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Abstract
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1 Introduction

Very often, environmental regulations require that firms comply with recom-
mended pollution limits or standards. However, regulators do not normally
have perfect information about the polluting firms, either ex-ante or ex-post.
Ez-ante concerns standard setting. Regulators are less informed than firms
about their technological characteristics, and they implement mechanisms to
elicit private information.! Ez-post refers to the behavior of firms in response
to the standards already in place. Here, regulators do not observe the perfor-
mance of firms unless they engage in costly monitoring. Therefore, they design
enforcement policies composed of inspection frequencies and sanctions in case
firms are discovered exceeding the standards.? Depending on the monitoring
costs, the standards to be enforced and the information authorities own about
the regulated firms, enforcement may be imperfect, that is, some firms may find
it profitable to violate environmental standards.

Recently, Arguedas and Hamoudi (2004) and Arguedas (2004) have studied
the characteristics of optimal policies composed of pollution standards, proba-
bilities of inspection and fines, under perfect information ez-ante and imperfect
enforcement. There, it is shown that the optimal policy can induce noncompli-
ance only to zero standards, which occurs when fines are continuous and strictly
convex in the degree of violation. Thus, it is not possible to explain firms’ viola-

tions to strictly positive standards, although they are rather frequent in practise.

I For example, under the US National Pollutant Discharge Elimination System (NPDES)
Program, the Environmental Protection Agency (EPA) issues individual permits to facilities
which discharge pollutants into waters of the US, based on reported information about their
pollution control processes.

2The Civil Penalty Policy of the Clean Water Act establishes the factors that the EPA
should consider when imposing sanctions for noncompliance. Among them, the degree of
noncompliance is a key gravity factor.



In this paper, we show that the ez-ante informational constraint plays a key
role in the results. We consider a firm that owns private information about
its production process. The firm is first asked to report that information and,
contingent on it, the regulator then sets the optimal policy considering the
firm’s pollution level in response to the policy. By the revelation principle, we
can restrict attention to direct mechanisms which induce the firm to reveal its
true characteristics. That is, we can concentrate on the subset of incentive-
compatible policies.?

We consider a model of two types, namely clean and dirty, based on the
firm’s induced pollution costs in response to a given policy. In principle, the
policy can induce either full compliance with the standards, partial compliance
(where only the clean type complies) or full noncompliance. If the policy induces
full compliance, we find that it can be only pooling, that is, the same policy
for both types. However, if the policy induces some noncompliance, it can be
either pooling or separating.

In the case of a pooling policy, we show that policies that induce some com-
pliance are never optimal whenever the full noncompliance policy exists. The
explanation of the result is similar to the one under perfect information. That
is, considering a policy that induces compliance, it is always worth to infinites-
imally decrease the probability of inspection because the savings in monitoring
costs are larger than the decrease in welfare associated with both types’ larger

pollution levels. In the complete information case, a positive standard is never

30ur approach differs from that in which, given the standard, the firm reports its emission
level with the possibility of under-reporting, such as in Sandmo (2002). In our case, we have
an added ex-ante informational asymmetry and, since we analyze standards optimality, we can
restrict ourselves to incentive compatible policies. Also, once emissions have been released,
we assume that they are measured through costly monitoring.



optimal, since the standard and the probability of inspection can be reduced at
the same time keeping the firm’s induced pollution level unchanged and reduc-
ing monitoring costs.* However, a zero standard under incomplete information
may result in over-enforcement of the clean type, with the corresponding nega-
tive effect on social welfare. This result is relevant and provides an additional
explanation to the literature in favor of nonmaximal fines.?

In fact, we find violations to strictly positive standards under large regu-
lator’s uncertainty and intermediate values of clean type’s profitability. Also,
the result is more likely under low monitoring costs. The explanation is very
intuitive, since there exists a trade-off between enforcement costs and clean
type’s overenforcement. Given clean type’s profitability, the larger the mon-
itoring costs, the larger the enforcement costs. By contrast, given a level of
the monitoring costs, the larger clean’s type profitability, the smaller the over-
enforcement problem. However, if clean type’s profitability is very small, an
interior solution may not exist, since the full noncompliance region in this case
may be very small. Finally, when uncertainty decreases (in favor of any of the
types) , the solution approximates to the complete information solution, which
implies a zero standard regardless of the type.

If the policy is separating, both the standard and the probability of inspec-

tion are smaller for the dirty type, to preserve incentive compatibility.> Also,

4This is similar to Becker (1968)’s well known result of imposing maximal fines to keep
enforcement costs at the minimum. Given a pollution level and a structure of fines dependant
on the degree of noncompliance, a lower standard increases the fine for noncompliance and,
therefore, it is possible to decrease the probability of inspection, then saving monitoring costs.

5 After Becker (1968), several papers in the crime context have explained the reasons why
fines are not maximal, such as risk aversion (Polinsky and Shavell (1979)), imperfect informa-
tion about the regulatory policy (Bebchuk and Kaplow (1991), Kaplow (1990)), differences in
wealth (Polinsky and Shavell (1991)) or marginal deterrence (Andreoni (1991), Shavell (1992),
Heyes (1996)). In all these papers, however, standards are exogenous.

6In the tax evasion literature, the optimal inspection probability is a decreasing function
of reported income. For example, see Reinganum and Wilde (1985).



the dirty type always finds it profitable to violate the standard, which again
can be positive under low monitoring costs. However, as opposed to the pool-
ing case, we now find that it is more likely to find this result when both clean
type’s profitability and likelihood are large, since in these two cases, the solution
approximates to the clean type’s compliance solution.

Finally, we provide some numerical examples which suggest that a pooling
policy might be socially preferred to a separating policy.

