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When It Pays to Be Truthful: Signaling
in Games with Friends, Adversaries, and Kin

Each discipline of the social sciences rules comfortably within its
own chosen domain . . . so long as it stays largely oblivious of the
others.

Edward O. Wilson (1998):191

13.1 Signaling as a Coevolutionary Process

A Thompson’s gazelle who spots a cheetah, instead of fleeing, will often
“stott,” which involves an 18-inch vertical jump, with legs stiff and white
rump patch fully displayed to the predator. The only plausible explanation
for this behavior (Alcock 1993) is that the gazelle is signaling the cheetah
that it would be a waste of both their times and energies for the cheetah to
chase the gazelle, since the gazelle is obviously very fit. Of course, if the
cheetah could not understand this signal, it would be a waste of time and
energy for the gazelle to emit it. Also, if the signal could be easily falsified
and the ability to stott had nothing to do with the probability of being caught,
cheetahs would never have evolved to heed the signal in the first place.1

A signal is a special sort of physical interaction between two agents. Like
other physical interactions, a signal changes the physical constitution of
the agents involved. But unlike interactions among nonliving objects, or
between a nonliving object and a living agent, a signal is the product of a
strategic dynamic between sender and receiver, each of whom is pursuing
distinct but interrelated objectives. Moreover, a signal is a specific type of
strategic physical interaction, one in which the content of the interaction is
determined by the sender, and it changes the receiver’s behavior by altering
the way the receiver evaluates alternative actions.

1For a recent review of evidence for costly signaling in birds and fish in the form of
colorful displays that indicate health and vigor, see Olson and Owens 1998. On the more
general topic of costly signaling, see Zahavi and Zahavi 1997 and §13.6.
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The most important fact about a signal is that it is generally the result of a
coevolutionary process between senders and receivers in which both benefit
from its use. For if a signal is costly to emit (and if its use has been stable
over time), then the signal is most likely both beneficial to the sender and
worthy of belief for the receiver—a sender is better off sending that signal
rather than none, or some other, and a receiver is better off acting on it the
way receivers traditionally have, rather than ignoring it or acting otherwise.
The reason is obvious: if the receiver were not better off acting this way,
a mutant who ignored (or acted otherwise to) the signal would be more fit
than the current population of receivers, and would therefore increase its
frequency in the population. Ultimately, so many receivers would ignore
(or act otherwise on) the signal that, being costly to the sender, it would not
be worth sending—unless, of course, the “otherwise” were also beneficial
to the sender.

Signaling systems are not always in equilibrium and potentially beneficial
mutations need not occur. Moreover, human beings are especially adept both
at dissimulating (emitting “false” signals) and detecting such dissimulation
(Cosmides and Tooby 1992a). However, human beings are disposed to
taking the signals around them at face value unless there are good reasons
for doing otherwise (Gilbert 1991). The treatment of signals as emerging
from a coevolutionary process, and persisting as a Nash equilibrium of the
appropriate game, is the starting point for a theory of signaling.

13.2 A Generic Signaling Game

Signaling games are special cases of Bayesian games, presented in chap-
ter 12. In Bayesian games, players have “types” which may be partially
or wholly revealed in the course of play. In signaling games, only player
1 has a “type,” and this is revealed to player 2 via a special “signal,” to
which player 2 responds by choosing an “action,” the payoffs to the two
players being a function of player 1’s type and signal and player 2’s action.
Thus, the stage game that played so prominent a role in the general Bayesian
game framework collapses in the case of signaling games to a pair of payoff
functions.

Specifically, there are players Sender, Receiver, and Nature. Nature begins
by choosing from a set T of possible types or states of affairs, choosing t ∈ T

with probability ρ(t). Sender observes t but Receiver does not. Sender then
transmits a signal s ∈ S to Receiver, who uses this signal to choose an
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action a ∈ A. The payoffs to the two players are u(t, s, a) and v(t, s, a),
respectively. A pure strategy for Sender is thus a function f :T →S, where
s = f (t) is the signal sent when Nature reveals type t , and a pure strategy
for Receiver is a function g : S → A, where a = g(s) is the action taken
when Receiver receives signal s. A mixed strategy for Sender is a probability
distributionp1(s; t) over S for each t ∈ T , and a mixed strategy for Receiver
is a probability distribution p2(a; s) over A for each signal s received. A
Nash equilibrium for the game is thus a pair of probability distributions
(p1(·; t), p2(·, s)) for each pair {(t, s)|t ∈ T , s ∈ S} such that each agent
uses a best response to the other, given the probability distribution r(t) used
by Nature to choose the type of Sender.

We say a signal s ∈ S is along the path of play, given the strategy profile
(p1(·; t), p2(·; s)), if there is a strictly positive probability that Sender will
transmit s, i.e., if ∑

t∈T
ρ(t)p1(s; t) > 0.

If a signal is not along the path of play, we say it is off the path of play.
If s is along the path of play, we know from our argument in §12.1 that
a best response for Receiver maximizes Receiver’s expected return, with a
probability distribution over T given by

P[t |s] = p1(s; t)ρ(t)∑
t ′∈T p1(s; t ′)ρ(t ′) .

We thus require of p1 and p2 that

a. For every state t ∈ T and all signals s′ ∈ S such that p1(s
′; t) > 0, s′

maximizes
∑
a∈A

u(t, s′, a)p2(a; s)

over all s ∈ S.
b. For every signal s ∈ S along the path of play, and all actions a′ ∈ A

such that p2(a
′; s) > 0, a′ maximizes

∑
t∈T

v(t, s, a)P[t |s]

over all a ∈ A.
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c. if a signal s ∈ S is not along the path of play, we may choose P[t |s]
arbitrarily such that (b) still holds. See the discussion of zero probability
information sets in §5.17 and §12.1.

