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Abstract

Efficient regulation of the commons requires information about the regulated firms that

is rarely available to regulators (e.g., cost of pollution abatement). Different mechanisms

have been proposed for inducing firms to reveal their private information but, for reasons

discussed in the paper, these mechanisms are of limited use. This paper proposes a much

simpler mechanism that implements the first-best for any number of firms: a uniform price

sealed-bid auction of an endogenous number of (transferable) licenses with a fraction of the

auction revenues given back to firms. Paybacks, which rapidly decrease with the number of

firms, are such that truth-telling is a dominant strategy regardless of whether firms behave

non-cooperatively or collusively. (JEL D44, D62, D82)

Regulatory authorities generally find that part of the information they need for imple-

menting an efficient regulation is in the hands of those who are to be regulated. Regulating

externalities such as access to common resources (e.g., clean air, water streams, fisheries, native

forests, etc.) is not the exception. Environmental regulators, for example, know little about

firms’ pollution abatement costs, so without communicating with firms they would be unable to

establish the efficient level of pollution. Different mechanisms have been proposed for inducing

firms to reveal their private information but for reasons I discuss below I find these mechanisms
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of limited use. In this paper, I propose an efficient and much simpler mechanism: a uniform

price sealed-bid auction of an endogenous number of (transferable) licenses with a fraction of

the auction revenues given back to firms.1 The mechanism is developed under the additional

assumption that firms know nothing about the other firms’ characteristics.

Following Martin L. Weitzman (1974), several authors have looked for ways in which to

improve upon his fixed tax or license scheme. Marc J. Roberts and Michael Spence’s (1976)

hybrid tax/license scheme can in principle implement the first-best when there is an infinitely

large number of firms and the regulator is free to impose a tax schedule (as opposed to a fixed

tax) and issue a continuum of license types, with each type clearing at a different price. Build-

ing also upon the assumption of perfect competition in the license market, Evan Kwerel (1977)

develops a simpler subsidy/license scheme that implements the first-best in Nash equilibrium.

Relaxing the perfect competition assumption and allowing for pollutant differentiation, Partha

Dasgupta, Peter Hammond and Eric Maskin (1980) propose a simple adaptation of the Vickrey-

Clarke-Groves (VCG) mechanism, which has the advantage of implementing the first-best in

dominant strategies.2 Maintaining the same two assumptions but imposing complete informa-

tion by firms, in a more recent paper John Duggan and Joanne Roberts (2002) advance an

efficient quantity-based scheme in which each firm chooses the number of licenses for itself and

for its "neighbor."3

With the exception of Kwerel (1977), the fact that these first-best mechanisms are highly

non-linear, firm-specific and/or depending on a complete information assumption complicates

their practical implementation.4 In fact, we do not see anything like it being applied in practice

or, at least, under consideration. Conversely, Kwerel’s scheme is quite simple: the regulator

issues a fixed number of transferable licenses and establishes a subsidy per license to be paid to

any firm holding licenses in excess of its emissions. Both the total number of licenses and the

subsidy level are calculated on the basis of the information provided by firms. Unfortunately,

the scheme presents some important limitations regardless of how licenses are allocated to

firms.5 If licenses are allocated for free (i.e., grandfathered), it can be shown (Proposition 1)

1Licenses are generally refered to as permits or allowances in water and air pollution control, as rights in water
supply management and as quotas in fisheries management. In this paper, I will use the term license throughout.

2See Daniel F. Spulber (1988) for consideration of budget constraints.
3Other efficient proposals that require complete information by firms (whether globally or at the industry level)

are Hal R. Varian’s (1994) multistage price mechanism, Jae-Cheol Kim and Ki-Bok Chang’s (1993) tax/subsidy
scheme and Marcelo Caffera and Juan Dubra’s (2006) industry-specific emission standard mechanism.

4Evidence of significant information asymmetries across firms facing a commons problem is provided, for
example, by Steven N. Wiggins and Gary D. Libecap (1985).

5Kwerel (1977) is never explicit on the allocation of licenses other than assuming that firms pay a uniform
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that firms have incentives not to reveal their true types but to over-report their demand for

licenses to the maximum extent possible.

If, on the other hand, the total number of licenses are allocated via a uniform-price auction

in which each firm bids a demand schedule indicating the number of licenses willing to purchase

at any given price, there is little guarantee that firms will reach the competitive outcome (Paul

Milgrom, 2004). As first recognized by Robert Wilson (1979) in his pioneer "auctions of shares"

article, even when there is a large number of bidders, uniform price auctions can exhibit Nash

equilibria with prices far below the competitive price (the price that would prevail if all bidders

submit their true demand curves). The reason for this is that uniform pricing creates strong

incentives for bidders to (non-cooperatively) under-report their demand schedules in order to

depress the price they pay for their inframarginal units. Therefore, anticipating a low-price

equilibrium at the auction (most likely zero, or the reserve price if there is any), firms would

find it again profitable to over-report their demand functions by as much as possible in order

to acquire a large volume of licences that can then be sold back to the government at a price

much higher than the auction clearing price.6

Different solutions have been advanced in dealing with this low-price equilibria phenom-

enon. One radical solution is to give up the uniform-price format altogether and opt for a

discriminatory-price format (e.g., William Vickrey, 1961; Lawrence M. Ausubel, 2004). But

within the uniform-price format, different authors have also been looking for ways in which

changing auction rules could eliminate underpricing. Ilan Kremer and Kjell G. Nyborg (2004),

for example, propose changing the allocation rule (i.e., the way the asset is divided when there

is excess demand at the clearing price) from the usual marginal pro rata tie-breaking rule to a

total pro rata rule.7 More recently, David McAdams (2005) eliminates underpricing by letting

the auctioneer not to commit to a fixed quantity and reserve price ex-ante. Bidders only learn

price for all licenses purchased. Besides, there is no much we can infer from the firm’s cost minimizing problems
laid out in pages 596 and 597 because of the price-taking behavior (i.e., any grandfathered allocation can be
omitted from the minimization problem since it is a lump-sum transfer with no effect on the firm’s abatement
decision). It is also not obvious how to adapt Kwerel’s scheme to the case of pollution differentiation.

6Some readers may argue that removing the subsidy and having it replaced by a price floor (of equal magni-
tude) would finally solve matters. As we shall see, it does not do so for the exact opposite reasons. Anticipating
the reserve price as the auction clearing price, firms would have incentives to deviate from truth-telling by under-
reporting their demand curves in order to decrease the reserve price. The expectation of a (non-cooperative)
low-price equilibrium acts as coordinating monopsonist device.

7For the change in the allocation rule to have an effect on clearing prices, bidders must be allowed to submit
discountinuous demand schedules, which, by construction, is not possible in Wilson (1979). But unlike in Kremer
and Nyborg (2004) where bidders have a constant valuation for the asset, in our context this allocation rule change
is of little help because bidders do have fairly continuos downward sloping demand curves.
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about the total quantity sold by the auctioneer once the auction is concluded.

In this paper I propose a mechanism that builds upon a conventional uniform price sealed-

bid auction but in order to guarantee the efficient outcome, I introduce two key ingredients.

First, I let the total number of licenses be endogenous to the demand schedules submitted by

firms. This is a most natural thing to do in our context because the benevolent regulator is

clueless about the efficient number of licenses to be allocated before communicating with firms.

