (1991), stated in the previous
section, F'is undominated Nash implementable. However, F is not imple-
mentable by a bounded mechanism, as we now argue.

In this example only agent 5’s preferences change between s and s’.
Yet, the SCC always picks 5's worst alternative. We can see the role of
unbounded mechanisms as follows. Consider a mechanism (M, g) which
implements F in undominated Nash equilibria. Let m be a UNE at s.
Then g(m) = x. Since only 5’s preferences change from s to s’, m is also
a Nash equilibrium at s’. However, since x ¢ UNE(s") = F(s') we know
that m® must be dominated at s’ by 2°. 1’ must have g(ii®, m=5) = x,
and must also be a Nash equilibrium. (Only agents 1 through 4 might
deviate and since #° dominates m’® for 5 at ', #° must provide outcome
y against a smaller set of actions of agents other than 5 than m® does.)
Thus in turn #7° must also be dominated. This leads to an infinite string
of actions for agent S, each dominating a previous one, but none being
undominated.

Such a mechanism would clearly not be bounded. The argument against
such mechanisms is clear. At 5" agent 5 does not choose any action which
provides x (his desired outcome) against m~> since all such actions are
dominated in an infinite string. Instead, agent 5 chooses an action which
provides y (5’s undesired outcome) against m ~°. Against m 3, it is clearly
in agent 5’s interest to choose an action which provides x. However, since
each such action is dominated by another, agent 5 cannot decide which
one to choose. For such a mechanism it is no longer reasonable to argue
that agents will not play a dominated action.

Bounded mechanisms have the property that each agent can always
‘‘make up their mind’’ among a set of actions when considering whether
a strategy is weakly dominated. We will also require that every agent
always has a best response to the any actions of the other agents. For this
class of mechanisms, undominated Nash equilibria are thus an appropriate
solution.
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B. The Chained Condition

The above example illustrates what goes wrong when we try to imple-
ment the above SCC by a bounded mechanism. It also provides some
insight into the class of SCCs which can be implemented by bounded
mechanisms. It turns out that an important part of implementing an SCC
by a bounded mechanism is to find an appropriate agent (in place of agent
5)and a z, and z, as summarized by the following condition. The remainder
of this section is written assuming strict preferences. All the definitions
and results extend to weak preferences in a natural way. This is done in
Jackson et al., (1990).

DEFINITION 7. F is chained at x, s, s' if there exists an agent, i, and
alternatives, y, and y,, such that y,Pi(s)y,Pi(s"}y, where either:
(A)y =x
or
(B) There exist agentj # i, and alternatives z, and z, & {x, z;} such that:
(B1) 2,P/(s")x, 2,P(s")z,
(B2) z; = x or xP/(s)z,.

Fischainedifitischainedatx, s, s' whenever x € F(s)\F(s'). The intuition
behind the condition is actually quite simple. Part A says that if x €
F(s)\F(s"), then F satisfies the standard monotonicity condition relative to
x, s, s'. If not, then there exist a pair of agents who are linked in a special
way (part B of the definition). The first agent, /, has different preferences in
states s and s'. From Palfrey and Srivastava (1991), we know that this means
we can construct a mechanism such that x is an undominated Nash equilib-
riumat s, but notats’, by giving i a strategy that ‘*breaks’” any Nash equilib-
rium producing x at s by exploiting weak dominance. In order for the imple-
menting mechanism to be bounded, at least one such dominating strategy
must not be weakly dominated. This will be true, if we can find some agent
J # i (part B of the chained condition), for whom playing the original strategy
is not a best response to this alternative dominating strategy of i. However,
by giving j a better response, we must not destroy the weak dominance for
agent i. The existence of z, and z, with the properties in part B of the condi-
tion ensure that this can be done.

Part B of the chained condition is illustrated in the following figure

m; m; m my;
m; X 2y m; x Yi
m; X Z5 ; x ¥2
m m’

~ij ~ij
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In the figure, the row and column players are the ‘‘test” agents in the
chained condition. The matrices represent the outcome function at two
profiles of messages of all agents other than i and j. The outcomes x, y,,
¥2, 21, and z, correspond to the notation in the chained condition.

Observe that if part B of the condition is satisfied, then (m;, m;, m_;)
is a UNE at s, producing outcome x. At s'. however, m; weakly dominates
m;. To ensure that (m;, m;, m_;), which also produces outcome x, is not
an equilibrium at s’, part (B1) requires z, P/(s")x.

In this manner, part B of the chained condition guarantees that we can
eliminate unwanted equilibria by a combination of dominance arguments
(m; weakly dominates m; at s' but not at s} and best response arguments
(mj’- is a better response to m; than m;). These features are used in the
sufficiency proof.

The chained condition is stronger than Property Q in that Property Q
requires neither (A) nor (B). It is easy to see that the SSC in Example 1
above is not chained. Nevertheless, the condition is actually very weak;
for example, it is always satisfied in the following three general situations.