13.3 Introductory Offers

A product comes in two qualities, high and low, at unit costs ch and cl , with
ch > cl > 0. Consumers purchase one unit per period, and a consumer
only learns the quality of a firm’s product by purchasing it in the first period.
Consumers live for two periods, and a firm cannot change its quality between
the first and second period. Thus, a consumer can use the information
concerning product quality gained in the first period to decide whether to buy
from the firm again in the second period. Moreover, firms can discriminate
between first- and second-period consumers and offer different prices in
the two periods, for instance, by extending an introductory offer to a new
customer.

Suppose the value of a high-quality good to the consumer is h, the value
of a low-quality good is zero, a consumer will purchase the good only if this
does not involve a loss, and a firm will sell products only if it makes positive
profits. We say that the industry is in a truthful signaling equilibrium if
the firms’ choice of sale prices accurately distinguishes high-quality from
low-quality firms. If the firms’ choices do not distinguish high from low
quality, we have a pooling equilibrium. In the current situation, this means
that only the high-quality firms will sell. Let δ be the consumer’s discount
factor on second-period utility.

a. Show that if h > ch+(ch−cl)δ, there is a truthful signaling equilibrium,
and not otherwise.

b. What is the high-quality firm’s price structure in a truthful signaling
equilibrium?

c. Show that each consumer gains h− cl in the truthful signaling equilib-
rium, and firms gain cl − ch + δ(h− ch) per customer.

13.4 Web Sites (for Spiders)

In the spider Agelenopsis aperta, individuals search for desirable locations
for spinning webs. The value of a web is 2v to its owner. When two spiders
come upon the same desirable location, the two invariably compete for it.
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Spiders can be either strong or weak, but it is impossible to tell which type
a spider is by observation. A spider may rear onto two legs to indicate that
it is strong, or fail to do so, indicating that it is weak. However, spiders
do not have to be truthful. Under what conditions will they in fact signal
truthfully whether they are weak or strong? Note that if it is in the interest
of both the weak and the strong spider to represent itself as strong, we have
a “pooling equilibrium,” in which the value of the signal is zero, and it will
be totally ignored—hence, it will probably not be issued. If only the strong
spider signals, we have a truthful signaling equilibrium.

Assume that when two spiders meet, each signals the other as strong or
weak.2 Based on the signal, each spider independently decides to attack or
withdraw. If two strong spiders attack each other, they each incur a cost of
cs , and each has a 50% chance of gaining/keeping the territory. Thus, the
expected payoff to each is v − cs . If neither spider attacks, each has a 50%
chance of gaining the territory, so their expected payoff is v for each. If one
spider attacks and the other withdraws, the attacker takes the location, and
there are no costs. So the payoffs to attacker and withdrawer are 2v and 0,
respectively. The situation is the same for two weak spiders, except they
have a cost cw. If a strong and a weak spider attack each other, the strong
wins with probability 1, at a cost b with cs > b > 0, and the weak spider
loses, at a cost d > 0. Thus, the payoff to the strong spider against the weak
is 2v − b, and the payoff to the weak against the strong is −d. In addition,
strong spiders incur a constant cost per period of e to maintain their strength.
The table shows a summary of the payoffs for the game.

Type 1,Type 2 Action 1,Action 2 Payoff 1,Payoff 2

strong,strong attack,attack v − cs ,v − cs
weak,weak attack,attack v − cw,v − cw
strong,weak attack,attack 2v − b,−d
either,either attack,attack 2v,0
either,either attack,attack 0,0

Each spider has eight pure strategies: signal that it is strong or weak (s/w),
attack/withdraw if the other spider signals strong (a/w), attack/withdraw if

2Note that this is a signaling game in which there is bilateral signaling: Sender sends
a signal to Receiver, Receiver simultaneously sends a signal to Sender, and they each
choose actions simultaneously. The conditions for a Nash equilibrium in such games are
straightforward generalizations of the conditions developed in §13.2.
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the other spider signals weak (a/w). We may represent these eight strategies
as saa, saw, swa, sww, waa, waw, wwa, www, where the first indicates
the spider’s signal, the second indicates the spider’s move if the other spider
signals strong, and the third indicates the spider’s move if the other spider
signals weak (for instance, swa means “signal strong, withdraw from a
strong signal and attack a weak signal”). This is a complicated game, since
the payoff matrix for a given pair of spiders has sixty-four entries, and there
are four types of pairs of spiders. Rather than use brute force, let us assume
there is a truthful signaling equilibrium and see what that tells us about the
relationships among v, b, cw, cs, d, e, and the fraction p of strong spiders
in the population.

Suppose v > cs, cw, and the proportion p of strong spiders is determined
by the condition that the payoffs to the two conditions of being strong and
being weak are equal.

a. What strategies are used in a truthful signaling equilibrium?
b. Use (a) to find the proportion p of strong spiders in a truthful signaling

equilibrium. Find bounds for v in terms of e, cw, and cs for there to
exist both strong and weak spiders in equilibrium.

c. What conditions on the parameters must hold for the equilibrium to
foster truthful signaling?

d. Show that as long as both strong and weak spiders exist in equilibrium,
an increase in the cost e of being strong leads to an increase in pay-
off to all spiders, weak and strong alike. Explain in words why this
“counterintuitive” result is true.

e. Show that for some range of values of the parameters, an increase in
the payoff v to the location can entail a decrease in the payoff to the
spiders. For what value of the parameters is this the case? What value
v∗ maximizes the payoff to the spiders? Explain in words why this
strange-seeming situation can occur.

13.5 Sex and Piety: The Darwin-Fisher Model of Sexual Selection

In most species, females invest considerably more in raising their offspring
than do males—for instance, they produce a few large eggs as opposed to
the male’s millions of small sperm. So, female fitness depends more on the
quality of inseminations, whereas male fitness depends more on the quantity
of inseminations (§4.17). Hence, in most species there is an excess demand
for copulations on the part of males, for whom procreation is very cheap, and
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therefore there is a nonclearing market for copulations, with the males on
the long side of the market (§6.14). In some species this imbalance leads to
violent fights among males (dissipating the rent associated with achieving a
copulation), with the winners securing the scarce copulations. But in many
species, female choice plays a central role, and males succeed by being
attractive rather than ferocious.