But unlike in McAdams (2005), this "flexible supply" feature by itself does not fully solve the

underpricing problem.8 Hence, I introduce a second ingredient: rebates or paybacks. Part of

the auction revenues are returned to firms not as lump sum transfers but in a way that firms

would have incentives to bid truthfully. While rebates may seem odd in other contexts,9 they

are not new in existing auctions for "protecting the commons".10 Furthermore, an auction with

paybacks seem to be a natural point of departure for any license-type regulatory proposal given

the mixed experience with allocating licenses (grandfather allocation vs auction allocation) that

is observed in existing programs across a variety of areas including air-pollution control, water

supply management and fisheries management (Tom Tietenberg, 2003).11

The two ingredients –endogenous supply of licenses and paybacks– enter into the uniform-

price format in a way that the resulting auction mechanism is both ex-post efficient and strategy-

proof (i.e., implemented in dominant strategies).12 The supply curve of licenses reflects the cost

to society (other than firms) from allocating these licenses to firms. Paybacks, on the other

hand, are such that the total payment for licenses of each firm is exactly equal to the "damage"

it exerts upon all the other agents (i.e., other regulated firms and the rest of society). For

example, in the case of a single polluting firm, the total payment faced by the firm is equal to

the pollution damage D(l), where l is the number of licenses/pollution allocated to the firm

8It only works in the limit, when there is an infinitely large number of firms so that paybacks are virtually
zero. Part of the reason why "flexible supply" is not sufficient is because I work with a very different set of
assumptions than McAdams (2005). I let firms to be asymmetric, to have downward sloping demand curves
and to know nothing about other firms’ characteristics. In addition, my auctioneer’s objective function is not to
maximize revenues but social welfare.

9Not surprisingly they are absent in recent books by Milgrom (2004) and Paul Klemperer (2004).
10See, for example, the US EPA auction for sulfur dioxide allowances (Paul L. Joskow et al., 1998). See also

Hans Gersbach and Till Requate (2004).
11See also Peter Cramton and Suzi Kerr (2002) for related arguments.
12This result may look surprising at first, given the result of Jerry R. Green and Jean-Jacques Laffont (1979)

that there is no social choice function that is strategy-proof and ex-post efficient. That result relies crucially on
the fact that the type of all the players is not known. In this paper, however, the type of one player, the benevolent
regulator, is known, that is, the "mechanism designer" knows the regulator’s loss function from allocating licenses
to firms (e.g., the pollution damage function). Given that, it is well known that using the known player as a
money sink or source one can design an ex-post efficient and strategy-proof mechanism (Andreu Mas-Colell et
al., 1995, pp. 876-82).
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at the auction. In the case of multiple firms, the total payment faced by firm i is equal to

its residual damage Di(li), which involves both its pecuniary externality imposed upon other

competing bidders (i.e., regulated firms) and its residual pollution externality. The residual

damage function Di(li) is computed by substracting from the supply curve D0(l) all other

firms’ bids, so it is independent of firm i’s bid.

The auction mechanism certainly follows a VCG payoff rule in that it makes each firm to

pay exactly for the externality it imposes on the other agents.13 It is, however, structurally

different from the VCG mechanism of Dasgupta-Hammond-Maskin (DHM). For instance, the

auction mechanism does not explicitly exhibit the VCG constant term constructed upon other

firms’ reports. Because of the structural differences the two mechanisms differ in at least two

important ways. First, the DHM mechanism, unlike the auction mechanism, fails to allocate

licenses efficiently across firms when the aggregate supply of licenses is fixed. This is because

each individual firm is no longer pivotal under DHM, i.e., its report does not affect the aggre-

gate supply. This is quite an important distinction because in many commons problems the

aggregate supply is likely to be fixed, either because of the presence of some genuine thresh-

old or because the auctioneer/regulator has no control over the aggregate supply. Second, the

DHM mechanism, unlike the auction mechanism, fails to deliver the first-best when firms are

acting collusively unless the constant term is set to zero. When we do that, collusive and non-

cooperative behavior are indeed no different in DHM but payments become so large –the full

social cost– that the (now Groves) mechanism becomes of little practical value.

The article is organized as follows. Section I presents the modelling assumptions and a brief

discussion of Kwerel’s scheme. Section II describes the auction mechanism; first for a single firm

and then for multiple firms. Section III describes several properties of the mechanism including

its relationship to the VCG mechanism. Section IV looks at how the mechanism performs under

collusive behavior. Section V concludes. The Appendix contains the proofs to all propositions.

I. The Model

To facilitate the exposition I will develop the model for the case of a classical pollution

externality (which would correspond to an auction of shares with variable supply). But it is

worth emphasizing that the model readily extends to other commons problems including those

in which licenses are firm-specific (because of pollution differentiation) and where firms impose

13 It is also payoff equivalent to the discriminatory auctions of Vickrey (1961) and Ausubel (2004).
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(private) externalities on each other.14

A. Notation and First-Best Allocation

Consider n ≥ 1 firms (i = 1, ..., n) to be regulated. All firms are assumed to have inverse
demand functions for pollution of the form Pi(xi) with P 0i (xi) < 0, where xi is firm i’s pollution

level that is accurately monitored by the regulator (In some cases I will work with the demand

function, which is denoted by Xi(p) with X 0
i(p) < 0, where p is the price of pollution). Function

Pi(·) is only known by firm i, neither by the regulator nor by the other firms. The aggregate

demand curve for pollution is denoted by P (x), where x =
Pn

i=1 xi is total pollution. The

social damage caused by pollution x is D(x) with D(0) = 0, D0(x) > 0 and D00(x) ≥ 0. D0(x)

can be interpreted more generally as the regulator’s supply function for licenses. We may want

to assume that D(x) is publicly known but it is actually not necessary.

In the absence of regulation firm i would emit x0i , where Pi(x
0
i ) = 0. Hence, firm i’s cost of

reducing emissions from x0i to some level xi < x0i is Ci(xi) =
R x0i
xi

Pi(z)dz (note that −C 0i(xi) ≡
Pi(xi)), and the minimum total cost of achieving pollution level x < x0 is C(x) =

R x0
x P (z)dz.

The regulator’s objective is to minimize the sum of clean-up costs and damages from pol-

lution, i.e., C(x) + D(x). Therefore, the socially optimal or first-best pollution level x∗ < x0

satisfies

P (x∗) = D0(x∗) = Pi(x
∗
i ) for all i = 1, ..., n (1)

But the regulator cannot directly implement the first-best allocation because he does not know

the demand functions Pi(·). He must then look for mechanisms in which it is in the firms’ best
interest to communicate their private information to him. Kwerel (1977) advances one of such

mechanisms for the case in which there are many firms.

B. Kwerel’s Scheme

To appreciate the workings of my auction scheme it is useful to start by understanding

firms’ incentives under Kwerel’s scheme. This latter proves to be interesting in itself because,

as we shall see below, the scheme may not work as intended.

Kwerel’s mechanism is based on the combination of two instruments: an allocation of a

total of l transferable licenses and a subsidy of s per license to be paid to any firm holding

14Formal analysis of these extensions are found in Montero (2006).
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licenses in excess of its emissions. The regulator asks firms to report their demand curves after

they are informed that the parameters l are s are to be set according to

s = P̂ (l) = D0(l) (2)

where P̂ (·) is the aggregate demand curve built upon individual reports P̂i(xi).
Assuming that the market for licenses is competitive, it must hold in equilibrium that

Pi(xi) ≡ −C 0i(xi) = p and xi = li for all i = 1, ..., n, where p denote the market price of licenses.

Firms equate marginal abatement costs to the market price and keep a number of licenses just

to cover their emissions. Kwerel argues that this simple scheme induces each firm i to report

its true demand curve Pi(·) as long as it believes all other firms are telling the truth. In other
words, truth-telling is a (Bayesian) Nash equilibrium.

Kwerel’s logic can be easily explained with the aid of Figure 1. Figure 1a depicts the

situation in which a firm or a group of firms over-report their demand curves such that the

reported aggregate demand curve is P̂ (x) instead of the true curve P (x). The license and

subsidy parameters take the values of l̂ and ŝ, respectively, which are above their first-best

levels l∗ and s∗. Since the government is buying back licenses at price ŝ, the market equilibrium

price of licenses is not p0 (as if no license were sold back to the government) but p = ŝ > p∗.

On aggregate, firms sell back l̂ − x̂ licenses, so total pollution falls below its first-best level to

x̂ < l∗. Figure 1b, on the other hand, depicts the under-reporting situation. Given the reported

aggregate demand curve P̃ (x), the license and subsidy parameters take now the values of l̃ and

s̃, respectively. The market equilibrium price is p = p̃ > p∗ and total pollution is x = l̃ < l∗.