(i) F satisfies no veto power and there is a uniformly worst element;
i.e., there exists w € A such that for all s and i, aP(s)w for all ¢ # w. In
this case, if x € F(s)\F(s'), no veto power guarantees the existence of z,
and j # i such that z,P/(s")x, and the rest of part (B) is satisfied by setting
7, = w. Therefore F is chained.

(i) x € F(s)\F(s') and there exists i with Pi(s) # P'(s'), j # i, and
¥ € A, such that both agents prefer y to x at s'. In this case, we set z; =
x and z, = y, and F is chained. This observation will be useful when we
analyze economic environments in Section 5.

(iii) F is monotonic. This guarantees part (A) of the chained condition.

C. Sufficiency of the Chained Condition

We turn next to sufficiency. We show below that with three or more
agents, any chained SCC which satisfies no veto power can be imple-
mented by a bounded mechanism. Before proceeding, we note that we
may want to impose restrictions on mechanisms beyond boundedness.
We have argued that boundedness is an appropriate restriction given that
agents are assumed not to use weakly dominated strategies. Similarly, in
order for the **Nash’’ part of the solution to make sense, we should require
that every agent have a best response to every strategy profile of the other
agents. We impose this next.

DEefFiNITION 8. A mechanism (M, g) has the best response property if
for all i, for all s, and for all m ', there exists m' € M’ such that g(m?',
m - ORU($)g(m’, m™) for all M’ € M,
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This best response property is not redundant given the boundedness prop-
erty. It is possible, for instance, to find mechanisms for which all actions
are undominated (so the mechanism is bounded) and yet agents’ best
responses are not always well defined. It is also possible to find mecha-
nisms where best responses are always well-defined, but or which there
exists an infinite string of domination, with each strategy in the string
dominating the previous one, but no strategy dominating all strategies in
the string.

DerFINITION 9.  F is boundedly implementable if it is implementable
in undominated Nash equilibrium by a bounded mechanism satisfying the
best response property.

We remark that an alternative definition of bounded implementation is
one that simply requires that all agents have a undominated best response
to any strategy of the others. This would be slightly weaker than requiring
bounded implementation. However, for the purposes of this paper, this
distinction does not make any difference. In particular, Theorems 1, 2,
and 3 hold for either definition of bounded implementation.

THEOREM 1. If N = 3, A is finite, F satisfies no veto power, and F is
chained, then F is boundedly implementable.

Proof. See Appendix.” m

D. Weakly Chained: A Necessary Condition

While F being chained is sufficient for bounded implementation, it is
not necessary. The following weaker condition is necessary. For any finite
set J, let 27 be the set of all subsets of J (including the empty subset).

DeFINITION 10.  Fis weakly chained if for all s and s', if x € F(s)\F(s'),
then either F is chained at x, s, s’ or there exists a subset of agents, / C
{1,2,. .., N}, with #I > 1, j & I, and a function z:2' — A such that

Pi(s) # Pi(s’) foralli € 1,

2DPI(s')x,

xPi(s)z2(D) or x = z(&), and

Z(CYPI(s)Z(C\iD) or 2(C) = Z(C\i}) foralli e Cand C € 24,

THEOREM 2. If F is boundedly implementable, then F is weakly
chained.

Proof. See Appendix. =

’ See Jackson et al., (1990), for a proof with weak preferences.
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While this condition is somewhat awkward to express, the intuition is
actually straightforward. Note that in comparing s and s’, if the only
difference between s and s’ is that the preferences of exactly one agent
change, then the restrictions imposed by either *‘chained’’ condition are
the same. The difference between F being chained and F being weakly
chained is that in the latter, we might need several agents (as opposed to
a single agent) to have weakly dominating strategies before we can find
an agent who has a better response. The following example illustrates this
point, and also shows that F being chained is not necessary for bounded
implementation.

ExaMpPLE2. N =3,A = {x,a,b,c,d}, S = {5, s'}, and preferences
are

1 2 3 1 2 3
X X a x x d
¢ ¢ b a b x
a b d c ¢ c
b a x d d a
d d ¢ b a b

Let F(s) = {x}, F(s') = {d}. To see that F is weakly chained, observe
that we can set I = {1, 2}, j = 3, and define the mapping z:2' — A by
{D) = ¢, z{1}) = a, z({2h = b, z({1, 2}) = d. The values of z correspond
to the elements of the matrix on the right of the mechanism which imple-
ments F, where player 1 chooses a column, player 2 a row, and player 3
a matrix.

!
m m m m
m, X X m, C a
2 2
m, X X ms b d
ny ny

It can be verified, however, that F is not chained. Notice that this example
can be extended to an environment where preferences are a cross-product,



BOUNDED IMPLEMENTATION 485

by letting F be the social choice correspondence implemented by the
above mechanism.

E. Applications to Voting Rules

The Top-Cycle Set

An interesting social choice correspondence which is not weakly
chained and, therefore not boundedly implementable is the Condorcet or
top cycle correspondence, defined as follows. For any x, y € A, we write
xD(s)y if a strict majority of agents prefer x to y.

te(s) = N{B C A | x € B,y & Bimplies xD(s)y}.