What criteria might females use to choose mates? We would expect fe-
males to seek mates whose appearance indicates they have genes that will
enhance the survival value of their offspring. This is indeed broadly correct.
But in many cases, with prominent examples among insects, fish, birds, and
mammals, females appear to have arbitrary prejudices for dramatic, orna-
mental, and colorful displays even when such accoutrements clearly reduce
male survival chances—for instance, the plumage of the bird of paradise,
the elaborate structures and displays of the male bowerbird, and the stunning
coloration of the male guppy. Darwin speculated that such characteristics
improve the mating chances of males at the expense of the average fitness of
the species. The great biologist R. A. Fisher (1915) offered the first genetic
analysis of the process, suggesting that an arbitrary female preference for a
trait would enhance the fitness of males with that trait and hence the fitness
of females who pass that trait to their male offspring, so the genetic predis-
position for males to exhibit such a trait could become common in a species.
More recent analytical models of sexual selection, called Fisher’s runaway
process include Lande (1981), Kirkpatrick (1982), Pomiankowski (1987),
and Bulmer (1989). We will follow Pomiankowski (1987), who showed that
as long as females incur no cost for being choosy, the Darwin-Fisher sexual
selection process works, but even with a slight cost of being choosy, costly
ornamentation cannot persist in equilibrium.

We shall model runaway selection in a way that is not dependent on the
genetics of the process, so it applies to cultural as well as genetic evolution.
Consider a community in which there are an equal number of males and
females and there is a cultural trait which we will call pious fasting. While
both men and women can have this trait, only men act on it, leading to
their death prior to mating with probability u > 0. However, both men and
women pass the trait to their children through family socialization. Suppose
a fraction t of the population have the pious-fasting trait.

Suppose there is another cultural trait, a religious preference for pious
fasting, which we call being “choosy” for short. Again, both men and
women can carry the choosy trait and pass it on to their children, but only
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women can act on it, by choosing mates who are pious fasters at rate a > 1
times that of otherwise equally desirable males. However, there may be a
cost of exercising this preference, since with probability k ≥ 0 a choosy
women may fail to mate. Suppose a fraction p of community members
bears the religious preference for pious fasters.

We assume parents transmit their values to their offspring in proportion to
their own values—for instance, if one parent has the pious-fasting trait and
the other does not, then half their children will have the trait. Males who
are pious fasters then exercise their beliefs, after which females choose their
mates, and a new generation of young adults is raised (the older generation
moves to Florida to retire).

Suppose there are n young adult males and an equal number of young adult
females. Letxtp be the fraction of young adults who are “choosy fasters,” x−p
the fraction of “choosy nonfasters,” xt− the fraction of “nonchoosy fasters,”
and x−− the fraction of “nonchoosy nonfasters.” Note that t = xtp+xt− and
p = xtp + x−p. If there is no correlation between the two traits, we would
have xtp = tp, xt− = t (1−p), and so on. But we cannot assume this, so we
write xtp = tp + d, where d (which biologists call linkage disequilibrium)
can be either positive or negative. It is easy to check that we then have

xtp = tp + d

xt− = t (1 − p)− d

x−p = (1 − t)p − d

x−− = (1 − t)(1 − p)+ d.

While male and female young adults have equal fractions of each trait—
since their parents pass on traits equally to both—pious fasting and mate
choosing can lead to unequal frequencies in the “breeding pool” of parents
in the next generation. By assumption, a fraction k of choosy females do not
make it to the breeding pool, so if tf is the fraction of pious-faster females
in the breeding pool, then

tf = t − kxtp

1 − kp
,

where the denominator is the fraction of females in the breeding pool, and
the numerator is the fraction of pious-faster females in the breeding pool.
Similarly, if pf is the fraction of choosy females in the breeding pool, then

pf = p(1 − k)

1 − kp
,
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where the numerator is the fraction of choosy females in the breeding pool.
We now do the corresponding calculations for males. Let tm be the fraction

of pious-faster males and pm the fraction of choosy males in the breeding
pool, after the losses associated with pious fasting are taken into account.
We have

tm = t (1 − u)

1 − ut
,

where the denominator is the fraction of males, and the numerator is the
fraction of pious-faster males in the breeding pool. Similarly,

pm = p − uxtp

1 − ut
,

where the numerator is the fraction of choosy males in the breeding pool.
By assumption, allnf = n(1−kp) females in the breeding pool are equally

fit. We normalize this fitness to 1. The fitnesses of pious and nonpious males
in the breeding pool are, however, unequal. Suppose each female in the
breeding pool mates once. There are then nf (1 − pf ) nonchoosy females,
so they mate with nf (1 − pf )(1 − tm) nonpious males and nf (1 − pf )tm

pious males. There are also nf pf choosy females, who mate with nf pf (1−
tm)/(1 − tm + atm) nonpious males and nf pf atm/(1 − tm + atm) pious
males (the numerators account for the a : 1 preference for pious males and
the denominator is chosen so that the two terms add to nf pf ). If we write

r− = (1 − pf )+ pf

1 − tm + atm
,

and

rt = (1 − pf )+ apf

1 − tm + atm
,

then the total number of matings of nonpious males is nf (1 − tm)r− and
the total number of matings of pious males is nf tmrt . The probability that
a mated male is pious is therefore tmrt . Since the probability that a mated
female is pious is tf and both parents contribute equally to the traits of their
offspring, the fraction of pious traits in the next generation is (tmrt + tf )/2.
If we write βt = tm − t and βp = pf − p, then the change !t in the
frequency of the pious trait can be written as

!t = tmrt + tf

2
− t = 1

2

(
βt + dβp

p(1 − p)

)
. (13.1)
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What about the change in p across generations? The fraction of mated,
choosy females is simply pf , since all females in the breeding pool mate.
The number nm of males in the breeding pool is nm = n(1 − ut), of which
nx−p are nonpious and choosy, whilen(1−u)xtp are pious and choosy. Each
nonpious male has nf r−/nm offspring, and each pious male has nf rt/nm

offspring, so the total number of choosy male offspring per breeding female
is just

pm
′ = nx−pr−/nm + n(1 − u)xtprt/n

m.