From inspection of these two cases it should become evident that no matter what firms report

to the regulator the market equilibrium price of licenses is given by p = max{P (x),D0(x)}.
Hence, the minimum possible equilibrium price for licenses is pmin = P (x∗) = D0(x∗), which

is obtained when all firms report their true demand curves. Based on this observation, Kwerel

closes his proof by arguing that since each firm’s compliance cost is an increasing function of

p, no firm has incentives to move the aggregate demand curve from its actual value, whatever

it is, when it believes that all the other firms are telling the truth.15

Kwerel’s logic holds as long as all licenses are allocated via a competitive (uniform-price)

15Kwerel also mentions the existence of multiple "offsetting-lies" Nash equilibria in which two or more firms
send false reports that, on aggregate, add to the true demand curve P (x). Without knowing the actual P (x),
however, it is hard to see how firms could coordinate in one of these "offsetting-lies" Nash equilibria.
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auction. But we already discussed that auctions of shares are rarely competitive because of

under-reporting incentives. If, on the other hand, licenses are allocated for free, the revenues

accruing to firms from selling licenses back to the government create over-reporting incentives.

To see this, simply go back to Figure 1a and compare the total compliance costs from reporting

the true aggregate demand curve P (x), i.e., area x0x̂A, with those from reporting P̂ (x), i.e.,

area x0l∗E minus area l̂x̂AB. Clearly, the regulation has turned out to be quite a profitable

business for firms, and more so the higher the degree of over-reporting. More generally, it can

be established

PROPOSITION 1: The unique (Nash-equilibrium) outcome in Kwerel’s scheme under a free

allocation of licenses is for firms to over-report their demand curves as to ensure the maximum

possible number of licenses and subsidy level.

Despite its limitations, Kwerel’s scheme has an element that I also use in constructing the

auction mechanism that I present next. Under this new scheme firms are also communicated

in advance that the information they report to the regulator will be used in a form similar to

expression (2); although with some fundamental differences.

II. The Auction Mechanism

It helps to start with the single-firm case. I will then extend the mechanism to the general

case of multiple (non-cooperative) firms.

A. Single Firm

Consider a single firm with demand curve P (x) ≡ −C 0(x). The auction scheme operates as
follows. First, the firm is informed in advance about the auction rules (including the way the

auction clears and the paybacks are computed). Then, the firm is asked to bid a non-increasing

inverse demand schedule P̂ (x) (or equivalently, a non-increasing demand schedule X̂(p)). With

this information, the auctioneer/regulator clears the auction (i.e., determines p and l) according

to

p = P̂ (l) = D0(l) (3)

The firm receives l licenses and pay p for each license. Soon after the firm gets a fraction α(l)

of the auction revenues back (i.e., payback is α(l)pl).

It is readily seen in Figures 1a and 1b that it is not socially optimal for the regulator to

set the fraction α(l) equal to either 1 or 0. If the regulator keeps no revenue for himself (i.e.,
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α(l) = 1), the firm has incentives to over-report by as much as to postpone any abatement

effort. Conversely, if the regulator keeps all the auction revenues for himself (i.e., α(l) = 0),

the firm has incentives to under-report to some optimal extent. By submitting P̃ (x) instead

of P (x) in Figure 1b, the firm is able to reduce its compliance cost from area x00p∗E to area

x00s̃FBE. The firm’s optimal under-reporting in this case balances at the margin the gains

from getting a lower price for licenses with the losses from higher abatement.

To find the function α(l) that just induces the firm to submit its true demand curve and

hence allows the regulator to implement the first-best, we proceed by backward induction.

Given some function α(l), the firm’s problem is to find the demand schedule P̂ (x) that solves

minC(l) + pl − α(l)pl (4)

subject to (3).

Using the auction clearing equation (3) we can replace p by D0(l) in (4), and since there is

a one-to-one correspondence between a demand schedule P̂ (x) and the number of licenses l, at

least in the range of prices the firm expects the auction to clear, the firm’s first order condition

is given by

C 0(l) +D0(l) +D00(l)l − α0(l)D0(l)l − α(l)(D00(l)l +D0(l)) = 0 (5)

Anticipating (5), the regulator’s problem is to find the function α(l) that induces the firm

to deliver the first-best allocation, i.e., C 0(l∗) +D0(l∗) = 0 (or P (l∗) = D0(l∗)). Such function

solves the differential equation

α0(l) + α(l)

µ
D00(l)l +D0(l)

D0(l)l

¶
=

D00(l)
D0(l)

(6)

The function α(l) that results from solving (6) is the function the regulator informs the firm

along with the other auction rules. But if α(l) is such that the firm is delivering the first-best

l∗ it must be the case that the firm is solving the regulator’s problem up front. In other words,

the last two terms of (4) must add to D(l), which leads to

PROPOSITION 2: The payback function is given by16

α(l) = 1− D(l)

D0(l)l

16Strictly speaking the solution of (6) is α(l) = 1−D(l)/D0(l)l+K/D0(l)l, where K is an integration constant
that represents —unless it is set to zero— a lump-sum transfer from(to) the firm.

9



Since D0(l) is a non-decreasing function of l it is clear that 0 ≤ α(l) ≤ 1, so the final price
paid by the firm for each license (i.e., (1 − α)p), is at most equal to marginal damage D0(l).

Plugging back the function α(l) of Proposition 2 into the firm’s objective function (4) it is

immediately seen that the new auction scheme has indeed converted the firm’s problem into

the regulator’s by making the firm bear the full cost of the pollution damages.

The idea of requiring the firm to pay D(l) is certainly not new. The DHM mechanism

for the case of a single firm reduces precisely to the regulator informing the firm that it faces

a tax function T (x) = D(x), where x is the firm’s observed pollution level (note also that

because there is only one firm the regulator does not need the firm to report any cost/demand

information to him). The auction mechanism implements the same result but in a slightly

different way. Here the regulator asks the firm to submit a demand schedule that it is then used

to compute the optimal number of licenses and the price to be charged for each license. In that

sense the auction scheme fully decouples the regulatory design from the enforcement/monitoring

activity like in any other quantity-based regulation –whether it is based on standards or

transferable licenses– which today is by far the more prevalent type of regulation for protecting

the commons.17 Other differences will become evident as we consider more than one firm.

But before moving to the multiple-firm case it is worth mentioning that if our single firm

knows the function D(x), it does not need to truthfully bid its entire demand schedule but

only the portion relevant to the auction clearing. It could for instance submit the perfectly

inelastic demand schedule X̂(p) = l∗. More importantly, although I have developed the auction

mechanism as if the firm knew the damage function D(x), it should be clear by now that the

firm does not actually need to know D(x), and hence α(l), for the auction mechanism to work in

providing incentives for truthful revelation. We only require the firm to believe that it is facing

a regulator committed to implement the first-best for whatever function D(x) he has in mind.

And if the firm does indeed know little about D(x), it will truthfully bid its (almost) entire

demand schedule to make sure that for any possible function D(x) chosen by the regulator it

will get the first-best level of licenses.

B. Multiple Firms

Let us now consider the incomplete information game of n ≥ 2 firms with Pi(xi) being firm

17 It is easy, however, to transform the DHM mechanism into a quantity-based mechanism by simply allocating
licenses at the reported first-best levels and asking firms to pay for them according to their individual tax
schedules.
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i’s private information. The auction mechanism extends as follows. Firm i (= 1, ..., n) is asked to

bid a non-increasing inverse demand schedule P̂i(xi) (or, equivalently, a non-increasing demand

schedule X̂i(p)). Based on this information, the regulator computes the residual marginal

damage function (i.e., residual supply function) for each firm i using other firms’ demand

schedules, which is (see Figure 2)

D0
i(xi) ≡ D0(x)− P̂−i(x−i) (7)

where P̂−i(x−i) is the demand schedule from aggregating all other bids but firm i’s and xi ≡
x − x−i ≥ 0 (note that since xi ≥ 0, D0

i(xi) is only defined at and above the point at which

D0(x) = P̂−i(x−i); see Figure 2). The regulator clears the auction by determining a price pi

and number licenses li for each bidder i according to

pi = P̂i(li) = D0
i(li)

Firm i purchases li licenses at a price pi each, and soon after gets a payback of αi(li)pili, where

αi(li) is the payback fraction specific to firm i.