The top cycle set at s is the smallest subset of A with the property that
nothing outside the set is preferred by a strict majority to anything in the
set.?

ExaMpPLE 3. N =3, A4 = {x, a, b, ¢}, § = {5, 5'}, and preferences
are

s 5
1 2 3 1 2 3
x b c x b ¢
a ¢ a a ¢ a
b x b c x b
c a x b a «x

Here, tc(s) = {x, a, b, ¢}, te(s’) = {c}, so x € te(s)\tc(s’). Note that only
the preferences of agent 1 change between s and s', soi = 1 and chained
and weakly chained are equivalent. Consider any choice of j, z,, and z,.

(1) j # 1: This follows from the fact that xP'(s")y for all y # x.

(2) If j = 2: then, (B2) of the chained condition implies z;, € {x, a}.
Further, z,P*(s")x implies z, € {b, c}. But x and a are preferred by 1 at
s’ to both b and c, so we cannot satisfy the (B1) requirement, z, P'(s")z, .

(3) If j = 3: then (B2) implies z; = x, since x is 3’s worst element at
s. But then (B1) implies z, = x since x is 1’s best element at s, and this
violates the requirement that z, P*(s')x.

! There are several definitions of the top cycle set (see Schwartz (1986)). The one we use
corresponds to the GETCHA set.
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We conclude that the top cycle correspondence is not weakly chained.’
This example also shows that the intersection of the set of Pareto optimal
outcomes and the top cycle set is not boundedly implementable.

The Uncovered Set

An interesting SCC which is chained is the uncovered set, identified
by Miller (1977). The uncovered set is a subset of the top cycle set and
contains only Pareto optimal alternatives. As shown below, the uncovered
set SCC is chained and satisfies no veto power, and therefore is boundedly
implementable.

The uncovered set is defined as follows. We say that x covers y at s if
xD(s)y and for all z, yD(s)z => xD(s)z. Thus, x occurs y if it “‘defeats™ y
and also defeats all alternatives which y defeats. The wncovered set at s,
written uc(s), is the set of alternatives which are not covered at s:

uc(s) = {x € A} x is not covered at s}.

In Example 2, uc(s) = { a, b, ¢} and uc(s’) = {c}.
PROPOSITION 2. The uncovered set correspondence is chained.

Proof. Suppose x € uc(s) and x & uc(s’). Then, there exists z such
that z covers x at s’ but not at s. There are two cases.

Case [: not zD(s)x. In this case, since zD(s')x, there must exist an
agent i such that zP(s")xP(s)z. Therefore, the first part of the chained
condition is satisfied.

Case 2: There exists y such that xD(s)y while not zD(s)y. If it is not
the case that xD(s’)y, then there exists an agent i such that yP(s")xPi(s)y,
so the first part of the chained condition is satisfied. Suppose then that
xD(s")y. Since z covers x, we get zD(s")y. Since we have not zD(s)y, there
exists an agent i such that zP(s")yPi(s)z. To complete the argument, we
need a j # i such that zP(s")xP/(s)y. This follows from the facts that
zD(s")x and-xD(s)y and the fact that the D relation requires that more
than N/2 agents prefer an allocation to another. If j = i, then it follows
that xP(s)zP(s’)x and so the first part of the chained condition is satisfied.
Otherwise, let z, = z and z; = y and the second part of the chained
condition is satisfied.

% This example also shows that the SCC given by F(s) = x, F(s’) = ¢ is not chained.
We show below that this F is not boundedly implementable. This shows that bounded
implementation differs from implementation via backward induction (Herrero and Srivastava
(1992)), since this F is implementable via backward induction.
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CoroLLARY. [f N = 3, the uncovered SCC is boundedly imple-
mentable.

Proof: This follows from Theorem 2 above and the fact that the uncov-
ered set correspondence satisfies no veto power. =

Plurality Rule

Another interesting social choice correspondence which is boundedly
implementable is the plurality rule. The plurality correspondence is neither
Nash implementable nor subgame perfect implementable (see Abreu and
Sen (1990)). Since the SCC in Example 2 is not boundedly implementable
but is subgame perfect implementable, we see that subgame perfect imple-
mentation neither implies nor is implied by bounded implementation. The
plurality rule is defined as follows.

For any « € A and any s € §, let

N(a, s) = #{i| aP(s)bforall b € A},
F(s) ={a€A|N(a,s)= N(b,s)V b€ A}

Then, F, is the plurality correspondence; at each s, it picks the best
element of the largest group of agents.

ProposITION 3. If N = 3, then F, is chained.

Proof. Let x € F,(s)\F,(s"). Then, two cases arise:
(1) x is the best element of some i at s but not at s', or
(i) case (i) does not hold and some y € F,(s') is ranked first by more
agents at s’ than at s.

In case (i), there exists i such that xP(s)zPi(s')x.

In case (ii), there exists i such that y is the best element of i at s’
and v is not the best element of / at s. Further, since case (i) does not
hold we have N(y, s') > N(x, s') = N(x, s), so there exists j # i such
that yP/(s')x. In this case, letz, = x, z, = y. =

COROLLARY. F,(s) is boundedly implementable if I = 3.