The literature on standards and enforcement issues started with Downing
and Watson (1974) and it is vast nowadays (Heyes (2000) provides a comprehen-
sive survey in the environmental context). However, the approach we consider
here is novel, namely combining standard-setting, endogenous imperfect enforce-
ment and asymmetric information. This allows us to obtain violations to strictly
positive standards, a result that is not possible under alternative assumptions
within the principal-agent framework. For example, Ellis (1992a) and Gottinger
(2001) study standard-setting under ez-ante incomplete information, but they
restrict attention to policies which induce compliance. There are papers which
study incentive compatible optimal pollution taxes, such as Jebjerg and Lando
(1997), which implicitly constrain to zero standards. Swierzsbinky (1994) con-
sider optimal taxation also, relaxing the assumption of incentive compatibility,
but they again restrict to zero standards. The only exception is Arguedas (2005),
which considers a bargaining context under complete information and assumes
that the firm can choose the environmental technology as well. It is shown that
it may be beneficial for both the regulator and the firm to achieve a cooperative
agreement where the firm chooses a cleaner technology in exchange for a relaxed

regulation that may consist of a positive standard and a reduction of the fine



for exceeding it.

The remainder of the paper is organized as follows. In the next section, we
present the model. In Section 3, we study the optimal behavior of the firm. In
Section 4, we analyze the characteristics of the optimal policy in each region. In
Section 5, we discuss the likelihood of obtaining violations to optimal positive

standards. We conclude in Section 6. All the proofs are in the Appendix.

2 The Model

We consider a firm that generates pollution as a by-product of its production
activity. The firm obtains private profits which depend on the pollution level
e > 0 and a parameter 8; > 0, i = 1,2, #; < 63, which refers to the firm’s
degree of profitability or the dirtiness of its technology.” Let B (e,0;) = 0;b (e)
represent the firm’s profits, where b (e) is continuous and strictly concave in the
pollution level with an interior maximum at ¢ > 0, and such that b(0) = 0 and
b (e) > 0.8 Given a pollution level, the clean type () obtains lower profits
than the dirty type (f2). The firm knows its type but the regulator only knows
the probability distribution of the types. Let 7, denote the probability that the
firm is type 6;, such that v, € [0,1] and v, + v, = L.

Pollution generates external damages measured by the function d (e), which
is continuous, strictly increasing and convex in the pollution level, and such that
d(0)=0.

Let e}’ denote the efficient pollution level when the firm is type 6;, that

TAs we will see later on, 62 is generally associated with larger induced pollution and
environmental damages than 6;.

8 This specification of profits simplifies the algebra without affecting the qualitative nature
of the results. However, we will point out the differences when needed.



is, e}/ = argmax.>o {0;b(e) — d(e)}. Observe that e§ > e}’. In the absence
of regulation, the firm does not internalize external damages and pollution is
€ = argmax.>o 0;b (e) > e}’, for all 7.

We assume there exists a regulator who sets a standard s € [0,¢], that
is, a maximum level of permitted pollution.” The regulator cannot observe the
pollution level unless it monitors the firm, which is costly and perfectly accurate.
The cost per inspection is ¢ > 0. Therefore, the regulator does not generally
inspect the firm in every instance but only with probability p € [0,1]. Once
inspected, if the firm is discovered exceeding the standard, then it is forced to
pay a penalty which depends on the degree of noncompliance, e —s. We assume
that the sanction is represented by the function F' (e — s), which is quadratic,
strictly increasing and convex in e — s > 0, and such that F (e —s) = 0 for
all e — s < 0. Given these assumptions, we have that (F')> — FF" > 0 for all
e —s > 0, a property that plays a key role in the results, as we will see later
on. We assume that the sanction is fixed by a government entity other than the
regulator, for example, the judiciary.!?

We consider a principal-agent framework where the regulator (principal)
chooses the standard and the probability of inspection that maximizes social
welfare, considering the optimal response of the firm (agent) to the policy.

Given {s, p}, a firm of type 6; chooses the pollution level that maximizes its

expected payoff, that is, private profits minus expected penalties, as follows:

9Obviously, the regulator is not interested in a standard larger than the pollution level
chosen by the firm in the absence of regulation.

10This assumption is common in the literature in this context except, for example, in Heyes
(1996) or Arguedas (2005). In other contexts, such as crime, there are several papers which
endogenize fines together with probabilities of inspection, such as Becker (1968), Polinsky and
Shavell (1979, 1990) or Bebchuck and Kaplow (1991), but there the standard is exogenous. In
the context of tax evasion, few papers consider endogenous fines. See, for instance, Mookherjee
and Png (1989).



P (s,p,0:) = max {0:b(e) —pF (e — 5)} (1)

Let e (s,p, ;) be the pollution level chosen by type 6; given the policy {s,p},
ie., e(s,p,0;) = argmaxc.>o{0;b(e) —pF (e —s)} <e.

Considering the firm’s best response, the regulator now chooses the policy
that maximizes social welfare. Since the regulator does not know the true type
of the firm, the policy cannot be based upon it. There are two kind of policies
the regulator may choose. The first is a pooling (or uniform) policy {s,p}, that
is, the same policy regardless of the type. In this case, the regulator does not

need to elicit any information from the firm and social welfare is as follows:

2
SW (S,p) = 271 [P ($7p7 91) - d(e ($7p7 91)) +pF (6 (8,]), 91) - 3)] —cp (2)

i=1

The regulator is concerned about the firm’s expected payoff, the generated
damages, the expected collected fines and the expected monitoring costs. We
assume that there are no social costs associated with collecting fines, and that
fines are redistributed lump-sum. Also, we do not impose any budget require-

ment on the monitoring activity. Considering (1), (2) reduces to:

2
SW (S,Z)) = Z’Y’L [91b (8 (87p7 91)) - d(e (S,Z), 91))] —Cp (3)
i=1

The second type of policy is separating, that is, a policy contingent on type.
Here, the regulator has to design a mechanism to elicit the firm’s private infor-

mation. By the revelation principle, we can concentrate on direct mechanisms



where the regulator asks the firm to report its type, é\i, and then, it sets the
policy based on the report, {s (é;) D <é\z> }, such that it induces the firm to

reveal its true type, 9? = 6;. This is the well known incentive compatibility

condition, represented as follows:
0; € arg max P (s (@) ) <:> 79@‘) (4)

For convenience, we assume that if the firm is indifferent between announcing
any of the two types, then it announces the true type.