If αi(li) is set according to Proposition 2, i.e.,

αi(li) = 1− Di(li)

D0
i(li)li

where Di(li) =
R li
0 D0

i(z)dz is i’s residual damage function, then

PROPOSITION 3: It is optimal for each firm i to bid its true demand curve Pi(xi) regardless

of what other firms bid.

Truth-telling is a dominant strategy for firms, so there is no need for them to form beliefs

about other firms’ types and/or actions. This efficient and strategy-proof result is not surprising

once we realize that the auction mechanism follows a VCG payoff rule: it makes each firm i

pay for its (residual) damage Di(li) to all other agents. This residual damage includes both the

pecuniary externality imposed upon other regulated firms and the pollution externality imposed

upon society.

One immediate implication of Proposition 3 is that the auction scheme implements the

first-best with each firm facing the same price at the margin (i.e., pi = p∗ for all i) and getting

exactly the first-best allocation of licenses (i.e., li = x∗i ), which eliminates (efficiency) reasons
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for trading licenses after the auction. These efficiency properties can be readily seen in Figure

2: if P̂i(xi) = Pi(xi) and P̂−i(x−i) = P−i(x−i), then li = x∗i , l = x∗ and p̂ = p∗. Although in

principle the auctioneer (i.e., regulator) goes bidder after bidder determining individual prices

pi, these prices are all the same regardless of how truthful firms are (in terms of Figure 2:

p1 = ... = pn = p̂). But unless firms have identical demand curves, final prices, i.e., (1− αi)p,

will differ across firms (in and off equilibrium).

III. Properties of the Mechanism

Besides being efficient and strategy-proof, the auction mechanism have additional properties

that may prove relevant for purposes of practical implementation. We leave the analysis of

collusion for the next section.

A. Relationship to the VCG Mechanism

Notwithstanding the auction mechanism follows a VCG payoff rule it is structurally different

than the VCG mechanism of DHM. Without any loss of generality, let parametrize firm i’s

identity as Ci(xi) ≡ C(xi, θi), where θi is firm i’s true type. In DHM firm i faces a tax schedule

Ti(xi) equal to

Ti(xi) = D(xi +
P
j 6=i

x∗j (θ̂i, θ̂−i)) +
P
j 6=i

C(x∗j (θ̂i, θ̂−i), θ̂j)−Ai(θ̂−i) (8)

where θ̂i is firm i’s report to the regulator, θ̂−i is the vector of firms j 6= i’s reports, x∗j (θ̂i, θ̂−i)

is firm j’s first-best pollution level as dictated by the reports of all firms, and Ai is a constant

term independent of firm i’s report. Although the exact value of Ai does not alter firm i’s

report at the margin, we know that for DHM to be a VCG mechanism the constant term Ai

cannot go unspecified but must be equal to the efficient social cost had firm i not existed, that

is

Ai(θ̂−i) = D(x∗∗−i) +
P
j 6=i

C(x∗∗j (θ̂−i), θ̂j)

where x∗∗−i ≡
P

j 6=i x
∗∗
j (θ̂−i) and x∗∗j (θ̂−i) is firm j’s first-best pollution level in the absence of

firm i.

Firm i’s total payment under the auction mechanism and under the DHM-VCG mechanism

are exactly the same in equilibrium (but not off-equilibrium), although computed in structurally

different ways. This can be easily shown with the aid of Figure 2. Firm i’s total payment
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under the auction mechanism is the shaded area to the left while the payment under the DHM

mechanism is the shaded area to the right (recall that li = x̂− x̂−i). The fact that the Ai’s in

DHM do not affect conduct (perhaps participation) is what distinguishes that mechanism from

the one in this paper.

Despite the payoff equivalence between the two mechanisms, the structural differences will

prove critical in explaining why in some other, yet important, circumstances (e.g., inelastic sup-

ply, collusive behavior) the auction mechanism continues to perform equally well, i.e., delivering

the first-best, while the DHM-VCG mechanism does not.

B. Evolution of Paybacks

As we increase the number of firms, firm i has virtually no effect on the equilibrium price,

so D0
i(x

∗
i ) ≈ D0

i(0). And by replacing D00
i (xi) = 0 into (6), the differential equation’s unique

solution happens to be αi(li) = 0; hence, the auction scheme has converged to the Pigouvian

principle for taxing externalities.

To illustrate how rapidly the auction’s payment rule approaches Pigou, let us consider a

numerical example. Suppose there are n symmetric firms with linear demand curves. The

aggregate demand curve is P (x) = p̄(1 − x/x0), where p̄ is the choke price and x0 is the

unregulated level of pollution. The marginal damage function is D0(x) = hx. Solving as a

function of the number of firms, we obtain

α(n) =
1

2

p̄

(n− 1)hx0 + np̄
(9)

If we further let the slopes of the aggregate demand and marginal damage curves be the same

(i.e., h = p̄/x0), then eq. (9) reduces to α(n) = 1/(4n− 2), where n ≥ 1. The rebate for three
firms is 10 percent, for ten firms is 2.6 percent, and for 100 firms is less than 0.3 percent.

C. Perfectly Elastic/Inelastic Supply

It is well known that if D0(x) is constant a first-best policy is to charge a Pigouvian tax

equal to D0. The auction mechanism is equivalent to this tax policy in that paybacks are

exactly equal to zero but it still has the (practical) advantage that the socially efficient amount

of pollution is set ex-ante, i.e., before pollution occurs.

More interestingly, if the supply curve is totally inelastic, say, at x = x̄, whether because

there is a genuine threshold at x̄ or, more likely, because the regulator has no control over x, the
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auction mechanism still retains its truth-telling properties (note that each firm faces a elastic

residual supply function).18 This latter has two important implications. On the one hand, it

makes the auction mechanism readily comparable to the (fixed-supply) private-value auctions

of Vickrey (1961) and Ausubel (2004). In fact, the three auctions yield the same outcome in

terms of revenues and allocations; although they are implemented in quite different ways. On

the other hand, it introduces a sharp distinction between the auction mechanism and the DHM

mechanism. DHM fails to yield the efficient outcome because each individual firm is no longer

pivotal, i.e., its report does not affect the aggregate supply. DHM can lead, for example, to the

inefficient Nash equilibrium in which each of the (no necessarily symmetric) n firms submit a

null report (or that there are no clean up costs up to x̄/n) and then emit x̄/n. This equilibrium

strategy reduces payments to zero and clearly no firm wants to deviate from it (note that above

x̄ firms face an infinitely large pollution fee).

D. Off-Equilibrium Behavior

Unlike in the single-firm case, in the context of multiple firms is in each firm’s best interest

to bid truthfully not only that portion of the demand curve around its first-best allocation

x∗i but rather a large portion of its demand curve. Even if each firm knows D(x), it can no

longer anticipate l∗i = x∗i with precision because it does not know other firms’ demand curves

P−i(x−i) (it may be even unaware of the number of firms being regulated). To be more precise,

a firm will only find it strictly optimal to bid truthfully the portion of its demand curve that

is relevant for the auction clearing. Thus, if firms assign zero probability to the event that the

clearing price will fall below some value, say p, firms can just bid an almost perfectly elastic (or

inelastic for that matter) demand curve for p ≤ p.19 While this off-equilibrium behavior has

no consequences on the clearing price, and hence, on implementing the first-best allocation, it

does have an effect on firms’ total payments. But because demand schedules are non-increasing

in p, a firm’s total payment will never be greater (and generally smaller) than the Pigouvian

payment.