Proof. This follows from Theorem 1 and the fact that with N = 3, F,
satisfies no veto power. =

Borda Count

The plurality correspondence is a special case of a general class of
correspondences called scoring correspondences (see Moulin (1983)).
While the plurality correspondence is boundedly implementable as shown
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above, other scoring correspondences are not. As an example, we consider
the scoring correspondence defined by the Borda count. For any s, let
Bi(a, s) = k if a is the k’th most preferred alternative. Let

Fy(s) = {a € A| 2, B(a, s) < I, B(b, s5) Vb € A}.

Then, Fyis the Borda correspondence. The following example shows that
Fy is not weakly chained.

ExAMPLE 4. Fj is not weakly chained.
A=la, b, c,d e}, N=3,5 = {s, s'}, and preferences are

s s

1 2 3 P2 3
a e ¢ a e b
b a d b a ¢
¢ b b c b d
d ¢ a d ¢ «a
e d ¢ e d e

Here, Fy(s) = {a}, Fg(s') = {b}. Fy satisfies no veto power, but it is not
weakly chained. To see this, consider outcome a. The position of a relative
to any other outcome has not changed between s and s’, so only the
second part of the weakly chained condition must be checked. The only
candidate for inclusion in / is agent 3 (thus weakly chained here is equiva-
lent to chained). The only candidate for z(J) is e, and the only candidate
for j is agent 2, since a is the best element of agent 1 at s', and e is the
only alternative which 2 prefers to a at s'. But then z(J) = e since we
must have z(H)P*(s")z(D) or z(I) = z(). This violates the requirement
that aP*(s)z(Q) or a = z(D).

We note that in general, Borda winners need not lie in the top cycle
set, even if there is a Condorcet winner. This is illustrated here since a
is the Condorcet winner in both states. The example can be modified by
adding more alternatives to ensure that the Borda winners lie in the top
cycle set at each state, and also to satisfy no veto power.

F. Double Implementation

An interesting by-product of Theorem 1 concerns ‘‘double’” implemen-
tation, that is, implementation simultaneously in Nash equilibrium and
undominated equilibrium. The following extends results of Yamato (1990),
(see also Tatamitani (1991)).
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ProposiTION 1. If N = 3, F is monotonic and satisfies no veto power,
then there exists a bounded mechanism such that for all s, UNE(s) =
NE(s) = F(s).

Proof. The mechanism constructed in our sufficiency proof has this
property if F is monotonic. =

4. EcoNnomic ENVIRONMENTS

In the previous section, we did not allow for the possibility that agents
might use mixed strategies. If agents have von Neumann-Morgenstern
utility functions, then the mechanism used to prove Theorem | may have
mixed strategy equilibria which, with positive probability, lead to out-
comes outside of the SCC.

The consideration of mixed strategies leads to several questions which
remain unanswered in implementation theory. The mechanism presented
in the proof of Theorem 1 can be extended to show that any chained SCC
satisfying no veto power can be implemented by a bounded mechanism
(i.e., one in which there is no infinite chain of weakly dominated strategies)
in which there are no mixed strategy equilibria. This can be done by use
of an (infinite) integer game.!® We do not know if a mechanism can be
constructed in which every agent always has a best response to every
(mixed) strategy profile of the other agents. This question remains unan-
swered for Nash implementation as well. The construction of Moore and
Repullo (1990), for Nash implementation also involves an integer game
for which there are no mixed strategy equilibria. However, there exist
mixed strategies of some agents to which other agents have no best re-
sponse, in which case it seems unreasonable to apply the Nash equilibrium
solution concept. The problem that arises in such constructions is that
the set of mixed strategies is very large when the mechanism is infinite,
and it is difficult to simultaneously have a best response to every mixed
strategy profile for every possible von Neumann-Morgenstern representa-
tion and at the same time not have any mixed strategy equilibria.

Even if it is possible to construct an implementing mechanism with no
mixed strategy equilibrium, it is generally going to be infinite, even in

1 The restriction to bounded mechanisms does not rule out all types of integer games.
Rather, it assures that the process of eliminating dominated strategies is a coherent one.
Thus, a restriction to bounded mechanisms may have little to say about whether the Nash
solution is appropriate. For example, it is easy to construct bounded mechanisms in which
agents do not have a best response to strategy profiles of other agents. In such a mechanism,
elimination of dominated strategies may be quite reasonable, but it may be inappropriate
to apply the Nash solution concept.
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finite environments; an example is given by Jackson (1992). An alternative
approach is to examine conditions on SCCs, beyond monotonicity or
the chained condition, which characterize Nash or undominated Nash
implementation (allowing for mixed strategies) by finite mechanisms in
finite environments. Such an approach may be less useful for cases such
as pure exchange economies, where it is usually assumed that the set of
allocations is infinite. However, the special structure of such environments
usually permits particular, simple constructions, as we will show.