A little algebraic manipulation shows that this can be written more simply
as

pm
′ = p + dβt

t (1 − t)
.

Then the change !p in the frequency of the choosy trait can be written as

!p = pm
′ + pf

2
− p = 1

2

(
βp + dβt

t (1 − t)

)
. (13.2)

Let us first investigate (13.1) and (13.2) when choosy females are not less
fit, so k = 0. In this case, pf = p, so βp = 0. Therefore, !t = !p = 0
exactly when βt = 0. Solving this equation for t , we get

t = (a − 1)p(1 − u)− u

u(a(1 − u)− 1)
. (13.3)

This shows that there is a range of values of p for which an equilibrium
frequency of t exists. Checking the Jacobian of the right-hand sides of (13.1)
and (13.2), we find that stability requires that the denominator of (13.3) be
positive (do it as an exercise). Thus, the line of equilibria is upward-sloping,
and t goes from zero to one as p goes from u/(a− 1)(1 − u) to au/(a− 1)
(you can check that this defines an interval contained in (0, 1) for 0 < u < 1
and a(1 − u) > 1). This set of equilibria is shown in Fig. 13.1. This shows
that the Darwin-Fisher sexual selection process is plausible, even though
it lowers the average fitness of males in the community—in essence, the
condition a(1 − u) > 1 ensures that the benefit of sexual selection more
than offsets the cost of the ornamental handicap.

Suppose, however, k > 0. If we then solve for !t = !p = 0 in (13.1)
and (13.2), we easily derive the equation

d2 = t (1 − t)p(1 − p).
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Figure 13.1. Equilibria in Darwin-Fisher sexual selection model when there is no
selection against choosy females.

But t (1 − t)p(1 − p) = (xt− + d)(x−p + d), which implies xt− = x−p =
0. But then, nonchoosy females must mate only with nonpious males,
which is impossible so long as there is a positive fraction of pious males.
We conclude that when choosiness is costly to females, sexual selection
cannot exist. Since in most cases we can expect some positive search cost
to be involved in favoring one type of male over another, we conclude that
sexual selection probably does not occur in equilibrium in nature. Of course,
random mutations could lead to a disequilibrium situation in which females
prefer certain male traits, leading to increased fitness of males with those
traits. But when the fitness costs of such choices kick in, choosy females
will decline until equilibrium is restored.

13.6 Biological Signals as Handicaps

Zahavi (1975), based on close observation of avian behavior, proposed an
alternative to the Darwin-Fisher sexual selection mechanism—a notion of
costly signaling which he called the handicap principle. According to the
handicap principle, a male who mounts an elaborate display is in fact sig-
naling his good health and/or good genes, since an unhealthy or genetically
unfit male lacks the resources to mount such a display. The idea was treated
with skepticism for many years, since it proved difficult to model or em-
pirically validate the process. This situation changed when Grafen (1990b)
developed a simple analytical model of the handicap principle. Moreover,
empirical evidence has grown in favor of the costly signaling approach to
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sexual selection, leading many to favor it over the Darwin-Fisher sexual
selection model, especially in cases where female mate selection is costly.

Grafen’s model is a special case of the generic signaling model presented
in §13.2. Suppose a male’s type t ∈ [tmin,∞) is a measure of male vigor
(e.g., resistance to parasites). Females do best by accurately determining t ,
since an overestimate of t might lead a female to mate when she should not,
and an underestimate might lead her to pass up a suitable mate. If a male of
type t signals his type as s = f (t), and a female uses this signal to estimate
the male’s fitness as a = g(s), then in an equilibrium with truthful signaling
we will have a = t . We suppose that the male’s fitness is u(t, s, a), with
ut > 0 (a male with higher t is more fit), us < 0 (it is costly to signal a
higher level of fitness), and ua > 0 (a male does better if a female thinks he’s
more fit). We assume the male’s fitness function u(t, s, g(s)) is such that
a more vigorous male will signal a higher fitness; i.e., ds/dt > 0. Given
g(s), a male of type t will then choose s to maximize U(s) = u(t, s, g(s)),
which has first-order condition

Us(s) = us(t, s, g(s))+ ua(t, s, g(s))
dg

ds
= 0. (13.4)

If there is indeed truthful signaling, then this equation must hold for t = g(s),
giving us the differential equation

dg

ds
= −us(g(s), s, g(s))

ua(g(s), s, g(s))
, (13.5)

which, together withg(smin) = tmin, uniquely determinesg(s). Sinceus < 0
and ua > 0, we have dg/ds > 0, as expected.

Differentiating the first-order condition (13.4) totally with respect to t , we
find

Uss

ds

dt
+ Ust = 0.

Since Uss < 0 by the second-order condition for a maximum, and since
ds/dt > 0, we must have Ust > 0. But we can write

Ust = ust + uatg
′(s)

= ustua(g(s), s, g(s))− uatus(g(s), s, g(s))

ua
> 0.

Therefore,
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d

dt

[
us(t, s, g(s))

ua(t, s, g(s))

]
= Ust

ua
< 0. (13.6)

We can now rewrite (13.4) as

ua(t, s, g(s))

[
us(t, s, g(s))

ua(t, s, g(s))
+ g′(s)

]
= 0. (13.7)

Since the fraction in this expression is increasing in t , and the expression
is zero when t = g(s), this shows s = t is a local maximum, so the male
maximizes fitness by truthfully reporting s = g−1(t), at least locally.

