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This paper explores empirically the impact of monitoring and enforcement efforts 

on environmental compliance for conventional water pollutants.  We consider 

three key questions about the impact of environmental enforcement strategies.  

First, how effective are fines at inducing environmental compliance?  Second, 

how effective are less severe intermediate enforcement actions?  And third, how 

much do inspections contribute to compliance on the margin?  We find the 

following answers:  Fines significantly reduce effluent violations.  Violations by 

both the fined firm and other firms in the same regulatory jurisdiction are 

reduced.  The impact of less severe intermediate enforcement actions is 

substantially less than that of fines.  Finally, inspections weakly induce additional 

compliance at the margin. 
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1.0 INTRODUCTION 
 

The Environmental Protection Agency and state regulatory authorities devote 

considerable resources to ensuring compliance with environmental standards.1  

This paper explores empirically the impact of their regulatory efforts on firms’ 

compliance decisions.  To motivate the analysis, we begin by briefly summarizing 

the current regulatory context.  Enforcement of environmental standards for 

conventional water pollutants is largely based upon self-reported emissions.  

Frequent on-site inspections verify these self-reported values.  Violations may 

result in one or more enforcement actions, including the levying of fines.  Fines 

for detected violations, however, are rarely imposed. 

 

We proceed by asking three key questions about the impact of environmental 

enforcement strategies.  First, how effective are fines at inducing environmental 

compliance?  Second, how effective are less severe intermediate enforcement 

actions?  And third, how much do inspections contribute to compliance on the 

margin?  We find the following answers:  Fines significantly reduce effluent 

violations.  Violations by both the fined firm and other firms in the same 

regulatory jurisdiction are reduced.  The impact of less severe intermediate 

enforcement actions is substantially less than that of fines.  Finally, inspections 

weakly induce additional compliance at the margin. 

 

This paper builds upon the work of previous empirical studies.  Magat & Viscusi 

(1990) demonstrated that, in the early 1980s, inspections caused American pulp 

and paper firms to more frequently comply with EPA water pollution standards.  

Deily & Gray (1991) demonstrated that the EPA is responsive to local economic 

and political conditions when regulating steel mills, and subsequently conducts 

fewer regulatory actions against firms with higher probabilities of closing.  See 

also Deily & Gray (1996) and Dion et al (1998).  Laplante & Rilstone (1996) then 

showed that inspections and the threat of inspections negatively impacted 

                                                   
1 The EPA alone budgeted over $300 million to this task in 1998.  Congressional 

Research Service.  “Environmental Protection Agency:  An Analysis of Key 
FY1999 Budget Issues II,” 1999. 
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discharges from Canadian pulp and paper mills in the late 1980’s.  Nadeau (1997) 

found that increasing monitoring and enforcement of air pollution standards 

results in a shorter duration of noncompliance.  Finally, Helland (1998) examined 

the role of targeting2 in the enforcement of pollution control standards.  His 

empirical evidence suggests that targeting is present, but only for a small subset 

of firms.   

 

The credible threat of fines, or some other sanctions, is required to deter 

violations in standard economic models of enforcement.3  Other authors, 

including Magat & Viscusi (1990), Laplante & Rilstone (1996), and Helland 

(1998), have recognized the need to consider effluent fines but data limitations 

have hindered their empirical investigations.  Using a larger and more recent 

panel dataset, we are able directly address the impact of sanctions on U.S. 

compliance.4  We examine the impact of sanctions on both the sanctioned firm 

and on other firms in the jurisdiction. This is appropriate because the regulator 

may enhance its credibility with all firms by making an example of a single firm.   

 

Section 2.0 focuses on the regulatory background of our case study industry.  

Section 3.0 discusses the data, its sources, and the assumptions involved in its 

collection.  Section 4.0 more closely examines firms’ compliance decisions, and 

section 5.0 presents the econometric models.  A discussion of both aggregate and 

plant-level analyses is included.  Section 6.0 presents results, interpretations, and 

conclusions. 

 

2.0 BACKGROUND 
 

Conventional water pollutants for the U.S. pulp and paper industry are the focus 

of our case study.  We choose this industry for several reasons.  The pulp and 

                                                   
2  Helland’s work is an empirical test of Harrington (1988)’s leverage model. 
3 See for example those works summarized in Russell, Harrington, and Vaughan 

(1986). 
4 Dasgupta et al (1999) examine the impact of pollution fines on environmental 

performance in China. 
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paper industry is the largest discharger of both biochemical oxygen demand 

(BOD) and total suspended solids (TSS) into U.S. waterways, releasing over 16 

million cubic meters of wastewater daily.  Additionally, pulp, paper, and 

paperboard mills exist in a wide range of states and fall under the jurisdiction of 

many different permitting authorities.  Major production areas are located where 

raw materials (fiber-furnish) are most plentiful: the southeast, the northwest, the 

northeast, and the north central region.  Finally, given functioning abatement 

equipment, the amount of conventional pollutants emitted is directly related to the 

amount of output produced.5 

 

Permitting, inspection, and enforcement activities are conducted by a variety of 

regulatory authorities.  These authorities can either be regional EPA offices or the 

state in which the mill is located.6  Compliance information is gathered by on-site 

inspections and monthly self-monitoring reports.  Self-reporting, however, is the 

primary source of effluent information.  The inspection program is a secondary 

source of compliance evaluation, a source of information for future permitting, 

and an avenue to gather evidence to support enforcement actions.7  These actions 

range from the levying of fines to a warning telephone call. 

 

Prior to 1997, each permitting authority was required by law to inspect major 

dischargers at least once a year.  Five types of inspections directly apply to the 

non-toxic discharges of a standard industry.  The first type is a reconnaissance 

inspection.  This brief type typically lasts less than one day, and simply involves a 

visual inspection of the facility, its effluent, and its receiving waters.  Compliance 

evaluation inspections and performance audits involve a more in-depth analysis 

of a plant’s compliance.  These inspections include the visual monitoring of a 

firm’s self-reporting records to determine accuracy and quality.  Regulators check 

                                                   
5 United States EPA, Office of Water.  “Development Document for Proposed 

Effluent Limitations Guidelines and Standards for the Pulp, Paper, and Paperboard 
Point Source Category,” October 1993.  This desirable characteristic is, of course, 
also true of several other industries. 