Denoting s; = s <9Az> and p; =p (9AL>, 1 = 1,2, social welfare is now:

2
SW (s1,82,p1,p2) = Y _ v [0ib (e (56,03, 0:)) — d (e (i, pi, 0:) —eps]  (5)
i=1

where (s1, 82,p1,p2) satisfy (4). Observe that a uniform policy is trivially in-
centive compatible.!!

An important assumption of our model is that the regulator commits to the
announced inspection probability. This assumption can be justified considering
that the regulator has to build up a reputation, that is, policy announcements
must be credible to induce the desired behavior.!?

In the next section, we study the firm’s induced behavior with respect to the

announced policy.

1 Besides incentive compatibility, the literature on economics of information considers par-
ticipation constraints also, that is, feasible policies must be such that firms’ payoffs are non-
negative. In our case, this additional requirement is trivially satisfied since b (0) = 0.

12 A formal justification of this assumption would require to consider a dynamic model,
which is beyond the scope of this paper. In static models such as ours, the assumption of
commitment is common in the literature. Some exceptions in the environmental context are
Ellis (1992b) and Grieson and Singh (1990).



3 The Optimal Behavior of the Firm

Consider a feasible policy {s,p}. As explained in the previous section, the
corresponding type 6;’s expected payoff is given by (1) .

If type 6; complies with the standard (e < s), it does not incur any penalty.
Since b (e) is strictly increasing in e < €, the optimal compliance decision is s
and its payoff is 6,0 (s).

If type 0; exceeds the standard (e > s), then there is a chance that is in-
spected and punished. Consequently, the optimal noncompliance decision is
n(s,p,0;) = argmaxess {0;b(e) — pF (e — s)} > s and the corresponding pay-
off is 7 (s,p,0;). Since the maximand is strictly concave in e, the first order

condition characterizes the interior noncompliance decision:

0;b' (e) = pF' (e — s) (6)

Implicitly differentiating (6), we obtain n;, = n, (s,p,0;) = M%IPF,, and
Nis = ns (8,p,0;) = fm%. Observe that n;, < 0 and 0 < n;; < 1. That is,
type 0;’s pollution level increases when the probability of inspection decreases

and the standard increases. However, since n;; < 1, the degree of violation
decreases when the standard increases.'?
Given {s,p}, type 0; chooses whether to comply or not depending on the
expected payoff of each possibility. Thus, its optimal response is:
s if 0;b(s) > 7 (s,p,0;)

6(8,]), 91) = (7)
n(s,p,0;) if 0;0(s) < 7 (s,p,0;)

13Note that n;s = 0 when either F”/ =0 or p = 0.
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and its expected payoff can be further expressed as:

P (s,p,0;) = max {0;b(s), 7 (s,p,0;)} (8)

In the following lemma, we show the properties of the function P (s, p,6;):

Lemma 1 The function P (s,p,0;) is nondecreasing and concave in s, nonin-
creasing and convex in p, it has a nonnegative cross partial, and it is such that

P (s,p,02) > P(s,p,01). Moreover, P (s,0,0;) =0;b(€) for all i.

We now characterize the set of policies for which each type is indifferent
between complying and noncomplying with the standard. Since sanctions are
continuous at e = s, the maximand in (1) is continuous in s. Therefore, consid-
ering (6), type 6; complies with the standard only if 6,0’ (s) < pF’(0). Thus,

the minimum probability that induces type 6; to comply with s is:

710 ©)

which is strictly decreasing and convex in s, and such that p° (s, 02) > p° (s, 01).14
Since p < 1, there may exist a subset of nonenforceable standards for each 6;.1°

In Figure 1, we represent the functions p° (s, ;) in the space of feasible poli-
cies. In the horizontal axis we measure the standard and in the vertical axis, we
measure the probability of inspection. These functions divide the set of feasible
policies into three regions, namely the compliance (C), partial compliance (PC)
and noncompliance (NC) regions. Therefore, all the policies on or above the

function p€ (s,02) induce both types to comply with the standard. The set of

14 The assumptions on the penalty function ensure that F/ (0) is finite and strictly positive.
I51f there exists §; > 0 such that p°® (5;,6;) = 1, then s € [0,5;) cannot be enforced for 6;.

11



policies between p° (s,071) and p° (s, f2) induce the clean type to comply only.
Finally, the policies below the function p°(s,6;) induce both types to violate
the standard. Thus, 62’s noncompliance region is larger than that of 6.

In the figure, we also include each type’s indifference map, where each in-
difference curve is composed of the set of policies such that type 6; “s expected
payoff is constant. By Lemma 1, type 6;’s payoff increases to the southeast,
i.e., whenever the standard is larger and the probability of inspection is smaller.
And it obtains the maximum expected payoff at s = €, p € [0,1] and s > 0,

p = 0. The shape of the indifference curves is now presented in the following:

Lemma 2 If a policy {s,p} induces type 0; to comply with the standard, the
indifference curve at that policy is vertical. If it induces noncompliance, the
indifference curve at that policy is strictly increasing and convex. At any {s,p},

the slope of 01 ’s indifference curve is no smaller than that of 0.

In fact, in both the full noncompliance and the partial compliance regions,
indifference curves satisfy the single crossing property. However, in the full
compliance region, indifference curves do not cross.

The revelation principle allows us to restrict attention to incentive compat-
ible policies. For example, a policy {s1,p1} for 01 and a policy {s2,p2} in the
shaded area of Figure 1 for é\Q is incentive compatible, i.e., no type has an
incentive to lie. Note that so < s1 and ps < p;.