For an example of the handicap principal, suppose u(t, s, a) = ar ts , so
(13.5) becomes g′/g = −(1/r) ln g, which has solution ln g = ce−s/r .
Using g(smin) = tmin this gives

g(s) = te
− s−smin

r

min ,

and

f (t) = smin − r ln
ln t

ln tmin
.

The reader will note an important element of unrealism in this model:
it assumes that the cost of female signal processing and detection is zero,
and hence signaling is perfectly truthful and reliable. If we allow for costly
female choice, we would expect that signal detection would be imperfect
and there would be a positive level of dishonest signaling in equilibrium,
and the physical process of signal development should involve an evolu-
tionary dynamic intimately related to receiver neurophysiology (Dawkins
and Guilford 1991; Guilford and Dawkins 1991, 1993). In contrast with
the Darwin-Fisher model of sexual selection, we would not expect a small
amount of costly female choice to undermine a signaling equilibrium, since
there are direct fitness benefits to females in locating vigorous males.

13.7 The Shepherds Who Never Cry Wolf

Since we value truthfulness, one might have the impression that when both a
truthful signaling and a nonsignaling equilibrium exist, the truthful signaling
equilibrium should entail higher payoffs for at least some of the players. But
that need not be the case. Here is a counterexample.
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Two shepherds take their flocks each morning to adjoining pastures. Some-
times a wolf will attack one of the flocks, causing pandemonium among the
threatened sheep. A wolf attack can be clearly heard by both shepherds, al-
lowing a shepherd to come to the aid of his companion. But unless the wolf
is hungry, the cost of giving aid exceeds the benefits, and only the shepherd
guarding the threatened flock can see if the wolf is hungry.

There are three pure strategies for a threatened shepherd: never signal (N ),
signal if the wolf is hungry (H ), and always signal (A). Similarly, there are
three pure strategies for the shepherd who hears a wolf in the other pasture:
never help (N ), help if signalled (H ), and always help (A).

We make the following assumptions. The payoff to a day’s work when
no wolf appears is 1 for each shepherd. The cost of being attacked by a
hungry wolf and a nonhungry wolf is a and b < a, respectively. The cost of
coming to the aid of a threatened shepherd is d, and doing so prevents the
loss to the threatened shepherd, so his payoff is still 1. Finally, it is common
knowledge that the probability that a wolf is hungry is p > 0.

We assume the shepherds’ discount rates are too high, or wolf visits too
infrequent, to support a repeated-game cooperative equilibrium using trigger
strategies, so the game is a one-shot. If the shepherds are self-interested, of
course neither will help the other, so we assume that they are brothers, and
the total payoff to shepherd 1 (the threatened shepherd) is his own-payoff
π1 plus kπ2, where π2 is the own-payoff of shepherd 2, and similarly, the
total payoff to shepherd 2 (the potential helper) is π2 + kπ1.

If ka > d > kb, a shepherd prefers to aid his threatened brother when,
and only when, the wolf is hungry (why?). So we assume this is the case.
We also assume that a − dk > c > b − dk, which means that a threatened
shepherd would only want his brother to come to help if the wolf is hungry
(why?). So there ought to be a signaling equilibrium in this case. Note,
however, that this signaling equilibrium will exist whether p is small or
large, so for very large p, it might be worthwhile for a brother always to
help, thus saving the cost c of signaling to his brother, and saving the cost
kc to himself. This, in fact, is the case. While this can be proved in general,
you are asked in this problem to prove a special case.

Assume k = 5/12 (note that k = 1/2 for full brothers, but the probability
that two brothers that ostensibly have the same father in fact have the same
father is probably about 80% in human populations). Also assume a = 3/4,
b = 1/4, c = 19/48, and d = 1/4. Finally, assume p = 3/4. After
verifying that the above inequalities hold, do the following:
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a. Show that there is a signaling equilibrium, and find the payoffs to the
shepherds.

b. Show that there is pooling equilibrium in which a threatened shepherd
never signals, and a shepherd always helps his threatened brother. Show
that this equilibrium is Pareto-superior to the signaling equilibrium.

c. There is also a mixed strategy Nash equilibrium (truthful signaling oc-
curs, but not with certainty) in which the threatened shepherd some-
times signals, and the other shepherd sometimes helps without being
asked. Find this equilibrium and its payoffs, and show that the payoffs
are slightly better than the signaling equilibrium but not as high as the
pooling equilibrium.

13.8 My Brother’s Keeper

Consider the following elaboration on the theme of §13.7. Suppose the
threatened shepherd, whom we will call the Sender, is either healthy, needy,
or desperate, each of which is true with probability 1/3. His brother, whom
we will call the Donor, is either healthy or needy, each with probability
1/2. Suppose there are two signals that the threatened shepherd can give: a
low-cost signal costing 0.1, and a high-cost signal costing 0.2. If he uses
either one, we say he is “asking for help.” We assume that the payoff for
each brother is his own fitness plus 3/4 of his brother’s fitness. The Sender’s
fitness is 0.9 if healthy, 0.6 if needy, and 0.3 if desperate, minus whatever
he pays for signaling. The Donor’s fitness is 0.9 if healthy and 0.7 if needy.
However, the Donor has a resource that ensures his fitness is 1 if he uses it,
and the fitness of the Sender is 1 (minus the signaling cost) if he transfers
it to the Sender. The resource is perishable, so either he or his brother must
use it in the current period.

a. Show that after eliminating “unreasonable” strategies (define carefully
what you mean by “unreasonable”), there are six pure strategies for
the Sender, in each of which a healthy sender never signals: Never
Ask; Signal Low If Desperate; Signal High If Desperate; Signal Low
If Desperate or Needy; Signal Low If Needy, High If Desperate; and
Signal High If Needy or Desperate. Similarly, there are ten strategies
for Donor: Never Help; Help If Healthy and Signal Is High; Help If
Healthy and Asked; Help If Healthy; Help If Signal Is High; Help If
Healthy and Asked, or Needy and Signal Is High; Help If Healthy or
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Signal Is High; Help If Asked; Help If Healthy or Asked; and Help
Unconditionally.