6  As discussed in Chapter 1, states have the option to oversee compliance.  The EPA 
steps in for states which decline this option. 
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that equipment required by the permit is in place and being properly operated.  

Additionally, performance audits involve an inspector observing a plant’s sample 

collection.  No regulator sampling is conducted, and these inspections are likely 

to last between two and 12 days.  The final monitoring methods, compliance 

sampling and bio-monitoring inspections, require approximately thirty days to 

complete and involve all of the actions and observations of the other types, in 

addition to regulator sampling. 

 

Inspections are, to some degree, predictable.  Before any regulatory monitoring 

can occur, the inspector must conduct a pre-inspection discussion with the owner 

/ operator of the plant, outlining the inspection’s plan.  Also, specific inspections 

must be conducted based upon administrative factors or specific evidence of an 

existing violation.  Historically, the vast majority of resources have been devoted 

to inspections motivated by administrative factors.  In fact, a Supreme Court 

ruling requires that the EPA base its monitoring activities on “neutral selection,” 

wherein the choice of plants to be inspected is based upon geographic factors and 

the length of time since the last inspection.8  Purely random inspections are 

prohibited. 

 

3.0 DATA 
 

The EPA’s Permit Compliance System (PCS) serves as our data source.  

Established in conjunction with the Clean Water Act and its subsequent 

amendments, the PCS tracks plant-level self-reported emissions, permitted 

effluent limitations, inspections, and enforcement actions.  Although the EPA 

administers the PCS, state agencies contribute much of its information.  Our 

sample consists of data generated by 23 separate regulatory jurisdictions.  15 of 

                                                   
 

7 United States EPA, Enforcement Division, Office of Water Enforcement and 
Permits.  “NPDES Compliance Monitoring Inspector Training: Overview,” August 
1990. 

8 United States EPA, Enforcement Division, Office of Water Enforcement and 
Permits.  “NPDES Compliance Monitoring Inspector Training: Overview,” August 
1990 
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these jurisdictions contain plants directly regulated by the states in which the they 

are located.  The other eight jurisdictions contain plants regulated by one of four 

EPA regional authorities.  We disaggregate the EPA regional offices into the 

eight states they represent because we are concerned that regulatory information 

may not necessarily flow freely between states.9 

 

We analyze data for the sample period 1988–1996.  Since 1988, data on both 

effluent levels and enforcement actions are significantly more complete than in 

prior years.  The sample period ends in 1996 because, late that year, the EPA 

instituted a major regulatory change in inspection procedures.   

 

Our sample of PCS data contains the relevant information for biochemical oxygen 

demand (BOD) and total suspended solids (TSS) emissions from the 217 “major” 

pulp, paper, and paperboard mills in our sample states.  We consider the 

conventional pollutants BOD and TSS because all pulp and paper mills produce 

wastewater with significant amounts of these discharges.  We only consider 

“major” plants because these facilities are required to report their own emissions 

levels for operating pipes each and every month.  The EPA identifies plants as 

“major” if they have a flow of one million gallons or more per day or pose a 

significant impact to water quality.10  We consider all states with four or more 

major pulp, paper, or paperboard mills.  Our 217 examined plants emit from a 

total of 253 distinct pipes. 

 

Although self-reporting for major firms is mandatory and our dataset is quite 

complete, pipe closures sometimes result in missing data in the PCS.  A probit 

analysis of missing reports, however, yielded no evidence of strategic non-

reporting.  In particular, lagged effluent levels do not predict missing data.  

Additionally, lagged inspections have no systematic impact on missingness. 

                                                   
9  MA, ME, NH, and TX contain plants regulated solely by the EPA regional offices.  

AR, LA, NC, and PA contain some plants that are regulated by state permitting 
authorities and some plants regulated by EPA regional offices. 

10 United States EPA, Center for Environmental Information and Statistics.  “Major 
Findings from the CEIS Review of EPA’s Permit Compliance System Database,” 
1999. 
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As Laplante and Rilstone (1996) note, the natural question that arises with self-

reported data is whether firms strategically misreport effluent discharges.  The 

ideal test of self-reporting would be a secret and random check of effluent 

concentrations by the regulator.  Unfortunately, given the available data, only 

imperfect tests of self-reporting exist.  

 

Suppose that firms tend to under-report emissions when there is not an inspection.  

This strategic behavior would result in a positive correlation between inspections 

and contemporaneously reported emissions levels.  On the other hand, suppose 

firms emit less during an inspection.  This behavior would result in a negative 

correlation between inspections and reported emissions.  Any residual correlation 

(after accounting for exogenous covariates) between inspections and reported 

emissions indicates strategic firm behavior.11   

 

It is possible, though less plausible, that the two effects could exactly offset.  

Consider, for instance, a plant that always violates the standard when no inspector 

is present, yet reports no violation and complies when an inspector is present.  

This possibility, however, requires that the plant can adjust its emissions very 

quickly and entirely secretly.   

 

The absence of any anomalous residual correlation is consistent with accurate 

self-reporting.  Laplante & Rilstone (1996) test for such a correlation by running 

a comparison of means test on emissions when an inspector is present versus 

emissions when no inspector is present.  They find no statistical difference.  We 

test whether current inspections, after correcting for possible inspection targeting, 

have explanatory power for reported emissions.  We find a rather small and 

statistically insignificant correlation, suggesting the plausibility that most firms 

do not respond strategically to the presence of an inspector.  We therefore fail to 

                                                   
11 Additionally, it may be possible that the regulator is aware of plants’ discharges 

and conducts inspections during periods of high emissions.  Such targeting would 
tend to produce a positive correlation.  However, in the empirical section we 
correct for this possibility. 



 Page 9 

reject the accuracy of self-reporting.  It seems quite likely that this result is due, at 

least in part, to the potentially large criminal penalties associated with intentional 

misreporting.    