E. Budget Balancing

18There is, however, one exception: the "single" firm will no longer submit its true demand curve but P̂ (x) = 0.
But since x is fixed and there is only one firm, this has no allocative implications.
19Going back to the fixed-supply case discussed in the preceding paragraph, the existence of p> 0 could

eventually break the equivalence with the Vickrey and Ausubel auctions in terms of revenues (but not in terms
of allocations).
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The auction mechanism is, like any other VCG mechanism, a non-budget-balanced mech-

anism both in and off equilibrium (unless X̂i(p) = 0 for all i). Although there is no efficiency

reasons for balancing the budget there may be political economy reasons for doing so (Tieten-

berg, 2003).20 As first pointed out by Theodore Groves and John Ledyard (1977), if there

are at least three agents it should be possible to balance the budget for a variety of mecha-

nisms. The basic idea is to distribute the surplus or deficit generated by each agent (Di(li) in

our case) among the other agents in some lump-sum manner as to avoid any incentive effects.

Behind this idea lies an implicit "separability" condition that in our case would allow us to

either make the payment Di(li) independent of some firm j’s report (i.e., P̂j(xj)), as in Duggan

and Roberts (2002), or to perfectly disentangle the contribution of each firm j 6= i’s report to

firm i’s payment, as in Varian (1994). By construction, the auction mechanism lacks of such

separability; hence, there is no way in which the mechanism can be modified to achieve perfect

budget-balancing while retaining its first-best properties.21

There exists, however, an approximate solution. Building upon the idea of Groves and

Ledyard (1977), let denote by D−ij (l
−i
j ) the total payment that firm j would have hypothetically

faced under the same auction mechanism but in the absence of firm i’s demand schedule, where

l−ij is the corresponding number of licenses allocated to j. The regulator can thus fashion a lump-

sum compensation refunding Ri for firm i using these influence-free hypothetical payments. For

example,

Ri =
1

n− 1
X
j 6=i

D−ij (l
−i
j )

where n ≥ 2.
This solution assures a perfectly balanced budget (i.e.,

Pn
i=1Ri =

Pn
i=1Di(li)) only in the

limiting case of a large number of firms; otherwise,
P

Ri could be smaller, greater or equal thanP
Di(li). The ratio ρ ≡ PRi/

P
Di(li) will ultimately depend on the number of firms and

shape of the demands and marginal damage curves. For linear curves, for example, it can be

shown that for three (symmetric) firms ρ can be anywhere between 0.60 and 1.50, for ten firms

anywhere between 0.90 and 1.11 and for 100 firms anywhere between 0.99 and 1.01. Thus, a

20We may also want to take into consideration the general equilibrium reasons of A. Lans Bovenberg and
Lawrence H. Goulder (1996) for not balancing the budget.
21The reason why the complete-information mechanisms of Duggan and Roberts (2002) and Varian (1994) can

balance the budget is because they are based on discrete announcements by firms. In the former firms announce
quantities while in the latter they announce prices. In the auction mechanism firms announce a continuum of
quantity-price pairs.
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regulator that cannot run a deficit, i.e., constrained to return at most
P

Di(li) to firms, can

inform in advance that it will return only some fixed fraction of the total
P

Di(li) (in the case

of 10 firms this fraction could be 90 percent).

F. Shadow Cost of Public Funds

Closely related to the previous analysis is the question of how the mechanism performs when

rebates are costly to the regulator; for example, they could be used to reduce distortionary

taxation somewhere else in the economy. For simplicity consider a single firm. The regulator’s

problem then becomes

minD(l) + C(l) + λα(l)D0(l)l

where λ is the shadow cost of public funds. The full-information social optimum is implemented

by setting α(l) = 0 and the Pigouvian tax τ = D0(l∗) = −C 0(l∗).
Under incomplete information, however, the regulator faces a trade-off between allocative

efficiency and information rent extraction. Since the firm’s problem remains unchanged (i.e.,

min C(l)+ (1−α(l))pl, where p = D0(l)), the payback function that best solves the regulator’s

trade-off is given by (its derivation follows that of Proposition 2)

α(l) =
1

1 + λ

µ
1− D(l)

D0(l)l

¶

which, in turn, leads to the "shadow-cost" equilibrium condition

D0(lsc) + C 0(lsc) +
λD00(lsc)lsc

1 + λ
= 0 (10)

Unless D00(·) = 0, lsc < l∗. That pollution levels are lower under asymmetric information is

consistent with second-degree price discrimination principles. Note that equilibrium paybacks

(i.e., information rents) are equal to (D0(l)l − D(l))/(1 + λ), which are increasing in l, or

equivalently, in P (·). It should be nevertheless clear that the auction mechanism is not second-

best optimum because it does not pay attention to any prior information the regulator may

have about the firm’s type. A truly second-best scheme can at worst replicate the (incentive-

compatible) auction outcome but it will generally improve upon it.22

G. Dynamics and Investment

22The auction mechanism still has the advantage of simplicity vis-a-vis a menu of a large number of contracts.
Numerical exercises can shed light on welfare differences between the two schemes.
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Consider two dates, t = 1, 2, and n ≥ 1 firms. For notational simplicity assume no dis-

counting. Firm i’s abatement costs at date 1 are Ci(xi) but at cost Ii incurred at date 1 it

can reduce its abatement costs at date 2 to Ci(xi, Ii), where Ii is the (irreversible) amount

of R&D investment in more efficient technologies and ∂Ci(xi, Ii)/∂Ii < 0 for all xi. Demand

schedules are, respectively, Pi(xi) = −C 0i(xi) and Pi(xi, Ii) = −∂Ci(xi, Ii)/∂xi. The damage

function in each period is D(x), where x =
P

xi. First-period social optimum is well known:

D0(x) + C 0i(xi) = 0 for all i = 1, ..., n. The social optimum for second-period pollution and

first-period R&D is given by the first-order conditions

∂Ci(xi, Ii)

∂xi
+D0(x) = 0 (11)

∂Ci(xi, Ii)

∂Ii
+ 1 = 0 (12)

for all i = 1, ..., n.

Most regulations, whether command-and-control or market-based, will fail to yield (11)—

(12) because of incomplete information (regarding abatement costs and investment) and/or

time inconsistency (e.g., Gary Biglaiser et. al, 1995; Laffont and Jean Tirole, 1996). The

auction mechanism is immune to both such problems. The regulator must run two separate

auctions: for period-1 licenses and for period-2 licenses. Since firms do not perfectly know

each other, period-2 licenses must also be auctioned off at date 1, i.e., before investments take

place.23 In allocating period-2 licenses each firm i is asked to bid a demand schedule P̂i(xi, Ii),

which must be a function of the different investment levels firm i may pursue.

In deciding whether to submit its true demand schedule Pi(xi, Ii), firm i solves the problem

min
li,Ii

Ci(li(Ii), Ii) +Di(li(Ii); I−i) + Ii

where li(Ii) is the number of licenses going to firm i, which is conditioned by its own investment,

and Di(li(Ii); I−i) is the associated total payment, i.e., firm i’s residual damage.24 The first-

order condition for li is ∂Ci(li, Ii)/∂li + ∂Di(li)/∂li = 0 and the first-order condition for Ii

23 If firms have complete information (but not the regulator) period-2 licenses can be auctioned off at date 2.
24 I have deliberately included I−i in Di(·) to emphasize that investments by firms other than i enter optimally

into Di(·) as dictated by first-order conditions (11) and (12). For example, to find the equivalent of p̂−i of Figure
2, we use the vector of n − 1 reports P̂−i to solve (11) and (12). The rest of the curve D0

i(·) is constructed by
computing at any p > p̂−i the abatement/investment response of each firm j 6= i.
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is
∂Ci(li(Ii), Ii)

∂Ii
+ 1 +

µ
∂Ci(li(Ii), Ii)

∂li
+

∂Di(li(Ii))

∂li

¶
∂li(Ii)

∂Ii
= 0

Since ∂Di(li)/∂li = D0(l) for all i, the auction mechanism clearly induces firms to bid truthfully

and, hence, to invest and abate optimally from a social standpoint.25

IV. Collusion

The workings of bidding rings or auction cartels have received a fair amount of theoretical

and empirical attention in the auction literature (e.g., R. Preston McAfee and John McMillan,

1992; Klemperer, 2004). In this section I discuss how the auction scheme proposed in this paper

performs under collusive behavior, if sustainable, and whether it requires of any adjustment in

order to preserve its first-best properties.