b. ∗ If you have a lot of time on your hands, or if you know a computer
programming language, derive the 6 × 10 normal form matrix for the
game.

c. ∗ Show that there are seven pure strategy equilibria. Among these there is
one completely pooling equilibrium: Never Ask, Always Help. This, of
course, affords the Sender the maximum possible payoff. However, the
pooling equilibrium maximizes the sum of the payoffs to both players,
so it will be preferred by both if they are equally likely to be Sender
and Donor. This is asocial optimum even among the mixed strategy
equilibria, but that is even harder to determine—my Normal Form Game
Solver and Gambit are useful here.

d. Show that the truthful signaling strategies (Signal Low If Needy, High If
Desperate, Help If Healthy andAsked or Needy and Signal Is High) form
a Nash equilibrium, but that this equilibrium is strictly Pareto-inferior
to the pooling (nonsignaling) equilibrium.

This model shows that there can be many signaling equilibria, but all may be
inferior to complete altruism (Never Ask, Always Help). This is doubtless
because the coefficient of relatedness is so high (3/4 is the coefficient of
relatedness between sisters in many bee species, where the queen mates
with a single haploid male).

Simulating the model gives an entirely surprising result, as depicted in
Fig. 13.2. For this simulation, I created seven hundred players, each ran-
domly programmed to play one strategy as Sender and another as Donor.
The players were randomly paired on each round, and one was randomly
chosen to be Sender, the other Donor. After every ten rounds, the strategies
with the highest scores reproduced, and their offspring replaced those with
the lowest scores. Figure 13.2 shows the outcome for the two strongest
strategies. For the Donor, this involved using Help If Healthy or If Asked,
and for Sender, either Signal Low If Desperate or Needy, or Signal Low
If Desperate. After 20,000 rounds, the only remaining strategy (except for
occasional mutations), is the latter, the other fifty-nine strategies having
disappeared. This is the signaling equilibrium that is best for the Donor
but whose total fitness is inferior to the pooling equilibrium Never Ask,
Always Help. Nor is this a fluke outcome: I ran the simulation ten times
with different seeds to the random number generator, and this equilibrium
emerged every time. The implication is clear: a signaling equilibrium can
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Figure 13.2. A signaling equilibrium in the Brother’s Helper game.

emerge from an evolutionary process even when it is inferior to a pooling
equilibrium.

13.9 Honest Signaling among Partial Altruists

In a certain fishing community, each fisher works alone on the open sea,
earning a payoff that we will normalize to 1. A fisher occasionally encounters
threatening weather. If the fisher does not escape the weather, his payoff
is zero. If a threatened fisher has sufficient energy reserves, he can escape
the bad weather, and his expected payoff is u, where 0 < u < 1. We call
such a fisher secure. However, with a certain probability p (0 < p < 1) a
threatened fisher does not have sufficient energy reserves. We say he is in
distress.

If a threatened fisher sees another fisher on the horizon, he can send a
signal to ask for help, at cost t , with 0 < t < 1. If the fisher is in distress
and a potential helper comes to his aid (we assume the potential helper is
not threatened), the payoff to the distressed fisher is 1, but the cost to the
helper is c > 0. Without the help, however, the distressed fisher succumbs
to the bad weather and has payoff 0.
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To complicate matters, a threatened fisher who is helped by another fisher
but who is not distressed has payoff v, where 1 > v > u. Thus, threatened
fishers have an incentive to signal that they are in distress even when they are
not. Moreover, fishers can tell when other fishers are threatened, but only
the threatened fisher himself knows his own reserves, and hence whether or
not he is in distress.

We assume that encounters of this type among fishers are one-shot affairs,
because the probability of meeting the same distressed fisher again is very
small. Clearly, unless there is an element of altruism, no fisher will help a
threatened fisher. So let us suppose that in an encounter between fishers, the
nonthreatened fisher receives a fraction r > 0 of the total payoff, including
signaling costs, received by the threatened fisher (presumably because r is
the degree of genetic or cultural relatedness between fishers). However, the
helper bears the total cost c himself.

For example, if a fisher is in distress and signals for help and receives help,
the distressed fisher’s payoff is 1 − t and the helper’s payoff is r(1 − t)− c.

The nonthreatened fisher (Fisher 1) who sees a threatened fisher (Fisher
2) has three pure strategies: Never Help, Help If Asked, and Always Help.
Fisher 2 also has three strategies: Never Ask, Ask When Distressed, Al-
ways Ask. We call the strategy pair {Help If Asked, Ask If Distressed} the
Honest Signaling strategy pair. If this pair is Nash, we have an Honest Sig-
naling equilibrium. This is called a separating equilibrium because agents
truthfully reveal their situation by their actions. Any other equilibrium is
called a pooling equilibrium, since agents’ actions do not always reveal their
situations.3

The reasoning you are asked to perform below shows that when there are
potential gains from helping distressed fishers (i.e., (1+r)(1− t) > c), then
if fishers are sufficiently altruistic and signaling is sufficiently costly but not
excessively costly, an Honest Signaling equilibrium can be sustained as a
Nash equilibrium. The idea that signaling must be costly (but not too costly)
to be believable was championed by Amotz Zahavi (1975) and modeled by
Grafen (1990a), Maynard Smith (1991), Johnstone and Grafen (1992, 1993),
and others in a notable series of papers. The general game-theoretic point
is simple, but extremely important: if a signal is not on balance truthful,
it will not be heeded, so if it is costly to emit, it will not be emitted. Of
course, there is much out-of-equilibrium behavior, so there is lots of room
for duplicity in biology and economics.