 

The analysis considers both fines and intermediate enforcement actions (IEAs).  

We include only those sanctions attributable to BOD or TSS non-compliance.  

This excludes penalties for other types of violations such as paperwork errors, 

toxics emissions, or poor equipment maintenance.  Although enforcement actions 

in the PCS are not explicitly linked to particular violations, we are able to 

distinguish the type of violation.  We therefore included all effluent sanctions 

preceded by one or more BOD or TSS violations in the previous year.12  

 

Table 3.1 Summary Statistics by Permitting Authority 

 
Variable States EPA Regions Total 

    

Authorities 15 8 23 

Plants 172 45 217 

Violations 299 124 423 

Fines 22 2 24 

Fine Average $43,500 $97,500 $48,000 

Fine Maximum $600,000 $100,000 $600,000 

Fine Minimum $500 $95,000 $500 

IEAs 28 16 44 

Inspections 1,718 414 2,132 

    

 

 

The reader may find the summary statistics presented in Table 3.1, broken down 

by EPA and state jurisdictions, useful.  Additional details are presented below.  

The average number of inspections per year is approximately 1.5.  Eight 

permitting authorities levied BOD/TSS fines, and eighteen authorities levied 
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BOD/TSS formal intermediate enforcement actions (IEAs).  To check the 

dataset’s completeness, we confirmed that all 23 authorities record enforcement 

actions of some sort, including sanctions for non-effluent violations.13   

 

Just under half of our sample plants, 99 out of 217, violated their effluent 

limitations at least once in the sample period.  Violations occurred in all 23 

jurisdictions.  In an average month, over two percent of plants are discovered to 

be in violation.  Violations also appear to be seasonal: one-third as many 

violations occur in September than occur in January.  These numbers indicate that 

although compliance is generally high in a given month,14 over time the number 

of violations is significant.   

 

4.0 COMPLIANCE DECISIONS 

 
 

Economic logic suggests that inspections and self-reporting alone will not deter 

violations; economic sanctions are also required.  Fines are the obvious sanction.  

Intermediate enforcement actions are also potentially important because fines 

themselves are often the culmination of a sequence of less severe sanctions.  It is 

therefore surprising that this is the first paper to examine explicitly how fines and 

IEAs deter U.S. conventional pollutant violations.  Data limitations, combined 

with the infrequency of fines, have made such an analysis difficult in the past.  On 

the other hand, perhaps sanctions have been overlooked because they are 

commonly perceived as "only a slap on the wrist."15 

 

Our point of departure is traditional law and economic models beginning with 

Becker's (1968) seminal work on crime.  Other relevant citations include Stigler 

                                                   
 

12 We were able to track down legal records for several of these sanctions.  In each 
case, the sanctions were in fact for BOD and TSS violations. 

13 The Center for Environmental Information and Statistics has also performed an 
independent analysis of the reliability of PCS data.  They conclude that emissions, 
limit, inspection, and enforcement data are accurate.    

14 In fact, many plants significantly over-comply with the standards. 
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(1970), Posner (1977), and Viscusi (1979).  The firm is a rational profit-

maximizing agent that will exceed effluent standards if it is profitable to do so.  In 

our case, the relevant marginal benefit is the gain from exceeding the permitted 

average effluent limitation over the course of a month.  The marginal cost is the 

expected sanction for noncompliance.   

 

It is worth noting that under current abatement technologies, effluent typically 

varies directly with production, and so is a direct choice variable of the firm.  

Conventional pollutant violations are rarely the result of catastrophic equipment 

failure, and violations are interpreted as intentional.  Specifically, given the 

relative maturity of BOD and TSS regulatory regimes, adequate investment and 

maintenance could prevent violations. 

 

In typical enforcement models, the expected sanction is a function of the 

probability of detection and the nature of sanction if detected.  However, our 

working hypothesis is that self-reported effluent values are accurate, so the 

probability of detection is one.16  In the view of the EPA, inspections are intended 

to ensure the accuracy of self-reported data, rather than to detect and deter 

effluent violations.  Of course, inspectors may also help ensure compliance by 

identifying potential problems.  

 

The relevant probability in our study is the chance of suffering a sanction for a 

violation, rather than the chance of detection.  Both this probability and the nature 

of the potential sanction are uncertain to the firm, because the firm has limited 

information on which to base its expectations.  However, the firm learns through 

experience.  The main credible source of information is the actual enforcement 

history of the regulator. 

                                                   
 

15 See, for example, Goodstein (1999): pgs 276. 
16 As previously discussed, our analysis includes a test of the accuracy of self-

reported data, and fails to reject the hypothesis.  Accurate self-reporting is 
economically plausible because intentional misreporting is always punishable by 
criminal sanctions.  See Cohen (1992). 
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To model learning, we follow Sah's (1991) work on social osmosis in crime.  The 

firm observes the regulator's past responses to its own violations and to violations 

of other firms under the same regulator.  Here, sanctions levied on one firm in 

Oregon should increase Oregon's enforcement credibility with other firms in that 

state, but have no impact on Texas firms. 

 

Within an overall regulatory strategy, actual enforcement is random from the 

firm's perspective.  As the firm updates its beliefs about expected sanctions, it 

may change its compliance behavior.  So, by combining random enforcement data 

with compliance data, we are able to estimate statistically an analog of Sah's 

model even if the overall regulatory strategy is unchanging.  Of course one may 

expect that the regime changes over time for a variety of reasons, including 

political economy and other local factors.  It is also possible that the regulator 

adjusts the regime over time in response to new information about firms.  We 

consider and correct for this possibility in the econometric section.  Because of 

the possibility of changing enforcement regimes, the value of enforcement history 

information may decline over time. 

 

The direct pecuniary costs of fines alone may not be the only true economic 

penalties.  In our context, one must interpret the role of any sanctions with 

caution.  Specifically, the total expected cost of a sanction may be greater than 

any direct cost.  As Polinsky and Shavell (1998) point out, it may be rational for a 

regulator to increase sanctions for repeat offenders.  Therefore, the expected cost 

of noncompliance reflects both immediate costs and the possibility of increased 

future sanctions, including Department of Justice (DOJ) litigation.17  Even a "slap 

on the wrist" may serve as a deterrent if it suggests larger future sanctions. 