The way to implement a collusive agreement in our multi-unit auction is not very different

from the description of McAfee and McMillan (1992) for a single-unit auction except for some

elements that I will explain below. Cartel firms need to both coordinate on their bidding

schedules and agree on the procedure for sharing the cartel profits. But because cartel members

do not know each other’s demand curves, in implementing the collusive agreement the cartel

organization must itself overcome an adverse-selection problem: it must induce its members to

truthfully reveal their private information. In other words, the cartel itself faces an internal

mechanism design problem. I will first present the optimal (i.e., maximal profits) collusive

agreement and then an internal mechanism the cartel can use to implement such outcome.

A. Optimal Collusive Agreement

Imagine for a moment that there is a relatively large number of independent production

plants. In the non-cooperative equilibrium each plant i operates at its first-best level x∗i and

receives virtually no payback. Imagine now that all those plants belong to a single holding

company subject to the same auction scheme. The holding company is clearly better off because

is not only operating at the same level (x∗i at plant i = 1, ..n) but also receiving a strictly positive

payback (1/2 of the auction revenues if D0(x) = hx). A good collusive agreement would then

25Note that if period-2 damages are uncertain at date1 –so the regulator operates under an expected damage
function– investments will be no longer optimal ex-post, i.e., at date 2. Given those investments, the regulator
can nevertheless implement optimal levels of abatement at date 2 by selling/buying additional licenses with the
same auction mechanism.
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be for plants to coordinate as if they were acting as a single entity. It can be established more

generally, however, that

PROPOSITION 4: The optimal collusive agreement for a cartel of m ≤ n firms is to submit

only one serious bid with the true aggregate demand curve of the cartel, say Pc(xc). One cartel

member submits the serious bid while all the other members submit empty demand schedules.

The optimal collusive agreement delivers the first-best allocation.

It is remarkable that the auction mechanism, without any sort of adjustment, can deliver

the first-best even when firms are colluding. There are three interrelated reasons for that. First,

paybacks for any given level of licenses are largest when the cartel faces the total supply function

instead of a series of residual supply functions. Second, clean-up costs for any given level of

licenses are lowest when they can be split cost-effectively across all firms in the cartel. Third,

the single-firm analysis has already shown that the level of licenses that minimizes overall costs

(clean-up costs and payments) is the first-best level.

These same three reasons also help explaining why cartel profits are increasing with the

number of cartel members. Unlike in the single-unit auctions of McAfee and McMillan (1992),

where the addition of a "low-valuation" member only contributes to dissipate cartel rents, in

our multi-unit auction the most profitable cartel is an all-inclusive cartel (i.e., m = n). Existing

members may eventually restrict additional participation insofar as it helps to prevent detection

by antitrust authorities.

There are two additional observations. First, from looking at expression (8) it is not difficult

to see that a collusive agreement under the DHM mechanism would depart from the first-best

allocation. Because of the positive constant term Ai(θ̂−i) firms would coordinate on some over-

reporting of their types (i.e., demand curves).26 If we set the constant term to zero, however,

collusive and non-cooperative behavior would be no different but payments would be so large

that the (now Groves) mechanism would be of little practical value.

Second, there are many other, yet less profitable, collusive agreements under the auction

mechanism. For example, it is possible to show that firms would benefit if they can coordinate

on some demand reduction. A sub-optimal agreement like this would certainly move us away

from the first best. But there is no good reason for firms to ever coordinate on a sub-optimal

26Note that the optimal (all-inclusive) collusive agreement under DHM would be defined by the n-report vector
θ̂ that solves

minn ·
µ

nP
i=1

Ci(xi(θ̂, θi)) +D(x)

¶
−

nP
i=1

Ai(θ̂−i)

where x =
P

xi.
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agreement if they can enforce the optimal agreement, as I argue in the next section.

B. Implementing the Collusive Agreement

The arguments made thus far have assumed that the cartel submits only one serious bid and

this is the aggregate demand of cartel members. To do this, however, the cartel has to induce

its members to truthfully reveal their individual demand curves. In addition, collusive profits

have to be shared among the members in a way that the members would wish to participate in

the cartel and not to deviate at the auction.

McAfee and McMillan (1992) provides a complete description of the two commonly observed

forms of cartel organization: weak cartels, cartels whose members are unable to make transfer

payments among themselves, and strong cartels, cartels whose members can both make transfer

payments and exclude new entrants. While either type of organization may eventually arise in

the single-unit auctions of McAfee and McMillan (1992), for the multi-unit auctions studied in

this paper we must restrict attention to strong cartels.

It is hard to imagine how a weak cartel could achieve any degree of cooperation in the

multi-unit incomplete-information environment of the auction mechanism. In the absence of

after-auction transfers, a week cartel must conform itself with a sub-optimal collusive agreement

in which each member (tacitly or not) agree on shading their bids to some extent. Since a firm’s

dominant strategy at the auction is to bid truthfully, a necessary condition for the sustainability

of such an agreement is that cartel members can detect deviations at the auction. But unlike in

a single-object auction, where "weak-cartel" members coordinate on bidding the seller’s reserve

price, detecting deviations in the multi-unit auction mechanism requires cartel members to

have information on each and every member’s demand curve. In the absence of transfers, it

is impossible for the cartel to devise an internal (incentive-compatible) mechanism that can

provide cartel members with such information prior to the auction.

Paying exclusive attention to strong cartels may seem restrictive but I would argue that in

our context it is the most natural type of organization of the two because licenses are readily

transferable either through bilateral contracts or in the (after-auction) spot market.27 Thus,

the transferable nature of licenses provides the cartel with the needed flexibility to structure

transfer payments without necessarily facilitating its detection.28

27Although in equilibrium we should not observe any trade of licenses after the auction, in reality there will
be always some trading activity as firms accomodate to factor price variation between auctions.
28Although collusion is less of a concern here (Proposition 4), antitrust authorities may still dislike it in that

it can facilitate the spread-out of collusion through multi-market contacts.
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Let us then consider a possible strong cartel of m ≤ n members indexed as j = 1, ...,m. In

implementing the optimal collusive agreement of Proposition 5, the cartel organization must

solve two intertwined problems. First, it must put in place an internal scheme that induces

firms to truthfully reveal their individual demand curves to the cartel organization, which, as in

McAfee and McMillan (1992), we will call the cartel mechanism. Second, the cartel must ensure

obedience to the cartel mechanism, that is, it must be equipped with the ability to detect and

credibly punish deviators.

Suppose for now that cartel has solved the second problem (I will come back to this shortly)

and focus on the first problem. In so doing, consider the following cartel mechanism. Prior to

the official auction, cartel members first agree on how to divide cartel profits by determining

shares ωj > 0, where
Pm

j=1 ωj = 1. One plausible criteria can be historic use of the resource,

that is ωj ≈ x0j/
Pm

k=1 x
0
k (in McAfee and McMillan (1992) ωj = 1/m). Cartel profits are

defined as the difference between the payment associated to the optimal agreement and the

sum of the non-cooperative payments that cartel members would have faced at the auction

for the same demand schedules reported to the cartel mechanism. After ωj ’s are set, cartel

members report their demand schedules P̃j(xj) to the cartel mechanism. Let P̃c(xc) denote the

aggregate demand curve reported by cartel members. The cartel mechanism selects an arbitrary

member to be the serious bidder, say bidder 1, which bids P̂1(x1) = P̃c(x1). Remaining cartel

members bid X̂j(p) = 0 for all j = 2, ...,m.