3For more on separating and pooling equilibria, see §12.10, §12.11, and chapter 13.
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a. Show that if

(1 + r)

[
v − u+ pt

1 − p

]
< c < (1 + r)(1 − t), (13.8)

then Honest Signaling is socially efficient (i.e., maximizes the sum of
the payoffs to the two fishers)? Hint: Set up the 3 × 3 normal form for
the game, add up the entries in each box, and compare. For the rest of
the problem, assume that these conditions hold.

b. Show that there is always a pooling equilibrium in which Fisher 2 uses
Never Ask. Show that in this equilibrium, Fisher 1 Never Helps if

c > r[p + (1 − p)(v − u)] (13.9)

and Always Helps if the opposite inequality holds.
c. Show that if

v − u <
c

r
< 1

and
v − u < t < 1,

Honest Signaling is a Nash equilibrium.
d. Show that if t is sufficiently close to 1, Honest Signaling can be a Nash

equilibrium even if it is not socially efficient.
e. Show that if Honest Signaling and {Never Ask, Never Help} are both

Nash equilibria, then Honest Signaling has a higher total payoff than
{Never Ask, Never Help}.

f. Show that if Honest Signaling and {Never Ask, Always Help} are both
Nash equilibria, then Honest Signaling has a higher total payoff than
{Never Ask, Always Help}.

13.10 Educational Signaling I

Suppose there are two types of workers, high-ability (h) and low-ability
(l), and the proportion of high-ability workers in the economy is α > 0.
Suppose workers invest in acquiring a level of schooling s, which is both
costly to obtain and productive. Specifically, suppose that a high-ability
worker incurs a cost ch(s) of obtaining s years of schooling, while a low-
ability workers incurs a cost of cl(s). We also assume schooling is more
costly for low-ability workers than for high, so c′

h(s) < c′
l(s) for all s ≥ 0.
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Schooling is also productive, so the marginal productivity of a high-ability
worker with s years of schooling is yh(s), and the corresponding value
for a low-ability worker is yl(s). We assume yh(0) = yl(0) = 0 and
y′
h(s) > y′

l (s) > 0 for all s ≥ 0, which means that high-ability workers have
higher marginal products than low-ability workers, and schooling increases
the productivity of high-ability workers more than low. To simplify the
diagrams, we assume yh and yl are linear functions of s.

Suppose employers cannot observe ability, but they do observe s, and if
workers with different abilities obtain different amounts of schooling, they
may offer a wage based on s. We assume the labor market is competitive, so
all firms must offer a wage equal to the expected marginal product of labor.

A truthful signaling equilibrium in this case involves high- and low-ability
workers choosing different amounts of schooling, so employers know their
type by their schooling choices. They thus pay wagesyh(s) to the high-ability
workers and yl(s) to the low. Assuming workers know this, high-ability
workers will choose s to maximize yh(s) − ch(s) and low-ability workers
will choose s to maximize yl(s) − cl(s). This is depicted in Fig. 13.3.
Agents maximize their payoff by choosing the highest indifference curve
that intersects their wage curve, which means tangency points between wage
curves and indifference curves as illustrated. Moreover, neither type of agent
would prefer to get the amount of schooling chosen by the other, since this
would involve a lower level of utility; i.e., the equilibrium point for each
type lies below the indifference curve for the other type.

w

s

�wh∗

wl∗ �

sh∗sl∗

yh(s)

yl(s)

Il
Ih

Figure 13.3. A truthful signaling equilibrium.
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a. Explain why there cannot be a truthful signaling equilibrium if the costs
of schooling are the same for the two ability levels. Draw a diagram to
illustrate your argument. Hint: Indifference curves for the same utility
function cannot cross.

b. Modify Fig. 13.3 to illustrate the following assertion: If the optimum
schooling level for the high-ability worker lies inside the optimal in-
difference curve for the low-ability worker, then the low-ability worker
will mimic the high-ability worker and destroy the truthful signaling
equilibrium.

c. However, high-ability workers may have a response to this: they may be
able to increase their educational level to a point sufficiently high that
it will no longer benefit the low-ability workers to imitate them. This is
called an “Educational Rat Race.” Make a diagram illustrating this rat
race and another in which it is not worthwhile for high-ability workers
to signal their quality.

d. Analyze the case of a pooling equilibrium, in which both high- and low-
ability workers choose the same schooling level. Show that in this case
employers do not use either the yh(s) or the yl(s) schedules, but rather
set wages so that

w(s) = αyh(s)+ (1 − α)yl(s) (13.10)

for both types of workers. Show that in a pooling equilibrium, high-
ability workers maximize their payoff subject to hitting the wage curve
w(s), and low-ability workers imitate their choice of educational level.
Draw a diagram illustrating this result, and make sure the curves are
drawn so neither high- nor low-ability workers have an incentive to
switch unilaterally to the truthful signaling equilibrium.

This analysis does not exhaust the possibilities for a signaling equilib-
rium. There could also exist mixed strategy equilibria in which some
low-ability workers imitate the high-ability workers and others do not.
There could also be strange Bayesian priors for the employers that would
lead to strange pooling equilibria. For instance, if employers believe that
a worker who does not choose s = so for some given so are “crazy” and
must be low-ability. Then every worker may choose so to get the pool-
ing wage, which is higher than the low-ability wage. Such behavior by
employers would be stupid, and they might be driven out of existence
in a dynamic adjustment process.
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13.11 Education as a Screening Device

Suppose a worker can be of high ability ah with probability α, or low abil-
ity al < ah with probability 1 − α. Workers know their own ability, but
employers do not. Workers can also choose to acquire high as opposed to
low education, and this is observable by employers. Moreover, it costs c/a
(c > 0) for a worker of ability a to acquire high education, so high education
is more costly for the low-ability worker. We assume that workers are paid
their expected marginal product, and the marginal product of a worker of
ability a is just a, so high education does not improve worker productivity—
education is at best a screening device, informing employers which workers
are high ability. Suppose el is the event “worker chose low education” and
eh is the event “worker chose high education.” Then, if wl and wh are the
wage paid to low- and high-education workers, respectively, we have

wk = P[ah|ek]ah + P[al|ek]al, k = l, h, (13.11)

where P[a|e] is the conditional probability that the worker has ability a in
the event e.