                                                   
 

 
17 While expected future EPA penalties may significantly alter firms’ compliance 

decisions, it is unlikely that threats of DOJ suits play a large role in our analysis.  
The overwhelming majority of sanctions imposed by the EPA are internal, and, as 
Magat and Viscusi (1990) emphasize, “court action is a lengthy process that is 
started only as a last resort.”   Further, nearly all water cases submitted to the DOJ 
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5.0  ECONOMETRICS 
 

We examine the data at two levels: Aggregated to the permitting authority level 

and disaggregated to the plant level.  The aggregate estimation requires fewer 

assumptions on the error structure of the data and allows for simple interpretation.  

The plant level estimation, on the other hand, allows for a more detailed look at 

our three key questions.  Additionally, we are better able to control for potential 

endogeneity of the monitoring process using the plant-level analysis.  Both 

estimation approaches should yield similar results for enforcement parameters, 

providing an informal check of consistency. 

 

The overall econometric strategy is to identify the effects on firm compliance of 

variation in monitoring and enforcement intensity over time.  As previous 

empirical researchers have done, we omit a structural theoretical model, primarily 

because the fundamental incentive process is well understood.18 

  

5.1 AGGREGATE ANALYSIS 

 

Simplicity is the primary virtue of analyzing data pooled at the state level.19  This 

aggregate analysis allows us to examine the average firm impact of enforcement 

actions by the permitting authority.  The most important of these actions are 

conducting inspections, imposing intermediate sanctions, and levying fines.  

Using a fixed-effects panel model, we are able to identify the plants’ short-run 

responses to changes in a permitting authority’s enforcement strategy.  Since this 

                                                   
 

regard toxic chemical, metal, or pathogenic discharges, rather than BOD or TSS.  
See U.S. E.P.A. (2001). 

18 See, for example, Magat and Viscusi and Laplante and Rilstone. 
19 More accurately, we mean permitting authority level, but we refer to the state level 

to reduce verbiage. 
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is a fixed-effects regression, identification comes from within-group variation 

(the time-series), rather than between-group variation (the cross-section).20   

 

Although desirable, it would be difficult to attribute cross-state differences in 

compliance to cross-state variation in inspection and fine frequency.  The 

difficulty is potential endogeneity: The long-run strategy of the permitting 

authority may be a reaction to the peculiarities of the plants in that state.  For 

example, plants in some states may have an unusually high tendency to violate 

standards, causing the permitting authority to adopt an unusually vigorous 

enforcement strategy.  Another possibility is that such correlation could be the 

result of some permitting authorities being more strict than others in both 

standards and enforcement.  Both might well produce a positive cross-state 

correlation between enforcement activities and violations.  In fact, the cross-state 

correlation between violation rate and inspection rate is about 30%; similarly, the 

correlation between violation rate and IEA rate is over 60%.  Of course, the fixed-

effects in the panel regression control for such variation in regulatory strategy 

across states. 

 

5.1.1 EXPLANATORY VARIABLES 

 

The violation rate for a permitting authority in a given month provides our 

measure of the effectiveness of enforcement activities.  We examine how three 

classes of regulatory variables impact this measure.   

 

First, we include a dummy (denoted FINED1) indicating whether an effluent fine 

was levied by that permitting authority in the previous 12 months.  If fining one 

firm establishes the credible threat of fines with other firms under the same 

authority, we would expect to see a negative coefficient on this variable.  

                                                   
20 Note that this specification precludes any difficulties arising from the possibility 

that a plant’s permitting authority is endogenous.  The fixed-effects model 
removes any potential bias introduced if there was a specific regulatory reason that 
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Similarly, we include these variables lagged one year (FINED2) to account for 

fines levied 13 to 24 months ago.  If the credibility of a threat established by a 

fine decays over time, we would expect to see a smaller coefficient on this 

variable than on the dummy for more recent fines.  Since a fine’s magnitude as 

well as its existence may matter, in a parallel regression we include the log of the 

sum of the fines (FINEM1 and FINEM2).   

 

The number of intermediate enforcement actions, such as formal notices of 

noncompliance, comprises our second set of variables.  We include intermediate 

enforcement actions for each of the last two years (IEA1 and IEA2).  Again, the 

impact of intermediate actions might be expected to decay over time.  Including 

the second lag allows us to measure this potential effect.  

 

The final set of regulatory variables measures the rate of inspection.  The first two 

variables are the rate of inspections in the previous year (INS1) and the rate two 

years ago (INS2).  Even without the threat of a sanction, inspections may prevent 

some violations.  For example, an inspector may notice an easily correctable 

problem.  Additionally, inspections are often a necessary precursor to the levying 

of sanctions.  We also include the rate of statewide inspections in the current 

month (INS0).  As previously discussed, this variable primarily serves to provide 

a weak test of self-reporting accuracy.  It is possible that inspections are 

simultaneously determined with the observed violation rate.  This suggests the 

use of instrumental variables.  Unfortunately, we have no instruments at the 

aggregate level other than lagged inspections, which we consider to be 

explanatory variables in their own right.  However, we later identify valid 

instruments for the plant-level analysis.   

 

Finally, we capture cross-state variation with state-specific dummies (STATE), 

seasonality with monthly dummies (MONTH), and a time trend with annual 

dummies (YEAR). 