The difficulties associated with mixed strategy implementation apply to
any Nash-based equilibrium concept, at least in abstract settings. We
will show below that in ‘‘separable’” environments, which include many
economically interesting ones, positive results can be obtained with quite
simple mechanisms."!

Recently, Abreu and Matsushima (1990) have studied implementation
by iterated elimination of weakly dominated strategies. They assume that
there is a finite set of von Neumann—Morgenstern utility representations,
and allow the mechanisms to use random allocations. They show that
under some additional (very) weak conditions, any social choice function
can be implemented by a finite mechanism. Their construction hinges on
their assumption that there is a finite set of von Neumann-Morgenstern
utility indices. The finiteness restriction and the use of random allocations
allows them to construct a mechanism which has no unwanted mixed
strategy perfect equilibrium.'? This still leaves open the central issue con-
cerning mixed strategies: how does one construct a mechanism which is
compatible with the solution concept and is immune to mixed strategy
equilibria for every von Neumann—Morgenstern representation of prefer-
ences.

We resolve this question for ‘“*separable’’ environments. We describe
a mechanism which implements any social choice function in undominated
Nash equilibrium, and has no mixed strategy undominated Nash equilib-
rium for any von Neumann-Morgenstern representation of preferences.
The mechanism does not require the use of random allocations.

Separable Environments

We examine bounded implementation in environments which we loosely
classify as ‘‘separable environments.’” These environments do not require
a finite set of alternatives, and also allow for weak preferences. They

1 An alternative approach which handles mixed strategies is to consider finite trees of
perfect information. There, backward induction can be applied, as studied by Herrero and
Srivastava (1992).

12 There is some concern over the number of steps required to eliminate dominated strate-
gies in the Abreu—Matsushima mechanisms. For discussion of this, see Glazer and Rosenthal
(1992), and Abreu and Matsushima (1992b).
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include the case of pure exchange economies and all economies with a
transferable private good such as public good environments. Here, the
chained condition is satisfied by all SCCs.

We will show that in separable environments, bounded implementation
can be achieved by a simple mechanism. In fact, any SCC can be bound-
edly implemented by a mechanism in both pure and mixed strategies.
Further, this mechanism is dominance solvable. The result requires the
following assumptions, which describe an environment which is separable
relative to F.

(A1) A worst element relative to F: 3 w € A such that aP'(s)w for
all i, s, s', and a € F(s').

(A2) Separability: For all a € A, s' € § and J C N, there exists
a’ € A such that a’F(s)w for all s € S for j € J, while a’I'(s')a for i & J.

(A3) Strict value distinction: If Ri(s) # R(s'), then there exist a and
b in A such that aP(s)b, bPi(s")a, aP'(s)w, and bP(s")w.

There are many well-studied environments which are separable, as we
now discuss.

ExaMPLE 6 (Transferable Utility). Here, A = B x C where C = RV
is the set of joint transfers, and s preferences are strictly increasing in
the transfer, ¢'. Further, it is assumed that for any s € S, b, b’ € B, there
exists ¢’ € RY such that (b, 0) I'(s) (b’, ¢’) for all i. This says that for any
two allocations b and b’, there exists a set of transfers such that agents
are indifferent between b’ with the transfers and / without any transfer.

An example of such a setting is in the provision of public goods. Consider
the social choice function which selects the efficient decision of whether
to undertake a public project, and which distributes costs in proportion
to each agent’s benefit. Such a social choice function is boundedly imple-
mentable (see Jackson and Moulin (1992)). Many other cost sharing rules
can also be accommodated.

The case of transferable utility is known to have nice properties relative
to implementation. This can be seen in the implementing mechanisms of
Moore and Repullo (1988), Glazer and Ma (1989), Jackson and Moulin
(1992}, and others. The definition of separability, however, admits environ-
ments which are not restricted to have quasi-linear utility with transferabil-
ity. For example, a classical exchange economy is separable with respect
to any social choice function which provides each agent with a non-zero
allocation.

EXAMPLE 5 (Pure Exchange Economies). Here, A = {x€RLY | I,
x' = e}, where e is an aggregate endowment and there are L commodities.
Agent ['s preferences depend only on his own consumption bundle, and
is strictly increasing and continuous in this bundle. Here, we can imple-
ment any F which gives a non-zero allocation to each agent. For example,
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if each agent has a non-zero endowment, then the Walrasian correspon-
dence is boundedly implementable.!? Likewise, the no-envy correspon-
dence is boundedly implementable.

THEOREM 3. If the above assumptions are satisfied then any social
choice function F is boundedly implementable. Furthermore, the mecha-
nism can be constructed so that are no mixed strategy Nash equilibria
which only use undominated strategies.

There are several comments to be made concerning Theorem 3.'* First,
it covers the case of two agents, which is not covered by our other results.
So, for instance, it covers bilateral bargaining situations in which transfers
are possible. Second, it accounts for mixed strategy equilibria. As dis-
cussed by Jackson (1992), the implementation literature has largely ignored
the existence of mixed strategy equilibria. Third, it provides the very
strong result that any SCC can be boundedly implemented. Fourth, the
theorem is stated in terms of social choice functions. However, the proof
can be modified to also implement correspondences.