Having studied the types’ optimal responses, we now analyze the features of

the optimal policy in each region.

12



4 The Optimal Policy in Each Region

We begin with the full compliance region. Here, both types’ indifference curves
are vertical, which implies that there does not exist any incentive compatible
separating policy. The following result summarizes the characteristics of the

(interior) optimal policy in this region.

Proposition 3 The optimal full compliance policy is pooling and such that

2
s s dpc (3*792) o
;% <9ib (s*) —d' (s )CT) =0 (10)

p* =p°(s",02)

The intuition of this result is simple. Given a standard s, both types are
indifferent between any policy (either pooling or separating) that implies com-
pliance with that standard. From a social welfare viewpoint, the lower the
probability, the better. Thus, the optimal probability is the minimum that
induces full compliance, i.e., p = p°(s,02). Any policy that assigns different
standards induces the type with the lowest assigned standard to misreport its
type. Therefore, the optimal policy in this region is pooling.'®

Since 07 < 62, (10) implies that 60 (s*) — d' (s*) — c% < 0 and
020 (s*) — d' (s*) — cmcdss’ﬁl > 0. In words, the clean type is under-enforced
and the dirty type is over-enforced with respect to the complete information

case, where the first order condition would read 6;b' (s) — d’ (s) = c%.

161f we assumed that types’ private profits had different interior maxima, namely €1 and
€2, €1 < €3, the result would vary if the optimal pooling policy implied s* > €1. Since type
6, is indifferent between any policy with a standard equal to €; or larger, it would be socially
preferred to announce, for type 61, s1 = €1 and the probability such that type 62 is indifferent
between the former pooling policy and this new policy announced for type ;. Therefore, in
this case we would have s1 < s2 and p1 < p2. For all the other cases, the results under this
alternative assumption remain the same.

13



We now consider the partial compliance region. Here, policies lie between
p°(s,01) and p°(s,03), where only type 6 complies with the standard. In
principle, both a uniform and a separating policy are possible in this case,
since indifference curves in this region satisfy the single crossing property. The

following proposition shows the features of each possible (interior) policy.

Proposition 4 The optimal partial compliance policy can be either pooling or
separating.

(i) If it is pooling, then

V1 (010 (%) — d' (s7)) + 75 (620 (n2) — d' (n2)) nos _ dp®(s™,01)

Yo (02" (n2) — d’ (n2)) nop — ¢ ds

(11)

p* =p°(s*,01)

(i) If it is separating, then:

" <91b’ (si)—d' (s7) — c%@) 5P(s;1 p},02)
= — = 12
72 (035 () — & (1)) mzy — ©) 5P (53.03.02) (12)
Op2
" <91b’ (s7)—d' (s7) — c%@) 5P(s;] p},02)
= - = 13
2o Ol (1)~ () e w1y PGzaran) )
682
83207 772207 3377220
P = p° (s7,01)
P (837]7;792) =P (ST,pT, 92) (14)

where 1y > 0 is the Lagrange multiplier associated with s3 > 0.

14



Observe that a pooling policy in this region means that the standard is
generally positive (the contrary requires type 61 to be enforced to comply with
a zero standard, see footnote 15). Therefore, the dirty type violates a positive
standard, a result that is not possible under complete information. Here, (11)
implies that the optimal standard and probability are such that the marginal
rate of substitution in terms of efficiency of the induced pollution levels must
equal the marginal rate of substitution to ensure type 6;’s compliance.

If the policy is separating, (14) implies s7 > s3 > 0 and p} > p3. Thus,
type 67 faces both a larger standard and a larger probability of inspection
in order to preserve incentive compatibility. Here, the standard for type 65
could be zero but not necessarily, since n, > 0. By (14), type 02 is indif-
ferent between (s3,p%) and (s3,p3). By Lemma 2, this means that type 6
strictly prefers (si,pj). At the optimal separating policy, type 67 is over-
enforced and type 05 is under-enforced with respect to the complete infor-

_dp®(s7,01) [t OP(s],p7,02)

mation case, since 610’ (s7) — d' (s7) — ¢ e = o

> 0 and

02V (n2) —d' (n2))ngp, —c = quW > 0, by Lemma 1 and py > 0,
the Lagrange multiplier associated with type #5’s binding incentive compatibil-
ity condition. That is, the standard for type #; is smaller than the one under
complete information, and the inspection probability for type 05 is also smaller
than the one under complete information.

Conditions (12) and (13) mean that, at the optimum, (s1, $2,p2) are such
that the marginal rate of substitution between each pair of variables in terms of
efficiency of the induced pollution levels equals the marginal rate of substitution

between thar pair of variables to induce type 65’s truthful revelation. Also, at

the optimum, type 6; is indifferent between the compliant and noncompliant

15



decisions.

Finally, we consider the full noncompliance region. In the following proposi-

tion, we show the characteristics of the optimal (interior) policy in this case.

17

Proposition 5 The optimal full noncompliance policy can be either pooling or

separating.

(i) If it is pooling, then:

2
> 7 (0 (ni) = d (ni)) nip = c
=1

Z% (0:6" (n;) —d (n;))nis + A =0

where X\ > 0 is the Lagrange multiplier associated with s* > 0.

(i) If it is separating, then

oP 8*, *,92
(0:1 (1) —d (), _ PP
(010 () —d’ (n1))map —c  9P(sipi02)
op1
1 O (1) = d (), PR
Yo (020" (n2) — d’ (n2)) n2p —c) OP(s5.05,02)
Op2
OP(sy,py,0
1 O () —d (m))m, PG
72 02V (n2) =& (na)) s 11y 0P[5 0]
S2

772207 83207 772‘9;:0

P(SI7PT792):P(S§7])§702)

where ny > 0 is the Lagrange multiplier associated with s5 > 0.