                                                   
 

some plants are regulated by the EPA and some are regulated by state 
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5.1.2 REGRESSION MODEL 

 

Regressing the violation rate on these explanatory variables can be interpreted as 

a linear probability model.  Unfortunately, this model has the undesirable 

property that the predicted violation rate can be negative.  We therefore apply the 

logit transformation to the violation rate prior to running the regression.  Since 

about 80% of our state-month observations contain no violations, we employ 

Cox’s (1970) correction for sample size.  The left-hand side of the regression 

becomes log {(Vit + (2nit)-1) / (1 – Vit + (2nit)-1)}, where Vit is the violation rate 

for state i at time t, and n is the number of pipes.  The right-hand side of the 

regression includes the variables discussed above.   For reference, the regression 

equation is: 

 

1

1

(2 )log .
1 (2 )

V n X
V n

β ε
−

−

+
= +

− +
 

 

The columns of the matrix X are: CONSTANT, FINED1, FINED2, IEA1, IEA2, 

INS0, INS1, INS2, YEARj (j=1..6), MONTHj (j=1..11), and STATEj (j=1..22).21 

                                                   
 

jurisdictions. 
21 For parsimony, we omit time and state subscripts.  For each set of the year, month, 

and state variables, we omit one dummy to achieve full rank.  The equation 
including fine magnitudes is identical after replacing FINED with FINEM. 
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Table 5.1 Important Coefficients & t-stats for the Aggregate Regression 

 
Variable Description Fine 

Dummies 
Fine Logged 

    

FINED1 Fine 1-12 months ago (dummy) -0.212  

  (-3.43)  

FINED2 Fine 13-24 months ago (dummy) -0.152  

  (-2.41)  

FINEM1 Fines 1-12 months ago (logged)  -0.021 

   (-3.51) 

FINEM2 Fines 13-24 months ago (logged)  -0.015 

   (-2.58) 

IEA1 IEAs 1-12 months ago -0.225 -0.227 

  (-0.88) (-0.89) 

IEA2 IEAs 13-24 months ago -0.156 -0.151 

  (-0.64) (-0.62) 

INS0 Inspection rate this month 0.073 0.073 

  (0.88) (0.88) 

INS1 Inspection rate over last 12 months 0.048 0.050 

  (1.00) (1.02) 

INS2 Inspection rate over 13-24 months prior 0.037 0.038 

  (0.76) (0.77) 

    

 

 

Table 5.1 lists the most important coefficients for the aggregate regressions.  We 

defer interpretation to section 6.0, where we also discuss results from the plant-

level analysis.  The sample included in these regressions consists of 1932 

observations from 23 permitting authorities, each reporting over the 84 months 

between 1990 and 1996.  Analysis of residuals reveals serial correlation of less 

than 6 months.  Consequently, our final estimates are from a GLS regression.  

The standard errors are robust, using White’s heteroskedastic consistent 

correction and a correction for serial correlation.  To conserve space, we do not 

report the incidental coefficients, such as time and state dummies.  However, 

most of these are significant at conventional levels.  There is a clear downward 

trend in violation rates over time.  Not surprisingly, the month dummies show 

seasonality in compliance, with highest compliance in the summer months. 
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5.2 PLANT-LEVEL ANALYSIS 

 

Plant-Level data allows for a more detailed examination of the effectiveness of 

enforcement strategies.  Using a probit analysis, we are able to examine a fine’s 

direct and reputation effects.  We are also able to predict the probability of 

inspection for a particular plant, much like a firm itself might do.  We then 

investigate the impact of this threat of inspection on a firm’s compliance decision.  

We similarly examine the impact of lagged inspections on a particular plant.  We 

are also able to control for potential endogeneity of inspections at the plant-level.  

Finally, the more detailed analysis provides an opportunity to look for the 

presence of self-reporting anomalies and to better capture the effects of plant and 

source heterogeneity. 

 

5.2.1  EXPLANATORY VARIABLES 

 

We begin by discussing fine variables.  Fines may have a deterrent effect on both 

the fined plant and on other plants regulated by the same authority.  We therefore 

decompose the deterrent effect of fines into two parts: A direct effect and a 

reputation effect.  The direct effect is a decrease in violations by the particular 

plant fined for non-compliance.  This effect may be particularly strong because 

sanctions typically increase for frequent violators, thus increasing the expected 

penalty for future infractions.  The more indirect reputation effect is a decrease in 

violations by plants other than the one fined.  Fines on any one plant may increase 

the regulator’s credibility with all plants.   

 

Therefore, our econometric specification includes a dummy variable (FINED1) 

for fines on a given plant in the last year.22  This captures the direct deterrent 

                                                   
22 We use many of the same variable names for the plant level analysis and the 

aggregate analysis.  Variables with the same name in the two analyses reflect the 
same concept; they are, of course, not literally identical. 
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effect.  In order to capture the reputation effect, we include a variable (OFINED1) 

indicating whether another plant in the same jurisdiction was fined in the previous 

year.  As with the aggregate analysis, we suspect that the deterrent effects of a 

fine may decay over time.  We therefore also include these variables lagged an 

additional year (FINED2 and OFINED2). 

 

One might expect that the magnitude of a fine, as well as its mere existence, 

impacts compliance decisions.  A sanction’s magnitude goes directly to the 

expected cost of a violation.  So, in a parallel analysis we replace the fine 

dummies with corresponding magnitude variables.  These variables are expressed 

as the logged sum of fines.  The direct effect variables are fines on a given plant 

in the past year (FINEM1) and lagged an additional year (FINEM2). The 

reputation effect variables are fines on other plants in the jurisdiction in the past 

year (OFINEM1) and lagged one additional year (OFINEM2).   

 

As with the aggregate analysis, our second set of enforcement variables is the 

number of intermediate enforcement actions.  We include intermediate 

enforcement actions in each of the two previous years (IEA1 and IEA2).  As with 

fines, a regulator’s reputation may be enhanced with all firms by issuing an IEA 

against any firm.  We therefore also include variables for IEAs levied on other 

plants within a jurisdiction lagged one and two years (OIEA1 and OIEA2). 

 

We consider the impact of inspections at the plant level, and include both lagged 

inspections (INS1, INS2) and the probability (PINS), or threat, of an inspection as 

explanatory variables.  Lagged inspections are directly observed.  However, the 

threat of inspection must be inferred from a probit regression of inspection 

determinants, such as the time since last inspection and lagged compliance.  We 

also include current inspections (INS0) as an explanatory variable.  This allows us 

to examine whether firms respond strategically to the presence of an inspector.  