The cartel mechanism also establishes the way licenses and payments are transferred across

cartel members posterior to the auction. Let denote by lc the number of licenses received by

the serious bidder at the auction and by Dc(lc) the corresponding payment, where Dc(xc) is the

residual damage function faced by the cartel. The cartel mechanism establishes that each cartel

member j will receive an amount of licenses exactly equal to what he would have individually

obtained at the auction for the demand curve that he reported to the mechanism. Member j’s

total payment for the lj licenses will be equal to what he would have individually paid at the

auction, Dj(lj), minus a fraction ωj of the cartel profits. Payment Dj(lj) is computed as in the

auction mechanism, that is, using the aggregate demand curve reported by the remaining cartel

members, P̃−j(x−j). More precisely, Dj(xj) ≡
R xj
0 D0

j(z)dz, where D
0
j(xj) ≡ D0

c(xc)− P̃−j(x−j)
for all j.29

29 In an all-inclusive cartel, i.e., m = n, Dc(xc) is known prior to the auction (Dc(xc) = D(x)). In a partial
cartel, i.e., m < n, Dc(xc) is only learned posterior to the auction. Although the immediate auction results
(i.e., lc, Dc(lc) and D0

c(lc) = p̂) will provide the cartel with insufficient information to fully reconstruct the curve
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PROPOSITION 5: Assuming that the cartel members can agree on the ωj’s, it is a dominant

strategy Nash equilibrium for them to report truthfully to the cartel mechanism, i.e., P̃j(xj) =

Pj(xj) for all j = 1, ...,m ≤ n.

Before moving onto the cartel’s second implementation problem, that of obedience with the

cartel mechanism, let me briefly touch on three issues. First, the cartel mechanism proposed

above is not the only (incentive-compatible) mechanism available to the cartel. It has the

advantage, however, that by sharing the format of the auction mechanism it makes it easier for

members to understand its workings.

Second, I have little to add on how firms will come to an agreement on the ωj ’s other than

pointing out that I see no reason for negotiations to fall apart because it is all about splitting

spoils of unknown but positive magnitude. In other words, the bargaining process for setting

the ωj ’s does not involved the type of information asymmetries that are usually associated to

negotiation failure (e.g., Wiggins and Libecap, 1985).

Third, the cartel mechanism (whether the one proposed here or any other) must be exe-

cuted in its entirety prior to the official auction, except for the actual transfer of licenses (and

payments) across cartel members. Unlike in a single-object auction where the cartel mechanism

(e.g., "knockout" auction) that decides which of the cartel members will keep the object can

be conducted either before or after the official auction (McAfee and McMillan, 1992), in our

multi-unit environment this is simply not possible for both information and incentive reasons.

On the one hand, the serious bidder must be informed of P̃c(xc) before coming to the official

auction. On the other hand, the use of any ex-post bidding procedure for determining how to

allocate lc and Dc(lc) across cartel members (e.g., a knockout auction with a structure similar

to the auction mechanism but for an inelastic supply) will necessary distort member’s (ex-ante)

incentives in communicating with the cartel mechanism.

Let us now look at the cartel’s second problem that of enforcement with the cartel mecha-

nism. Unlike in McAfee and McMillan (1992), the cartel in our multi-unit context is coalition

proof in that it requires of no patience from its members to maintain cooperation through the

official auction. The optimal deviation of bidder j, whether it is the serious bidder (j = 1) or

any of the non-serious bidders (j = 2, ...,m), is to bid an empty demand schedule to the cartel

Dc(xc), I see no reason why the serious bidder, or any bidder for that matter, cannot request information on
Dc(xc) from the auctioneer. Furthermore, and as double-check practice, it may be a good idea to provide bidders
with their own residual supply functions (in case of a mistake in the clearing of the auction, there will be always
some bidder that will find it profitable to report so). If bidders are not entitled to request such information, the
cartel can alternatively use a first-order (linear) approximation for D0

c(xc).
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mechanism (so as to reduce its residual supply curve at the official auction to the maximum

extent possible) and then bid its true demand curve Pj(xj) at the official auction. But this

deviation leaves the deviating bidder strictly worse off in an amount exactly equal to its share

ωj of the otherwise cartel profits.

V. Final Remarks

I have developed an auction mechanism for the optimal regulation of a commons resource

(e.g., clean air, water body, open fishery, native forest, etc.) when the regulator lacks infor-

mation about the characteristics of the firms to be regulated. The mechanism is developed

under the additional assumption that firms know nothing about other firms’ characteristics.

The mechanism is not only simple in that it is based on commonly used instruments (i.e.,

transferable licenses) but also remarkably effective in that it delivers the first-best allocation

regardless of the number of firms and of whether they are acting noncooperatively or collu-

sively. The mechanism yields the efficient allocation even when the aggregate supply of licenses

is fixed –either because of a genuine threshold or because the regulator has no control over

the aggregate supply. In addition, the mechanism provides firms with incentives to invest in

socially optimal levels of R&D.

One aspect not treated in the paper is the possibility that emissions (or resource use,

more generally) cannot be perfectly monitored. In addition to the adverse selection problem

of not observing a firm’s type (e.g., abatement costs) the regulator must now overcome the

moral hazard problem of not perfectly observing the firm’s action. In a recent paper, Montero

(2005) compares the performance of two instruments –grandfathered transferable licenses and

performance standards– in such information environment. He finds that in some cases a

standard-alone policy can welfare dominate a licenses-alone policy. In many cases, though, the

optimal policy is to combine licenses and standards. It would be interesting to study how the

auction mechanism extends to the case of imperfect monitoring and to ask whether and to what

extent it remains (second-best) optimal to auctioning off the licenses together with a minimum

performance standard.

APPENDIX

PROOF OF PROPOSITION 1:

Let 1 > ωi > 0 be the fraction of licenses allocated to firm i (= 1, ..., n), so firm i receives an

initial allocation of ωil, where l is the total number of licenses and
Pn

i=1 ωi = 1 (as commonly
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observed in practice, ωi could be proportional to historic emissions, that is ωi ≈ x0i /x
0). The

license market is assumed perfectly competitive (i.e., n large). Kwerel also requires D00(x) > 0.

Let s̄ be the maximum value the subsidy can take, which by construction fixes the maximum

number of licenses to l̄, where D0(l̄) = s̄. The regulator sets s̄ sufficiently high that is always

above the first-best level p∗ for any possible realization of P (x); otherwise, there is no point in

using the scheme (in Kwerel (1977) s is unbounded but in reality we cannot let it go to infinity).

We will demonstrate that the pair (s̄, l̄) is the unique Nash-equilibrium outcome of Kwerel’s

scheme when licenses are grandfathered. From the arguments in the text we do not need to

consider the case of under-reporting. Thus, for a reported aggregate demand curve P̂ (x) ≥
P (x), the subsidy level is s and the market price of licenses is p = s; hence, firm i’s total

compliance costs as a function of s becomes

TCi(s) = Ci(Xi(s)) + s · (Xi(s)− ωil(s)) (A1)

where l(s) = D0−1(s). The first term of (A1) is abatement cost and the second term is the net

cost of purchasing licenses (which is negative when the firm is a net seller of licenses). Consider

first the case in which the regulator sets s̄ "close" to infinity. It is not difficult to see that no

firm has incentives to move the outcome away from the pair (s̄, l̄). Since Xi(s = s̄) = 0 for all

i = 1, ..n (firms either shut down operations or install backstop zero-emission technologies), all

firms become net sellers to the government and their total costs, TCi(s = s̄) = Ci(0)−ωis̄l̄ < 0,
reach the minimum (recall that l0(s) > 0). Consequently, all firms will submit infinitely large

demand curves P̂i(xi) so as to ensure that s = s̄.