1"We omit the proof as it is similar to that of Proposition 4.

16



If the policy is pooling, the optimal standard need not be zero. Therefore,
it is possible that both types violate positive standards. Observe that even a
nonzero standard implies that 610 (n1) — d’ (n1) > 0, which means that type 6,

1.18 Therefore, a zero standard could restrict type

pollutes below its efficient leve
01’s pollution even more, with the corresponding welfare decrease. By contrast,
type 02 is under-enforced.

Alternatively, if the policy is separating, we again have sj > s5 > 0 and
p] > p5, due to the incentive compatibility constraint. In this case, we also have
that type 02 is under-enforced and type 6, is over-enforced with respect to the
complete information case. If the regulator were to naively impose the complete
information solution, type 62 would find it profitable to misreport its type, and
this is why type 62’s incentive compatibility constraint is binding. Conditions
(17), (18) and (19) have an identical meaning as those of partial compliance,
except that now both types find it profitable to violate the standards.

The results of this section would not substantially vary if we allowed for
a continuum of types. Following the same reasoning as that of Proposition 4,
if the optimal policy induced some types to comply and others to violate the
standards, the latter ones would be the dirtiest. Moreover, the optimal policy
would imply partial pooling: the compliant types would be confronted to the
same policy to avoid misreporting, as in Proposition 3.

In general, we can obtain violations to positive standards under incomplete

information. An interesting question to ask now is under what conditions is this

the case? We provide the answer in the following section.

181f s* > 0, then A = 0. By (16), we have y;Ainis = —7v5A2n2s, where A; =
0;b' (n;) — d’' (n;), which implies that ¢ = y5A42 <7L2p — %n1p> . Since nap — %nlp =
F'(na—s)—F'(n1—s)

N < 0 and ¢ > 0, we then have As < 0 and A; > 0.
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5 Discussion

In this section, we analyze the influence of the parameters of the model in the
different types of policies. The following result applies generally and shows the

type of policy that we obtain if we restrict attention to pooling policies.

Proposition 6 Whenever it exists, the optimal pooling policy induces full non-

compliance.

Full compliance is too expensive from a social viewpoint, and welfare can
always be increased if we decrease the inspection probability, since clean type’s
incentives remain unchanged, and the savings in monitoring costs are larger than
the decrease in efficiency due to the larger dirty type’s induced pollution level.
However, partial compliance is also too costly from a social welfare perspective.
Thus, whenever possible, it is worth to set the pooling policy in the noncom-
pliance region. However, we may have nonexistence of the full noncompliance
solution when monitoring costs are small or when the full noncompliance region
is small. This is illustrated in Example 1, below.

Also, when the full noncompliance policy exists, it is optimal to set a positive
standard for some values of the parameters. Example 1 illustrates that this is
more likely under low monitoring costs, large 6; and large uncertainty, that is,
when v, takes intermediate values. Also, the larger 6;, the smaller the interval

of the monitoring costs for which the standard is positive.
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5.1 Example 1

Consider the specific case where:

Observe that € = 1.1 For simplicity, we fix §3 = 1. Therefore, §; < 1. Now,
we compute the corresponding pooling policies in each one of the regions.

Starting with the full compliance pooling policy (FCP), observe that p° (s, 0s) =
02 = 1. Applying Proposition 3, we obtain:

pFCP — 1, §FOP — 1—7 (-0,
2

Note that 0 < sF'CF <& =1 for all ¢ >0, v, € [0,1] and 6; < 1. Therefore,

there always exists an interior FCP solution.

To obtain the partial compliance pooling policy (PCP), we now have p° (s,0;) =

61 < 1. Also, from (6), we have:

0; —p(1—2s)

[z (87p7 91) = 2p

and, consequently, n;, (s,p,0;) = 72—6;"5 and n;s (s,p,0;) = 1. Applying part (i)

9Note that b (e) is linear, which considerably simplifies the algebra without affecting the re-
sults. The main difference in this case is that p° (s, 0;) = F—,e(i0—)7 i.e., 0;’s threshold probability

does not depend on s.
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of Proposition 4, we have:

PCP _ g . JPCP _ 7107+ (1—7) (261 — 1)
=01 S -

p 20,

1260

In this case, we obtain an interior standard when v, € [(1*_01;?’ m )

Since v, € [0,1] and 07 < 1, there exists an interior solution when either 6; €
—26
(3,1) or 6y <% and~, € {(17—315]?,1}.
Finally, we obtain the full noncompliance pooling policy (FNCP) applying
part (i) of Proposition 5. Now, p < 6 is needed to induce both types to exceed

SFNCP7

reduce to

the standard. The optimality conditions to obtain ( FNOP)

p

the following system of equations:

p(01+1—25)—06

Y101

As=0,s5>0, A>0

In Table 1, we present some numerical solutions for different values of the
parameters as well as the corresponding social welfare evaluations. Observe that
full compliance is always dominated by partial compliance, since the probability
of inspection in the latter case is much smaller (p = 1 under full compliance
and p = 01 under partial compliance). But, whenever it exists, the full noncom-
pliance solution is always socially preferred to partial compliance. Under full
noncompliance, the probability of inspection increases when monitoring costs
decrease, when 6, increases or when 7; decreases. These three relationships

are quite intuitive. Also, we obtain a strictly positive standard when ¢ = 0.2,
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0, = 0.5, v; = 0.5, a result that is not possible under complete information. In
fact, this suggests that a positive standard may be obtained when monitoring
costs are sufficiently low. We now explore this result in detail.