This provides the basis of our test of self-reporting anomalies.   
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We incorporate several other explanatory variables of less direct interest.  First, 

we include a dummy variable (BOD) for the type of pollutant.  To capture 

changes in the plant’s technology over time, we use the ratio of actual to 

permitted emissions lagged by 12 months (ACTPER12).  We also include a 

corresponding dummy (CLOSED12) to allow for pipes closed 12 months prior.  

Production capacity for the plant (CAP), gathered from an industry directory,23 is 

also a covariate since large plants may enjoy economies of scale in abatement or 

may be more visible targets for enforcement actions.  We include a corresponding 

dummy (MISSCAP) for the few plants where the capacity data was missing from 

the directory.  State-level fixed effects (STATE) correct for unexplained 

heterogeneity across states.  A linear time trend (TIME) captures drift in the 

average probability of violation.  Seasonality terms (MONTH) correct for 

variability in production rates over the course of a year.  We also incorporate 

dummies for a plant’s standard industrial classification (SIC).  Finally, the 

producer price index (PPI) is included to account for variation in output price. 

 

5.2.2 REGRESSION MODEL 

 

The decision to violate is a dichotomous choice of the type typically estimated 

using the familiar probit analysis. The latent variable is expected profits 

conditional on a violation minus expected profits conditional on no violation.  

This model is sensible even if a random event, such as equipment failure, causes 

the plant to violate.  Such shocks are included in the error process, and can be 

interpreted as an extremely high cost of compliance for that period. 

 

The basic model is yit* = α + Xitβ +αi + εit ; yit = 1 if (yit* > 0) and yit = 0 

otherwise.  The term αi can be thought of as an unobserved fixed effect, i.e., a 

random effect.  The term εit is the usual idiosyncratic shock, which may be 

serially correlated over time. 

 

                                                   
23 Lockwood Post’s Directory of the Pulp, Paper, and Allied Trades. 
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In order to produce consistent estimates, careful attention must be paid to the 

model’s error structure.  There are several potential sources of inconsistency.  

First, the time-invariant random effect αi must be uncorrelated with the 

explanatory variables Xit.  This concern is the standard motivation for a fixed 

effects model.  The time-varying shock εit must similarly be uncorrelated with Xit.  

Further, if there were serial correlation in εit, even lagged inspections may then be 

correlated with the current error term.  

 

The time-invariant element αi accounts for plant heterogeneity.  Since this 

random effect partially reflects variation in plants’ costs of compliance, it is likely 

that this term is correlated with the average inspection rate for that plant, as well 

as other regulatory variables.  For example, consider the possibility that regulators 

frequently inspect plants that generally seem to be more likely to violate.  Such 

correlation would produce an omitted variable bias.  In a linear model, one could 

correct for this problem with fixed effects dummies.  Unfortunately, including 

fixed effects dummies in a panel probit regression yields inconsistent estimates of 

the slope coefficients for a fixed-length panel. 

 

We correct for this possible bias using Chamberlain’s (1980) conditional random 

effects model.  This approach conditions the distribution of the error term’s 

persistent component on the average value of inspections for that plant over the 

sample period.  In practice, this correction is equivalent to including the average 

inspections for the plant as an explanatory variable.  We apply this conditional 

random effects correction to account for heterogeneity reflected in inspections, 

fines, IEAs, and emissions.  Thus, the average values by pipe of INSP0, FINE1, 

IEA1, and ACTPER12 are included as conditioning variates.  The impact of this 

conditioning is that time variation, but not cross-sectional variation, in the 

corresponding variables contributes to identification.   

 

Our second source of potential inconsistency is correlation between the time-

variate error term εit and the explanatory variables Xit.  Again, our concern is the 

inspection process.  It is possible that a regulator may inspect a given plant more 



 Page 22 

frequently when that plant is more likely than usual, given the other explanatory 

variables, to be out of compliance.  While the conditional random effects 

approach corrects for general inspection targeting of a plant, it does not correct 

for variation in idiosyncratic targeting over time. 

 

Instrumental variables estimation is the standard approach to correct for this type 

of correlation.  The obvious difficulty is identifying valid instruments.  That is, 

we need variables correlated with inspections, but not associated with 

idiosyncratic targeting.  Our chosen instrument is the rate of inspections on other 

plants in the same jurisdiction for that month.24  Changes in the inspection rate on 

other plants partially reflect changes in the overall inspection rate within a 

jurisdiction.  So, inspections on a given plant should be positively correlated with 

the corresponding instruments.  We believe that our instrument is not affected by 

idiosyncratic targeting because the pulp and paper industry is only one component 

of the various regulators’ monitoring responsibilities.  Therefore, an additional 

targeting inspection at a given plant does not necessarily imply one fewer 

inspection at other plants. 

 

An alternative argument is that there is a predetermined number of inspections 

per period.  If this were the case, our instrument would be weakly correlated with 

the targeting component, because a targeting inspection at a given plant would 

imply one fewer inspection at other plants.  The data, however, suggests that there 

seems to be no fixed number of inspections per period for any state.  This makes 

sense because regulators have many other industries to inspect.  However, if there 

were a predetermined number of inspections, then the total number of inspections 

within a jurisdiction, including those on the plant of interest, would be a valid 

instrument.   

 

We believe that our chosen instrument, the inspection rate on other plants, is 

appropriate.  However, there is no way to test for the exogeneity of an instrument; 

                                                   
24 Two of the 23 jurisdictions contain only one plant, so we drop these 2 from the 

plant-level analysis. 
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it is simply a maintained hypothesis of the model.25  We therefore also check the 

results using the total number of inspections as an instrument.  Reassuringly, this 

does not alter our results substantively in the plant-level analysis.  The reader may 

wish to note that no instruments are necessary for the aggregate regression if the 

assumption of a predetermined total number of inspections holds.   

 

We also use instruments for the first year of lagged inspections.   In the aggregate 

analysis, we find evidence for serial correlation of less than six months in the 

error process.  The correlation between current and lagged residuals rapidly 

declines from about 0.3 in the first lagged month to about 0.02 by the sixth lag.  