Proof. Let RY = {Ri(s):s € S} be the set of preferences possible
for i.

M«' — [Ri X Ri+l] U [A % A]

Agents either announce a pair of preferences (their own and their neigh-
bor’s), or they announce a pair of allocations.
g is defined as follows.

Case 1. If all agents announce preferences then let
J(m) = {j|mb# mi},
and define
g(m) = [F($)]/",
where [-]’“™ is as defined in (A2), and s is the state consistent with the

13 Note that only the *‘constrained’’ Walrasian correspondence is Nash implementable
(see Hurwicz et al., (1984)).

4 Sjostrom (1994), has independently obtained a result very similar to Theorem 3. He
investigates a production economy with public goods, which is a fairly general example of
a separable environment. Although his mechanism differs from ours, the intuition is roughly
the same.
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announcements m,. [If there is no such state then use a default state
s €8]

Case 2. If there exists i such that m' = (R, R**!1), while all other
agents announce the same pair of allocations m’ = (a, b), then

glm) = [alV} if aR’b and aP'w,
while

g(m) = [V~ ifbPlaand bP'w,

glm) =w otherwise,

where [a]V ! is defined according to (A2), giving a to i and excluding all
others.

Case 3. All other announcements.
glm) = w.

To see that this implements F:

(1) The only undominated strategies are to announce a pair of prefer-
ences, the first of which is the agent’s own true preference. [Any announce-
ment concerning the neighbor’s preference is undominated.]

It is clear that announcing a pair of allocations is dominated by a truthful
revelation of preferences, since announcing allocations always leads to
an outcome indifferent to w.

Next, the announcement of own preferences only affects the outcome
under Case 2. Strict value distinction assures that truthful revelation in
that case is the only undominated action.

(2) Given (1), the only UNE involves announcing your own true
preferences, and your neighbor’s true preferences. (This follows since
any set of undominated actions must have each agent announcing their
own preferences truthfully, and only best response involves matching
your neighbor’s announcement. The uniqueness of this best response
assures that there can be no mixed strategy equilibria.)

(3) From the analysis in (1) above, it is clear that the mechanism is
bounded. To see that the mechanism satisfies the best response property,
note that by setting m! to be the true preference, and setting mi =
mi*! whenever mi*! is a preference announcement and choosing m} arbi-
trarily otherwise, is a best response to the actions of the other agents.

The set of UNE coincide with the strategies left after the iterative
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elimination of dominated strategies (or the procedure defined by Borgers
(1991)). =

The mechanism constructed in the proof of Theorem 3 makes heavy
use of (Al) and (A2). It “‘punishes’’ agents whose messages are inconsis-
tent with the messages of others. The separability assumption (A2) allows
the mechanism to punish only certain agents, instead of resorting to severe
punishments for all agents when only one has deviated. Abreu and Matsu-
shima (1992a), obtain a similar result with virtual implementation in itera-
tively undominated strategies. Their result has the advantage of working
with smaller punishments, and has the shortcomings of requiring that
preferences have a known von Neumann-Morgenstern utility representa-
tion in each state, and applying only to finite environments.

5. CONCLUDING REMARKS

In summary, this paper presents several results on bounded implementa-
tion in undominated Nash equilibrium. First, we identify the chained
condition which, together with no veto power and at least 3 agents is
sufficient for bounded implementation. Second, we identify a slightly
weaker necessary condition, called weakly chained. Third, we apply these
results to show that the uncovered set and plurality rule are boundedly
implementable, but the top cycle set and Bordarule are not implementable.
Fourth, we identify a domain restriction, separable environments, where
there exists an implementing mechanism, that is simple and intuitive,
applies to the two-agent case, is immune to mixed strategies, is bounded,
and is dominance solvable. That domain includes many economic environ-
ments of interest.

This is one of the first papers that attempts to characterize what is
implementable in general environments under axiomatic restrictions on the
mechanism. The requirement of boundedness was motivated by Jackson’s
(1992) identification of a conceptual problem with a certain kinds of con-
structions in the implementation literature. In the course of finding a
solution to that problem, it has become evident that there are many other
important conceptual issues that remain to be explored in implementation
theory. Prominent among these is the problem that many of the mecha-
nisms constructed in the past (including the one in our appendix) may
have undesirable mixed strategies in some domains. While the problem
can sometimes be overcome in isolation (Moore and Repullo (1990)),
or in some kinds of economic environments, its resolution for general
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environments remains an open question when coupled with the require-
ment of boundedness.

APPENDIX

Proof of Theorem 1
We construct a general implementing mechanism in the following way.

Preliminary steps in the construction. The assumption that F is
chained (Definition 7) guarantees that for all s, s’, and x € F(s)\F(s'),
there exist 7, y,, y, such that y, P{(s)y,P(s"}y, and either:

(A) y, = xand y,P(s")x or
(B) y,Pi(s)y, and there exists j # i and there exist allocations z,, 2,
such that z,P(s" ) xP/(s)z, (or x = z;) and z,R'(s")z,

In case (A) we define two functions, iyx, s, s') and y(x, s, s') such that
Yolx, 8, sPUs )P U($)yolx, s, s') for i = iyx, s, ).