A Nash equilibrium for this game consists of a choice e(a) ∈ {el, eh} of
education level for a = ah, al and a set of probabilities P[a|e] for a = ah, al
and e = eh, el that are consistent in the sense that if P[e] > 0, then P[a|e]
is given by Bayesian updating.

a. Show that there is a pooling equilibrium in which e(ah) = e(al) = el ,
wh = wl = αah + (1 −α)al , and P[al|el] = P[al|eh] = 1 −α. In other
words, employers disregard the education signal, and workers choose
low education.

b. Show that there is some range of values for c such that there is a truthful
signaling equilibrium in which e(ah) = eh, e(al) = el , wl = al , wh =
ah, P[al|el] = 1, and P[al|eh] = 0. In other words, despite the fact that
education does not increase worker productivity, workers can signal
high ability by acquiring education, and employers reward high-ability
workers with relatively high wages.

c. In the spirit of trembling hand perfection (§5.16 and §12.1), suppose
that with a small probability ε > 0 a worker is given a free education,
regardless of ability. Show that the pooling equilibrium does not have
to specify arbitrarily the probabilities P[al|eh] off the path of play, since
P[eh] = ε > 0, and since both ability types are equally likely to get a
free education, we have P[al|eh] = 1 − α.
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d. Show that if c is sufficiently small, there are two pooling equilibria and
no truthful signaling equilibrium. The first pooling equilibrium is as
before. In the second pooling equilibrium, both ability types choose
to be educated. Specifically, e(ah) = e(al) = eh, wl = al , wh =
αah + (1 − α)al , P[al|el] = 1, and P[al|eh] = 1 − α. Note that this
requires specifying the probabilities for el , which are off the path of
play. The truthful signaling equilibrium is inefficient and inegalitarian,
while the pooling equilibrium is inefficient but egalitarian. The pooling
equilibrium is not very plausible, because it is more reasonable to assume
that if a worker gets education, he is high ability.

e. Show that if we added a small exogenous probability ε > 0 that a worker
of either type is denied an education, all outcomes are along the path of
play, and the posterior P[al|el] = 1 − α follows from the requirement
of Bayesian updating.

f. Now suppose the educational level is a continuous variable e ∈ [0, 1].
Workers then choose e(ah), e(al) ∈ [0, 1], and employers face proba-
bilities P[ah|e],P[al|e] for all education levels e ∈ [0, 1].
Show that for e ∈ [0, 1], there is a ē > 0 such that for any e∗ ∈ [0, ē],
there is a pooling equilibrium where all workers choose educational level
e∗. In this equilibrium, employers pay wages w(e∗) = αah + (1 −α)al
and w(e �= e∗) = al . They have the conditional probabilities P[al|e �=
e∗] = 1 and P[al|e = e∗] = 1 − α.

g. Show that when e ∈ [0, 1], if c is sufficiently large, there is a range
of values of e∗ such that there is a truthful signaling equilibrium where
high-ability workers choose e = e∗ and low-ability workers choose
e = 0. In this equilibrium, employers pay wages w(e∗) = ah and
w(e �= e∗) = al . They face the conditional probabilities P[al|e �=
e∗] = 0 and P[al|e �= e∗] = 1.

13.12 Capital as a Signaling Device

Suppose there are many producers, each with a project to fund. There are two
types of projects, each of which requires capital investment k. The “good”
project returns 1 at the end of the period, and the “bad” project returns 1 with
probability p (0 < p < 1) at the end of the period, and otherwise returns
0. There are also many lenders. While each producer knows the type of his
own project, the lenders only know that the frequency of good projects in
the economy is q (0 < q < 1).
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We assume the capital market is perfect and all agents are risk neutral
(§16.41). Thus, each lender’s reservation position is the risk-free interest
rate ρ > 0, so a producer can always obtain financing for his project if he
offers to pay an interest rate r that allows a lender to earn expected return ρ
on his capital investment k.

We call a project with capital cost k socially productive if its expected
return is greater than k(1 + ρ). This corresponds to the idea that while
individual agents may be risk averse, the law of large numbers applies to
creating a social aggregate, so a social surplus is created on all projects that
return at least the risk-free interest rate.

a. Show that for any p, q > 0 there is a nonempty interval (kgmin, k
g
max)

of capital costs k such that no project is funded, despite the fact that a
fraction q of the projects are socially productive.

b. Show that for any p, q > 0 there is a nonempty interval (kbmin, k
b
max) of

capital costs k such that all projects are funded, despite the fact that a
fraction 1 − q of the projects are not socially productive.

This is a sorry state of affairs, indeed! But is there not some way that
an owner of a good project could signal this fact credibly? In a suitably
religious society, perhaps the requirement that borrowers swear on a stack
of Bibles that they have good projects might work. Or if producers have
new projects available in each of many periods, we may have a “reputational
equilibrium” in which producers with bad projects are not funded in future
periods, and hence do not apply for loans in the current period. Or society
might build debtors’ prisons and torture the defaulters.

But suppose none of these is the case. Then equity comes to the rescue!
Suppose each producer has an amount of capital kp > 0. Clearly, if kp ≥
k, there will be no need for a credit market, and producers will invest in
their projects precisely when they are socially productive (prove it!). More
generally,

c. Show that for all p, q, k > 0 such that good projects are socially pro-
ductive and bad projects are socially unproductive, there is a wealth
level kpmin > 0 such that if all producers have wealth kp > k

p

min; a
producer’s willingness to invest kp in his project is a perfect indicator
that the project is good. In this situation, exactly the good projects are
funded, and the interest rate is the risk-free interest rate ρ.

The previous result says that if producers are sufficiently wealthy, there is a
truthful signaling equilibrium, in which producers signal the quality of their
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projects by the amount of equity they are willing to put in them. But if there
are lots of nonwealthy producers, many socially productive investments may
go unfunded (Bardhan, Bowles, and Gintis 2000).