Therefore, it seems possible that lagged inspections are correlated with the 

current error process.  For example, if INS0it is correlated with εit and εit is 

correlated with εit+1, then INS1it+1 may be correlated with εit+n.  To give some 

intuition, suppose that the regulator conducts a targeting inspection when it 

suspects that a firm is unusually likely to be in violation.  Since we find positive 

serial correlation for six months, the firm may also be unusually likely to violate a 

few months later.26  Therefore, the first year of lagged inspections may be 

correlated with the current error term. 

 

The consistency corrections discussed above are crucial; however, efficiency 

should also be a consideration.  So long as we make these consistency 

corrections, even an independent probit specification is a valid, but inefficient, 

method of moments estimator.  Explicitly modeling the persistent shocks and 

serial correlation increases efficiency.  Further, it is plausible that there is cross-

equation correlation in shocks.  For example, shocks to different pollutants out of 

a given pipe may be correlated.  In this case, efficiency can also be gained by 

explicitly modeling these sources of correlation.  

 

                                                   
25 For example, a Hausman test cannot be conducted unless at least one instrument is 

known to be valid a priori.  This point is made in most good econometrics 
textbooks.  See, for example, Ruud (2000). 

26 By “unusually likely,” we mean unusual after taking into account all of our other 
explanatory variables. 
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We therefore need to directly account for possible sources of correlation in the 

estimation.  Unfortunately, a probit of this complexity is computationally 

problematic using direct integration methods.  We therefore apply the method of 

simulated likelihood (McFadden (1989)) using the idea of Stern’s (1992) factor 

analytic decomposition.   

 

Such simulators are based on decomposing the error process into the sum of 

several components.  Here, we have a persistent random effects part αi and an 

idiosyncratic part εit.  Note that the αi shock appears in all observations for a pipe, 

inducing correlation.  In addition, serial correlation in εit can be modeled by 

breaking it smaller parts: 
6

0
it it r it r

r
ε α σ φ −

=

= +∑ .  Here, σ are scale parameters.  

Although φ  and α are independent over time, serial correlation is induced 

because the variables appear in multiple time periods.  For example, the 

covariance induced by this effect for observations six months apart is σ6σ0.  

Finally, contemporaneous correlation in εit can be similarly modeled by 

decomposing the αit term in an analogous fashion.   

 

Again, the basic model is yit* = α + Xitβ +αi + εit ; yit = 1 if (yit* > 0) and yit = 0 

otherwise.  The matrix of explanatory variables X consists of the following: 

CONSTANT, FINED1, FINED2, OFINED1, OFINED2, IEA1, IEA2, OIEA1, 

OIEA2, PINS, INS0, INS1, INS2, INS2, BOD, ACTPER12, CLOSED12, CAP, 

MISSCAP, SIC, PPI, TIME, MONTHj (j=1..11), and STATEj (j=1..20).  We also 

implement the conditional random effects correction by including the means, by 

plant, of current inspections, fines, IEAs, and the lagged ratio of actual to 

permitted emissions.  We refer to these variables as CRE.INS, CRE.FINE, 

CRE.IEA, and CRE.ACTPER.  As previously discussed, we also include an 

instrumental variables correction, following Nelson and Olson (1978). 
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If y* = α + Xβ + αi + εit > 0, a violation is predicted.  Equivalently, if 
6

0
i r it r it

r
Xα β α σ φ α−

=

+ + + > −∑ , a violation is predicted.  If αit is iid normal 

across time and plants, this yields an independent probit conditional on the other 

error terms.27  However, since the other error terms are unobservable, we must 

take the expectation of the probit likelihood with respect to them.  We simulate 

this by taking the average of 20 independent draws over these terms. 

                                                   
27 The argument is similar for the contemporaneous correlation case we actually 

estimate.  We omit the additional details for clarity of exposition. 
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Table 5.2 Important Coefficients & t-stats for the Plant-Level Regression 

 
Variable Description Fine 

Dummies 
Fine Logged 

    

FINED1 Fine 1-12 months ago on self (dummy) -0.627  

  (-3.18)  

FINED2 Fine 13-24 months ago on self (dummy) -0.349  

  (-1.70)  

OFINED1 Fine 1-12 months ago on other (dummy) -0.695  

  (-4.64)  

OFINED2 Fine 13-24 months ago on other (dummy) -0.281  

  (-2.00)  

FINEM1 Fines 1-12 months ago on self (logged)  -0.074 

   (-3.26) 

FINEM2 Fines 13-24 months ago on self (logged)  -0.036 

   (-1.59) 

OFINEM1 Fines 1-12 months ago on other (logged)  -0.069 

   (-4.47) 

OFINEM2 Fines 13-24 months ago on other (logged)  -0.031 

   (-2.04) 

IEA1 IEAs 1-12 months ago on self 0.144 0.152 

  (1.50) (1.43) 

IEA2 IEAs 13-24 months ago on self -0.162 -0.165 

  (-1.34) (-1.26) 

OIEA1 IEAs 1-12 months ago on other 0.045 0.063 

  (1.08) (1.39) 

OIEA2 IEAs 13-24 months ago on other -0.075 -0.083 

  (-1.56) (-1.53) 

PINS Predicted inspection probability 0.530 0.635 

  (1.66) (1.76) 

INS0 Inspection this month 0.155 0.142 

  (0.77) (0.63) 

INS1 Inspections 1-12 months ago -0.186 -0.234 

  (-2.97) (-3.36) 

INS2 Inspections 13-24 months ago -0.028 -0.030 

  (-0.95) (-0.90) 
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Table 5.2 (cont.) 