In case (B), define the functions I(x, s, §'), J(x, s, §), ¥,(x, 5, 5'), y(x, s,
s'), zy(x, 5, 8"), z,(x, 5, s") such that, fori = Ix, s, s'yandj = J(x, s, s'):
(1) y,(x, s, P yx, 5, sIP(s )y (x, s, s7).
(2) z5(x, s, s IPU(s)xPU(s)zy(x, s, s) (or x = Z)
(3) z5(x, s, sHP(sz(x, s, 5")

Since no one is indifferent over A at any state, define, for each i, the
functions @'(s) and a'(s) such that @(s)P(s)a'(s) for all s.
The message space for each agent / is

M=AXSXSx{-(N+3),-(N+2),...,-1,012,...,N}L

It is required that the message m' = (x, s, s’, 0) can only be sent by agent
I(x, s, 5'). Also, mi € F(m}) is required for all i.
Define the outcome function by partitioning the message space as
follows.
D, ={m|3s,xE€Fs)st.Vk m = (x,5, -, 0)}
glm) = x
D,={m|3s,sand x € F(s) s.t. m/ = (x, 5,5, =) forj = J
(x, s, s’)and m* = (x, s, -, 0) for all k # J(x, s, ')}
gm) = z,(x, 5, s') if mi&*s) = s orif mixss) = 5
such that z,(x, s, s" )PS5 (s") z5(x, 5, §')
glm) = z,(x, s, s') otherwise.
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D,={m|3s,5,x€F@s),ist.m = (x5, -,0),Vk#ifx, s, s)
and m' = (x, s, s', —2) fori = iyx, s, s")}
glm) = yy(x, s, s')
D,={m|mg&D UD*UD*and 35, x € F(s), and i s.t. m* =
(x, s, , 0) VK # i}
glm) = x
Dy={m|3s, s, x EFs)s.t.m = (x,s5,5, -3)Vk+#Ix,s,s)
and m!>ss) = (x, s, -, 0)}
gm) = y(x, s, s') if m{&s" = s or if m{®) = 5" such that
yilx, s, sYPIES(s") y(x, s, 5}
g(m) = y,(x, s, s') otherwise.
DJ{m |3 s, s’ (possibly s = 5'), x € F(s) and i
s.t.mf = (x,s,8, —(+3YVEk#Ii}
glm) = @s)ifm = (x,s,-, 0
g(m) = a'(s') otherwise.
D, = {all other m}
g(m) = m{" where i* is determined as follows:
For each i, let n' = max {0, mi}and let L = n' + - - - + nV
Then define i* = 1 + mod,(L)

Claim 1. Ats, m* = (x, s, s, 0) for all k is a Nash equilibrium.

Proof. A deviation by agent i puts the action into one of D,, D;, and
D,. A move to D, changes nothing. From the definition of z/(*), no agent
can benefit from moving to D,. Since xR(s)yy(x, s, s') for i = iyx, s, s'),
a deviation to Dy does not improve the payoff to iy(x, s, s').

Claim 2. Ats, m* = (x, s, s, 0) is undominated for each k.

Proof. Region D¢ guarantees that the only strategies that could weakly
dominate m* at s are of the form, (x, s, s', 0), with s # s’. Such a message
is only permitted by I(x, s, s’) or iy(x, s, 5'). Since y,(x, s, s")P(s)y(x, s,
s')fori = I(x, s, s'), Region D, guarantees that (x, s, s, 0) is not dominated
at s by (x, 5,5, 0). If i = iy(x, s, s') then (x, s, 5, 0) always does at least
as well as (x, s, s', 0).

Claim 3. If m is a Nash equilibrium at s’ and m & D, then g(m) is the
best element for at least N — 1 agents and so by no veto power, g(m) €

F(s").
Proof. From every joint message, m, in a region other than D, at

least (N — 1) players, each have a unilateral deviation, say r, such that
(m~, ny € D, and g(m ~, n') is i’s best element at 5.
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Claim 4. At s'. ifi = I(x, s, s'), then m' = (x, 5, s’, 0) dominates
m' = (x, s, s, 0).

Proof. Inregion Dy, m' = (x, s, s', 0) is strictly better than m’ = (x,
5, 5,0 fori = Ix, s, s') at s’. In every other region, i is weakly better
off at s’ with m' = (x, s, s', 0) compared to m' = (x, s, 5, 0).

Claim 5. At s’, either m' = (x, s, s’, 0) weakly dominates m' = (x,
s,s",0) fori = I(x, s, s') or z,(x, s, s )P(s")z/(x, s, s').

Proof. In every region { is either strictly better off or equally well off
reporting (x, s, s’, 0) compared to (x, s, s”, 0). If (x, s, s, 0) does not
dominate (x, s, s”, 0), then they must lead to the same outcomes in D,
which implies that z,(x, s, s")P{(s")z,(x, s, §).