In Figures 2 and 3, we illustrate the relationship between the optimal stan-
dards and the monitoring costs under full noncompliance for different values of
61, in the two extreme cases of large uncertainty (v; = 0.5) and no uncertainty
at all (y; = 1), respectively. In Figure 2, if §; = 0.8 for example, there does not
exists a full noncompliance solution when ¢ € [0, 0.002] and, therefore, the opti-
mal pooling solution in this interval induces partial compliance to s = 0.3875.
If ¢ € [0.002,0.0024], the optimal pooling policy induces full noncompliance to
a positive standard, which decreases as the monitoring cost increase. Finally, if
¢ > 0.0024, the optimal standard is zero. If 67 is lower, the full noncompliance
solution does not exist for a larger interval of the monitoring costs. This is
intuitive since the lower 61, the lower the full noncompliance region, and there-
fore, the larger the restriction for the full noncompliance solution to exist. If
01 = 0.5, we now obtain a larger interval of the monitoring costs for which the
optimal standard is positive, ¢ € [0.125,0.227]. For 6, sufficiently small, we do
not obtain full noncompliance to positive standards.

A graph similar to Figure 2 can be obtained under alternative values of 7,
that is, under different degrees of uncertainty. For example, if v; = 0.1, the
range of monitoring costs for which we obtain full noncompliance to a strictly
positive standard is ¢ € [0.0007,0.007] if #; = 0.8 and ¢ € [0.045,0.049] if 6, =
0.5. Alternatively, if v; = 0.9, we have ¢ € [0.0007,0.01] and ¢ € [0.045,0.16]
for 1 = 0.8 and 0; = 0.5, respectively. In these two cases, uncertainty has

decreased with respect to the case in which v; = 0.5 and, consequently, the
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interval of the monitoring costs for which we obtain violations to strictly positive
standards is smaller. Figure 3 shows the limit case of no uncertainty, where the
solution jumps from partial compliance to full noncompliance to a zero standard,
with no possible violations to positive standards.

In the next example, we analyze the separating policies.

5.2 Example 2

We consider the same functions of the previous example. Regarding the partial
compliance separating policy (PCS), by part (ii) of Proposition 4, we have p; =
01. Also, py < 01 to ensure incentive compatibility. Considering (8), expected

profits are:

P(S7p791) = 0181

1—2p(1—2s)+p°
Plspy - UL (20)

since the clean type complies with the standard and the dirty type does not.
Therefore, since p; = 01, the incentive compatibility constraint presented in

part (ii) of Proposition 4 reads:

1201 (1—2s1) +607  1—2ps(1—2s5) +p3 (21)
491 N 4172

. OP(s;.ms o .2
From (20), we obtain ﬂz’éfﬂl =1 and 8P(Sé£"’92) = —14;2’ . Thus, the

conditions to obtain the optimal PCS policy of part (ii) of Proposition 4 reduce
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to (21) and the three following equations:

Y1 (91 — 281) _ 2
(1—=71) (1 —2p2 (1 —s2) —2¢p3)  p2(1—p3)

2p2 (1 —s52) —1
0 =250) = (- 22O 2L

N2

s22 0, 13 20, 1352 =0

Finally, we apply the conditions of part (ii) of Proposition 5 to obtain the
full noncompliance separating (FNCS) policy. Now, p; < 601, since both types
violate the standard. The following equations characterize the optimal solution

in this case:

1—2py (1—2s1)4+pi  1—2ps(1—2s3) +p3
4py 4py
p1(014+1—2s1)— 6 2

O1p1 (61 4+1—2s1) —9% + 2cp$ 1 —p?

o)) -
7 —1 p1 2p2 (1 — s2) — 1+ 2cp3 1—p3
7101(91-1-1—281)—91 2p9 (1 —s9) — 1

1 —

= — 1 _—
o1 (71 ) D2 M2

82207 772207 7728220

We have computed the results for different values of the parameters. While
we can find interior solutions for the PCS policy, however we cannot find an
interior solution in the case of a FNCS policy, for any feasible values of the
parameters. Therefore, if the policy were to be separating, in this case it would
induce partial compliance.

In Figure 4, we present the relationship between the optimal standards and
the monitoring costs, for different values of #; and v; = 0.5, that is, when

there is large uncertainty. If #; = 0.5, there does not exist a PCS solution when
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¢ € [0,0.3125]. While type 61 always complies with s, type 62 violates a strictly
positive standard s when ¢ € [0.3125,0.58853]. Finally, sy = 0 if ¢ > 0.58853.
Note that both types’ standards decrease when monitoring costs increase. Also,
both inspection probabilities decrease when monitoring costs increase. When
0, = 0.8, we observe the same pattern, but here, the interval where type 62
violates a strictly positive standard is larger, i,e., ¢ € [0.016,0.70177]. Therefore,
it is more likely that we find noncompliance to strictly positive standards when
0 is large, since this enlarges the full noncompliance region.

We find an analogous structure of the solution under different values of ;.
However, it is interesting to see that, the smaller 7;, the smaller the intervals of
the monitoring costs where type 65 violates a positive standard. Thus, if v; =
0.1, we find that type 0 violates a positive standard when ¢ € [0.0625, 0.069524]
if 6; = 0.5 and when ¢ € [0.0032,0.0804] if §; = 0.8. Conversely, if v, = 0.9,
these intervals are, respectively, ¢ € [0.5625,2.304] and ¢ € [0.028828, 2.8518].

Finally, the interval of the monitoring costs for which we obtain violations
to strictly positive standards under FNCP always contains lower values than
the interval under PCS. For example, Figure 5 shows the comparison between
these intervals for the case of large uncertainty and #; = 0.5. Regarding social
welfare, we have made some computations which show that a pooling policy may
be preferred to a separating policy. For example, if ¢ = 0.58853, 6; = 0.5 and
v, = 0.5, we obtain swfNCP = —(0.11822 > swP“S = —0.1478. Alternatively, if
c = 0.069524, 6; = 0.5 and v; = 0.1, we have swNCF = 0.191169 > sw?¢S =
0.1909. Therefore, this example suggests that separating policies may not always

be preferred to pooling policies.