 
Variable Description Fine 

Dummies 
Fine Logged 

    

TIME Linear time trend -0.007 -0.008 

  (-5.23) (-5.27) 

ACTPER12 Emissions ratio 12 months ago 0.444 0.505 

  (6.92) (7.12) 

CLOSED12 Pipe closure 12 months ago 0.362 0.389 

  (4.20) (3.96) 

CAP Plant capacity (kilotons) -0.222 -0.222 

  (-4.57) (-3.81) 

MISSCAP Plant capacity unknown -0.133 -0.144 

  (-1.61) (-1.53) 

BOD Pollutant type (BOD or TSS) 0.801 0.911 

  (4.58) (4.76) 

CRE.INS Mean of INS0 2.014 2.500 

  (2.86) (3.25) 

CRE.FINE Mean of DFINE 1.280 0.100 

  (2.80) (1.97) 

CRE.IEA Mean of IEA 1.316 1.631 

  (4.54) (5.10) 

CRE.ACTPER12 Mean of ACTPER12 1.180 1.377 

  (6.30) (6.46) 

    

 

 

The most important coefficients for this regression are in Table 5.2.  The sample 

included in these regressions consists of 32,953 observations from 253 distinct 

effluent pipes.  The regression predicts infractions reasonably well.  For those 

observations with violations, the predicted probability of violation is over 4 times 

the average violation rate.  The pseudo-R2 is approximately 0.08, calculated with 

state-level fixed effects in the restricted regression.   

 

The specification of the error structure turns out to be important.  Table 5.2 shows 

the conditional random effects terms are all positive and significant.  For 

example, examining CRE.INS indicates that, at least in the long term, permitting 
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authorities more frequently inspect those plants that are more likely to be out of 

compliance.  Failure to condition on this fixed-effect would have produced an 

omitted variable bias in the remaining coefficients.  It is relevant for efficiency, 

but not consistency, that the remainder of the correlation structure is mostly 

significant.  The persistent effects are large and positively correlated across the 

BOD and TSS equations; likelihood ratio tests for the persistent effects and their 

correlations are significant at greater than 99%.  However, the contemporaneous 

correlation appears less important, and comes in about zero. 

 

6.0 RESULTS AND CONCLUSIONS 
 

Fines strongly deter violations.  Examining the aggregate analysis results in Table 

5.1 reveals that the coefficient on a recent fine is negative and strongly significant 

in both the fine dummy and fine magnitude regressions.  For the analysis that 

includes the fine dummy variables, evaluating the mean of the marginal impacts 

translates numerically into an average 18% reduction in the statewide violation 

rate for the year following a fine.  In other words, on average, a fine on a single 

plant within a state translates into an 18 percent reduction in the following year’s 

probability of violation for all other firms regulated by the same authority.  In the 

parallel fine magnitude regression, we find that a one percent increase in a state’s 

total penalty amount translates into an approximately 0.35 percent reduction in 

the average state-level violation rate for the year following the fine. 

 

A fine’s state-level deterrent effects also decay over time.  In Table 5.1, the 

coefficients on fines lagged two years are still negative and significant, but they 

are noticeably smaller than the corresponding coefficients for the one-year lags 

discussed in the preceding paragraph.  Translating numerically, and evaluating 

the average of the marginal impacts, suggests that the statewide violation rate 

decreases by 13% in the second year following the imposition of a fine on a 

single plant.  The coefficients from the parallel fine magnitude regression indicate 

that a one percent increase in a state’s total fine magnitude results in an 

approximately 0.26 percent reduction in the average state-level violation rate for 

the 13 - 24 months after the fine.   
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The plant-level outcomes in Table 5.2 are consistent with the aggregate results 

discussed above.  The coefficients on the reputation-effect fine variables are both 

negative and strongly significant in both the fine dummy and the fine magnitude 

regressions.  For the year following a fine on a given firm, there is an average 13 

percent reduction in the statewide probability of a violation.  This effect decays 

by approximately 50 percent for the second year after the fine.  The fine 

magnitude regressions also suggest that a one percent increase in a fined plant’s 

penalty amount translates into an approximately 0.18 percent reduction in the 

statewide probability of a violation for the year following the fine.  The effect 

decays to 0.08 percent for the second year.      

 

The plant-level analysis also allows us to examine a sanction’s direct impacts on 

the fined firm.  On average, a fined plant will exhibit a 10 percent reduction in the 

probability of a violation for the year following the sanction.  This reduction can 

again be expected to decay by about 50 percent for the second year.  The parallel 

regression also suggests that a one percent increase in the magnitude of a given 

plant’s fine will result in a 0.20 percent decrease in that plant’s probability of 

violation in the following year.  For the 13-24 months following the penalty, a 

one percent larger fine translates into a .10 percent decrease in the likelihood of a 

plant-specific violation.            

 

Our results also provide evidence that additional inspections weakly deter 

violations.  Table 5.1 indicates that both current and lagged inspections are 

statistically insignificant.  However, in Table 5.2, which includes an instrumental 

variables correction, the coefficient on the first year of lagged inspections is 

indeed negative and significant.  Additionally, the deterrent impact of inspections 

seems to decay quite quickly: The second year has a statistically insignificant 

impact.  Of course, this does not suggest that firms would still comply if there 

were no inspections.  Rather, over the observed range of variation in inspection 

rates for a state, there is only a modest difference in compliance rates. 
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It is instructive to further explore the relative marginal impact of fines and 

inspections.  The coefficient on inspections lagged one year is just over 1/4 as 

large as the coefficient on one’s own fine.  On the margin, and at a single plant, a 

fine is therefore about four times as effective at inducing compliance as an 

inspection.  However, fines have the additional leverage of reducing violations 

over all plants in the jurisdiction.  Taking this effect into account, the marginal 

fine deters about 30 times as many violations as does an additional inspection.   

 

We are unable to conclusively quantify the impact of intermediate enforcement 

actions since the coefficients are statistically insignificant in both the aggregate 

and plant-level analyses.  This is the case for both the own and reputation effects.  

Since it seems quite likely that IEAs have some impact, we interpret our results as 

implying that the impact is quite modest, at least relative to fines. 

 

Our results support much of the EPA’s current approach to the regulation of 

conventional water pollutants for “major” plants.  Self-reporting seems to be an 

effective monitoring strategy.  Thus, random and frequent inspections are not 

required in order to induce compliance.  Therefore, the EPA’s current policy of 

reducing inspections on plants with a history of compliance is consistent with cost 

effectiveness.  On the other hand, monetary sanctions for effluent violations have 

large deterrent effects for all plants in a jurisdiction. 
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