Claim 6. If m € D, is a UNE at s’, then g(m) € F(s').

Proof. Suppose not. Then g(m) & F(s’). This implies that m{ = x and
mi = s # s’ for all i. Since F is chained, there exists either iy(x, s, s") or
I(x, s, s'). In the first case, iy(x, s, s') can strictly improve his payoff by
reporting (x, s, s, —2), which contradicts m being a Nash equilibrium.
In the second case, Claim 4 implies that (x, s, s, 0) dominates (x, s, s,
0) for I(x, s, s). Since m is undominated. Claim 5 implies that /(x, s, s')
must be reporting (x, s, s’, 0) or some (x, s, s”, 0) such that z,(x, s,
s)PU(s")z(x, 5, s'). But this implies that J(x, s, s') can strictly improve
his payoff by reporting (x, s, s', — 1), which moves the message from D,
to D, and changes the outcome from x to z,(x, s, s"). This contradicts m
being a Nash equilibrium.

Claim 7. The above mechanism implements F in UNE.

Proof. From Claims 1 and 2, for every s and for every x € F(s), it is
an undominated Nash equilibrium for everyone to report (x, s, s, 0) at s.
From Claim 6 there are no UNE outcomes in D, that lie outside F(s).
From Claim 3, every Nash equilibrium at s that lies outside of D, produces
an outcome in F(s). Therefore every undominated Nash equilibrium out-
side of D, produces an outcome in F(s).

Claim 8. The mechanism is bounded and has the best response
property.

Proof. Since A is finite, it follows that S and M are finite. Any mecha-
nism with a finite message space is bounded and has the best response
property. =

Proof of Theorem 2

Suppose F is boundedly implementable by (M, g), x € F(s)\F(s"), and
m is an undominated Nash equilibrium at s with g{m) = x. Then, either
m is not a Nash equilibrium at s’ or m is weakly dominated at s'.
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If m is not a Nash equilibrium, then there exists an agent i and an
alternative strategy n’ with x # y = g(n', m~‘), and xP'(s)yP'(s')x. In this
case (A) is satisfied and F is chained at (x, s, s').

If m is a Nash equilibrium at s', then m’ must be weakly dominated at
s’ for some i. Let / be the setof alli € {1, 2, . . ., N} for whom m'is
weakly dominated at s'. For each i € I, let n' be a dominating strategy.
Since (M, g) is bounded, we can assume that n' is itself not weakly
dominated at s’ for every i € [ (otherwise we can simply replace n’ with
an undominated strategy which weakly dominates m’ at s’). Further, it
must be the case that Pi(s) # Pi(s’) for all i € I. Otherwise # would be
weakly dominated at s.

Next, strict preferences imply that g(n’, m~) = x, for all i € I(s, 5')
(otherwise m would not be a Nash equilibrium at s’). Two cases now
arise: (1) #1 = 1, and 2) #1 > 1.

Case (1): I = {i}. Here, g(n’, m~") = x as argued above, and neither
n' nor any of the m* for k # i are weakly dominated at s'. Since x & F(s'),
(n', m~') is not a Nash equilibrium at s'. Hence there exists an agent, say
J(#i), and a strategy for j, say n/, such that z, = g(n', n/, m~7) is better
than x forj at s, i.e. 7, P(s’)x. Now, let z; = g(m', n/, m ), so that the
situation is given by

ni

m
rnf X X
J :
n’ Z) 23

The requirements of the condition are now clear. Since /' is a best re-
sponse for j at s, it must be the case that either z; = x or xP/(s)z,. Since
n weakly dominates m‘ at s', it must be the case that either z, = z, or
z,P(s")z,. If z; = z, then (A) is satisfied for agent j. If z, Pi(s’)z, then (B)
is satisfied. Therefore F is weakly chained (at (x, s, s')).

Case (2): #1 > 1. Suppose, for simplicity, that 7 = {i, i’}. Since g(n’,
m~") = x and g(rn", m~¥) = x, the above matrix takes the form
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Suppose that y # x. Then, it must be the case that yPi(s")x, yP'(s")x, so
(B) is satisfied with z, = y, z; = x and F is weakly chained (at (x, s, s')).

Suppose then that y = x, in which case g(n', n", m~¥) = x, and no one
is using a weakly dominated strategy. Since x & F(s’), this cannot be a
Nash equilibrium. Hence there exists another agent, say j, and a strategy,
n’, such that n/ is a better response for j to (n', n, m /) then m’. The
situation now looks as follows, in which j chooses the matrix.

m' n' m' n
i i -
. m X X . m Z, 2
i i
n' X X n' Z Zir
m’ W

It must be the case that z;; P/(s")x and xR/(s)z,. Further, since n’ weakly
dominates m' for i, we must have z,R'(s")z,, z;R'(s")z;, and similarly for
agent {'. Letting 2(0) = z,, z({i, i'P) = z, 2{iP = g, z2{i'D = zp, we
get the requisite mapping.

The extension of the above argument when [/ consists of more than two
agents is straightforward. =
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