24



6 Conclusions

In this paper, we have studied the characteristics of an optimal regulatory policy
composed of pollution standards, probabilities of inspection and fines for non-
compliance in a context of asymmetric information and imperfect enforcement,
an approach different from that which has been done in the literature. Our
model is able to explain a salient feature of environmental regulation, namely
violations to strictly positive standards, a result that is not possible under either
complete information or incomplete information subject to perfect enforcement,
the two approaches studied until now within the principal-agent approach.

Also, our results suggest that restricting attention to incentive compatible
environmental taxation (where all the pollution levels are punishable) may not
always be correct, since under some circumstances, it may be socially preferred
to leave a certain amount of pollution uncharged to avoid over-enforcement.

In fact, we have shown that violations to positive standards are more likely
when monitoring costs are low, when uncertainty is large, and also when the
full noncompliance region is large. Since a positive standard means that the fine
for noncompliance is not maximum, this result is more likely when enforcement
costs are less important than the costs associated with the over-enforcement
of the clean type. Also, when uncertainty decreases, the results converge to
the complete information case, where it is not possible to obtain violations to
positive standards. Finally, the smaller the full noncompliance region (or the
smaller the parameter showing the dirtiness of the clean type), the smaller the
likelihood of obtaining violations to strictly positive standards.

Some computations have shown that separating policies may not always be

preferred from a social viewpoint and the best the regulator could do in those
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cases is to set the same policy for all the possible types. This result is surprising
and suggests that it may not always be worth to collect information about firms
prior to standard setting, even if this information collection were costless.
However, we have had to rely on numerical examples to analyze the likelihood
of violations to positive standards. Also, we do not have a definite answer to
the question of what is the best policy from a social point of view yet. Our
results are intuitive enough to think that they must hold more generally, but

this needs more investigation.

7 Appendix

Proof of Lemma 1.
When P (s,p,0;) = 0;b(s), the function is strictly increasing and concave
in s, but it does not depend on p. Also, 02b(s) > 61b(s). Conversely, when

P (s,p,0;) = (s,p,0;), we have:

s (8,p,0;) = pF’ (n; —s) >0 (22)
Tss (8,0,0;) = pF" (ni — s) (nis — 1) <0 (23)
T (5,p,0;) = —F (ni —s) <0 (24)
Tpp (8,0,0;) = —=F' (n; — 8)nyp > 0 (25)
Tsp (8,0,0;) = F' (n; — s) + pF" (n; — 8) nyp > 0 (26)

where n; = n(s,p,0;). Also, we trivially obtain that 7 (s,p,02) > 7 (s, p,01).
Summing up both possibilities we obtain the desired result.

Finally, 7 (s,0,60;) = max.sq0;b(e) = 6;b(€), for all i. Thus, P (s,0,0;) =
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0;b(€), as desired. m

Proof of Lemma 2.

In 6;’s compliance region, the expected payoff is 6;b (s), that is, it does not
depend on the probability of inspection. Therefore, indifference curves have an
infinite slope. In the noncompliance region, the expected payoff is 7 (s,p,0;) =
b(n(s,p,0;)) —pF (n(s,p,0;) — s). Implicitly differentiating = (s,p, 8;) = k, we

obtain:

@ | _pFl(n(S,p,ei)—S)
ds """ F(n(s,p.0;) — s)

>0 (27)

Now, differentiating (27) with respect to s we have:

d?p F'dp

p 2
T = S e + (F”F — (") ) (nis — 1) > 0 (28)

F?
since ngs < 1 and F'F — (F')> < 0.

(For analytical convenience, we prove the last part considering a continuum
of types. The result is easily adapted to the case in which 0 takes discrete
values.)

In the compliance region, both types’ indifference curves are vertical. In the
partial complance region, 0;’s are vertical and 05’s are strictly increasing In the

full noncompliance region, we differentiate (27) with respect to 6 to obtain:

d*p F'F — (F')?
——5 |r=k= ———=—— D0 29
d$d9 | k (F)2 pn0 (S p ) ( )
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Since F"F — (F’)2 < 0, di:d% lr=x and ng (s,p, ) have the opposite sign.
Differentiating (6) with respect to 6, we obtain ng (s,p,0) = 7W+;)F,/ > 0.
Therefore, d%i% lr=r< 0, as desired. m

Proof of Proposition 3.

The problem the regulator faces in the full compliance region is:

2
Maxs,p Z’YZ [ezb (6 (37177 91)) —d (6 (S7p7 01))] —Cp
i=1
s.t. p>p°(s,02) (30)

Since p > p° (s, 62), we then have e (s,p, ;) = s for all . The Lagrangian of

problem (30) is the following:

L(s,p,\) = ZV [0:b(s) —d(s)] — ecp — A (p° (5,02) — p)

where A > 0 is the corresponding Lagrange multiplier. The solution is given by

the following Kuhn-Tucker conditions:2"

dp© (s, 02)

=0
ds

V1 (010 (s) —d'(5)) + 72 (020" (s) —d' (s)) — A
c—A=0

A(P°(s,02) —p) =0

Since ¢ > 0, we have A > 0 and p° (s, 02) = p, which lead us to the result. m

Proof of Proposition 4.

20The assumptions of the model ensure that these conditions are necessary an sufficient for
an interior optimum. This continues to hold for the remaining optimality results, below.
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If the policy is pooling, the problem is:

Maxs»il) Z’Yi [elb (e (87p70i)) _d(e (87p7 et))] —Cp

st p>p°(s,601) (31)

Now, we have s = e(s,p,01) and ny = e(s,p,0s). The Kuhn-Tucker condi-

tions are the following:

71 (021 () — &' (3)) + 73 (B2 (m) — d (n2)) mny — A2 _
Yo (020" (n2) —d' (n2))ngp —c+A =0

A(p©(s,01) —p) =0

where A > 0 is the corresponding Lagrange multiplier of the Lagrangian associ-
ated with problem (31).