Consider now the case in which s̄ is "only large" in the sense that for some or all firms

Xi(s̄) > 0. We have that

dTCi(s)

ds
= C 0i ·

dXi(s)

ds
+Xi(s)− ωil(s) + s ·

µ
dXi(s)

ds
− ωi

1

D00(l(s))

¶
(A2)

But C 0i = −s, so evaluating (A2) at s = s̄ reduces to

dTCi(s)

ds

¯̄̄̄
s=s̄

= Xi(s̄)− ωil(s̄)− ωis̄

D00(l̄)

Since over-reporting leads to
Pn

i=1Xi(s̄) < l(s̄), there must be a number of firms for which

dTCi(s̄)/ds < 0 (note that if firms are symmetric it is immediate that dTCi(s̄)/ds < 0 for all
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firms; if firms are heterogeneous it may be still the case that dTCi(s̄)/ds < 0 for all firms).

Firms for which dTCi(s̄)/ds < 0 have no incentives to move the outcome away from s = s̄,

hence, they will report X̂j(p) = ∞ for all p ≥ 0, so as to ensure that s = s̄. Firms for which

dTCj(s̄)/ds > 0, if any, cannot fully counterbalance these over-reporting schedules because at

best they can report X̂j(p) = 0 for all p ≥ 0. Therefore, the equilibrium outcome will necessarily
be the pair (s̄, l̄).

PROOF OF PROPOSITION 2:

Let

g(l) = exp

Z
D00(l)l +D0(l)

D0(l)l
dl = exp

Z
d ln(D0(l)l) = D0(l)l

Then the solution to the differential equation (6) for 0 ≤ l <∞ is given by

α(l) =
1

g(l)

µ
K +

Z
g(l)

D00(l)
D0(l)

dl

¶
=

1

D0(l)l

µ
K +

Z
D00(l)ldl

¶

where K is an integration constant. Integrating by parts, we obtain

α(l) =
1

D0(l)l
(K +D0(l)l −D(l))

and setting the constant term K to zero finishes the proof.

PROOF OF PROPOSITION 3:

It follows immediately from the construction of αi(li) and Proposition 2.

PROOF OF PROPOSITION 4:

Without any loss of generality let us parametrize firm i’s inverse demand function as Pi(xi) ≡
P (xi, θi) where θi is an index of type and ∂P/∂θ > 0 (similarly, the parametrization for the

demand function is Xi(p) ≡ X(p, θi) where ∂X/∂θ > 0). There is a one-to-one correspondence

between a reported demand schedule P̂i and a reported type θ̂i. Consider for the moment only

two firms, i and j. The firms’ reports θ̂i and θ̂j conducive to the most profitable collusive

agreement are found by solving

min
θ̂i, θ̂j

C(xi, θi)+C(xj , θj)+[1−αi(li(θ̂i, θ̂j))]p̂(θ̂i, θ̂j)li(θ̂i, θ̂j)+[1−αj(lj(θ̂i, θ̂j))]p̂(θ̂i, θ̂j)lj(θ̂i, θ̂j))
(A3)

subject to

xi + xj = li(θ̂i, θ̂j) + lj(θ̂i, θ̂j) = l(θ̂i, θ̂j) (A4)
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where p̂(θ̂i, θ̂j) ≡ p̂ is the auction clearing price as a function of firms’ bids and li(θ̂i, θ̂j) ≡ li is

the number of licenses allocated to firm i. In what follows I will omit θ̂i and θ̂j unless it would

otherwise cause confusion. From Proposition 2 we know that

[1− αi(li)]p̂li = Di(li) = p̂li −
p̂R

p̂j(θ̂j)

[Xs(p)−X(p, θ̂j)]dp (A5)

where Xs(p) is the social supply function, i.e., D0(x), so Xs(p)−X(p, θ̂j) is the residual supply
faced by firm i, i.e., D0

i(xi, θ̂j); and p̂j(θ̂j) ≤ p̂ is the (hypothetical) clearing price in the absence

of firm i’s bid (in terms of Figure 2, p̂j(θ̂j) corresponds to p̂−i). The first-order condition for

(A3) is (allowing for corner solutions)

∂C(xi, θi)

∂xi

dxi
dl

∂l

∂θ̂i
+

∂C(xj , θj)

∂xi

dxj
dl

∂l

∂θ̂i
+

∂Di(li)

∂θ̂i
+

∂Dj(lj)

∂θ̂i
≥ 0 (A6)

Recall that −∂C(xi, θi)/∂xi = P (xi, θi). To obtain an expression for dxi/dl use (A4) and note

that collusion optima requires

P (xi, θi) = P (xj = l − xi, θj) = P (l, θi+j) (A7)

where P (l, θi+j) is the true aggregate demand function. Totally differentiating (A7) with respect

to l and rearranging leads to
dxi
dl
=

P 0j
P 0i + P 0j

(A8)

where P 0i ≡ ∂P (xi, θi)/∂xi. To obtain expressions for ∂Di(li)/∂θ̂i and ∂Dj(lj)/∂θ̂i (or ∂Di(li)/∂θ̂j),

on the other hand, note that from (A5) we have

∂Di(li)

∂θ̂i
=

∂p̂

∂θ̂i
li + p̂

∂li

θ̂i
− ∂p̂

∂θ̂i
[Xs(p̂)−X(p̂, θ̂j)] (A9)

But Xs(p̂)−X(p̂, θ̂j) = li, so (A9) reduces to

∂Di(li)

∂θ̂i
= p̂

∂li

θ̂i
(A10)

Similarly,
∂Di(li)

∂θ̂j
=

∂p̂

∂θ̂j
li + p̂

∂li

θ̂j
− ∂p̂

∂θ̂j
li +

∂p̂j(θ̂j)

∂θ̂j
· 0 +

p̂R̂
pj

∂X(p, θ̂j)

∂θ̂j
dp
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Rearranging and inverting i by j leads to

∂Dj(lj)

∂θ̂i
= p̂

∂lj

∂θ̂i
+

p̂R̂
pi

∂X(p, θ̂i)

∂θ̂i
dp (A11)

Note that since p̂i ≤ p̂ the last term of (A11) is non-negative. Plugging (A8), (A10) and (A11)

into (A6), using (A7) and rearranging, the two first-order conditions become

∂l(θ̂i, θ̂j)

∂θ̂i
[−P (l(θ̂i, θ̂j), θi+j) + p̂(θ̂i, θ̂j)] +

p̂(θ̂i,θ̂j)R
p̂i(θ̂i)

∂X(p, θ̂i)

∂θ̂i
dp ≥ 0 for i and j (A12)

By inspection of (A12) one arrives at two possible solutions. One solution is for i to report

θ̂i = θi+j (i.e., the true aggregate demand curve) and for j to report the corner θ̂j = ∅ (i.e.,

X̂j = 0 for all p). If so, P (l, θi+j) = p̂ = p̂i > p̂j = D0(0), and hence, the first-order condition

for i equals to zero and the first-order condition for j is strictly positive. The second solution

is just the inverse. Both solutions are equally optimal (for the firms) and, more importantly,

they implement the first-best in that firms find it in their best collusive interest to submit

the aggregate true curve. Extending the proof to the case of more than two firms and to the

possibility of partial collusion (i.e., collusion among a subset of firms) is straightforward.

PROOF OF PROPOSITION 5:

Given members’ obedience to the cartel mechanism for whatever demand schedules they

choose to report, cartel member j = 1, ...,m ≤ n will report the demand schedule P̃j(·) that
solves (recall the one-to-one correspondence between reporting P̃j(·) and requesting lj licenses)

min
lj

Cj(lj) +Dj(lj)− ωj

Ã
mX
k=1

Dk(lk(lj))−Dc(lc)

!

where lk(lj) is member k’s license allocation as a function of j’s allocation and lc =
Pm

k=1 lk.

The first-order condition is

C 0j(lj) +D0
j(lj)− ωj

Ã
mX
k=1

(D0
k(lk)−D0

c(lc))
dlk
dlj

!
= 0

But from the auction clearing condition we have p̂ = D0
c(lc) = D0

k(lk) for all k = 1, ...,m, which

finishes the proof.
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Figure 1b: Incentives to under-report
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