Observe that A = ¢ — v4 (620 (n2) — d' (n2))ng, > 0. If A = 0, we have
¢ =7y (020 (n2) — d’ (n2)) nap, which implies that ¢ > (0% (n?) — d’ (n?)) nap,
since 7, < 1. Therefore, since p > p° (s, 6;), welfare can increase if p decreases
infinitesimally, since type 61 continues to comply with s. Therefore, A > 0 and
p = p°(s,01). Rearranging terms, we obtain the desired result.

If the policy is separating, the problem is:
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Maws, s5,p1,p2 {71 (010 (51) — d(51) — p1¢) + 72 (020 (n2) — d(n2) — p2c)}
s.t. p1 > p©(s1,01)

P (s1,p1,01) > P (s2,p2,01)

P (s2,p2,02) > P (s1,p1,02)

$1>0,8 >0 (32)

Considering A > 0, p; > 0, gy > 0, n; > 0 and n; > 0 to be the cor-
responding Lagrange multipliers associated with each respective restriction in
problem (32), and P (s1,p1,01) = 01b(s), the Kuhn-Tucker conditions are the

following:2!

Fis) —d (s1)) - 2O 9P (s1p6h) 9P (s1,p1,02)
T (00 ) = o)) = A dsi = 0s1 T 081
A=7c
OP (s3,p2,0 P (s9,p2,0

Yo (02" (n2) — d' (n2)) nas = 1y (s2,p2,01) s (s2,p2,02) ”

a82 882

OP (s2,p2,0 OP (s2,p2,0
Yo ((O2b (n2) —d' (n2)) nep — ¢) = 1y (s82,p2,01) s (s82,p2,02)

Op2 Op2

A(p©(81,01) —p1) =0
Hq (P(827p2791)7P($17p1791)):0
po (P (s1,p1,02) — P (s2,p2,02)) =0

N181 =182 =0

Assume first that 1y = gy =15 = 0. This implies that 050 (ng) —d’ (ng) =0

21 Trivially, n; = O since a separating policy implies that s1 > s2 > 0, as seen in Section 3.
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and ¢ = 0, since ng, < 0. Since ¢ > 0, either one of the incentive compatibility
constraints must be binding or 1, > 0.22 Assume first that p; > 0 and p, =
1o = 0. However, na can be kept constant decreasing both (s2,p2) through ex-
pression (6) without distorting the incentive compatibility constraints.?* There-
fore, pq > 0, py = 1y = 0 is not possible.

Now, consider p; = 0, uy = 0,75 > 0. In this case, first order conditions
would reduce to 610 (s1) — d' (s1) = cm;sf—ll and (020 (n2) —d' (n2))ngp =
¢, respectively, the optimal compliance solution for type #; and the optimal
noncompliance solution for type 65 if information were complete. But, in this
case, type 02 would prefer to misreport its type. Therefore, p; =0, py = 0,15 >
0 is not possible. For the same reason, p; > 0, puy = 0,15 > 0 is not possible
either.

Therefore, p1; = 0 and py > 0. As for 1y, both n, = 0 and 1y > 0 are
compatible with the solution, thus obtaining the desired result. m

Proof of Proposition 6.

If the pooling policy induces full compliance, we have 614" (s*) — d’ (s*) —

cmcdss’ﬁl < 0 and 030 (s*) —d' (s*) — cmcdss’ﬂl > 0, by Proposition 3. This last

ds
dp©

—c<0, Since% < 0.

expression can be written as (030’ (s*) — d’ (s*))
By the continuity of the sanction at e — s = 0, we can infinitesimally decrease p
to increase social welfare, without affecting 6;’s behavior. Therefore, a pooling
policy which induces full compliance is never optimal.

Under partial compliance, we have ¢ > 7, (0°0' (n2) — d’ (n2)) nap and 0"’ (s*)—

221t is easy to see that both incentive compatibility constraints cannot be binding except in
the case of a pooling policy. Thus, pu; > 0, y > 0 is not possible if the policy is separating.

oe R . "
23To see this, consider (27) and % lno= —Zis = p;, to conclude that % lng < % |Py s
P

since (F')> — FF” > 0. By Lemma 2, we then have %E lngy < %’SZ |p, -
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d (s

*) > 0, by part (i) of Proposition 4. Therefore, by the continuity of the sanc-

tion at e —s = 0 and n;, < 0, we then have that an infinitesimal decrease in the

probability increases social welfare since:

71 (0% (n1) = d' (1)) mayp + 75 (6°V (n2) — ' (na)) gy — ¢ < 0

Consequently, if the optimal policy is pooling, it can only induce full non-

compliance. m
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Figure 1: The compliance and noncompliance regions
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Figure 2: The optimal standard for pooling policies under large uncertainty
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Figure 3: The optimal standard for pooling policies under no uncertainty
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Figure 4: The optimal standards for partial compliance separating policy
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Figure 5: Comparison between pooling and separating policies

FCP PCP FNCP

Cc 61 Y4 S sw S sw S P sw

0,2 0,5 0,5 0,375 -0,06 0,125 | 0,041 0,029 0,443 | 0,043

05 0,5 05 | 0375 -0,36 0,125 -0,11 0 0,406 -0,08
0,2 0,2 0,5 0,3 -0,11 0 -0,04 n n n

0,5 0,2 0,5 0,3 -0,41 0 -0,1 n n n

0,2 05 0,1 0,475 | 0,026 | 0,025 | 0,126 0 0,471 | 0,129
0,5 0,5 0,1 0,475 -0,27 0,025 -0,02 0 0,446 -0,01
0,2 0,8 0,1 0,49 0,04 0,378 | 0,081 0 0,474 | 0,143
0,5 0,8 0,1 0,49 -0,26 0,378 -0,16 0 0,449 | 0,005

Figure 6: Table 1. The pooling policies for various values of the parameters
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